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Abstract
Real-time human mobility modeling is essential to vari-

ous urban applications. To model such human mobility,
numerous data-driven techniques have been proposed.
However, existing techniques are mostly driven by data
from a single view, e.g., a transportation view or a cellphone
view, which leads to over-fitting of these single-view mod-
els. To address this issue, we propose a human mobility
modeling technique based on a generic multi-view learning
framework called coMobile. In coMobile, we first improve
the performance of single-view models based on tensor de-
composition with correlated contexts, and then we integrate
these improved single-view models together for multi-view
learning to iteratively obtain mutually-reinforced knowl-
edge for real-time human mobility at urban scale. We
implement coMobile based on an extremely large dataset in
the Chinese city Shenzhen, including data about taxi, bus
and subway passengers along with cellphone users, captur-
ing more than 27 thousand vehicles and 10 million urban
residents. The evaluation results show that our approach
outperforms a single-view model by 51% on average.

Categories and Subject Descriptors
H.4 [Information System Application]: Miscellaneous

Keywords
Human Mobility, Model Integration

1 Introduction
Nowadays, we are in a rapid process of urbanization

where more than half of people in the world has moved to
urban areas [20]. To ensure urban sustainability, how to
capture human mobility at urban scale is one of the funda-
mental challenges we need to address. Such human
mobility has many real-world applications, e.g., urban plan-
ning, transportation, social networking, and location based
services [19]. To capture generic human mobility patterns,
several theoretical models have been proposed, e.g., the
gravity model and the radiation model [15]. However, a key
drawback of these theoretical models is that they cannot
capture human mobility at fine spatiotemporal granularity,
e.g., mobility at small region levels in real time.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SIGSPATIAL’15, November 03 - 06, 2015, Bellevue, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3967-4/15/11...$15.00
http://dx.doi.org/10.1145/2820783.2820821

Recently, thanks to upgrades of urban infrastructures,
many real-time location-tracking devices become available,
e.g., cellphones, onboard GPS devices and smartcards.
These devices generate massive real-time location data,
which hold the key potential to revolutionize real-time hu-
man mobility modeling. Based on these real-time data,
several data-driven models have been proposed, e.g., driven
by data from cellphones [11], smartcards [16], taxis [6],
buses [3], or subways [7]. However, a common feature of
these models is that they capture mobility only from one
view, e.g., a cellphone view or a transportation view. These
single-view models are sufficient if single-view data are
complete, but in reality this is not the case. From the cell-
phone view, the models driven by cellphone data cannot
capture residents without cellphone data, e.g., residents who
do not have cellphones and residents who have cellphones
but do not use their cellphones during our modeling time;
similarly, from the transportation view, the models driven
by one kind of transportation data, e.g., taxi, cannot capture
the passengers who use other transportation modes, e.g., bus
and subway, and further there is no urban infrastructure that
can capture private vehicles at urban scale. To our knowl-
edge, no data-driven urban human mobility models are
based on a complete view so far. As a result, these
single-view human mobility models essentially use resi-
dents captured by these single views as a sample to study all
residents, which inevitably leads to a bias and thus
over-fitting of their models, as shown in Section 2.

To address this issue, we aim to combine different views
for multi-view modeling. Each view is incomplete to cap-
ture mobility by itself, but one view is often complementary
to others, e.g., the cellphone view can capture some
private-vehicle passengers, whereas the transportation view
can capture some inactive cellphone users. But a view’s a-
bility to capture human mobility is unknown a priori and is
highly dynamic based on spatiotemporal contexts. As a re-
sult, such dynamic view completeness makes multi-view
human mobility modeling extremely challenging.

In this work, we propose coMobile, a generic framework
to capture human mobility with a multiple-view learning
technique. In coMobile, we first design a single-view learn-
ing technique based on context-based tensor decomposition
to improve completeness of single-view models. Then, we
integrate those improved single-view models together by
formulating a convex optimization to obtain the ground
truth of urban mobility. Mostly importantly, we implement
coMobile based on extremely large datasets in the Chinese
city Shenzhen with cellphone data and transportation data
including taxis, buses, and subways. In particular, the key
contributions of the paper are as follows:
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Fig 1. Models Driven by Two Carrier’s CDR Data

• We propose the first multi-view learning framework for
human mobility to integrate incomplete yet comple-
mentary knowledge from individual views. To our
knowledge, the proposed model is the only human mo-
bility model driven by more than one view, which aims
to address over-fitting of single view models. It is
challenging to apply multi-view learning in human mo-
bility modeling, because data-driven views are mostly
incomplete to urban-scale mobility.

• We design a single-view learning technique based on
context-aware tensor decomposition with both
real-time and historical data to improve completeness
of single-view models. This technique addresses data
sparsity challenges of particular views to improve their
completeness. In particular, we use a cellphone-view
model as an example to show how we extract three
contexts, i.e., cellphone user density, calling location
patterns, and calling time patterns, based on historical
data for joint tensor decomposition.

