Scaling language specifications to mainstream
languages and real-world applications *

Ted Kaminski and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA,
tedinski,evw@cs.umn.edu

Abstract. This paper describes two characteristics of language speci-
fication tools that support their use at scales beyond small prototypes.
First is the ability to both explicitly and implicitly (via translation)
specify the semantics of language constructs. In attribute grammars this
achieved by forwarding and is used to specify languages by building
features on top of a smaller core language. Second is the use of modu-
lar analyses on language specifications to guarantee that their eventual
composition will have certain well-definedness properties.

Forwarding: scaling up languages

One way in which language designers effectively build implementations for rich,
full-featured programming languages such as Java, C, or C# is to build a man-
ageable so-called core language and implement additional constructs such that
they can be realized as (translated down to) combinations of constructs in the
core language. Examples of this include translating a for-loop to an initializ-
ing assignment and while-loop, translating multiple declarations, such as int
X,¥,z, to a sequence of single declarations, such as int x; int y; int z;,
and, as shown in Figure 1 (a) and (b), translating a Java 1.5 enhanced-for-loop
to its equivalent Java 1.4 for-loop. This is a common practice as we do not want
to implement all the semantics (name binding, type checking, optimization, and
code generation) for these as that can become tedious.

To scale the use of declarative language specifications to provide high-quality
implementations of such languages we have found that it helpful to be able to ez-
plicitly specify some of the semantics of the non-core constructs while specifying
the remainder implicitly via translation to the core language. For example, we
may want to perform some error-checking on the enhanced-for-loop construct ex-
plicitly but let its translation down to the traditional for-loop implicitly specify
its translation to byte code.

This can achieved in attribute grammars [3] using a technique called for-
warding [8] and is used regularly in Silver [7], our extensible attribute grammar
system. What distinguishes forwarding from term rewriting and macros is that
one can define some semantics explicitly, leaving the remainder to be defined

* This work is partially supported by NSF Awards No. 0905581 and 1047961.



ArrayList herd = ... ; ArrayList herd = ... ;

for (Goat g: herd) { for (Iterator _it_0 = herd.iterator();
g.milk Q; _it_0.hasNext();) {
} Goat g = (Goat) _it_0.next(); g.milk();
}

(a) (b)

Fig. 1. Use of Java 1.5 enhanced-for statement (a), its translation to Java 1.4 (b).

implicitly by the translation down to a core language. Forwarding allows the pro-
duction for the enhanced-for-loop to explicitly perform some static error checking
by defining an errors attribute to check if the expression to be iterated over is a
collection or an array. If it is not, an error message specific to the enhanced-for
is generated. At attribute evaluation time, this production also constructs the
appropriate syntax tree, something like in Figure 1 (b) (when the expression is
a collection), and forwards any queries for attribute values that it does not ex-
plicitly define to that tree. Consider, for example, an attribute named jvm that
decorates tree nodes and stores their translation to Java byte code. When there
is no equation for this attribute on the production, the value of this attribute is
automatically copied from that value of that attribute on the forwards-to tree.
In this case, the translation to byte code for the enhanced-for-loop is simply the
byte code computed for the regular for-loop that it forwards to.

As languages grow, both in the number of syntactic constructs and in the
number of semantic analyses, optimizations, or translation targets, so does the
need to not explicitly specify all semantics for all constructs. In ABLEJ, our
extensible specification of Java, this loop and other Java 1.5 features, such as
auto-boxing and unboxing, can be easily implemented using forwarding [9)].

Modular analysis: scaling to real-world applications

We are interested in scaling up mainstream languages to include expressive
domain-specific features, specifically in ways that allow programmers to pick
and choose from a set of independently-developed language extensions that add
new (perhaps domain-specific) language constructs, new semantic analyses, opti-
mizations and/or translations to their host language. One example in ABLEJ [9]
is the addition of SQL to Java as an extension so that SQL queries can be writ-
ten directly in an extended Java program, parsed by the extended compiler, and
statically checked for type errors. This sort of extension adds new syntax and
new semantic analyses over that new syntax. Other extensions may add new
analysis (e.g. advanced error checking) over existing language constructs.

Since declarative specifications (be they context free grammars, attribute
grammars, or term rewrite rules) are naturally composable, this is possible. But
the composition may not have properties that we want: a composed context



free grammar may be ambiguous or not in the LALR(1) class of grammars, the
composed attribute grammar may be missing attribute definition and thus not be
well-defined. For extensible languages to be viable in real-world applications this
composition must “just work.” If the composition occasionally fails to generate
a working compiler or translator, then, we believe, extensible languages will
continue to be treated as interesting, but not useful, academic pursuits.

