
Modular well-definedness analysis for attribute
grammars?

Ted Kaminski and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN, USA,

tedinski,evw@cs.umn.edu

Abstract. We present a modular well-definedness analysis for attribute
grammars. The global properties of completeness and non-circularity are
ensured with checks on grammar modules that require only additional
information from their dependencies. Local checks to ensure global prop-
erties are crucial for specifying extensible languages. They allow inde-
pendent developers of language extensions to verify that their extension,
when combined with other independently developed and similarly ver-
ified extensions to a specified host language, will result in a composed
grammar that is well-defined. Thus, the composition of the host language
and user-selected extensions can safely be performed by someone with
no expertise in language design and implementation. The analysis is nec-
essarily conservative and imposes some restrictions on the grammar. We
argue that the analysis is practical and the restrictions are natural and
not burdensome by applying it to the Silver specifications of Silver, our
boot-strapped extensible attribute grammar system.

1 Introduction

There has been considerable interest in extensible language frameworks and
mechanisms for defining language implementations in a highly modular manner.
Many of these frameworks allow language extensions that add new syntax and
new semantic analyses to be composed with the implementation of a so-called
host language, such as C or Java, resulting in an extended language with new,
possibly domain-specific, features. It is our contention that for these frameworks
to be useful to programmers and more widely used, the language extensions
need to be able to be developed independently and the process of composing
the host language with a selected set of extensions needs to be easily doable by
programmers with no knowledge of language design and implementation.

There are several systems that support, to varying degrees, the development
of modular and composable language extensions. For example, JastAdd [6] is a
system based on attribute grammars (AGs) extended with reference attributes [8]
which has been used to develop extensible compilers for Java [5] and Modelica.
MetaBorg [4] is based on term rewriting systems with strategies [21] and has been

? This work is partially supported by NSF Awards No. 0905581 and 1047961.

used to build extensible specifications of Java and other languages. SugarJ [7] is
an extension to Java in which new syntax to SugarJ can be defined in imported
libraries written in SugarJ. Our system, Silver [17, 9], is an attribute grammar
system with forwarding [16], a mechanism for language extension that is useful
for combining extensions developed independently, which has also been used to
define an extensible specification of Java [18] and other languages.

Our work is motivated by two important questions related to how easy it is
for a non-expert to use these frameworks to create new languages from indepen-
dently developed language extensions.

1. How easy is it to compose the host and extension specifications? Must sig-
nificant glue code be written to combine them, or can one basically direct
the tools to compose the host and selected extensions automatically?

2. What assurances are provided to the user that the selected extensions will
in fact be composable such that the composition defines a working compiler,
translator, or interpreter for the specified extended language?

The formalisms on which the above systems are based (context free grammars
(CFG), attribute grammars, and term rewriting systems) are all quite easily and
naturally composed, and thus adequately address our first question above. The
problem arises with the second question: the composition may not have desirable
or required properties for that formalism. For example, CFGs compose but the
resulting grammar may be ambiguous and thus not suited as a specification for
a parser. Similarly, composed AGs may not be complete (i.e. missing required
attribute equations) or it may contain circularities in the attribute definitions.

In 2009, Schwerdfeger and Van Wyk described a modular determinism analy-
sis for context free grammar fragments that could be run by the language exten-
sion developer to verify that their extension CFG, when composed with the host
language CFG and other independently developed and similarly verified exten-
sion CFGs, would result in a deterministic grammar, from which a conflict-free
LR(1) parse table could be constructed [14]. Formally, this was expressed as

(∀i ∈ [1, n].isComposable(CFGH , CFGE
i) ∧ conflictFree(CFGH ∪ {CFGE

i)})
=⇒ conflictFree(CFGH ∪

{
CFGE

1 , . . . ,CFGE
n

}
)

Note that each extension grammar CFGE
i is tested, with respect to the host

language grammar CFGH , using the isComposable and conflictFree analysis.
If all extensions independently pass this analysis, then their composition is a
CFG from which a conflict-free deterministic LR parse table can be generated.
Of course, this analysis puts some restrictions on the type of syntax that can
be added to a language as a composable language extension, but we have found
these restrictions to be natural and not burdensome [14]. This analysis is used in
Copper, the integrated parser and context-aware scanner packaged with Silver.

One of the primary contributions of this paper is a modular analysis for
attribute grammar completeness and circularity-detection that is meant to pro-
vide the sort of assurances described in the second question above. The modular
completeness analysis, called modComplete, provides the following guarantee:

(∀i ∈ [1, n].modComplete(AGH ,AGE
i)) =⇒ complete(AGH ∪ {AGE

1 , ...,AGE
n }).

2

This analysis has the same form as the modular determinism analysis described
above in that it verifies the property of attribute grammar completeness inde-
pendently on each of the attribute grammar specifications of language exten-
sions. The guarantee is that the non-expert can direct Silver to compose host
and extension specifications (that pass this analysis) knowing that the resulting
attribute grammar will be complete. Thus an entire class of common attribute
grammar errors can be solved by the extension developers, who have some un-
derstanding of language design and implementation, and this burden will not
fall on the non-expert doing the composition of the extensions.

Additional contributions of the paper include the following.

– In specifying the modular completeness analysis we define a notion of effec-
tive completeness that is useful in higher-order attribute grammars [23] as
well as with forwarding.

– Unlike the original (non-modular) completeness analysis for attribute gram-
mars with forwarding [16, 1], our analysis distinguishes between missing
equations and cycles in the attribute dependencies resulting in better er-
ror messages to the developer.

– We extend the completeness analysis to a modular circularity analysis.
– We evaluate the restrictions imposed by the modular analysis on the Silver-

language source specification of our (bootstrapped) Silver compiler. This
highly-modular specification was written before the analysis was developed.
We find that the restrictions are not overbearing.