• Based on improved single-view models, we formulate
a multi-view modeling problem by designing a joint
optimization, which minimizes overall weighted devia-
tion from observed mobility to the ground truth. To
solve this optimization, we propose an iterative learn-
ing process to alternatively update ground truth and
view completeness until no further improvement can
be made for the objective function. We formally prove
the convexity of the joint optimization and the
convergence of our iterative learning.

• We implement our multi-view human-mobility model
based on two datasets in the Chinese city Shenzhen,
with 10 million cellphone users and 16 million smart-
card users involved. To our knowledge, this is one of
the largest human mobility models driven by
real-world datasets. We evaluate our model by compar-
ing it to a single-view model, and results show that we
reduce error rates by 51% on average.

Model Driven by Combined Cellphone Data

Model Driven by Combined Transit Data

Fig 2. Models Driven by Cellphone and Transit Data

2 Motivation
We first show the drawback of single-view models and the

opportunity of multi-view models.
2.1 Drawback of Single-View Models

We give two comparisons: (i) models driven by two dif-
ferent cellphone views; (ii) models driven by a cellphone
view and a transportation view.

As in Fig. 1, we first compare models driven by two one-
day CDR (call detail records) datasets from two carriers in
Shenzhen. This kind of models driven by single-carrier data
is mostly used for human mobility modeling [9]. A point
indicates a spatial unit covered by a cell tower, and an edge
linking two points together indicates the mobility between
them. We only show the major mobility for the clarity of the
figure. As shown by the circles, we found that each model
can capture some unique mobility that cannot be captured by
the other, which leads to over-fitting of these models driven
by CDR data from single cellphone carriers.

We combine the CDR data from different carriers, and
obtain a model driven by combined CDR data. Similarly,
we combine data from different urban transportation, i.e.,
taxi, bus and subway, together, and then obtain a model
driven by the transportation data. Due to different spatial
granularity (details in Section 3.1), we use a
urban-region-based model to show captured mobility in the
morning rush hour. As in Fig. 2, every point indicates a re-
gion in the Shenzhen urban area; every edge linking two
regions together indicates the mobility volume between
them. The size of a vertex indicates associated mobility, and
the different color indicates urban districts. As shown by the
circles, we also found that each model can capture some
mobility that cannot be captured by the other.



Beginning 2013/10/1 Beginning 2012/1/1 Beginning 2013/1/1 Beginning 2011/7/1

# of Users 10,432,246 # of Taxis 14,453 # of Buses 13,032 # of Cards 16,000,000

 Size 1 TB  Size 1.7 TB  Size 720 GB  Size 600 GB

# of Records 19 billion # of Records 22 billion # of Records 9 billion # of Records 6 billion

SIM ID Date&Time Plate ID Date&Time  Plate ID Date&Time Card ID Date&Time

Cell Tower ID Activities  Status GPS&Speed Stop ID GPS&Speed Device ID Station ID

Cellphone Dataset

Format

Smartcard Dataset

Format

Taxicab Dataset  Bus Dataset

Format Format

Fig 3. Cellphone and Transportation Data
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Fig 4. Multi-View Modeling

2.2 Opportunity of Multi-View Models
Due to the limitation of the single-view models, we are

motivated to combine two separate views together in order
to design a multi-view model for human mobility.

As shown by Fig. 4, from the transportation view, we
aim to combine four independent models (i.e., four trian-
gles) driven by data from taxis, buses, subways, and private
vehicles for human mobility modeling. But currently there
is no urban infrastructure that can capture private trans-
portation in real time at urban scale. Some efforts have been
made by the research community to install GPS devices in
the private vehicles to study human mobility [21], but only
limited private vehicles are involved.

Alternatively, we can design a model driven by cellphone
CDR data as in Fig. 4. But there are two challenges. (i)
Some cellphone users would not use their cellphones (i.e.,
being inactive) during the time we perform modeling. To
address this issue, we design a technique based on tensor
decomposition with correlated contexts to infer locations of
inactive cellphone users in Section 4. (ii) Some urban resi-
dents who opt out of allowing their CDR data used for other
purposes or do not have cellphones at all. Therefore, for
these residents, we cannot capture their mobility.

As a result, neither the transportation view nor the cell-
phone view is complete by itself, but one view is often
complementary to another. For example, the model driven
by cellphone data can provide some mobility about resi-
dents using private transportation; whereas the model driven
by transportation data can provide some mobility about resi-
dents without cellphone CDR data. It motivates us to design
an effective modeling technique to combine these two views
for better mobility modeling.

3 Preliminary
In this section, we first introduce the data we collected for

multi-view modeling, and then we present a concept called
mobility graph to capture the real-time human mobility, and
finally we give the architecture of coMobile.

3.1 Multi-View Data
We have been working with several service providers and

the Shenzhen Transport Committee (hereafter STC) for data
access of urban infrastructures. We consider two kinds of
data, i.e., cellphone data and transportation data, as two in-
dividual views to model human mobility. A summary of
these data is given by Fig. 3. The heat map of their spatial
granularity is given by Fig. 5 with an area of 14 × 5 km2.