What is needed are modular analyses that can be run by the language ex-
tension designer, the person who can understand error messages about parse
tables or attribute equations. One such analysis is the modular determinism
analysis. [4]. This analysis, performed by individually by the language extension
writers; it checks the host language context free grammar (CFG*) with an in-
dividual extension context free grammar (CFGE). If each extension passes this
modular analysis then the grammar composed of the host and all the extensions
will be in the LALR(1) class of grammars and thus have no parse table conflicts.
This analysis can be stated formally as follows:

(Vi € [1,n]. conflictFree(CFGH? U CFGE) N isComposable(CFGH?,CFGF) )
= conflictFree(CFG" U{CFGY,..., CFGF})

This ensures that if the parse table of the composition CFGH U CFGF is con-
flict free and that some additional restrictions (isComposable) hold, then the
composition of the host and all such extensions is conflict free. These additional
restrictions are on the structure of the grammar and derivative objects such as
follow-sets [4]. Based on our experience these restrictions are quite reasonable
and allow syntactically expressive language extensions to be specified. This anal-
ysis also ensures that there are no lexical ambiguities in the composed scanner.
Previous work by Schwerdfeger and Van Wyk [4] describes this analysis in full
and the appropriate related work not discussed here.

Another modular analysis is the modular well-definedness analysis [2] that en-
sures that the attribute grammar that specifies the semantics of a language com-
posed from the host language and various extension is well-defined, also known
as complete. This means that there are no missing attribute equations. Even
in the presence of forwarding this is needed since productions are not required
to “forward” and we must check that inherited attributes are defined where
they are needed. The modular well-definedness analysis, called modComplete,
provides the following guarantee:

(Vi € [1,n].modComplete(AGY , AGF)) = complete(AGH U{AGF, ..., AGEY).

Like the modular determinism analysis, it is performed by an extension writer. If
the analysis fails, the extensions writer can modify the extension attribute gram-
mar to fix the detected problems. This analysis also performs several structural
checks on the grammar and computes the flow-types of the attributes, determin-
ing what inherited attributes are needed to compute each synthesized attribute
and imposes some restrictions on these to ensure that the composition of gram-
mars will be well-defined. Our previous paper [2] on this analysis provides the
full details, discusses the restrictions, and much of the related work in extensible
languages.



Concluding remarks

Forwarding was originally developed as part of the Microsoft Research Inten-
tional Programming (IP) project [5], but the semantics in that setting was not
the same as in attribute grammars. In IP, syntax trees, such as for the body
of the enhanced-for-loop, that were also used in the forwards-to tree were not
given a new set of inherited attributes in their new context in the forward-to
tree. While these inherited attributes often have the same values for both trees
that is not always the case. We believe that this was an error in IP.

While forwarding is useful in specifying full-featured languages it is not re-
quired. Others have implemented such languages using declarative specifications
without forwarding: the JastAdd Java compiler [1] implements Java 1.5 on top of
a Java 1.4 implementation and uses attribute grammars without forwarding and
the ASF+SDF system implemented variety of COBOL language processors [6].

While both modular analyses put some restrictions on the type of language
extensions we have found them to still allow quite expressive extensions. To the
best of our knowledge, our tools Silver [7] and Copper [10] are the only ones
that provide such modular analyses. Modular analyses of some sort are needed
to provide strong guarantees to programmers that the extensions they choose
will in fact compose to create a working compiler. Only then can extensible
languages enter the mainstream as a reliable tool for programming.

References

1. T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In Proc. of
OOPSLA, pages 1-18. ACM, 2007.

2. T. Kaminski and E. Van Wyk. Modular well-definedness analysis for attribute
grammars. In Proc. of Software Language Engineering (SLE 2012), volume 7745
of LNCS, pages 352-371. Springer-Verlag, September 2012.

3. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127-145, 1968. Corrections in 5(1971) pp. 95-96.

4. A. Schwerdfeger and E. Van Wyk. Verifiable composition of deterministic gram-
mars. In Proc. of PLDI, pages 199-210. ACM, June 2009.

5. C. Simonyi. The future is intentional. IEEE Computer, 32(5):56-57, May 1999.

6. M. van den Brand, M. Sellink, and C. Verhoef. Obtaining a COBOL grammar from
legacy code for reengineering purpose. In Proc. of 2nd Workshop on the Theory
and Practice of Algebraic Specications. Springer, 1997.

7. E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an extensible attribute
grammar system. Science of Computer Programming, 75(1-2):39-54, January 2010.

8. E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in at-
tribute grammars for modular language design. In Proc. of Compiler Construction
(CC 2002), volume 2304 of LNCS, pages 128-142. Springer-Verlag, 2002.

9. E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribute grammar-
based language extensions for Java. In Proc. of ECOOP, volume 4609 of LNCS,
pages 575-599. Springer-Verlag, 2007.

10. E. Van Wyk and A. Schwerdfeger. Context-aware scanning for parsing extensi-
ble languages. In Proc. of Generative Programming and Component Engineering,
(GPCE 2007), pages 63-72. ACM Press, October 2007.