Paper contents: Section 2 provides needed background on attribute grammars,
defines a simplified AG language over which the analyses are described, and
defines the mechanism for computing flow-types of nonterminals in the AG. In
Section 3 we present a modular analysis for effective completeness which we then
extend in Section 4 to allow for more flexible organization of grammars and to
include additional AG features found in full-featured attribute grammar speci-
fication languages such as Silver. Section 5 describes our experience in applying
this analysis on the specification of Silver. In Section 6 we augment the analysis
to also ensure non-circularity. Related (Section 7) and future work (Section 8)
are discussed, followed by concluding remarks (Section 9).

2 Background

We begin with a broad overview of attribute grammar analysis, and then get
more specific, with an example grammar and flow graphs later in the section.

Attribute grammars [11] are a formalism for describing computations over
trees. Trees formed from an underlying context-free grammar are attributed with
synthesized and inherited attributes, allowing information to flow, respectively,
up and down the tree. Each production in the grammar specifies equations that
define the synthesized attributes on its corresponding nodes in the tree, as well as
the inherited attributes on the children of those nodes. These equations defining

3

the value of an attribute on a node may depend on the values of other attributes
on itself and its children.

An attribute grammar is considered complete if there are no missing equa-
tions. That is, for all productions, there is an equation for every synthesized
attribute that occurs on the nonterminal the production constructs, and for all
children of the production, there is an equation for every inherited attribute that
occurs on that child’s nonterminal.

An attribute grammar is considered non-circular (and, if also complete, then
well-defined) if on every possible tree allowed by the context-free grammar, there
is no attribute whose value, as specified by the attribute equations, eventually
depends upon itself. Knuth presents [11] an algorithm to ensure non-circularity
in a complete attribute grammar. This algorithm is based upon constructing a
graph for each production that describes how information flows around locally
within that production. Alone, this is insufficient information: a production has
no idea how its own inherited attributes might depend on its own synthesized
attributes, nor can it know how its children’s synthesized attributes might de-
pend upon the inherited attributes it provides them. This global information is
determined by a data flow analysis that results in a set for every nonterminal
containing every possible flow of information between attributes on that nonter-
minal. Non-circularity can be checked using these sets.

Attribute grammars have been extended in a variety of ways. Higher-order at-
tribute grammars [23] allow attributes to themselves contain trees that are as-yet
undecorated by attributes. These trees are made useful by permitting produc-
tions to “locally anchor” a tree and decorate it, as if it had been a child. A child,
however, is supplied when a tree is created, whereas these “virtual children” are
defined by an equation during attribute evaluation that, of course, may have
dependencies on the values of attributes, like any other equation. Higher-order
attribute grammars amend the notion of completeness by requiring all inherited
attributes to be supplied to these “virtual children,” as well. The notion of non-
circularity is also further extended, by requiring that the synthesized attributes
of each “virtual child” have an implicit dependency on the equation defining that
tree. These virtual children can potentially lead to the creation of an unbounded
number of trees, and thus the nontermination of attribute evaluation.

Forwarding [16] was introduced to attribute grammars to allow for language
extension. A language extension that introduces new productions combined with
another that introduces new attributes on existing nonterminals presents a seri-
ous problem for completeness: the new attribute may not be defined on the new
production. This is sometimes referred to as the expression problem.1 If, how-
ever, those new productions forward requests for synthesized attributes without
defining equations to semantically equivalent trees in the host language, the new
attributes can simply be evaluated on that host tree instead and returned as
the value of the attribute for the forwarding production, resolving the problem.
Forwarding amends the notion of completeness by allowing a production that
forwards to omit synthesized attribute equations, as they can instead be sup-

1 http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

4

D ::= nonterminal nnt ; | synthesized attribute ns ::T ;

| inherited attribute ni ::T ; | attribute na occurs on nnt ;

| production np nlhs ::nnt ::= nrhs ::T { S }
| aspect production np nlhs ::nnt ::= nrhs ::T { S }

S ::= nlhs .ns = E ; | nrhs .ni = E ;

| local nlocal ::T = E ; | nlocal .ni = E ;

| forwards to E { A } ;

A ::= ni = E
E ::= nlocal | nlhs .na | nrhs .na | nlocal .na | · · ·
T ::= nnt

Fig. 1. The language Agf

plied by the forward tree. Forwarding’s necessary modifications to non-circularity
roughly follow those of higher-order attribute grammars: the forward tree ap-
pears as a “virtual child” and all synthesized attributes on a forward tree have
a dependency on the equation defining this tree. Forwarding introduces implicit
“copy” rules for synthesized attribute equations the production is missing, as
well as for any inherited attributes not supplied to the forward tree.

A problem for completeness identified by the forwarding paper, but also
existing for higher-order attribute grammars, is the inconvenience of requiring
all inherited attributes to be supplied. Frequently, only a subset of synthesized
attributes are demanded, which in turn only require a subset of inherited at-
tributes. This shows up frequently for forwarding, where a production may only
use its own children to synthesize a “pretty print” attribute, relying on the for-
ward tree for everything else (such as “translation.”) This production would be
required to supply its children with inherited attribute equations that are never
used, merely to pretty print the tree. An amended notion of effective complete-
ness of inherited attributes can be used instead: we require that all inherited
attributes needed to compute any accessed synthesized attribute be supplied, in-
stead of simply all of them outright. An effectively complete attribute grammar
can compute non-circularity in the same manner as a complete one: if these
equations are never demanded, they will never have an effect on flow graphs of
a nonterminal, and can be ignored in the flow graphs of a production.