Cellphone View: Cellphone CDR (call detail records)
data are used to infer cellphone users’ locations at cell tower
levels. We utilize CDR data through two major operators in
Shenzhen with more than 10 million users. The CDR data
give 220 million locations per day.

Transportation View: Data from three kinds of trans-
portation modes, i.e., taxi, subway and bus, are used to
detect transportation passengers’ locations. We study trans-
portation data through STC to which taxicab, bus and
smartcard companies upload their data in real time.

• Taxi data are used to infer taxi passengers’ origins and
destinations based on status (i.e., pickups and dropoffs)
at GPS location levels. They account for 14 thousand
taxis, each of which generates 2 records/min.

• Smartcard data are used to infer origins and destina-
tions of residents with smartcards used to pay bus and
subway fares, which capture more than 10 million
rides and 6 million passengers per day. In particular,
there are two kinds of smartcard readers: (i) a total of
14,270 onboard mobile readers in 13 thousand buses
capturing 168 thousand bus passengers per hour, and
(ii) a total of 2,570 fixed readers in 127 subway sta-
tions capturing 60 thousand subway passengers per
hour. Smartcard data and subway map data are used to-
gether to detect subway passengers’ origins and
destinations at subway station levels.

• Bus data are used to infer bus passengers’ origins and
destinations along with smartcard data (showing that a
passenger uses a smartcard at a bus station) at 4849 bus
station levels. They account for all 13 thousand buses,
each of which generates 2 records/min.

Our endeavor of consolidating the above data enables ex-
tremely large-scale real-time urban phenomenon rendering,
e.g., human mobility, which is unprecedented in terms of
both quantity and quality.
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Fig 6. Mobility Graph

3.2 Mobility Graph
In this work, we use Mobility Graph to capture human

mobility in real time at urban scale, which is a time-varying
graph where a vertex indicates a spatial unit (e.g. a urban
region or a street block) and a weight of an edge linking two
vertices indicates the mobility volume between them. Due
to its time-varying nature, a mobility graph Gt is associated
with a time period t (e.g., 4-5PM), which shows the mobility
during this particular time period.

Fig. 6 gives a simplified example of a mobility graph
with only 3 vertices. The number of people moving between
different spatial units, i.e., weights of edges, should include
people associated with a particular view, e.g., the cellphone
view or the transportation view. In this work, our main ob-
jective is to obtain mobility graphs based on single-view
modeling, and then to combine them together by multi-view
modeling for a comprehensive human mobility graph.

3.3 coMobile Framework
We introduce our coMobile Framework by Fig. 7. From

the bottom, we have urban data generated by urban infras-
tructures, e.g., cellphone data and transportation data, which
are introduced in Section 3.1. Based these two kinds of da-
ta, we design two single-view models capturing mobility
patterns of cellphone users and urban transportation users
by two mobility graphs, which are introduced in Section 4.
Then, we present our multi-view learning to integrate
single-view models for more complete human mobility
modeling, which is introduced in Section 5. Finally, the ob-
tained human mobility model can be used in many
applications, e.g., ridesharing and transit energy inference.

Single-View 
Modeling
(Section 4)

Multi-View 
Modeling
(Section 5)

Urban 
Applications

Urban Data
(Section 3) Cellphone Data Transportation Data

Transportation 
View Model

Cellphone 
View model

Human Mobility 
Model

Fig 7. coMobile Framework

Note that we only consider two specific views in coMo-
bile but it can be generalized to more views if more data are
available. In coMobile, we first generate single-view model-
s and then combine them together at model levels, instead
of raw data levels (e.g., using multi-source raw data to di-
rectly design a multi-view model). This is because in many
applications due to privacy issues, raw data are not avail-
able, and only high-level single models can be used as
input. Our coMobile is still applicable to this situation.

4 Single-View Mobility Modeling
We introduce how to model urban mobility based on two

single views, i.e., a cellphone view and a transportation view.
4.1 Cellphone-View Modeling

As introduced earlier, the key challenge to model human
mobility based on cellphone data is that inactive cellphone
users or residents without cellphones do not generate any C-
DR data. As a result, we cannot model their mobility to
obtain mobility graph. For residents without cellphones, the
solution is limited although the model based on transporta-
tion can capture some of them. In this subsection, we focus
on inactive cellphone users to infer their mobility by an ob-
servation that inactive cellphone users who did not use their



cellphones today may use their cellphones before during the
similar trips [8]. Accordingly, we formulate a tensor decom-
position problem to infer mobility of both active and
inactive users based on real-time and historical data.

4.1.1 Tensor Construction
We infer locations of cellphone users for specific time

slots by a three dimensional tensor A ∈ RN×K×M .
• A cellphone user dimension indicates individual

cellphone users differentiated by SIM IDs: [u1, ...,uN ].

• A time slot dimension indicates specific time windows
(e.g., one hour window from 5PM to 6PM): [t1, ..., tK ].

• A spatial unit dimension indicates specific spatial units
(e.g., a urban region): [s1, ...,sM].

• An entry A(n,k,m) indicates the number of CDR
records a user n has in a spatial unit m during a slot k.

