
Exploring In-Situ Sensing Irregularity
in Wireless Sensor Networks ∗

Joengmin Hwang, Tian He, Yongdae Kim

Department of Computer Science and Engineering
University of Minnesota, Minneapolis

jhwang@cs.umn.edu, tianhe@cs.umn.edu, kyd@cs.umn.edu

Abstract
The circular sensing model has been widely used to es-

timate performance of sensing applications in existing anal-
ysis and simulations. While this model provides valuable
high-level guidelines, the quantitative results obtained may
not reflect the true performance of these applications, due to
the existence of obstacles and sensing irregularity introduced
by insufficient hardware calibration. In this project, we
design and implement two Sensing Area Modeling (SAM)
techniques useful in the real world. They complement each
other in the design space. P-SAM provides accurate sensing
area models for individual nodes using controlled or moni-
tored events, while V-SAM provides continuous sensing sim-
ilarity models using natural events in an environment. With
these two models, we pioneer an investigation of the impact
of sensing irregularity on application performance, such as
coverage scheduling. We evaluate SAM extensively in real-
world settings, using three testbeds consisting of 40 MICAz
motes and 14 XSM motes. To study the performance at scale,
we also provide an extensive 1,400-node simulation. Evalu-
ation results reveal several serious issues concerning circular
models, and demonstrate significant improvements

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Develop-

ment—modeling methodologies

General Terms
Measurement, Performance, Design, Experimentation

Keywords
Model, Irregularity, Event, Sensing, Coverage, Schedul-

ing, Similarity

∗ This research was supported, in part, by University of Min-
nesota McKnight-Land Grant Professorship award, and NSF grant
CNS-0626614, CNS-0615063 and CNS-0626609.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’07, November 6–9, 2007, Sydney, Australia.
Copyright 2007 ACM 1-59593-763-6/07/0011 ...$5.00

1 Introduction

Wireless sensor networks are envisioned to support vari-
ety of applications such as military surveillance [3, 18, 26],
habitat monitoring [4, 7, 32], infrastructure protection [37]
and scientific exploration [34]. As a bridge to the physical
world, sensing is an indispensable elements of many sensor
network systems. Compared to the diversified solutions pro-
duced for communication among sensor nodes, research on
sensing coverage still has considerable room for improve-
ment. One well-known but largely ignored issue is sensing
irregularity. It has been known for years that sensing patterns
are not regular [9, 14, 15, 22], but researchers still continue
to develop, simulate, and analyze sensor network protocols
that utilize a simplified theoretical sensing coverage model
[1, 6, 10, 16, 19, 23, 24, 31, 33, 35, 38], in which the sensing
boundary is represented by a circle (a sphere in 3D) cen-
tered by a sensor. We acknowledge that the results based on
this simplifying assumption could reveal high-level insights,
but that such assumptions often lead to the all-too-common
problem that solutions developed by simulation and analysis
do not work as expected in the real world. Our work is moti-
vated by the fact that it is difficult to accurately characterize
in-situ sensing areas with theoretical models. For example,
environmental impacts (e.g., obstacles) can severely affect
sensing characteristics, causing irregular and non-uniform
sensing patterns at different sensor nodes. Since irregular-
ity is a common issue in sensor networks, it is unwise for
developers to continue to ignore this reality. Our answer to
this issue is a sensing area modeling technique called SAM,
which consists of two complementary methods for sensor
area modeling.

• The first method, Physical Sensing Area Modeling (P-
SAM for short), features a novel way to use training
events in a controlled manner. The main objective of P-
SAM is to identify accurate non-parametric sensing pat-
terns (areas), that are close to the on-the-ground truth.
This is achieved by capturing the time-space relation-
ships of controlled or monitored events and matching
event positions with event detection results of individ-
ual sensor nodes. The resulting sensing area can be used
to optimize the performance of many applications such
as sensing coverage and event tracking.

• The second method, Virtual Sensing Area Modeling (V-
SAM for short), features a lightweight way to model
sensing relationship among sensors, using only obser-
vations of natural events in the environments. The main
idea of V-SAM is to construct and evolve over time a
series of similarity graphs among sensor nodes. These
similarity graphs represent virtual sensing relationship
among sensor nodes, which can be used to improve the
application performance.

The main objective of this work is to develop two com-
plementary in-situ modeling technologies for application de-
signers to choose from. One can choose P-SAM to obtain
sensing areas for applications that demand high-fidelity. A
key challenge of P-SAM is to reconcile the conflict between
the in-situ modeling accuracy and the related training cost.
On the other hand, one can choose V-SAM for applications
that require continuously remodeling with very low cost.
The key challenge of V-SAM is how to efficiently utilize the
limited information available. In summary, our contributions
in this work lie in the following:

• Measurement: We investigate the realistic sensing pat-
terns in existing embedded devices under various envi-
ronmental settings, accessing the discrepancy between
theoretical assumptions and in-situ measurements, re-
vealing some interesting observations.

• Modeling and Validation: We design and implement
two event-driven sensing area modeling techniques. In
P-SAM, we can obtain the shape of a real sensing area.
In V-SAM, based on observation similarity between
nodes, we develop efficient coverage scheduling algo-
rithms to achieve desired sensing quality under realistic
settings. The performance of V-SAM is examined us-
ing accurate information obtained by P-SAM. We val-
idate the accuracy of our modeling approaches with a
network of 14 XSM motes, 40 MICAz motes, and an
extensive simulation with 1,400 nodes.

• Impact Analysis: Our results serve two research pur-
poses. First, SAM can be used to enhance the accuracy
of simulation, evaluating protocols in more realistic set-
tings. Second, SAM bridges the gap between theory
and practice, integrating logical analysis with physical
inputs. To our knowledge, this work is the first to study
the impact of sensing irregularity on a set of protocols,
including area coverage and point coverage. In these
studies, we identify several serious issues with the cir-
cular model, and show significant improvements when
SAM is used instead.

The rest of this paper is organized as follows. Section 2
describes the motivation behind our work from application
perspectives. We propose P-SAM and V-SAM in Sections 3
and 4, respectively. Section 5 describes the indoor and out-
door system evaluations of both P-SAM and V-SAM. Sec-
tion 6 concludes the paper.

2 Related Works

Several sensing area models are used to characterize the
sensing areas of individual nodes. One of the most com-
monly used models is 0/1 disk model, which regards a sens-
ing area as a disk with a certain radius centered on a sen-
sor node. A sensor detects an event if it occurs within the
disk, and it does not detect an event if it occurs outside of
the disk. An enhanced disk model [2, 25, 28, 29] is based
on the assumption that an event is more likely to be detected
as it is closer to the sensor node. Due to the simplicity of
these models, they are widely used for theoretical analysis
and algorithm design. For example, many coverage schedul-
ing algorithms [1, 6, 16, 19, 23, 31, 33, 38] are based on 0/1
disk model.

The common feature of these earlier works is to rely on
a theoretical model to estimate sensing quality in ideal envi-
ronments and develop applications to meet the required sens-
ing quality. The assumption and its discrepancy from the real
environment are largely specified as two parts. First, they do
not consider such elements in the realistic environment as
obstacles. Second, they often assume that they can obtain
the key parameters required for the model, i.e., a disk size
of coverage. Several projects [5, 8, 13, 36] tried to calibrate
real sensing patterns to the standardized units. For exam-
ple, sensor array calibration based on constant target track-
ing was proposed in [8]. The concept of macro-calibration
for localization was introduced in [36]. Auto-calibration for
acoustic sensor network was designed and implemented in
[13]. Overall, the objective of calibration is to obtain map-
ping parameters to represent real world. However, calibra-
tion in large-scale sensor network still has lots of issues. In
addition, it does not provide a general solution to the perfor-
mance degrade caused by obstacles, an important factor in
sensing irregularity.