2.1 The language

The language defined in Fig. 1 describes a simplified attribute grammar lan-
guage, based on our attribute grammar language, Silver, but with many or-
thogonal features (such as an indication of a starting symbol) omitted, and
some introduced later in Section 4. It should generalize well to other attribute
grammar languages that include forwarding. Declarations are represented by D.
Attributes are declared separately from the occurs-on declarations that indicate
what nonterminals (nnt) the attribute (na) decorate. Semantic equations (S)
can be supplied separately from declaring a production via aspect productions.

5

The possible equations include defining synthesized attributes (ns) for the pro-
duction’s left hand side (nlhs) and inherited attributes (ni) for children (nrhs)
and locals (nlocal). Local declarations allow for “locally anchoring” trees, as in
higher-order attribute grammars. Finally, productions may forward, and pro-
vide equations to change the inherited attributes supplied to the forward tree,
which are otherwise copied from the forwarding tree. Note that one restriction
not reflected in the grammar is that a forward may not appear in an aspect pro-
duction. Expressions (E) are largely elided from the language above. Only those
expressions that induce dependencies in a production’s flow graph are shown.
As a result, even though referring to a child’s tree (nrhs) is a valid expression,
it does not appear in E because a child tree is simply a value with no incurred
flow dependencies. Similarly, any sort of function call expression induces no de-
pendencies on its own, and simply aggregates dependencies from its component
expressions.

We will write AGH to indicate a host language, which should be a valid at-
tribute grammar consisting of a set of declarations (D.) We will write language
extensions (also consisting of a set of declarations D) as AGE , and these gram-
mars should be valid in combination with the host language they extend (i.e.
AGH ∪ AGE is valid for each AGE .) By validity, we mean certain properties
about the grammars that we consider to be part of a “standard” environment
and semantic analysis. For example, we will assume the grammars have all names
bind properly and are type correct. We will assume that duplicate declarations
of nonterminals, attributes, and productions are caught locally, and that if they
occur in different grammars they are not duplicates but truly different symbols
with different “fully-qualified” names based on the name of the grammar.

Fig. 2 shows an example of a small host language with two extensions. Note
that one extension introduces a new production that forwards to its semantic
equivalent in the host language (via De Morgan’s laws), and that another ex-
tension introduce a new “translation” attribute for the productions in the host
language. Both the errors and java attributes for the or production will be
ultimately be computed by consulting the forwards tree.

The flow graphs for some of the productions of the composed grammars of
Fig. 2 are shown in Fig. 3. Note that we use arrows to represent dependencies
necessary to evaluate attributes, rather that using them to indicate the direction
of information flow. A flow type [13] is a function fnt : syn → {inh} that
defines, for a nonterminal, what inherited attributes each synthesized attribute
that occurs on that nonterminal may depend upon. A flow type can also be
thought of as a graph, where edges are always from synthesized attribute nodes
to inherited attribute nodes. A production’s flow graph and the flow types for
each nonterminal can be combined into a stitched flow graph. In the figure, the
flow type for Expr is shown, along with the stitched flow graph for the production
not. The flow types introduce edges between the attributes on the nonterminals
of each child, virtual child, and forward in the stitched flow graph.

6

host grammar
nonterminal Expr;

synthesized attribute errors::[Msg];

inherited attribute env::Env;

attribute errors occurs on Expr;

attribute env occurs on Expr;

production and

e::Expr ::= l::Expr r::Expr

{ e.errors = l.errors ++ r.errors;

}

production not

e::Expr ::= s::Expr

{ e.errors = s.errors;

}

production var

e::Expr ::= n::Name

{ e.errors = lookup(e.env, n.lexeme);

}

or extension
production or

e::Expr ::= l::Expr r::Expr

{ forwards to

not(and(not(l), not(r))); }

java extension
synthesized attribute java::String;

attribute java occurs on Expr;

aspect production and

e::Expr ::= l::Expr r::Expr

{ e.java = l.java ++ "&&" ++ r.java; }

aspect production not

e::Expr ::= s::Expr

{ e.java = "!" ++ s.java; }

aspect production var

e::Expr ::= n::Name

{ e.java = n.lexeme; }

Fig. 2. An example of a host grammar for boolean propositions, with two extensions.

2.2 Flow type computation

Knuth’s (corrected) algorithm for ensuring non-circularity can be thought of
as computing a set of flow types for each nonterminal. For now, we are only
concerned with computing a single flow type per nonterminal. The flow type
computation is a function flowTypes(D) : nt → syn → {inh}. Supplied with a
set of declarations that form a valid attribute grammar, it results in a function
mapping each nonterminal to a flow type. In principal, flow types could be
computed using the standard non-circularity algorithm, by merging the set of
flow types into just one for each nonterminal. It is significantly more efficient to
compute them directly, with a slightly modified algorithm:

1. Local flow graphs for each production are computed.
2. Begin with an empty flow type for every nonterminal & synthesized attribute.
3. Iterate over every production. Produce a stitched flow graph for that pro-

duction using the current set of flow types. If there are any paths from a
synthesized attribute on the production’s left hand side nonterminal to an
inherited attribute on the same that are not yet present in the current flow
type for that nonterminal, add them to the nonterminal’s flow type.

4. Repeat until no new edges are introduced in a full pass over the productions.

We also have need to extend the domain of the flow type function ftnt to track
not just synthesized equation dependencies, but also those for forward equations.
We will write ftnt(fwd) to refer to the dependencies potentially necessary to
evaluate all forward equations for the nonterminal nt.