With our cellphone data, we fill this tensor A , and then
obtain all cellphone users’ locations with a specific spa-
tiotemporal partition. However, a key challenge is that the
tensor A is sparse because for inactive cellphone users, their
corresponding entries are empty due to lacking CDR data.

Un
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dFig 8. Tensor Decomposition

A common approach to address this issue is to use tensor
decomposition. As in Fig. 8, we have a tensor with three di-
mensions indicating cellphone users, spatial units, and time
slots. An entry denotes a tuple [user, location, time]. But
this tensor is sparse due to inactive cellphone users. Based
on the classic Tucker decomposition model [13], we decom-
pose A into a core tensor I along with three matrices,
U ∈ RN×du

, S ∈ RM×ds
, and T ∈ RK×dt

. U, S , and T infer
correlations between different cellphone users, different s-
patial units, and different time slots, respectively. du, ds and
dt are the number of latent factors and very small.

The following objective function is used to optimize the
decomposition.

||A− I ×U×S ×T ||2 +λ(||I ||2 + ||U||2 + ||S ||2 + ||T ||2)

where the first term is to measure the error of decomposi-
tion and the second term is a regularization function to
avoid over-fitting. || · ||2 denotes the l2 norm and λ is the pa-
rameter to control the contribution of the regularization
function. By minimizing this objective function, we obtain
the optimized I , U, S , and T by the sparse tensor A , which
is given by cellphone data. As a result, we use
I ×U × S × T = A’ to approximate A where × is the
tensor-matrix multiplication.

However, a key challenge for this decomposition is that
A is over sparse especially under fine spatiotemporal parti-
tion, which leads to poor performance of decomposition. To
address this issue, in this work, we propose a technique to
use historical cellphone data to establish correlated contexts
that improve the performance of the decomposition.
4.1.2 Context Extraction

To provide additional information for the decomposition,
we use the historical cellphone data to extract three con-
texts, i.e., cellphone user density, calling location pattern,
and calling time pattern. We use three matrices to denote
these three contexts as in Fig. 9.

• Cellphone User Densities are given by a matrix B where
a row denotes a spatial unit; a column denotes a time
slot; an entry denotes the average CDR record count
in this spatial unit for this time slot over a period of
historical time.

• Calling Location Patterns are given by a matrix C
where a row denotes a spatial unit; a column denotes a
cellphone user; an entry denotes a cellphone user’s C-
DR record count in this spatial unit given a period of
historical time.

• Calling Time Patterns are given by a matrix D where a
row denotes a time slot; a column denotes a cellphone
user; an entry denotes a cellphone user’s CDR record
count in this time slot given a period of historical time.

All the matrices B , C , and D can be obtained by a set of
historical cellphone data.
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Fig 9. Context Matrix Factorization

4.1.3 Context-based Tensor Decomposition
We present a joint tensor decomposition based on the

three extracted context matrices. In particular, we design the
objective function as follows.

min
I ,U,S ,T

L(I ,U,S ,T ) = ||A− I ×U×S ×T ||2

+λ1||B−S ×T ||2 +λ2||C −S ×U||2 +λ3||D−T T ×U||2

+λ4(||I ||2 + ||U||2 + ||S ||2 + ||T ||2).
(1)

where the first term is to measure the error of decomposing
A ; the second, third, and forth terms are to measure the error
of factorizing matrix B , C , and D , respectively; the last term
is to avoid over-fitting. In our setting, du = ds = dt . λ1, λ2,



λ3, and λ4 are preset parameters to indicate term weights.
We normalized all values to [0, 1] for the decomposition.

In this objective function, A and B share S and T ; A and
C share S and U; A and D share U and T . Since B , C , and
D are not sparse, they lead to accurate S , T and U, which
increases the performance of decomposing A . As a result,
the historical cellphone user calling patterns are transferred
into the decomposition of A , which leads to an accurate
tensor decomposition.

Because this objective function does not have a closed-
form solution to find the global optimal I , U, S , and T ,
we use an element-wise optimization algorithm as a numeric
method [12] to obtain a local optimal solution. Finally, after
we obtain I , U, S , and T , we use I ×U× S ×T = A ′ to
obtain cellphone mobility graph GC of all cellphone users.

4.2 Transportation-View Modeling
Based on our transportation data, we model human mo-

bility by three transportation modes, i.e., taxi, bus and
subway. Given attributes of our transportation data, we
directly obtain origins and destinations of taxi, bus and sub-
way passengers at GPS, bus station, and subway station
levels. In this work, we use a space alignment technique
where we assign taxi GPS locations, bus stations, and sub-
way stations into corresponding spatial units based on a
specific spatial partition of urban areas. Thus, for a pair of
spatial units, e.g., from an airport to a train station, we ag-
gregate all the above passengers who traveled between these
two spatial units to obtain a mobility volume during a
particular time period, because these three kinds of trans-
portation modes are independent from each other. Thus,
from the transportation view, obtaining transportation
mobility graph GT is straightforward.