Having observed the limitations of these simplifying
models, several pioneering projects have been proposed to
design algorithms and protocols [20, 21, 30] without any
prior assumptions on the sensing coverage. Koushanfar et
al. [20] proposed an energy efficient sleeping coordination
for environmental monitoring (temperature sensor, humidity
sensor, etc). Using the correlation between sensor nodes,
a model is constructed to predict the values of some sen-
sors from the values of other sensors. The goal is to create
the maximal number of uncorrelated subgroups, so that en-
ergy can be saved by turning on only one subgroup at a time.
Krause et al.[21] dealt with sensor placement problems as-
suming no knowledge about sensing pattern. Based on the
data of sensing values, their algorithm selects near-optimal
locations of sensor nodes so that the number of sensor nodes
and the cost are reduced while achieving the required perfor-
mance. While both works show their effectiveness in deal-
ing with sensing irregularity, they are specific solutions on
a case-by-case basis. Instead, the objective of our work is
to provide a generic solution for sensing irregularity that is
directly comparable to the widely used circular 0/1 sensing
model in the literature [1, 6, 16, 19, 23, 31, 33, 38]

Figure 1. P-SAM Architecture Figure 2. Regular Training

3 Physical Sensing Area Modeling (P-SAM)

In this section, we introduce the design of P-SAM. We
focus on static sensor networks (i.e., with no mobility),
which are the case for most existing deployed sensor sys-
tems [32, 34]. We also assume the event type is known. This
assumption is needed because the sensing area we obtain for
one event type (e.g., movement of vehicles) cannot be ap-
plied to other types of events (e.g., light). If a network is
designed to detect several types of events, sensing modeling
for each type is required. Without loss of generality, we first
describe our design as conceptually independent of the type
of events used. Later on, we use light and Passive InfraRed
(PIR) motion sensors as specific examples in indoor and out-
door P-SAM implementation, respectively.

3.1 Main Idea

The main idea of physical sensing area modeling is to re-
late the location of events to the event detection results of
individual sensors. Events can be intentionally generated in
the space where the sensor nodes are deployed, or we can
monitor natural events and collect information on their loca-
tions. We call both controlled and monitored events training
events. An event could be, for example, the presence of an
object in an area or a light spot projected on a set of sensors.
The obtained sensing area can be input to an existing cover-
age scheduling algorithm [38] to improve sensing quality.

Formally, an event can be defined as a detectable phe-
nomenon e(t, p) that occurs at time t and at location p∈ A⊂
R

k (k = 1,2,3). Without loss of generality, we use k = 2
(2-dimensional plane) in the rest of the paper. To identify
sensing area, we need to match a relationship between the
time t and location p. In other words, a set of training events
can be described as the event locations over the discrete time:
G : R→R

2, where G(t) = pt = (xt ,yt) and t ∈ {t1,t2, ...,tn}.
In case of continuous events, a set of discrete training events
can be obtained by sampling a continuous event with a cer-
tain interval.

Figure 1 shows the system architecture of P-SAM, which
consists of two major parts: an event generator G and a set
of sensor nodes ni(i ∈ N). The event generator G is a func-
tion to assign a physical point to a discrete time according
to which a sequence of events e(t, p) are generated, (Step
1 in Figure 1). We define Si(t, p) as the detection function

Algorithm 1 Regular G(t) Process

Output: Pi: The sensing area of ni.
1: T = /0 //an empty set of timestamps
2: repeat
3: An event e(t, p) is created at time t and location

p(x,y) according to G(t)
4: if node ni detects event e(t, p), i.e. Si(t, p) = 1 then
5: it stores the timestamp t into set T
6: end if
7: until G stops generating events
8: Event generator G disseminates the description of G(t)

to all nodes
9: Node ni obtains a set of locations Pi by correlating G(t)

with Ti = {t i
1,t

i
2, . . . ,t

i
n}

10: Pi is a set of positions p where Si(t, p) = 1

of node ni, if node ni can detect event e(t, p), Si(t, p) = 1;
otherwise Si(t, p) = 0. In case of detection, sensor nodes
store the timestamp t locally. By the end of training, G can
either collect the time-stamps from sensors (Step 2) or dis-
seminate the description of G(t) to whole network (Step 3).
By inputting the time stamps into G(t), a set of timestamps
Ti = {t i

1,t
i
2, . . . ,t

i
n} from node ni can be converted to a set of

locations Pi = {pi
1, pi

2, . . . , pi
n}. The location set Pi can be

used to directly describe the sensing area of node ni, or it can
be transformed to a polygon. There is a trade-off between
the number of training events and the details of the coverage
shape we obtain.

3.2 Design of Event Generator G(t)

Since the overhead and accuracy of the sensing modeling
is largely determined by G(t), it is important to consider sev-
eral solutions to optimize G(t) under different system config-
urations.

3.2.1 Regular G(t)

To illustrate the basic functionality of an event generator,
we start with a simple sensor system in which the sensing
area of a node is a line segment as shown in Figure 2a. We
intend to find out the portion of the line included in the sens-
ing ranges of sensor node n1 and n2. To achieve this, the
event generator creates discrete point events along this line

Figure 3. Hierarchical Partition Figure 4. Level of Details Figure 5. Hierarchical Training

[0,L] with constant speed v with an interval D. Formally,
G(t) = t ·v, where t = kD/v and 0≤ k ≤ L/D. For example,
in Figure 2a, a sensor node n1 collects a set of six timestamps
T1 = {t1,t2, . . . ,t6} at which the events are detected. Using
function G, the actual locations of events are converted to a
set of locations P1 = {t1v,t2v, . . . ,t6v}. The sensing coverage
of sensor n1 can be defined as the line segment that covers
P1. Sensor n2 reports timestamps T2 = {t4,t5,t6,t7} and the
sensing coverage of sensor n2 is defined as the line segment
that covers P2 = {t4v,t5v,t6v,t7v}. The intersection of T1 and
T2, T1∩T2 = {t4,t5,t6} indicates that the coverage of the two
sensors overlap, as shown in Figure 2a.

The regular training can be generalized to the case when
the events occur in a plane. Figure 2b shows this approach.
In this case, training area A is divided into several lines
α1,α2, . . ., and the events are generated following the lines.
In addition to the progressive scanning, G(t) function of
the regular training can use an arbitrary sequence of natu-
ral events as long as the position of the natural events can
be acquired along with detection results S(t, p). In regular
G(t), it is desirable to cover every point in the area at least
once. The detailed operations to identify the sensing area of
a single node ni are described in Algorithm 1.

3.2.2 Hierarchical G(t)

Hierarchical G(t) is motivated by the observation that the
boundary of a sensing area requires more detail than the area
in the middle of coverage. With hierarchical G(t), we can
reduce the number of events required to obtain the same ac-
curacy as regular G(t).

As shown in Figure 3, level-1 events divide the area into
4 sub-areas, and level-2 events divide the area into 16 sub-
areas. In general, level-i events divide an area into 4i sub-
areas. Interval D at level-i is the distance between adjacent
sub-areas’ centers. If an event is a level-i event, it is also
a level- j event (j ≥ i). Two events are said to be adjacent
(or a pair) if they are neighboring each other vertically, hori-
zontally or diagonally (e.g., an event could have a maximum
of 8 adjacent events). Two adjacent events are said to be
boundary pair if only one of two adjacent events is within
a sensing range of some node. (e.g., e1 and e5 in Figure 4
form a boundary pair). The event in a boundary pair is called
a boundary event.