7

errors java env errors java env errors java env errors java env lexeme

production and production var
e l r e n

errors java env errors java env errors java env errors java env

production or

forwarde l r

errors java env

The stitched flow graph for the production not
e s

errors java env

The flow type for Expr

errors java envfwd

Fig. 3. Flow graphs for the grammar of Fig. 2. Also including the flow type of Expr,
and an example stitched flow graph.

3 Modular flow analysis for completeness

The modular completeness analysis modComplete checks six properties of the
host and each extension attribute grammar individually to ensure that the com-
position of the host and these extensions will be effectively complete. Two of
these properties require the flow types for host and extension grammars to have
been computed. The analysis modComplete is defined as follows:

modComplete(AGH ,AGE) ,
noOrphanOccursOn(AGH ,AGE) ∧ noOrphanAttrEqs(AGH ,AGE) ∧
noOrphanProds(AGH ,AGE) ∧ synComplete(AGH ,AGE) ∧
modularFlowTypes(flowTypes(AGH),flowTypes(AGH ∪AGE)) ∧
inhComplete(AGH ,AGE ,flowTypes(AGH ∪AGE))

Each of these checks is defined in turn below. In these discussions, we will use the
notation “n is exported by AG1 or AG2” to mean that the symbol n is declared
in the grammars AG1 or AG2. This ensures that when export statements are
introduced in the extended analysis (Section 4) the language used below will still
be a correct description of the requirements. We will also say that something is
“in scope” if the information is available in the standard environment for a
grammar, as described in Section 2.

No orphan occurs-on declarations: The check noOrphanOccursOn ensures that
there will be no duplicate occurs-on declarations in the composition of the host
and all extension grammars, denoted AGall .

noOrphanOccursOn(AGH ,AGE) holds if and only if each occurs-on dec-
laration “attribute a occurs on nt” in AGH ∪ AGE is exported by the
grammar declaring a or the grammar declaring nt.

8

Every occurs-on declaration will have all potentially duplicate occurs-on dec-
larations in its scope. This prevents, for example, an occurs-on relation being
declared in an extension AGE for an attribute and non-terminal that are both
defined in the host AGH . However, it still permits the occurs-on declaration if
the nonterminal or the attribute are declared in the extension.

No orphan attribute equations: The check noOrphanAttrEqs ensures that there
will be no more than one equation for the same attribute for the same production
in AGall.

noOrphanAttrEqs(AGH ,AGE) holds if and only if each equation n.a =
e in a production p is exported by the grammar declaring the (non-
aspect) production p or the grammar declaring the occurs-on declaration
“attribute a occurs on nt” (where n has type nt.)

Similar to the orphaned occurs-on declarations, this rule ensure that each
equation must have all potential duplicate equations in scope. This relies on the
orphaned occurs check: if two extensions can independently make the same at-
tribute occur on the same nonterminal, in such a way that the standard environ-
ment cannot catch the duplicate occurs, then it also cannot catch the duplicate
equations. Also note that this rule applies equally to synthesized and inherited
attribute equations, and that we have not yet ensured there exists at least one
equation, only ruled out the possibility of more than one.

No orphan production declarations: The check noOrphanProds ensures that ex-
tension productions forward, in order to allow forwarding to solve the problem
its introduction is intended to solve.

noOrphanProds(AGH ,AGE) holds if and only if for each production decla-
ration p in AGH ∪AGE with left hand side nonterminal nt, the production
p is either exported by the grammar declaring nt, or p forwards.

This rule is different from the previous two in that there’s no choice of where a
declaration can appear. The grammar declaring the nonterminal in effect declares
a fixed set of productions that do not forward, and this set will be known to
every extension grammar. As a result, a production is either in the host language
AGH , declared in the extension and forwards, or is declared in the extension and
its left hand side is a nonterminal also declared in the extension.

Completeness of synthesized equations: The check synComplete ensures that for
every production, an equation exists to compute every synthesized attribute that
occurs on its left hand side non-terminal in AGall.

9

synComplete(AGH ,AGE) holds if and only if for each occurs-on declaration
attribute a occurs on nt, and for each non-forwarding production p that
constructs nt, there exists a synthesized equation defining the value of that
attribute for that production.

This rule relies on the previous orphaned productions rule to ensure that
all non-forwarding productions are in scope at the occurs declaration. It further
relies on the previous orphaned equations rule (and thus, the orphaned occurs
rule) to ensure that all potential equations for those non-forwarding productions
are in scope, and thus we can check for their existence. Any production that
forwards will be able to obtain a value for this attribute via its forward tree if
it lacks an equation, and therefore they do not need checking.

The rules up to this point ensure synthesized completeness in a modular
way. No set of composed extensions that satisfy the above rules could result in
a missing or duplicate synthesized equation for any production in the result-
ing composed attribute grammar, AGall. These rules critically rely on forward-
ing. Without forwarding, nonterminals are no more extensible than standard
datatypes in ML or Haskell, in that new synthesized attributes are possible, but
not new productions. We now turn to inherited attributes and flow types.

Modularity of flow types: The check modularFlowTypes ensures that all gram-
mars will agree on the flow types. For occurrences in AGH , an extension is not
allowed to change the flow types. For those in AGE , it ensures they depend upon
those inherited attributes needed to evaluate forward equations, at a minimum.

modularFlowTypes(flowTypes(AGH),flowTypes(AGH ∪AGE)) holds if and
only if given ftHnt ∈ flowTypes(AGH) and ftH∪E

nt ∈ flowTypes(AGH ∪AGE),

1. For all synthesized attribute occurrences attribute s occurs on nt
declared in AGH , ftH∪E

nt (s) ⊆ ftHnt(s)
2. For all nonterminals nt declared in AGH , ftH∪E

nt (fwd) ⊆ ftHnt(fwd)
3. For all synthesized attribute occurrences, s, declared in AGE where nt

is declared in AGH , ftH∪E
nt (s) ⊇ ftHnt(fwd).