Our context-aware tensor decomposition can also be
used to improve completeness of the transportation-view
model since we have missing data issues (e.g., GPS records)
as well. The process is conceptually similar to the tensor de-
composition for the cellphone-view model, which is omitted
due to the space limitation.

Further, we did not consider private vehicles in our trans-
portation view due to lack of private vehicle data. However,
some urban residents using private transportation would be
captured by multi-view learning, which is introduced as
follows.

5 Multi-View Mobility Modeling
In this section, based on single-view modeling, we intro-

duce multi-view modeling in coMobile. Even though our
data can only form two views to obtain two mobility graphs,
i.e., the cellphone mobility graph GC and the transportation
mobility graph GT , we aim to tackle a more generic prob-
lem, i.e., multi-view modeling, and thus double-view
modeling is a concrete example of multi-view modeling.

We first formulate a joint optimization problem for
multi-view human mobility modeling, and then we develop
an iterative learning processing to solve this problem, and
finally we theoretically analyze the performance of
modeling in terms of convexity and convergence.

5.1 Joint Optimization
The main objective of our multi-view modeling is to ob-

tain a comprehensive human mobility graph GH for a given
time period based on several single-view mobility graphs,
e.g., GC and GT . Because we have the same spatial partition
for different mobility graphs, they have the same number of
edges and vertices, and the key difference is edge weights.
Since different edges are independent in a human mobility
graph, we use one edge ab in a human mobility graph GH as
an example to show how we obtain the human mobility
from one spatial unit a to another spatial unit b by our
multi-view technique, and combine different edge weights
together to obtain a complete human mobility graph GH .

For a specific edge ab in GH , the volume of passengers
traveling from a spatial unit a (e.g., an airport) to b (e.g., a
train station) during a time period t (e.g., 4-5PM) is x∗ab·t ,
which is the unknown ground truth we want to infer.
Assuming we have V different views, which leads to V dif-
ferent mobility graphs that are incomplete by themselves
yet complementary to each other. For a specific view
v ∈ [1,V ], we use xv

ab·t to indicate the weight of the edge ab
during t in the mobility graph Gv; for a specific view
v ∈ [1,V ], we use wv

ab·t to indicate the completeness degree
of this view during a time period t from this edge ab of Gv.
The completeness degree of a view quantifies its capability
to capture human mobility. The stronger the capability is,
the higher the degree is. Under different spatiotemporal
contexts, the completeness degree of the same view is dif-
ferent. We use a vector Wab·t = {w1

ab·t , ...,w
v
ab·t , ...,w

V
ab·t} to

indicate completeness degrees for all V views.
In coMobile, based on the above definitions, V and xv

ab·t
are given in advance by the datasets; whereas x∗ab·t and
Wab·t are unknown. Therefore, we present a joint optimiza-
tion to obtain optimal x∗ab·t and Wab·t together. The basic
idea behind our multi-view learning is that a view with a
higher completeness degree provides more comprehensive
information, so the ground truth should be close to mobility
observed by a view with a higher completeness degree. As a
result, we should minimize the deviation from mobility ob-
served by a view v to the ground truth x∗ab·t (unknown),
proportionally to its completeness degree wv

ab·t (also un-
known). Therefore, we develop the following objective
function for multi-view learning.

min
x∗ab·t ,Wab·t

F(x∗ab·t ,Wab·t) =
V

∑
v=1

[wv
ab·t ·D(x∗ab·t ,x

v
ab·t)],

s.t.,R(Wab·t) = 1.

(2)

D(x∗ab·t ,x
v
ab·t) is a distance function that describes the dis-

tance between x∗ab·t and xv
ab·t . Therefore, the term

∑
V
v=1[w

v
ab·t · D(x∗ab·t ,x

v
ab·t)] indicates the overall weighted

distance between the observed mobility and the ground
truth. We aim to find the optimal x∗ab·t and Wab·t that
minimize this overall weighted distance under a constraint.

R(Wab·t) is a constraint function, which gives the distri-
bution of view completeness. Without this constraint, the
optimization problem is unbounded. For the sake of sim-
plicity, we set R(Wab·t) = 1. Other constraint functions can



also be used since we can divide R(Wab·t) by a constant.
The rationale behind this function is that for a

more-complete view, we have a high penalty if the mobility
observed from this view has a longer distance to ground
truth. In contrast, for a less-complete view, we have a low
penalty if the mobility observed from this view has a longer
distance to ground truth. Thus to minimize the objective
function, ground truth relies on the more complete views.
5.2 Iterative Learning

We develop an iterative learning technique based on the
block coordinate descent [2] to solve this optimization. Since
in our objective function we have two sets of variables, i.e.,
both the ground truth x∗ab·t and the view completeness degree
Wab·t , we aim to iteratively yet alternatively optimize these
two sets of variables until the result converges. In particular,
we optimize the value of one set to minimize the objective
function while keeping the value of the other set fixed, and
then we swap the fixed variable and the optimized variable
to continue this process until the result converges. Fig. 10
gives the description of our iterative technique.