The main idea of hierarchical G(t) is to recursively gen-
erate new events in the middle of boundary pairs. It works in

Algorithm 2 Hierarchical G(t) process

Output: Pi: The sensing area of ni.
1: G(t) starts with level-1 events e(t, p) (The number of

level-1 events is decided by the minimum sensing area)
2: Node ni reports Si(t, p) for all level-1 events
3: repeat
4: for all level-k adjacent pairs e(tm, pm) and e(tn, pn) do
5: if any node detects only one event && no event is

generated at position pm+pn

2 before then

6: Generate a level-(k + 1) event at position pm+pn

2
7: end if
8: end for
9: k = k + 1

10: until (k = Maximum Level)
11: Pi is a set of positions p where Si(t, p) = 1

a way similar to the binary search within a two-dimensional
space. We describe detailed operation of hierarchical G(t) in
Algorithm 2.

3.2.3 A Walkthrough of Hierarchical G(t)

We illustrate the main idea for finding the sensing area of
one sensor using hierarchical training. Figure 4 shows four
level-1 events e1,e2,e3 and e4 that are generated coarsely at
time T = {t1,t2,t3,t4}. By definition, these events are adja-
cent to each other. In the example, the sensing area of a node
covers about half of the area; therefore, the event genera-
tor G obtains the detection results S(t1, p1) = S(t3, p3) = 0
and S(t2, p2) = S(t4, p4) = 1. According to lines 4 - 8 in
Algorithm 2, we compare the value S(t, p) for each pair of
adjacent events. In the example, since S(t1, p1) = S(t3, p3)
and S(t2, p2) = S(t4, p4), no event is generated in the mid-
dle of e2 and e4, nor in the middle of e1 and e3. These
skipped locations are assumed to have the same value as
S(t2, p2) = S(t4, p4) and S(t1, p1) = S(t3, p3), respectively.
However, since S(t1, p1) 6= S(t2, p2), S(t1, p1) 6= S(t4, p4),
S(t3, p3) 6= S(t4, p4), we need to provide an additional level
of detail by generating three new events, e5, e6 and e7. These
events are located at the middle of selected pairs of adjacent
events at times t5,t6, and t7, as shown in Figure 4.

Hierarchical G(t) works recursively. After new events are
added, new adjacent pairs can be created. For example, after
we add e5,e6, and e7, the event e5 has new adjacent pairs

Figure 6. P-SAM System Setup Figure 7. Hierarchical G(t) Sce-
nario

Figure 8. Sensing Area Obtained

Algorithm 3 P-SAM Coverage scheduling [38] for event de-
tection implemented on node ni

Input: a set of locations of interest, {li
1, l

i
2, . . . , l

i
m} covered

by node ni

1: Exchange information {li
1, l

i
2, . . . , l

i
m} with neighbors.

2: Select a random time Ri and exchange with neighbors.
3: tstart ← Ri, tend ← Ri

4: for each li
k, k = 1, . . . ,m do

5: Find every neighbor covering li
k, and sort Ri and every

neighbor’s random time in increasing order.

6: [tstart ,tend]← [tstart ,tend]∪ [Ri+Pred(Ri)
2 , Succ(Ri)+Ri

2]
7: end for
8: Schedule node ni to wake up at tstart and sleep at tend .

e5 ↔ e1, and e5 ↔ e2, and e5 ↔ e6. Such new pairs are
checked with the same procedure detailed in lines 4-8 in Al-
gorithm 2 until we reach the maximum level of detail we
defined. For a sensor ni, all values in a set S collected at
all levels of detail are used for the calculation of its sensing
coverage.

Hierarchical G(t) can be generalized for any number of
sensors involved where a certain area can be covered by more
than one sensor. Similarly, a coarse shape of sensing cover-
age is exposed and refined with a high level of detail in the
boundary area. In a multiple nodes case, we need to check
whether two adjacent events, ei and e j, have the same value
of S(ti, pi) and S(t j, p j) for all neighboring sensors. In other
words, two adjacent events are said to be a boundary pair as
long as there exists a sensor that detects only one event. Fig-
ure 5 gives an example. The area is covered by two sensor
nodes, n1 and n2. After level-1 event generation, the detec-
tion results of two adjacent events are compared. Although
node n1 detects both events, ei and e j, node n2 detects only
ei. Therefore, ei and e j form a boundary pair (of n2), and
a new event should be generated in the middle of the two
events. Recursively, more level-2 events are generated on the
boundary area of the sensing coverage, as shown in Figure 5.

3.3 Application: P-SAM Guided Coverage

We can use the output of P-SAM to improve the per-
formance of many sensing-driven applications. As a spe-
cific example in this work, we apply P-SAM to the coverage

Figure 9. Mapping Event Detection to the Event Position
Using Image Capture at Time t = 6,8,10,16,17,20 (sec);
last map Includes Additional Training Results by t = 40
(sec)

scheduling algorithm proposed by [38] to show its effective-
ness.

Algorithm 3 describes how the coverage scheduling al-
gorithm in [38] can be built on top of P-SAM. The sens-
ing phase is divided into rounds with equal duration. Within
each round, each node needs to decide when to sleep and
when to work (in order to save/balance energy). To do that,
each node ni keeps its sensing area as a set of locations
(points) it covers, {li

1, l
i
2, . . . , l

i
m} [Line 1 of Algorithm 3].

It selects a random time Ri in range of round starting time
and ending time, and disseminates it to its neighboring nodes
[Line 2]. For each location li

k in the location list, it finds its
neighbors that cover the location. Let Pred(Ri) be the largest
random time of neighbors smaller than Ri. The node ni’s
wake-up time is the middle of Pred(Ri) and Ri. Similarly,
Succ(Ri) is the smallest random time of neighbors larger than
Ri. Then, the node ni’s sleep time is the middle of Ri and
Succ(Ri). For each location li

k, node ni’s wake-up and sleep
time is determined [Line 4-5] in this way. The minimum

wake-up time over all locations is chosen as the final wake-
up time, and the maximum sleep time over all locations is
chosen as final sleep time [Line 6].

In the circular model, the sensing area of a sensor node
is a circle with a certain radius centered at the sensor node.
Thus, all physical points contained within a circle are pro-
vided as an input to Algorithm 3. If we use P-SAM, we re-
gard a sensing area as a collection of the locations obtained
during training process. In this case, the collected set of lo-
cations is provided as an input to Algorithm 3.

3.4 Implementation of P-SAM

We have implemented the P-SAM system both in indoor
and outdoor environments. These two implementations al-
low us to investigate several sensing modalities and different
event control techniques at various kinds of environmental
settings.

3.4.1 Indoor P-SAM system

We design and implement an indoor P-SAM system
that includes regular and hierarchical training on the
TinyOS/Mote platform. NesC [12] language is used to pro-
gram the motes, and Java is used to build the regular and
hierarchical generators. The compiled image of a full mote
implementation occupies 14,500 bytes of code memory and
605 bytes of data memory. As shown in Figure 6, we attach
40 MICAz motes on a veltex black board and use a projector
to generate regular and hierarchical events. The location of
these events can be optionally displayed on the board. For
example, we can visually inspect the distribution of hierar-
chical events as shown in Figure 7. For each generated event,
we assign a unique ID. By using these IDs, we eliminate the
need for time synchronization. After each run, the training
results are visualized on the board and compared with the
ground truth, as shown in Figure 8.