The first two properties prevent an extension from modifying the flow types
of host language occurrences, including the forward flow type. The purpose of
the requirement on extension attributes is less obvious, but boils down to po-
tentially needing to be able to evaluate forwards to get to the host language
production on which this attribute is defined (in particular for productions from
other extensions.) Our implementation deals with this last requirement by sim-
ply modifying the flow types, rather than raising an error if one runs afoul.

Effective completeness of inherited equations: The check inhComplete ensures
that no evaluation of attributes will demand an inherited attribute that is missing

10

Orphaned
Occurs

Orphaned
Equations

Orphaned
Productions

Synthesized
Completeness

Modular
Flow Types

Effective Inherited
Completeness Effective

Completeness

Fig. 4. The dependencies among the modularity analysis rules.

a defining equation. For each access of a synthesized attribute from a child or
local, we ensure that a sufficient set of inherited attributes has been supplied to
that child or local.

inhComplete(AGH ,AGE ,flowTypes(AGH ∪AGE)) holds if and only if for
every production p in AGH ∪ AGE and for every access to a synthesized
attribute n.s in an expression within p (where n has type nt,) and for each
inherited attribute i ∈ ftnt(s), there exists an equation n.i = e for p.

This rule is sufficient to ensure that, when the host and extension are com-
posed alone, no missing inherited attribute equations will be demanded. Together
with the previous modularity rule for flow types, it’s is also sufficient to ensure
this property holds for AGall because the flow type for host attribute occur-
rences cannot be changed by an extension. Finally, we can also be sure there are
no duplicate inherited equations thanks to the earlier orphaned equations rule.

Fig. 4 summarizes the dependencies between the rules and how effective com-
pleteness is established. We achieve effective completeness for AGall by ensuring
modular effective inherited completeness and modular synthesized completeness
hold for each extension individually, with no further checks necessary.

This analysis ultimately boils down to two major restrictions on extensions.
First, the host language fixes a set of non-forwarding productions, and any ex-
tension to this language must ultimately be expressible in terms of these pro-
ductions (via forwarding.) Second, for each host language synthesized attribute
occurrence, the host language fixes a set of inherited dependencies. Our expe-
rience so far suggests that host languages are typically rich enough to express
many interesting extensions, and many extensions that need inherited informa-
tion can usually “piggy back” that information on already existing host language
inherited attributes (e.g. the environment.) Further evaluation of the practicality
of these rules will be presented in Section 5.

11

G ::= · | grammar ng { M D } G
M ::= import ng ; | export ng ; | option ng ;

| export ng with ntg ;

Fig. 5. Extending the language Agfwith a module system

4 Extending the analysis

We extend Agf in two ways: first, by introducing a module system for it, and
second, by introducing several other features found in Silver to the language that
affect the modularity analysis.

4.1 A module system

So far we have referred to attribute grammars AGH and AGE as host and
extension grammars, however this does not reflect the reality of developing large
attribute grammars. In Fig. 5, we introduce a module system to Agf . Each
grammar is named, and consists of a set of module statements and a set of
attribute grammar declarations. We will consider each module statement in turn.

The analysis presented in Section 3 is easily generalized to apply to acyclic
import graphs between grammars. An import (import ng) makes explicit the
information available in the standard environment for a module, whereas we
previously merely stated that extension grammars have in their environment
their host language’s symbols. To apply the modularity analysis, we consider
every grammar to be an “extension” to the composition of all the grammars it
imports, and we otherwise apply the analysis unchanged. The modularity rules
are formulated such that being designated a “host” or “extension” confers no
special status beyond what “is extending” and what “is being extended.” A
grammar that imports nothing satisfies all the modularity rules. In addition to
allowing the host language to be broken up into multiple grammars, this allows
extensions to make use of other extensions.

Exports (export ng) allow grammars to be broken apart arbitrarily into
different pieces, and be largely treated as a single grammar for the purpose
of the analysis. For example, we might want to separate the concern of type
checking from the host language, but type checking may not pass the analysis as
an “extension.” To allow this, we can have the host language grammar export
the type checking grammar, essentially designating it part of the host. Again,
the modularity rules do not require any changes, because we were already careful
to word the rules to note when a symbol is “exported by” a grammar.

So far, however, this is still a limiting situation for host languages. Many
languages have multiple potential configurations that cannot be reflected as ex-
tensions, for modularity reasons or simply because they conflict outright with
alternative configurations. For example, GHC Haskell has many optional features
that can be enabled, some of which cannot be activated together. To support
these configurations, we introduce options to the language. An option (option

12

E ::= ref nlocal | ref nlhs | ref nrhs | E .na

| case E of p→ Ep | nv .na | · · ·
p ::= np(nv) |

Fig. 6. Extending the language Agfwith references and pattern matching

ng) declaration behaves identically to an export, when computing any of the re-
quirements imposed by Section 3, but has no effect on the standard environment.
This allows, for example, new non-forwarding productions to be introduced in
a grammar that is not necessarily the host language, but still allows the mod-
ularity rules to ensure that any extensions account for their existence. This in
turn necessitates another new feature, conditional exports, to allow an extension
grammar to optionally include support for a feature that may or may not be in
the host language (because it is an optional component.) A conditional export
(export ng with ntg) is identical to a normal export of ng, so long as the
importing module also imports its triggering grammar (ntg), such as an optional
component of the host language. If not, the conditional export is ignored.