���·� ← arg	min
���·�

� ���·�
∗ ,���·� ,

Step 2: Fix	���·�
∗ & Optimize ���·�

Step 3: Fix	���·� & Optimize	���·�
∗

s.t.		�����·�� � �

���·�
∗ ← arg	min

���·�
∗

� ���·�
∗ ,���·� ,

Step 1: Initialization about ���·�
∗ 	and	���·�

Until: Convergence

∑

Fig 10. Iterative Multi-View Learning
In Step 1, we first initialize x∗ab·t and Wab·t based on the

average value of x∗ab·t , because the initialization does not
affect the final results based on the property of the block co-
ordinate descent [2]. In Step 2, we first fix the initialized
x∗ab·t , and then find the optimal Wab·t that minimizes the ob-
jective function. In Step 3, with this optimized Wab·t , we fix
it and then find the optimal x∗ab·t that minimizes the objec-
tive function again. Then, with this optimized x∗ab·t , we go
back to Step 2 to fix x∗ab·t again, and then to further optimize
Wab·t . This is an iterative process to alternatively optimize
x∗ab·t and Wab·t until the result converges.

Based on the property of the block coordinate descent [2],
the convergence of the above iterative process is based on the
distance function and constraint function used. As follows,
we theoretically analyze the performance of our technique in
terms of convexity and convergence.
5.3 Theoretical Analyses

We use Negative Log Function as our constraint function:

R(Wab·t = {w1
ab·t , ...,w

v
ab·t , ...,w

V
ab·t}) =

V

∑
v=1

exp(−wv
ab·t).

This negative log function maps a number between 0 and 1 to
a number from 0 to ∞, which enlarges the difference between
different view completeness degrees for better modeling.

Further, we use Normalized Squared Loss function as our
distance function given as

D(x∗ab·t ,x
v
ab·t) =

(x∗ab·t − xv
ab·t)

2

STD(x1
ab·t , ...,x

v
ab·t , ...,x

V
ab·t)

.

This normalized squared loss is an effective method to mea-
sure the distance between two variables and consider the
distribution of xv

ab·t at the same time.
As follows, we prove the convexity and convergence of

our iterative learning with the above two functions.
THEOREM: If the negative log function and the normal-
ized squared loss function are used, then convergence of our
iterative process in Fig. 10 is guaranteed.
PROOF: Based on the convergence proposition on the block
coordinate descent [2], the iterative process converges to a
stationary point, if the optimizations in Steps 2 and 3 are
convex. Thus, the rest of our proof has 2 steps: (i) in Step 2,
if x∗ab·t is fixed, the optimization for Wab·t is convex; (ii) in
Step 3, if Wab·t is fixed, the optimization for x∗ab·t is convex.

To prove the convexity of Step 2, we use another variable
yv = exp(−wv). Therefore, the optimization problem
becomes a new function with only one variable of yv.

min
y1,...,yv,...,yV

F(y1, ...,yv, ...,yV )=
V

∑
v=1

[−log(yv)·D(x∗ab·t ,x
v
ab·t)],

s.t.,
V

∑
v=1

yv = 1.

With this new variable yv, we have a linear constraint
function and a linear objective function (i.e., a linear combi-
nation of negative logarithm functions). Therefore, both the
constraint function and objective function are convex, which
leads to the fact that any local optimal solution is also the
global optimal solution for Step 2.

To prove the convexity of Step 3, we treat the objective
function as an unconstrained optimization with only one
variable. In Step 3, since the normalized squared loss func-
tion is convex, the objective function is a linear combination
of convex functions, which makes it convex. �

Note that other constraint and distance functions can also
be used in our iterative process but may not lead to the con-
vexity of the optimization problem, and thus the
convergence of the iterative process cannot be guaranteed.

6 Implementation and Evaluation
In this section, we first introduce our implementation of

coMobile based on data from the Chinese city Shenzhen.
Then, we present our evaluation by comparing coMobile
and a single-view model to the ground truth.

6.1 coMobile Implementation
We implement coMobile based on cellphone and trans-

portation data in Shenzhen introduced in Section 3. Since
our paper concentrates on modeling, we briefly introduce
our data-related issues during our implementation. We es-
tablish a secure and reliable transmission mechanism, which
feeds our server the data collected by STC and service
providers with a wired connection. As shown in Section 3,
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Fig 13. MAPE under One Hour Slot for 24 Hours of a day

we have been storing a large amount of data, requiring sig-
nificant efforts for the daily management. We utilize a 34
TB Hadoop Distributed File System (HDFS) on a cluster
consisting of 11 nodes, and each of them is equipped with
32 cores and 32 GB RAM. For daily management, we use
the MapReduce based Pig and Hive. Because of the ex-
tremely large size of our data, we have been finding several
kinds of errant data, e.g., duplicated data, missing data, and
data with logical errors. To address these issues, we conduct
a detailed cleaning process to filter out errant data.