3.4.2 Outdoor P-SAM system

In the outdoor P-SAM system, we use ExScal XSM
motes [11] to obtain empirical results on irregular sensing
patterns. Four PIR sensors, each with 90◦ view, are attached
to a XSM mote to provide a full 360◦ view of sensing. PIR
sensors detect movements through changes in infrared radi-
ation, which is caused by walking persons or moving vehi-
cles. The sensing area would change slowly over time due
to the changes in ambient conditions and the energy condi-
tion of the nodes. However, from our experience, we find
that the PIR sensing area is relatively stable; there is no sig-
nificant difference unless the environmental factors change
significantly. Thus, several trainings over a large time inter-
val would be enough. For example, we measure the sensing
area once during day and once at night, and we also measure
the sensing area in the winter and in the summer. We trade
off the model accuracy over time with the cost to refresh the
model. We adopted the regular training approach, but instead
of training the motes using parallel lines as in Figure 2b, we
used monitored events (i.e., natural movements of a person).
To map the event time to the event position, we used a digi-

Figure 10. V-SAM and Coverage Scheduling Built-Upon It

tal camcorder during training. Then the event detection time
is compared to the camcorder capture time and converted to
the location included in the sensing area. For example, in
Figure 9 the camcorder captures the positions of a person at
time t = 6,8,10,17,18,20 (sec), converts the detection time
of the PIR sensor to the corresponding position of the trainer
in the picture, and projects the position into the plan.

4 Virtual Sensing Area Modeling (V-SAM)

Clearly, the strength of P-SAM is in its high accuracy
in sensing modeling. It is achieved, however, at the cost
of controlled training. While P-SAM is useful in scenarios
where sensing accuracy is highly desired, we need a com-
plementary solution that is suitable for scenarios where cost
is the paramount concern and the sensing area evolves rel-
atively quickly over time. In this section, we propose the
lightweight design of V-SAM, which requires no controlled
events. The V-SAM modeling technique is especially useful
when the events occur frequently, and when we want to cap-
ture the coverage without micro-control especially in an area
with unknown obstacles.

4.1 Main Idea

Figure 10 shows the process of V-SAM and how appli-
cations can be built upon it. We assume if two nodes are
neighbors in sensing range they are neighbors in communi-
cation range. Each sensor node exchanges sensing values for
detected events and calculates similarity between neighbor-
ing nodes. The resulting similarity graph represents virtual
sensing relations among the sensor nodes. On top of V-SAM,
applications can be built. For example, in sensing coverage,
nodes can coordinate their working schedule based on the
similarity graph. The highlight of V-SAM is the continuity of
the V-SAM modeling process, i.e., the similarity graph can
be continuously updated/refreshed with upcoming events in
the system.

4.2 Design of V-SAM

V-SAM consists of two main procedures: similarity mea-
sure and similarity graph construction.

Figure 11. Time Series of Event Observation Figure 12. V-SAM Guided Coverage Scheduling

4.2.1 Measuring Similarity

In V-SAM, an event is defined as a detectable phe-
nomenon that occurs at time t at location p, which is un-
known a priori. As shown in Figure 11, nodes are roughly
synchronized with each other [27], and time is divided into
equal round with duration Tupdate, which is a parameter to
control how often the sensing model is refreshed. Each round
is further divided into m equal duration intervals, each of
length Tspan.

For each round, each node ni stores its observation vec-
tor {oi

1,o
i
2, . . . ,o

i
m} obtained through discrete sampling at

Ti = {t i
1,t

i
2, . . . ,t

i
m}. After collecting the event observations,

at the end of round each node exchanges the observation
vector, which is used to calculate similarity between nodes.
Specifically, we use P -norm to measure the similarity be-
tween two observation vectors by node ni and node n j as
follows:

d(i, j) = P

√

m

∑
k=1

|oi
k−o

j
k|
P

(1)

where P can be 1,2, . . . ,∞. This similarity is transformed

by d(i, j)← (−2)× d(i, j)−dmin

dmax−dmin
+1 so that it is distributed be-

tween -1 and 1. The resulting value is closer to 1 if two motes
have similar observations, while it is closer to (−1) if they
have different observations.

To estimate the similarity over time, we use an exponen-
tial moving average method. The average similarity in the nth

round, d̂n(i, j) is updated differently, depending on whether
there is any event detection in the round. When a node de-

tects an event, new dn(i, j) is used to update d̂n(i, j). Oth-
erwise, we use an aging factor β to gradually attenuate the
similarity among nodes to 0. The rationale behind the aging
factor is to forget the similarity observed a long time ago,
which cannot accurately reflect the current situation. The
average similarity over n rounds (n≥ 1) is calculated by:

d̂n(i, j) =















if event is detected

α× d̂n−1(i, j)+ (1−α)×dn(i, j)

otherwise

β× d̂n−1(i, j)

(2)

We provide an example in Figure 11. When we compute
the similarities between nodes n1 and n2, we make the obser-

vation vector of node n1 as {1,2,4,2} and observation vector
of node n2 as {0,2,3,2}. Similarly, two observation vectors
of nodes n3 and n4 can be made. Initially, the default simi-
larity value of d0(i, j) is left to 0.

4.2.2 Building Similarity Graph

Now that we have measured similarities, we want to rep-
resent the sensing relations in a graphical method in a given
time space. We use a graph G(V,E(t)) to represent a set of
sensor nodes and similarities among themselves at a certain
time slot t (a duration of each time slot t is set to Tsch in Sec-
tion 4.3, which will be explained in the section). The set V
is a complete set of N sensor nodes in the network, and E(t)
is a set of edges among nodes. A graph is not static, and
changes over time. For each time slot t, an edge between
nodes ni and n j is added with probability proportional to the

degree of similarity. More specifically, after nth round, at a
certain time t, an edge e(i, j) belongs to E(t) if and only if
Equations (3)-(4) are satisfied.

Rt(i, j)← Rnd(i || j || t) (3)

Rt(i, j) < w · d̂n(i, j) (4)

where i < j, Rnd(s) is a random number generated in range
-1 and 1 using s as a seed, || is a concatenation operation, and
term w represents the weight applied to each similarity. We
concatenate i and j in increasing order to make the random
number generated in nodes ni and n j the same. Then, an edge
is added with probability:

Pr[Rt(i, j) ≤ w · d̂n(i, j)] (5)

Over a set of time slots, for similarity d̂n(i, j) with a small
negative or positive value (i.e.,near zero), two nodes ni and
n j become neighbors more randomly. On the other hand, for

d̂n(i, j) with big negative value (i.e. near -1), two nodes are

less likely to be neighbors, and for d̂n(i, j) with large positive
value (i.e., near 1), two nodes are more likely to be neigh-
bors. The rationale behind this design is that neighbors with
similar view are connected more frequently, while neighbors
with dissimilar view are disconnected more frequently. The
neighbors determined neither similar nor dissimilar are ran-
domly connected.

Algorithm 4 Coverage scheduling for event detection imple-
mented on node ni

Input: New observations oi and o j for every physical neigh-
bor n j (neighbor within communication range).

1: for each round n do
2: if At the beginning of a round then

3: Compute the similarity d̂n(i, j) with every physical
neighbor n j.

4: for each scheduling slots t within current round do
5: if pt

i > pt
j, for every node n j such that Rt(i, j) <

w · d̂n(i, j) then
6: Assign the node ni to wake up at time slot t.
7: end if
8: end for
9: else

10: Node ni turns on and off according to the schedule
calculated at the beginning of the round.

11: If a new event is detected, node ni inform it of all
physical neighbors at their wake-up slot, and they
record/report new observations.

12: end if
13: end for

4.3 Application: V-SAM Guided Coverage

Most existing coverage scheduling algorithms purely de-
pend on the assumption that the deployment area is open
space and the sensing area of individual sensor is uniform
(circular). Obviously, this assumption does not hold well in
the real world. Differently, our proposed coverage schedul-
ing algorithm does not require such assumption. Instead
we schedule nodes’ sleep and wake-up time, based on in-
situ similarity graph calculation. This is done by turning off
nodes with similar sensing experience at different time slots
to save energy consumption, and by turning on nodes with
dissimilar sensing experience to work together to achieve re-
quired sensing quality.

