Demo Abstract: An Interactive UNIX Shell
for Low-End Sensor Nodes with LiteOS

Qing Cao, Tarek Abdelzaher
University of lllinois,
Urbana-Champaign

{qcao2,zaher}@cs.uiuc.edu

Keywords
Unix shell, Sensor Networks, LiteOS

1 Overview and Motivation

While TinyOS has become a de facto standard in the sensor net-
works community, the concepts of event-based programming and
NesC wiring abstractions are not as commonplace in the broader
“parent” embedded systems and networking communities. It may
be argued that Linux and its many embedded variants enjoy a larger
following among embedded systems and other software developers.
A premise of the authors is therefore that software development for
sensor networks can benefit from the introduction of a UNIX-like
operating system interface for common platforms such as MicaZ
motes. This demo highlights such an interface.

Motivated by the need to simplify sensor network development,
the authors demonstrated in Sensys 2006 [1] a lightweight operat-
ing system kernel, called LiteOS, and a programming environment,
called LiteC, that allow thread-based programming in C++ on low-
end motes. This year’s demonstration presents the next stage in the
evolution of LiteOS; namely, its newly developed UNIX-like inter-
face.

Sensor network software developers who run LiteOS can now make
use of a subset of UNIX commands from within LiteOS programs
on individual sensor nodes. A UNIX-like local file system is ex-
ported to these programs. Local sensors and actuators appear
as UNIX I/O devices that are handled as special files per UNIX
conventions. The multi-threaded nature of LiteOS greatly simpli-
fies the implementation of the aforementioned interactive Unix-like
environment by creating a separate thread for handling different
UNIX commands. Finally, the system supports an implicit mount-
like operation whereby a mote within radio range from an autho-
rized base-station (that runs a LiteOS shell) is mounted to the base-
station’s file system.

2 Introduction of an Interactive Unix Shell

The interactive Unix shell is designed to support single-node func-
tionality. As mentioned above, it also provides a wireless node
mounting mechanism (to use a UNIX term) based on the built-in
file system of LiteOS. Much like connecting a USB drive, a node
mounts itself wirelessly to the filesystem of a nearby base station.
Moreover, analogously to connecting a USB device (which implies
that the device has to be less than a USB-cable-length away), the
wireless mount works only for devices within wireless range.

While not part of the current version, it is not conceptually difficult

John Stankovic
University of Virginia

stankovic@cs.virginia.edu

Tian He
University of Minnesota

tianhe@cs.umn.edu

Table 1. Shell Commands

Command List

File Commands

Process Commands
Group Commands
Environment Commands
Security Commands

Is, cd, cp, mv, rm, mkdir, touch, chmod, pwd, du
ps, kill, install, uninstall

foreach, $, |

history, who, man, echo

login, logout, passwd

to extend this mechanism to a “remote mount service” to allow a
network mount. Ideally, a network mount would allow mounting a
device as long as a network path existed either via the Internet or
via multi-hop wireless communication through the sensor network.

Once mounted, a node looks like a file directory from the perspec-
tive of the interactive shell. We call this Unix-like shell LiteShell,
and implement 23 commands, as listed in Table 1. They fall into
five categories: file commands, process commands, group com-
mands, environment commands, and security commands. Due to
space, we only briefly describe the first three categories of com-
mands in this section.

File Operation Commands: File commands generally maintain
their Unix meanings, e.g., the Is command lists directory contents.
It provides a -1 option to display detailed file information, such as
type, size, and protection. A Is -1 command returns the following in
a screenshot:

$ 1s -1
Name Type Size Protection
usrfile file 100 TWXLWXIWX
usrdir dir —= TWXIWX———

In this example, there are two files in the current directory (a direc-
tory is also a file): usrfile and usrdir. The shell enforces a simple
multilevel access control scheme. All users are classified into three
levels, from O to 2, and 2 is the highest level. Each level is rep-
resented by three bits, stored on sensor nodes. For instance, the
usrdir directory can be read or written by users with levels 2 and 3.
The chmod command can be used to change file permissions.

Once sensor nodes are mounted, a user navigates different direc-
tories (nodes) as if they are local. The base station PC also has
directories, such as drives C and D. Some common tasks can be
greatly simplified. For example, by using the cp command, a user
can either copy a file from the base to a node to achieve wireless
download, or from a node to the base to retrieve data results !. The

IThe implementation of copy requires that this file is not con-
currently opened by applications for writing. Otherwise, the copy
operation will return a failure.



remaining file operation commands are intuitive. Since LiteOS sup-
ports a hierarchical file system, it provides mkdir, rm and c¢d com-
mands.