Finally, our last modification to the module system is to account for import
cycles. The above generalization to arbitrary import graphs works until a cycle
is encountered. If there is a cycle, then a “host” grammar will actually include
the “extension” in its flow type computations, and thus won’t flag that exten-
sion’s violations. To handle cycles (and as a bonus, to compute flow types much
more efficiently,) we compute flow types just once, globally. To ensure we still
generate the same flow types, production graphs are partitioned into standard
edges and suspect edges. Only standard edges are used when stitching produc-
tion graphs, and computing updates to flow types. Suspect edges are generated
from synthesized (and forward) equations that are not permitted to affect their
corresponding flow type. (Note that this includes implicit synthesized equations
generated by forwards.) During the flow type computation, the dependencies
suspect edges would introduce are considered, and only those direct edges to
LHS inherited attributes that are already in their corresponding flow type are
admitted as a standard edge. In this way, these edges’ valid dependencies have
effect on the rest of the graph, while avoiding affecting their own flow type.

4.2 Additional language features

Silver also supports a version of reference/remote attributes [8, 3], and pattern
matching [9]. References refer to trees that have already been given their inher-
ited attributes elsewhere, whereas higher-order attributes refer to a tree that is
“anchored” and supplied inherited attributes locally. References present a unique
problem: the “decoration site” of the reference is unknown. It is not possible to
know what inherited attributes where supplied, if any. We adopt an extremely
conservative solution to this obstacle. We will refer to the set of all inherited at-
tributes known to occur on a nonterminal nt by the grammar that declares
nt as ftnt(ref). This particular choice isn’t important, only that all grammars

13

will agree on a consistent set. Whenever a reference is taken (ref nn, where
nn has type nt), we consider it to depend on ftnt(ref). Whenever an attribute
is demanded from a reference (E . na where E is a reference to a nonterminal
nt), we ensure that the flow type ftnt(a) ⊆ ftnt(ref). Thus, the set of inherited
attributes on a reference type is fixed by the host language. This could be ex-
tremely limiting, however in Section 5 we present some evidence that it is still
quite workable.

Silver allows for pattern matching on trees, in a manner that respects for-
warding [9]. In order to perform the pattern matching, therefore, we must be able
to evaluate the forward equation for any production, and therefore the scrutinee
must be supplied ftnt(fwd). As a bonus, the interaction of pattern matching with
forwarding, combined with the orphaned production rules of Section 3, allows
pattern matching expressions to ensure all possible cases are covered. Pattern
matching is capable of extracting references to the children of a production, but
in a manner that constitutes a known “decoration site,” and thus we do not
have to fall back on treating them like references (so long as reference is not
otherwise taken.) Given a set of inherited attributes known to be supplied to
the scrutinee i, for each case matching a production p, we can flow i through
the production flow graph for p, and determine the set of inherited attributes
that will be supplied to each child of p extracted as a pattern variable. For each
pattern variable attribute access (nv . a where nv has type nt) we can ensure
the flow type ftnt(a) is a covered by this set.

Silver has a number of other features that have relatively trivial effects on
the modularity analysis: collection attributes, autocopy attributes, and newly-
introduced default equations, see Section 5. The later two present no complica-
tions, and in fact are greatly simplified by the analysis: for grammars that pass
the analysis, all implicit equations they introduce are statically known. Our no-
tion of collection attributes do not allow for remote contributions, unlike those
of Boyland [3]. Collections attributes are synthesized attributes that have two
different kinds of defining equations: base and contribution. Base equations are
treated identically to ordinary equations for the modularity analysis. Contribut-
ing equations are allowed to exist in places that violate the orphaned equations
rule (as there are allowed to be any number of them), but are still subject to the
inherited completeness rule and the host language’s flow type.

Finally, Silver supports an alternative composition model that more resem-
bles that of classes in object-oriented languages. Closed nonterminals, instead of
having a fixed set of non-forwarding productions, have a fixed set of attributes
instead, and non-forwarding productions may appear in any grammar. As an ex-
ample, many languages will have a concrete syntax tree with a single synthesized
attribute to construct an abstract syntax tree. This poses a potential serious an-
noyance for extensions, given the modularity rules: the extension might have to
duplicate the forwards for the concrete and the abstract productions. Making
concrete syntax nonterminals closed resolves the issue.

14

5 Evaluation of modular completeness analysis

To evaluate the analysis, and the practicality of writing specifications that satisfy
the restrictions imposed, we have implemented the analysis and applied it to
the Silver specifications for the Silver compiler. We chose to analyze Silver itself
because it was one of the most complex attribute grammar specifications we have.
The host language has an interesting type system, it includes several optional
components that may or may not be included, it has several composable language
extensions (some add new syntax, some add new attributes, some both), and it
has a full translation to Java. It’s also the Silver specification we use most, and
as a result we believe it would have the fewest bugs.

The caveat for evaluating on Silver is that what is considered “host” vs “ex-
tension” is also under our control. To alleviate this concern somewhat, we briefly
describe a few of the extensions, to demonstrate they are interesting and non-
trivial. A “convenience” extension introduces new syntax that greatly simplifies
making large numbers of similar occurs declarations, by allowing nonterminal
declarations to be annotated with a list of them. A testing extension adds several
constructs for writing and generating unit tests for the language specification.
An “easy terminals” extension allows simple terminals to be referred to by their
lexeme in production declarations (using ’to’ instead of To kwd, for example.)
Finally, the entire translation to Java is implemented as a composable language
extension.

A technical report documents all issues raised by the analysis and the changes
made to address them [10]. A brief summary of those results is reported here.

Silver focuses specifically on language extension, and as a result, we had
chosen not to implement the monolithic analysis, to better enable separate com-
pilation. Without the modular analysis, we had simply gotten by without a
static completeness analysis. One set of changes made in response to the analy-
sis were expected: we found (and fixed) several bugs. The analysis found several
legitimately missing synthesized and inherited attribute equations. It also found
several productions that should have been forwarding, but were not.