4.3.1 Basic Algorithm

In our work, we propose a distributed heuristic algorithm
as detailed in Algorithm 4. The key idea is that nodes with
similar observations are restrained from waking up simulta-
neously, as the additional information does not increase sig-
nificantly. Specifically, our algorithm works as follows:

As shown in Figure 12, the time is divided into equal
length round with duration Tupdate. Each round is further
divided into multiple time slots with duration Tsch. At the
beginning of each round, similarity is calculated [Line 1-3
in Algorithm 4] using the observation obtained in the previ-
ous round. The similarity graph changes for each time slot t.
For each basic time slot t, a node decides whether to add an
edge and make a physical neighbor (neighbor within com-
munication range) as a neighbor on similarity graph follow-
ing Equations (3)-(4) [Line 4-8]. For each node ni, we define
the priority of node i at time t as

pt
i = Rnd(i || t) || i. (6)

Figure 13. Similarity Graph and Priority Comparison

where Rnd(s) is a random number selected from elements
of {1,2, . . . ,N}, and N is a natural number greater than the
number of deployed nodes. We concatenate unique node ID
i, in order to ensure that no two nodes have same priority
at time slot t. For each basic time slot t, a node calculates
locally its own priority as well as the priority of its neigh-
boring nodes (of similarity graph). Since all nodes share the
same random number generator, the computation of priority
requires no communication among nodes. If the node’s own
priority is higher than all its neighbors, this node is sched-
uled to be activated in the time slot t. After nodes decide
their working schedule at the beginning of the round, they
simply follow the working schedule in the rest of the round
[Line 10].

New observations can be obtained if events are detected
by one of active nodes [Line11]. Event detection is informed
to other nodes in their wakeup time slot, and they work to-
gether to monitor the detected event. The observations af-
terward are collected at a sink, and observation message is
overheard by each physical neighbor. If no event is detected
during Tupdate period, the similarity graph decays with the
aging factor β.

As a case study, Figure 13 illustrates the graph represen-
tation of the similarities among sensor nodes and coverage
scheduling based on the similarities. Nodes with similar ob-
servations are connected to each other via an edge, which
results in two clusters in two sides and one sensor node
crossing over the clusters. The priority of sensor node n1

is p1 = 17, which is highest among any other sensor nodes
connected via an edge. Thus, the sensor node n1 is awake at
the time slot. In addition, nodes n5,n7,n10 are selected to be
awake at the time slot by winning the highest priority.

With the immature training, the performance of V-SAM
guided coverage scheduling should not be worse than ran-
dom coverage scheduling. This is achieved by constructing
similarity graph in probabilistic sense according to the de-
gree of similarity as described in Section 4.2.2.

4.3.2 Sensing Quality and Coverage Scheduling

The basic algorithm introduces a way to avoid unneces-
sary energy consumption. We can further extend the basic
algorithm, so that we can control the sensing quality as de-
sired. For example, we can provide redundant or partial cov-

Figure 14. Experiments in the Study Area at Library Figure 15. Sensor Node Placement

erage, coverage with a certain detection delay, and so on. To
control the sensing quality in V-SAM, we propose two meth-
ods.

Neighbor-hood Control: By expanding the neighbor-hood,
we can select fewer sensor nodes on the similarity graph. In
the basic design, the priority values of one-hop neighboring
nodes are compared. To reduce the sensing quality, each sen-
sor node ni compares its priority with node n j within n-hop
instead of with only one-hop neighboring nodes.

Rank-Based Control: To provide a high quality of sensing
coverage, we can choose more than one sensor node during
the priority comparison. A sensor node is chosen to wake up
if its priority is ranked within top n among its 1-hop neighbor
on graph G.

4.4 Implementation of V-SAM

We have implemented and evaluated the V-SAM system
at the ground floor of one of our university libraries, as
shown in Figure 14. The area was selected because it reflects
a realistic environment, full of bookshelves, tables, small
rooms and other obstacles. A monitoring system in such an
environment is useful, such as to automatically turn on the
lights in the bookshelves area when motion is detected. In
the study area, we are interested in monitoring behaviors of
students, especially disturbing movements, in the library. We
put 14 XSM motes in the area shown in Figure 14 with the
location indicated as in Figure 15. We obtained 7 traces over
an hour in the afternoon on three different days. To obtain
the ground truth of event, we monitor the scene described in
Section 3.4.2.

We determine a hit if the current detection energy is more
than 6 times greater than an adaptive threshold, which is
set to background noise. A XSM mote determines that an
event occurs, if the number of hits during the last 10 consec-
utive sampling windows is greater than two. We use obser-
vation value 0 for event detection and 1 for no event detec-
tion. Similarity is calculated based on Equation (1) by set-
ting p = 1 and Tspan = Tupdate. During Tupdate, observations
are recorded, and at the end of round the similarity graph
is updated. We used value α = 0.98, β = 0.05 for similar-
ity calculation. Based on the similarity between neighbors,
a node determines its future sleeping schedule for each Tsch

following the Algorithm 4. The compiled image of a mote

implementation is 13,500 bytes of code memory and 532
bytes of data memory. Since the basic slot Tsch is about 5
to 10 seconds, motes need to be only loosely time synchro-
nized among themselves. To achieve that, it is enough to
use a lightweight NTP-Like time synchronization protocol,
in which a mote broadcasts a message with its local time-
stamp and its neighbor calculates the difference between the
received timestamp and its local clock. More advanced time
synchronization algorithms, such as FTSP [27], can also be
used, if needed.

5 System Evaluation of SAM

We have described the implementation details of both P-
SAM and V-SAM in Sections 3 and 4, respectively. In this
section, we evaluate the effectiveness of our designs in vari-
ous environments.

5.1 Evaluation on Outdoor P-SAM Design

In the outdoor P-SAM experiment, a person moved
around a sensor sufficiently (10 times crossing straight over
the area in different directions and positions). Figures 16 and
17 show the sensing area we obtained after training a sensor,
which is placed (1) in an open area and (2) in an area with
a obstacle. The positions belonging to the detected events
were associated to the closest grid points indicated in the fig-
ures. Figure 16 indicates that the sensing area is irregular
even without an obstacle. Figure 17 shows that the obstacle
affects the sensing area significantly. With the circle model
(a disk with radius 400 cm), we expect a point within the cir-
cle to be associated with event detection and a point beyond
the circle range not to be associated with event detection.
After repeating the training test many times, we obtained ir-
regularity and training confidence as shown in Table 1. They
were calculated for all points associated with training events
as follows:

Irregularity =
n1 +n2

n3

where n1 is number of points inside the circle the events of
which are not detected, n2 is number of points outside the
circle the events of which are detected, n3 is number of points
inside the circle.

Confidence =
1

number o f points
∑

each point

MAX(p1, p2)

−500 −400 −300 −200 −100 0 100 200 300 400 500
−600

−500

−400

−300

−200

−100

0

100

200

300

400

Figure 16. Coverage without Any Obstacle in 1,000 cm ×
1,000 cm square

−500 −400 −300 −200 −100 0 100 200 300 400 500
−300

−200

−100

0

100

200

300

400

500

Figure 17. Coverage with Obstacles in 1,000 cm × 800 cm
rectangle

Table 1. Sensing Area in Outdoor Experiment
Without obstacle With obstacle

Irregularity Confidence Irregularity Confidence

0.367 0.83 0.387 0.80

where p1 is fraction of detected events, p2 is fraction of un-
detected events. Higher value of confidence means the same
result is more likely to be reproduced as before.

5.2 Indoor P-SAM Evaluation

In an outdoor environment, it is extremely difficult to
obtain the ground truth of real sensing coverage. Without
ground truth, we can only investigate the characteristics of
sensing coverage. To overcome the limitation of outdoor
experiments, in this section we extend the evaluation of P-
SAM by incorporating knowledge of the ground truth in a
controlled indoor environment.