Process Operation Commands: LiteShell also allows users to
control processes. When an application is first loaded, it is executed
as a thread that can spawn new threads. LiteShell provides four
commands to control thread behavior: install, uninstall, ps, and
kill. We illustrate these commands through an application called
Blink, which blinks LEDs periodically. Suppose that this applica-
tion has been compiled into a binary file called Blink.Ihex?, and is
located under the C drive of the base station. To install it on a node
named nodel01 (that maps to a directory with the same name) in a
sensor network named sn01 (the names of the network and nodes
are specified by the user), the user types the following commands:

$ cp /c/Blink.lhex /sn0l/nodel01/apps/Blink.lhex
Copy complete
$ cd /sn01/nodel01
$ install ./apps/Blink.lhex
File Blink.lhex installed under bin directory
$ ./bin/Blink.lhex
Blink.lhex started
$ ps
Name PID
Blink 1

Group Commands:

It is usually convenient to support certain group operations. For
example, prior to deployment, all nodes are usually kept together
for programming and testing. Operations in this phase are usually
group-based by nature, such as “install an application on all nodes”.
We have implemented two such group mechanisms, the foreach
command and the $ variable. When used together with regular ex-
pressions and pipes, these two commands loop over a set of nodes
(directories) to perform group operations. We illustrate their usage
through two examples.

Suppose that we have ten nodes labeled 201, 202, up to 210. We
have installed and started an application Tracking.lhex on each of
them (located in the directory bin, and having a PID of 1), and have
copied another application Report.lhex to each node (in the direc-
tory apps). To retask each node with the Report.lhex application,
the user types the following command:

$ echo [201-210] | foreach $ \
{kill 1; uninstall $/bin/Tracking.lhex;\
install $/apps/Report.lhex; $/bin/Report.lhex}

In this example, the echo command generates a list of directo-
ries using a regular expression. Instead of being displayed on the
screen, these directories are provided to the variable $ through a
pipe (spaces between strings are used as separators), which is in
turn combined with the foreach command. As its name suggests,
foreach loops over these directories, terminates and uninstalls the
Tracking application, and installs/invokes the Report application.

In the next example, the $ variable is concatenated with other
strings to generate customized commands. The scenario is as fol-
lows. Suppose that the report application writes data results into
a local file called data.txt on each node (in its root directory). To
retrieve such data, the user types the copy command as follows:

2LiteOS uses a revised version of the Intel hex format, called
lhex, to store binary applications. lhex stands for LitOS Hex.

$ echo [201-210] | foreach $ \
cp $/data.txt /c/sensordata/$.txt

Here, the command cp $/data.txt /c/sensordata/$.txt customizes
the destination file for each node. Because normal file names only
allow letters, digits, underscores(-), and dots(.), LiteShell recog-
nizes that $.txt needs to be translated before execution. Hence, no
confusion will be introduced.

3 Demonstration Scenario

To illustrate the interactive Unix shell, we are going to deploy a grid
of 20 MicaZ nodes. A laptop computer will serve as the base sta-
tion, where the user can interact with the whole network through the
interactive shell. All the aforementioned commands will be demon-
strated. The demonstration will include the following:

1. Demonstration of basic file, process, shell, group, and security
commands.

2. Control of sensing devices, such as light sensors, demon-
strated through the shell by reading real-time data from such
Sensors.

3. Control of radio using shell commands to change frequency,
power setting, and send/receive raw radio messages.

4. Upload, install, and terminate individual user applications
(which may themselves be multi-threaded).

5. LiteOS hands-on demo where audience can try their own
command sequences.

We select the following three applications from our current appli-
cation pool as demonstration examples. These applications will be
wirelessly downloaded to the nodes, executed, and their results dis-
played in the interactive shell.

1. Data collection application. This application uses a configura-
tion file, stored locally on sensor nodes, to decide which type
of sensor to use and the sensing frequency. The data can be
optionally sent back to the base station or stored locally in a
file. This data file can then be copied back to the base station
for analysis. The goal of this application is to demonstrate the
simplicity of controlling applications using Unix commands.

2. Multi-hop PingPong application. In this application, a node
generates packets, which travel multiple hops, to and from
a selected node. This application not only demonstrates the
radio behavior, but also serves as a convenient way to estimate
network performance.

3. Spanning-tree application. This application will form a span-
ning tree in the network.

4 References

[1] Q. Cao and T. Abdelzaher. Demo abstract: Liteos - a
lightweight operating system for c++ software development in
sensor networks. In The 4th ACM Conference on Embedded
Networked Sensor Systems, 2006.