Another positive set of changes improved the quality of the implementation,
even if they did not directly fix bugs. We discovered several extraneous attribute
occurrences that simply never had equations, and were never used either. Many
uses of references were found to be completely unnecessary and eliminated. One
particularly interesting change has to do with how concrete syntax specifica-
tions are handled in Silver. Silver’s host language supplies a “standard” set
of declarations for concrete syntax, while Copper-specific declarations are kept
in a separate optional grammar. The analysis raised a simple error: the Java
translation attributes for parser declarations were being supplied by the Copper
grammar, which is a violation of the rules. The decision was made to move this
parser declaration out of the host language and into the Copper optional gram-
mar, and that it actually belonged there all along: it does, after all, generate a
Copper parser.

Some parts of the analysis were motivated by our attempts to get Silver to
conform to the restrictions. The specification of the Silver host language is broken

15

up into several grammar modules for standard software engineering reasons of
modularity. Many of these modules are not meant to be considered composable
language extensions. This motivated the introduction of the “option” module
statement. We also found that we were abusing forwarding, using it as a way to
define default values for attributes where the forwarded-to tree was not, in fact,
semantically equivalent to the forwarding tree in the slightest. To resolve this,
we introduced the notion of default attribute values as a separate concept, so
these uses of forwarding could be eliminated.

There were two sorts of negative changes made to the Silver specification
in order to make it pass the analysis. The first of these resulted from the con-
servative rules for handling reference attributes. Two sets of inherited attribute
equations had to be supplied whose values are never actually used. In one case,
a nonterminal representing concrete syntax information has two synthesized at-
tributes, one for a normalization process and one for translation. These attributes
have different inherited dependencies, but the analysis required the full set for
both because the synthesized attributes internally used references.

The second sort of negative changes involved introducing workarounds for
code that we already knew needed refactoring, but we did not want to fix, yet.
In fact, in many of these cases, the analysis lead us to code that already had
“TODO” comments complaining about a design for reasons unrelated to the
analysis. The most significant of these is the use of a single nonterminal as a
data structure to represent several different types of declarations in Silver (at-
tributes, types, values, occurs-on, etc.) This is a legacy from when Silver did not
have parametric polymorphism and needed to group all of these together into
a single monomorphic type. To make the analysis pass, we introduced “error”
equations for attributes that did not have sensible values otherwise (e.g. at-
tributes for value declarations that do not apply to type declarations.) However,
the use of “error” equations to make the analysis pass still provides a stati-
cally detectable indication that we are, in essence, making a temporary end-run
around the analysis. These error equations are essentially a form of “technical
debt” - legitimate problems that we will change later, but for various reasons
decide not to do just yet. On the positive side, it lets the developer distinguish
between bugs to fix now and changes to make later.

In our experience with Silver, the analysis found a few bugs, motivated us
to fix a small number of design flaws, and introduced a relatively small amount
of technical debt. The analysis also found problems that inspired some changes
to Silver (e.g. options, defaults) to more easily write specifications that satisfied
the restrictions. We found the use of “error” equations reasonable, as a way to
document technical debt and refactorings that should be made at a later date
(or in the worst case, an explanation of why the attribute really could never
be demanded, despite the analysis indicating otherwise.) In the end, most of
the changes necessary were to the host language itself, and the extensions then
passed without further effort.

16

6 Extending the modular analysis to circularity analysis

So far we have focused only on ensuring completeness of the composed attribute
grammar in a modular way. This involved making use of flow information that
is typically used to ensure non-circularity, but we only computed a single flow
type for each nonterminal instead of a set, as is normally done in circularity
analyses. To ensure non-circularity, we will go back to calculating these flow sets
once again.

In this section we define a modular non-circularity analysis. As in the mod-
ular completeness analysis, this analysis is performed independently on each ex-
tension to ensure non-circularity in the final composed grammar. This analysis,
modNonCircular , is defined as follows:

modNonCircular(AGH ,AGE) ,
modComplete(AGH ,AGE) ∧ nonCircular(AGH ∪AGE)∧
modFlowSets(flowSets(AGH),flowSets(AGH ∪AGE))

The modComplete analysis is unchanged, and the analysis nonCircular is the
standard non-circularity analysis for attribute grammars [11, 23, 16].

Modularity of flow sets: The check modFlowSets ensures that extensions do
not introduce any flow types whose host language component is not already
accounted for in the host language’s flow sets. The extension can still introduce
new flow types, so long as they differ only in edges from synthesized attribute
occurrences declared in AGE .

modFlowSets(flowSets(AGH),flowSets(AGH ∪AGE)) holds if and only if
for every ftH∪E

nt in flowSets(AGH ∪AGE), there is a ftHnt in flowSets(AGH)
such that for every s ∈ dom(ftHnt), ftH∪E

nt (s) ⊆ ftHnt(s).

This rule is justified by a well-known optimization for computing flow sets,
where flow types that are “covered” by another flow type in the same flow set
can be discarded. All this rule does is ensure that all flow types generated by the
extension (restricted back to the host language) can be discarded in this fashion,
and consequently do not affect the non-circularity check.

This analysis, too, can handle the extensions introduced in Section 4, with
the caveat that the conservative rules introduced for handling references may
result in false positive circularities. Finally, while we have not yet evaluated this
analysis in practice, we believe the major potential problem for it is ensuring
that the extension developer can understand the resulting requirements. The
graphs that are contained in the flow sets are not necessarily subject to easy
intuition the way flow types are.