5.2.1 Ground Truth

We use an oracle algorithm that assumes knowledge of
the sensing area of the nodes. Basically, this algorithm acti-
vates a sensor node (e.g., through projecting light to a sensor
shown in Figure 8) if the controlled event e(t, p) is within the
sensing area of the node. We want to emphasize that the or-
acle algorithm and generated ground truth are used only for
the purpose of evaluation. This knowledge is not used in any
part of the P-SAM algorithm. The oracle generates a sensing
pattern according to the following irregularity model, which
is an extension of the DOI model [17].

Rθ =

{

Rmin +(Rmax−Rmin) ·Rnd θ = 0◦

Rθ−1±Rnd · var 0◦ < θ < 2π
(7)

where Rmin is the minimum coverage range, Rmax is the max-
imum possible coverage range, and Rθ ∈ [Rmin,Rmax] is the

sensing range at angle θ. Rnd is a random number between
0 and 1, and var is a variation of the ranges at consecutive
angles due to the irregularity. With a higher value of var, we
introduce more irregularity.

5.2.2 System Implementation and Setup

We designed and implemented a complete version of
training that includes regular and hierarchical training on the
TinyOS/Mote platform. We attached 40 MICAz motes on
a veltex black board and used a projector to generate regu-
lar and hierarchical events. We represented the deployment
area with 128 by 128 square with 10 to 40 micaZ motes ran-
domly placed. Starting from Rθmin

at 0◦, the real irregular
coverage was generated for each sensor according to Equa-
tion (7) with Rmin = 10,Rmax = 30 and var = 1.0, 2.0 or 3.0
(default is 2.0). The interval D was chosen from 2i, where
1 ≤ i ≤ ⌊log2Rmin⌋, so that 2i < Rmin. In the regular train-
ing, the interval is fixed. However, in the hierarchical train-
ing starting from a certain initial interval D = 2i at level 1,

the interval decreases to 2(i−1) at level 2, and so on, until
the smallest possible interval 2 j is reached at the last level
i− j + 1.

5.2.3 Evaluation Metrics

We define two types of coverage error: (i) false positive
rate f p: The number of points in sensing area obtained by
P-SAM but not in sensing area of the ground truth, divided
by the number of points in sensing area of the ground truth.
(ii) false negative rate f n: The number of points in sensing
area of the ground truth but not in sensing area obtained by
P-SAM, divided by the number of points in sensing area of
the ground truth.

5.2.4 f p and f n of Sensing Coverage

Coverage error increases under the following two condi-
tions (i) the irregularity of sensing area increases, or (ii) gran-
ularity of training data (interval D defined in Section 3.2.1
and 3.2.2) becomes larger. In regular training, the event lay-
outs generated are grids with different intervals (from 1 to
4). In hierarchical training, we use the same initial interval,
but different last-level intervals. Figure 18 shows that with a
small interval, we can achieve very precise coverage model-
ing. f p is almost 0% and f n is at 1% to 8%. The coverage
error in Figure 18 for a certain fixed interval in the regular
training is very similar to the coverage error in Figure 19 for
the corresponding last level interval in the hierarchical train-
ing. In the hierarchical training, changes in the initial interval
make no difference in coverage error as long as the last level
interval is the same.

5.3 Application Improvements Using P-SAM

In evaluation, we apply coverage scheduling based on in-
dividual sensor coverage by circular 0/1 model and by P-
SAM. The evaluation is done by simulation with the same
setting as in Section 5.2.2, except with a larger area (512 by
512 square) and with more sensor nodes. We vary node den-

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

interval

c
o

v
e

ra
g

e
 e

rr
o

r

fp, var=1
fp, var=2
fp, var=3
fn, var=1
fn, var=2
fn, var=3

Figure 18. Errors in Regular G(t)
with Varying Intervals and Irregu-
larity

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

last level interval

c
o

v
e

ra
g

e
 e

rr
o

r

fp, var=1
fp, var=2
fp, var=3
fn, var=1
fn, var=2
fn, var=3

Figure 19. Errors in Hierarchical
G(t) with Varying Intervals and Ir-
regularity

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of nodes

fr
a

c
ti

o
n

 o
f

b
li

n
d

 a
re

a

SAM
circle Rc=10
circle Rc=30

Figure 20. Fraction of Blind Areas
with Varying Densities

200 400 600 800 1000 1200 1400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of nodes

a
v

g
.

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 p

e
r

n
o

d
e

SAM
circle Rc=10
circle Rc=30

Figure 21. Avg. Energy Consumed
with Varying Densities

10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Rc

fr
a

c
ti

o
n

 o
f

u
n

c
o

v
e

re
d

 t
a

rg
e

ts

SAM, n=1000, t=400
SAM, n=1000, t=200
SAM, n=300, t=400
circle, n=1000, t=400
circle, n=1000, t=200
circle, n=300, t=400

Figure 22. Fraction of Uncovered
Targets with Varying Rc

10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rc

a
v

g
.

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 p

e
r

n
o

d
e

SAM, n=1000, t=400
SAM, n=1000, t=200
SAM, n=300, t=400
circle, n=1000, t=400
circle, n=1000, t=200
circle, n=300, t=400

Figure 23. Avg. Energy Consumed
Per Node with Varying Rc

sity from 0.958 to 6.707 following the commonly assumed
node density in the existing works [6, 16, 23, 38].

The design goal of full coverage scheduling is to cover ev-
ery physical point within an area with minimal energy con-
sumption, and point coverage scheduling is to cover every
target. The radius of a disk in circular model is denoted by
Rc. Two key metrics for coverage applications are (i) Frac-
tion of Blind Areas and (ii) Energy Consumption.

Figure 20 shows the fraction of blind areas when different
densities of nodes are scheduled by full coverage scheduling.
As we increased the number of nodes from 200 to 1,400,
the blind area by P-SAM guided coverage scheduling sig-
nificantly decreases. On the other hand, with an optimistic
circular model (a disk with radius Rc = 30), the percentage of
blind area stays at about 15%, despite the fact that over 1,400
nodes have been deployed into the area. Figure 21 shows
the average energy consumption per node. When a circu-
lar model is conservative, Rc = 10, the energy consumption
remains the same for every different density, while P-SAM
has accurate sensing area information with a smaller energy
consumption.

We also apply P-SAM and a circular model to the art
gallery application where the sensor nodes are organized by
point coverage scheduling to monitor a set of important sta-
tionary targets with known locations. Figures 22 and 23
show the number of missing targets that are not covered by
sensor nodes and the average energy consumption per node.
The number of sensor nodes and the number of targets gener-

ated are denoted by n and t. As shown, the number of targets
not covered in a circular model is larger than P-SAM. For ex-
ample, when n = 1,000,t = 400, if we use P-SAM, the point
coverage algorithm can cover every target. However, if we
use the circular model with Rc = 25, it will miss about 20%
of the targets.

The curves for the circular model shown in Figure 22
and 23 exhibit an interesting

S

shape. The number of miss-
ing targets can be reduced by decreasing Rc at the cost of
increasing energy consumption. However, the coverage er-
ror cannot monotonically reduce forever. This is because if
we reduce Rc into a small value, a node that can physically
cover a target will mistakenly assume it cannot cover the tar-
get, and therefore turns itself off. This also explains why the
energy consumption in circular model exhibits a

T

shape.

5.4 System Evaluation of V-SAM

In this section, we evaluate the performance of V-SAM
in the basement of university library. All experiments were
conducted in an uncontrolled setting.