For real-world implementation, we have to decide the s-
patiotemporal partition for the mobility graph, which
decides the spatiotemporal granularity of our model. For ex-
ample, we have more than 110 thousand road segments, 496
urban regions, and 10 urban districts in Shenzhen, and we
can capture the mobility with one of those three spatial par-
titions for every 15 mins, 30 mins, 60 mins, or even longer.
Due to the spatial resolutions of our data (especially for bus,
subway, and cellphones), we use a urban-region partition
proposed by Shenzhen government as our spatial partition,
which is given by Fig. 11. Different colors indicate different
population density. Based on this partition, we implement
our multi-view mobility modeling technique coMobile
based on two views. A human mobility graph obtained by
coMobile for major urban areas during the evening rush
hour at region levels is given by the left of Fig. 12.

6.2 coMobile Evaluation
6.2.1 Evaluation Methodology

Based on our implementation, we compare coMobile
with a single-view human mobility model called WHERE.
WHERE [9] is a model driven by cellphone data, and it is
based on spatial and temporal probability distributions of
human mobility and produces synthetic cellphone records
as the inferred mobility. We compare these two models with
the inferred ground truth. In this project, to infer the ground
truth, we introduce another new cellphone related dataset

for the evaluation. Different from regular CDR data, this
dataset logs locations of all cellphone users at cell tower
levels for every 15 mins even without activities. We use the
mobility graph obtained from this dataset as the ground
truth, which is given in Fig. 12. By a visual comparison, we
found that we underestimate the mobility at residential areas
and overestimate the mobility at downtown areas.

We utilize three months of data to evaluate these two
models. We use Mean Average Percent Error (MAPE) in a
time slot as a metric to test those two models
MAPE = 100

n ∑
n
i=1
|T̄i−Ti|

T̄i
, where n = 496× 496 = 246016

is the total number of region pairs, i.e., the total number of
edges in a mobility graph; Ti is the inferred mobility be-
tween a region pair i; T̄i is the ground truth of the mobility
between a region pair i. An accurate model yields a small
MAPE, and vise versa. We use 90 days of data, leading to
90 experiments. The average results were reported.

We investigate the impact of different contexts by adjust-
ing three model parameters, i.e., λ1, λ2, and λ3, which
control contributions of different contexts in our tensor de-
composition with Eq.(1). The default setting is
λ1 = λ2 = λ3 = λ4 =

1
4 where we consider all contexts and

the regularization term equally. Further, we investigate the
impact of historical cellphone data on the model
performance in terms of extracting correlated contexts.
6.2.2 Evaluation Results

We compare two models’ inferring accuracy in terms of
MAPE values by (i) a low level comparison on five particu-
lar region pairs, (ii) a high level comparison on all 246016
region pairs, (iii) different lengths of slots, and (iv) different
amount of historical data.

Fig. 13 plots the MAPE under one hour slots with the
two-way mobility between a residential region and five oth-
er regions. We found that coMobile outperforms WHERE
in general. This is because WHERE only uses the cellphone
data to model the human mobility from the cellphone view



alone; whereas coMobile uses two views to model the hu-
man mobility, which leads to better performance. We also
found that the performance gain between coMobile and
WHERE is lower during the rush hour. One of the possible
explanations is that the repeatable mobility patterns are
higher during the rush hour, so all models have better per-
formance. Comparing the five region pairs, we found that
for the commuting region pairs (e.g., between the residential
region and the industrial, commercial or downtown region-
s), all models have better performance than the region pairs
on which the residents go for travel (i.e., between the resi-
dential region to the airport or train station regions). This is
due to the fact that repeatable pattern for travel is limited.

Fig. 14 gives the MAPE on all region pairs under one
hour slots. We found that all two models have higher MAPE
than the MAPE we observed in Fig. 13. This is because the
urban mobility is highly dynamic between various regions
pairs, many region pairs have very limited mobility, which
leads to high MAPE. But we also found that relative perfor-
mance between these two models is the same as in Fig. 13.
coMobile is better than WHERE, which shows the advan-
tage of using multi-view learning to model the human
mobility. coMobile outperforms WHERE by 51% in terms
of MAPE, resulting from its multi-view learning from both
cellphone data and transportation data.
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Fig 15. Effects of Lengths

Fig. 15 plots the MAPE of coMobile and WHERE with
different slot lengths from 15 mins to 12 hours. Basically,
the MAPE of both models reduces with the increase of the
modeling lengths. This is because the mobility in a longer
time slot is much more stable. coMobile significantly out-
performs WHERE when the slot length is short. This is
because the transportation data can capture lots of mobility
during a short time period. We notice that the slot length be-
comes longer than 6 hours, both coMobile and WHERE
have the similar performance, because in a long time slot,
the cellphone data alone is capable of inferring mobility.
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Fig 16. Historical Data
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Fig 17. Contexts

Fig. 16 shows how much historical information is neces-
sary for coMobile and WHERE. As expected, the longer the

time, the lower the MAPE for both models, the better the
performance. But a too long history does not help much, es-
pecially for coMobile whose MAPE became stable when
the historical data are longer than 4 weeks. It shows that co-
Mobile does not reply on long-term historical cellphone
data, thanks to the transportation view. But WHERE needs
a longer historical period of data, i.e., 9 weeks, before its
MAPE becomes stable.