5.4.1 Case Study

In this section, we provide snapshots of a V-SAM pro-
cess. We ran 14 XSM motes for 4,000 seconds. During this
period, two students were studying at a table, making small
movements in the limited place, and there were several stu-
dents passing the area. Figure 24 shows the record of event

Figure 24. Event Detection Profile of 14 XSM Nodes over 4,000 seconds on the Ground Floor of the University Library

detection for each sensor. Frequent event detection by sen-
sor nodes 1 - 4 was due to the small consistent movements
by two students. The rest of the sensor nodes reflect a few
movements of passing people. Obviously, even with the vi-
sual view of the record, it is easy to find that motes (1,2,3,4)
have similar views. Similarly, we can group motes (5,6,8),
motes (7,9), motes (10, 11), and motes (12,13,14). The sim-
ilarity is continuously computed on each mote. Figure 25
shows the computed similarity between nodes and similarity
graph as the time passed. To make Figure 25 readable, we
present only the similarity values between a node and other
five nodes (one from each group).

As expected, Figure 25 indicates that the intra-group sim-
ilarity always has positive values, while the inter-group sim-
ilarity has negative values. It is very interesting to observe
that 1) at the beginning of the experiment, the pair-wise sim-
ilarity values are about zero and that 2) with more observa-
tions over time, the intra-group similarity values increase,
converging to a long–term positive value. Similarly inter-
group similarity values decrease, converging to a long term
negative value. Both long-term positive and negative val-
ues reflect the impact of environment, hardware and consis-
tent movement for long time. And 3) the similarity fluctu-
ates due to short-term behavior, because during the experi-
ment, students made small random gestures. We note that a
mote can reside in multiple groups in the similarity graph.
For example, in Figures 25b and 25c, we can observe that
mote 5 sometimes has positive similarity values with mote
7 in other group. This multi-group similarity makes sim-

ple group-based rotation ineffective, which explains why the
coverage algorithm proposed in Section 4.3 is needed.

The cost to generate the similarity graph can be estimated
by the number of messages for each node to generate. If
each node generates a message whenever it detects an event
within Tupdate = 100 (sec), the upperbound on the number of
messages generated by each node over 4,000 seconds is 40.
The average number of messages required by each node in
this example is 13.1. However, if messages are all sent after
4,000 seconds, each node only needs at most one message
containing at most 5 bytes of data.

5.4.2 Evaluation Metrics

We use two metrics to evaluate the coverage quality in our
experiment, (i) Fraction of Detection: The percentage of
detectable events that are actually detected, which is a metric
to indicate the sensing quality. (ii) Average Wakeup Ratio:
The average percentage of time that a node is awake, which
is a metric to indicate the energy efficiency.

5.4.3 Coverage under different Tupdate,Tsch Settings

We compare the coverage achieved in V-SAM guided
coverage scheduling and random coverage scheduling algo-
rithm. To obtain the ground truth of events, we monitor the
scene with a digital camcorder. We are especially interested
in the detection of walking persons, a movement more than
2 m is regarded as an event. To compare the sensing cover-
age under the same energy consumed, we generate the wake-

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

second

s
im

il
a

ri
ty

 w
it

h
 n

o
d

e
 3

node 1

node 5

node 7

node 10

node 13

(a) Similarity between Node 3 and others

0 500 1000 1500 2000 2500 3000 3500 4000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

second

s
im

il
a

ri
ty

 w
it

h
 n

o
d

e
 5

node 3

node 7

node 8

node 10

node 13

(b) Similarity between Node 5 and others

0 500 1000 1500 2000 2500 3000 3500 4000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

second

s
im

il
a

ri
ty

 w
it

h
 n

o
d

e
 7

node 3

node 5

node 9

node 10

node 13

(c) Similarity between Node 7 and others

0 500 1000 1500 2000 2500 3000 3500 4000
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

second

s
im

il
a

ri
ty

 w
it

h
 n

o
d

e
 1

0

node 3

node 5

node 7

node 11

node 13

(d) Similarity between Node 10 and others

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

−0.15

−0.1

−0.05

0

0.05

second

s
im

il
a

ri
ty

 w
it

h
 n

o
d

e
 1

3

node 3

node 5

node 7

node 10

node 12

(e) Similarity between Node 13 and others
(f) The Similarity Graph after 2000
seconds

Figure 25. The Profile of Pair-wise Similarity over 4,000 seconds

up schedule in random coverage scheduling so that its aver-
age wake-up ratio is the same as in V-SAM guided coverage
scheduling.

Varying a value of Tupdate,Tsch, we obtained the result
shown in Figures 26 to 28. Overall, for the fixed energy con-
sumption, the V-SAM-guided coverage scheduling has bet-
ter performance than the random coverage scheduling. For
example, in Figure 26, V-SAM-guided coverage scheduling
has a greater number of events immediately detected in a
second than the random case. Even after 6 (sec) elapsed, the
fraction of undetected events does not decrease in random
coverage scheduling, while it decreases in V-SAM-guided
coverage scheduling. Figure 27 shows the similar perfor-
mance when Tsch = 10 (sec). With slow change in wakeup
schedule with Tsch = 10 (sec), the performance degrades
more than a faster change with Tsch = 5 (sec). This is because
a fast switch among sensor nodes leads to a shorter delay in
detection, which confirms the results reported in [6, 16].

In V-SAM-guided coverage scheduling, the value Tupdate

should be selected properly to make the coordination ef-
fective for detecting persons’ walking. Figure 28 shows
the fraction of undetected events when we set Tupdate to
5 (sec). The number of undetected events are smaller than
the case with Tupdate = 100 (sec) in Figure 26. However,
in Figure 29, a sensor’s average wake-up ratio is 75% when

Tupdate = 5 (sec), which is almost 1.5 times more than an
47% wake-up ratio for the case Tupdate = 100 (sec). This
is because with Tupdate = 5 (sec), the similarity measure
for a person’s walking is prone to a noise such as small
gestures, leading to sensor nodes uncorrelated and causing
higher wake-up ratio.

5.4.4 Performance Comparison

In this section, we compare the performance in coverage
scheduling for four different coverage models: (i) V-SAM-
guided coverage scheduling, (ii) random coverage schedul-
ing, (iii) P-SAM-guided coverage scheduling, and (iv) circu-
lar model-guided coverage scheduling. The wake-up sched-
ule in random coverage scheduling is generated so that its
average wake-up ratio is similar to the one in V-SAM guided
coverage scheduling. For P-SAM-guided coverage schedul-
ing, we represent sensing coverage with 1 m interval. For
circular-model-guided coverage scheduling, the sensing cov-
erage is assumed as a circle with a radius of 6 m centered
around a mote’s location. As a result, the energy consump-
tion for P-SAM-guided coverage scheduling, is similar to
V-SAM-guided or random coverage scheduling, while the
energy consumption for circular model-guided coverage is
much lower than for the others, as shown in Figure 31.

The performance in sensing quality is shown in Figure 30.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time elapsed (sec)

fr
a
c
ti

o
n

 o
f

e
v
e
n

ts
 u

n
d

e
te

c
te

d

VSAM

Random

Figure 26. Tupdate = 100 (sec) Tsch =
5 (sec)

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time elapsed (sec)

fr
a
c
ti

o
n

 o
f

e
v
e
n

ts
 u

n
d

e
te

c
te

d

VSAM

Random

Figure 27. Tupdate = 100 (sec) Tsch =
10 (sec)

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

time elapsed (sec)

fr
a
c
ti

o
n

 o
f

e
v
e
n

ts
 u

n
d

e
te

c
te

d

VSAM

Random

Figure 28. Tupdate = 5 (sec) Tsch =
5 (sec)

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

T
update

 (sec)

a
v

g
.

w
a

k
e

u
p

 r
a

ti
o

 p
e

r
n

o
d

e

Figure 29. Energy Consumption for
Different Settings of Tupdate

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time elapsed (sec)

fr
a
c
ti

o
n

 o
f

e
v
e
n

ts
 u

n
d

e
te

c
te

d

VSAM

PSAM

Random

Cir

Figure 30. Sensing Quality Com-
parison for Different Coverage
Models

VSAM PSAM Random Cir
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

coverage model

a
v

g
.

w
a

k
e

u
p

 r
a

ti
o

 p
e

r
n

o
d

e

Figure 31. Energy Consumption
Comparisons for Different Cover-
age Models

V-SAM has the lowest number of undetected movements,
followed by P-SAM. Although P-SAM provides an accurate
modeling method, it does not consider a behavioral model
of events. For example, during the experiment, students sit
next to one sensor and blocked its view temporally, which
is not reflected in the training process in P-SAM. Even if
the energy consumption in random coverage scheduling is
adjusted slightly greater than V-SAM, its sensing quality is
worse than V-SAM and P-SAM. In addition, as shown in
Figure 30, coverage scheduling based on a circular model
misses more than half of detectable events.

6 Conclusion

This paper addresses sensing irregularity issues known
but largely ignored by many designers. We contribute to
this area by designing and implementing two complemen-
tary in-situ sensing modeling methods called P-SAM and V-
SAM, respectively. By introducing controlled and monitored
events, P-SAM provides accurate sensing area models for
individual nodes. By utilizing natural events in the environ-
ments, V-SAM provides evolvable sensing similarity models
automatically at low cost. Both models are generic enough
to be used in many applications including sensing coverage
and tracking. Our design has been evaluated in three test-
beds consisting of 40 MICAz motes and 14 XSM motes. We
have evaluated our system extensively in diversified environ-
ment settings including indoor controlled labs, uncontrolled

library and outdoor court yards. In addition, we have iden-
tified the impacts of sensing irregularity on typical applica-
tions as well as the improvements by using SAM. We hope
this work motivates our community to seriously consider the
in-situ sensing phenomena in the sensor networks.

7 References
[1] Z. Abrams, A. Goel, and S. A. Plotkin. Set k-cover

algorithms for energy efficient monitoring in wireless
sensor networks. In IPSN, 2004.

[2] S. M. Alam and Z. Haas. Coverage and connectivity in
three-dimensional networks. In MobiCom, 2006.

[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani,
H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas,
M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Aru-
mugam, M. Nesterenko, A. Vora, and M. Miyashita. A
wireless sensor network for target detection, classifica-
tion, and tracking. Computer Networks, Elsevier, 2004.

[4] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal,
G. S. Sukhatme, W. J. Kaiser, M. Hansen, G. J.
Pottie, M. Srivastava, and D. Estrin. Call and re-
sponse:Experiments in sampling the environment. In
SenSys, 2004.

[5] V. Bychkovskiy. Distributed in-place calibration in sen-
sor networks. In M.S. Thesis, University of California,
Los Angeles, 2003.

[6] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. To-
wards optimal sleep scheduling in sensor networks for
rare-event detection. In IPSN, 2005.

[7] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton,
and J. Zhao. Habitat monitoring: Application driver for
wireless communications technology. In SIGCOMM
Workshop on Data Communications in Latin America
and the Caribbean, 2001.

[8] V. Cevher and J. McClellan. Sensor array calibration
via tracking with the extended kalman filter. In An-
nual Federated Laboratory Symposium on Advanced
Sensors, 2001.

[9] CrossBow. Product feature reference: sensor
and functions, 2003. http://www.xbow.com/

Support/Support_pdf_files/Product_Feature_

Reference%_Chart.pdf.

[10] O. Dousse, P. Mannersalo, and P. Thiran. Latency
of wireless sensor networks with uncoordinated power
saving mechanisms. In MobiHoc, 2004.

[11] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and
D. Culler. Design of a wireless sensor network plat-
form for detecting rare, random, and ephemeral events.
In IPSN, 2005.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI, 2003.

[13] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The
design and implementation of a self-calibrating dis-
tributed acoustic sensing platform. In SenSys, 2006.

[14] B. Grabowski. Small robot sensors.
http://www.andrew.cmu.edu/user/rjg/websensors/robot
sensors3.html.

[15] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala,
Q. Cao, T. He, J. A. Stankovic, T. Abdelzaher, and
B. H. Krogh. Lightweight detection and classification
for wireless sensor networks in realistic environments.
In SenSys, 2005.

[16] C. Gui and P. Mohapatra. Power conservation and qual-
ity of surveillance in target tracking sensor networks. In
MobiCom, 2004.

[17] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and
T. Abdelzaher. Range-free localization schemes in
large-scale sensor networks. In MobiCom, 2003.

[18] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelza-
her, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and
B. Krogh. Energy-efficient surveillance system using
wireless sensor networks. In MobiSys, 2004.

[19] C. Hsin and M. Liu. Network coverage using low
duty-cycled sensors: random & coordinated sleep al-
gorithms. In IPSN, 2004.

[20] F. Koushanfar, N. Taft, and M. Potkonjak. Sleeping
coordination for comprehensive sensing using isotonic
regression and domatic partitions. In INFOCOM, 2006.

[21] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg.
Near-optimal sensor placements: maximizing informa-
tion while minimizing communication cost. In IPSN,
2006.

[22] KUBE Electronic LTD. Optic TR230 PIR sensor.
http://www.kube.ch/downloads/pdf/kube cone optics
tr230.pdf.

[23] S. Kumar, T. Lai, and J. Balogh. On k-coverage in a
mostly sleeping sensor network. In MobiCom, 2004.

[24] S. Kumar, T. H. Lai, and A. Arora. Barrier coverage
with wireless sensors. In MobiCom, 2005.

[25] X. Y. Li, P. J. Wang, and O. Frieder. Coverage in wire-
less ad-hoc sensor networks. In ICC, 2002.

[26] J. Liu, J. Reich, and F. Zhao. Collaborative in-network
processing for target tracking. Journal on Applied Sig-
nal Processing, 2002.

[27] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
flooding time synchronization protocol. In SenSys,
2004.

[28] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and
M. Srivastava. Coverage problems in wireless ad-hoc
sensor networks. In INFOCOM, 2001.

[29] S. Meguerdichian, F. Koushanfar, G. Qu, and
M. Potkonjak. Exposure in wireless ad-hoc sensor net-
works. In MobiCom, 2001.

[30] V. Singhvi, A. Krause, C. Guestrin, J. Garrett, and H. S.
Matthews. Intelligent light control using sensor net-
works. In SenSys, 2005.

[31] S. Slijepcevic and M. Potkonjak. Power efficient orga-
nization of wireless sensor networks. In ICC, 2001.

[32] R. Szewczyk, A. Mainwaring, J. Anderson, and
D. Culler. An analysis of a large scale habit monitoring
application. In SenSys, 2004.

[33] D. Tian and N.D.Georganas. A node scheduling
scheme for energy conservation in large wireless sen-
sor networks. Wireless Communications and Mobile
Computing Journal, 2003.

[34] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu,
S. Burgess, D. Gay, P. Buonadonna, W. Hong, T. Daw-
son, and D. Culler. A macroscope in the redwoods. In
SenSys, 2005.

[35] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and
C. Gill. Integrated coverage and connectivity config-
uration in wireless sensor networks. In SenSys, 2003.

[36] K. Whitehouse and D. E. Culler. Calibration as pa-
rameter in sensor networks. In Workshop on Sensor
Networks and Application (WSNA), 2002.

[37] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless sen-
sor network for structural monitoring. In SenSys, 2004.

[38] T. Yan, T. He, and J. A. Stankovic. Differentiated
surveillance for sensor networks. In SenSys, 2003.