Fig. 17 shows the impact of two contexts, i.e., cellphone
user densities and calling time&location patterns as intro-
duced in Section 4.1.2. In particular, we set λ2 = λ3 = 0 and
λ1 = λ4 = 1

2 to obtain a model called coMobile w/ User
Density, which only considers the cellphone user density as
a context. Similarly, we set λ1 = 0 and λ2 = λ3 = λ4 =

1
3 to

obtain a model called coMobile w/ Time&Location Pattern-
s, which only considers time&location patterns as contexts.
We compare them with coMobile, which considers all con-
texts. In generally, coMobile outperforms the other two
models. We found that for the early morning, considering
time&location patterns is better than considering user densi-
ty; while for the late night, considering user density is better
than considering time&location patterns. Also, during some
slots in the afternoon or evening, e.g., 14:00, 15:00 and
18:00, it leads to better performance if we do not consider
certain contexts.

In short, we have the following observations. (i) As in
Fig. 13, the accuracy of human mobility modeling is highly
depended on both locations and time of day. (ii) As in
Fig. 14, both models have better performance in the morn-
ing rush hour in general due to the predicability of morning
commutes, and coMobile outperforms WHERE during all
times. (iii) As in Fig. 15, the length of slots has significant
impacts on performance of all models. (iv) As in Fig. 16,
how much historical data to be used by coMobile does not
significantly affect the performance of coMobile. (v) As in
Fig. 17, the same contexts have different effects according
to the time of day, but considering them together leads to
better average performance.

7 Related Work
Modeling the human mobility in urban scales is crucial

for mobile applications, urban planning and social network-
s [20]. However, almost all existing models are driven by
single views. We made the first attempt to model the human
mobility with multi-source data [18], but our previous work
was to use transportation data to adjust the modeling pro-
cess based on cellphone data, and did not treat these two
kinds of data equally as two views. As follows, we
summarize the related work by different views.

Cellphone View: Modeling from the cellphone view
based on call detail records (CDR) is the most common
method, e.g., modeling how residents move around the
cities [9]; estimating cellphone users’ travel range [10]; pre-
dicting where cellphone users will travel next [5]. However,
the models from cellphone views are mostly biased against
a certain group of residents, leading to inaccurate analyses.
To our knowledge, we are the first to combine data from
more than one carrier to model the human mobility.

Transportation View: Transportation data are another



important data source for human mobility, e.g., bus data [3],
subway data [14], taxicab data [6], and private vehicle da-
ta [7]. However, the models driven by data from one kind of
transportation are mostly biased against the passengers us-
ing other transportation. To our knowledge, there is no
model driven by more than one transportation mode, and we
are the first to combine data from three kinds of
transportation for mobility modeling.

Other Views: Other data generated by urban residents
have also been used to study human mobility, e.g., social
networks or mobile ad hoc networks, i.e., with check-in da-
ta [4] and proximity data [1]. However, the number of
residents captured by these views is often extremely limited
compared to the cellphone data and transportation data,
which leads to a bias that cannot be quantified.

In summary, almost all human mobility modeling is
based on single views, which are often incomplete in terms
of capturing the human mobility at urban scale in real time.
Such a shortcoming motivates us to take a multi-view ap-
proach, which uses incomplete yet complementary views to
model the human mobility.

8 Discussion
We provide some discussion about coMobile as follows.
Privacy Protections. While the data for the human mo-

bility study have the potential for great social benefits, we
have to protect the privacy of the residents involved for
wider applications. We took two active steps for privacy
protections. (i) Anonymization: All data analyzed are
anonymized by the service providers who were not involved
in this project, and all identifiable IDs, such as SIM card ID-
s, are replaced by a serial identifier during the analyses. (ii)
Aggregation: the mobility patterns obtained by coMobile
are given at aggregated results with a mobility graph in a
large spatiotemporal partition. We do not focus on
individual residents during the analyses.

Public Data Access. Accessing empirical datasets is vi-
tal to the geographic information system research, but such
datasets are usually not available for the fellow researchers
due to the privacy issues. As an initiative step, the partial
aggregated data used in this work have been made for public
access in the website of Transport Committee of Shenzhen
Municipality [17]. Most importantly, we release the first big
urban data [18], which include the large-scale Shenzhen da-
ta including taxi, bus, subway, smartcard, and cellphone
data. This is the first time that such comprehensive urban
data are released for the benefit of research community.

9 Conclusion
In this work, we design, implement and evaluate a hu-

man mobile modeling technique called coMobile based on
context-aware tensor decomposition and iterative
multi-view learning. Our endeavors offer a few valuable in-
sights: (i) the human mobility modeling based on
single-view data introduces biases, which can be partially
addressed by using historical data; (ii) to model human mo-
bility, every view itself is incomplete but they are often
complementary to each other, and thus it is essential to
model the completeness degree of a view before inferring
the mobility; (iii) multi-view learning for human mobility

requires an iterative optimization process to improve the ac-
curacy of modeling, and thus how to select an objective
function and constraint function to ensure the convergence
is essential for real-time applications.
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