7 Related Work

Knuth introduced attribute grammars [11] and provided a circularity analysis. In
presenting higher-order attributes, Vogt et al. [23] extended Knuth’s complete-
ness and circularity analyses to that setting. Reference and remote attributes do

17

not have a precise circularity analysis [3], as the problem is undecidable. Com-
pleteness in these settings is simply a matter of using occur-on relationships
to check for the existence of equations for all of the required attributes. With
forwarding, flow-analysis is used to check completeness and thus a definedness
analysis that combines the check of completeness and circularity was defined [16,
1]. This analysis used dependency functions instead of flow graphs in order to dis-
tinguish between synthesized attributes that depend on no inherited attributes
and those that cannot be computed because of a missing equation or circularity,
and thus conflate this two types of errors. All of these are non-modular analyses.

Saraiva and Swierstra [13] present generic attribute grammars in which an
AG has grammar symbols marked as generic and not defined in the grammar.
Composition in this model is the instantiation of these generic symbols with spe-
cific ones. Here, flow-types can be computed on the generic grammar being im-
ported and then used when flow analysis is done on the instantiating/importing
grammar. This composition model, however, is very different from the language
extension model described in Section 1. It does not allow for multiple inde-
pendent extensions to be composed, except by first merging them into a single
extension, on which the analysis must then be performed, effectively making it
monolithic.

In AspectAG, Viera et al. [20] have shown the completeness analysis can be
encoded in the type system of Haskell. However, this analysis is again performed
at the time of composition (by the type checker) and is thus a monolithic analysis.

Current AG systems such as JastAdd [6] and Kiama [15] do not do static
flow analysis but, like previous versions of Silver, instead provide error messages
at attribute evaluation time that indicates the missing equation or circularity.
An extension writer can write test cases to test his or her specification and
perhaps find any lurking problems, but this does not provide any assurances if
independently developed grammars are later composed.

8 Current and Future Work

We would like to apply these analyses to other attribute grammars specified
using Silver to further evaluate their usefulness. One is possibility is ableJ our
extensible specification of Java with many different language extensions [18].

We plan to evaluate the practicality of the circularity analysis. We have not
done this on the Silver compiler because Silver is a lazily evaluated language,
and our compiler implementation has known “circularities” between attributes
that are, in fact, well-defined thanks to laziness. To apply the non-circularity
analysis to Silver, we will have to determine whether these can be eliminated or
the analysis can be extended to somehow deal with these apparent circularities.

The completeness and circularity detection analyses do not check that an
unbounded number of attributable trees will not be created. This is the third
component of well-definedness identified by Vogt et al.in their original work on
higher order attribute grammars [23], but dropped as a well-definedness require-

18

ment in his Ph.D. dissertation [22]. Other members of our group have separately
explored a termination analysis based on term rewriting systems [12].

9 Conclusion

We have presented a modular analysis for completeness and non-circularity in
attribute grammars. This differs from prior analyses in that languages extensions
are checked prior to being composed together, independently of each other, with
no checks necessary after composition to ensure these properties. In the extensi-
ble language scenario described here we do not have the luxury of a monolithic
(composition time) analysis since the person composing the extension grammars
is not expected, nor required, to understand attribute grammars, or even know
what they are. For extensible languages and extensible language frameworks to
be useful to most programmers we believe that these sort of modular analyses
are critical in order to ensure that the composition of independently developed
language extensions “just works.”

The analyses do not, and cannot, check that the forwards tree on a produc-
tion is semantically equivalent to the tree doing the forwarding. The language
developer is stating, by using the forwarding mechanism that the two are se-
mantically equivalent. If they are not then the attribute values returned from
the forwarded-to tree may not be correct. However, a misuse of forwarding in
this fashion is a problem with one specific extension, rather than a problem aris-
ing from the composition of extensions (though it may only be exposed by a
composition of extensions.)

The two questions raised in Section 1 are related to ease of composition of
grammars by the non-expert programmer, and not about ease of specification of
the language or language extensions by the language developer. The restrictions
imposed by the modular analysis are designed to ease the work of the non-expert
programmer. That said, we certainly do want to provide as much support as
possible to the language developer. The extensions to the analysis to cover all
the language features of Silver and to provide new features such as options and
attribute defaults are there to make conforming to the restrictions easier. In our
experience with Silver, these imposition of the restrictions is more than offset by
the strong guarantees that the analyses provide.

References

1. Backhouse, K.: A functional semantics of attribute grammars. In: Proc. of TACAS.
LNCS, vol. 2280, pp. 142–157. Springer (2002)

2. Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21, 239–250 (January 1984)

3. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
4. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language

embedding and assimilation without restrictions. In: Proc. of OOPSLA. pp. 365–
383. ACM Press (2004)

19

5. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: Proc. of OOP-
SLA. pp. 1–18. ACM (2007)

6. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Science of Computer Programming 69, 14–26 (December 2007)

7. Erdweg, S., Rendel, T., K astner, C., Ostermann, K.: SugarJ: Library-based syn-
tactic language extensibility. In: Proc. of OOPLSA. ACM (2011)

8. Hedin, G.: Reference attribute grammars. Informatica 24(3), 301–317 (2000)
9. Kaminski, T., Van Wyk, E.: Integrating attribute grammar and functional pro-

gramming language features. In: Proc. of 4th the Intl. Conf. on Software Language
Engineering (SLE 2011). LNCS, vol. 6940, pp. 263–282. Springer (2011)

10. Kaminski, T.: Evaluation of modular completeness analysis on Silver. Tech. Rep.
12-024, University of Minnesota, Department of Computer Science and Engineer-
ing. (2012), available at http://melt.cs.umn.edu/pubs/kaminski12tr

11. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2(2), 127–145 (1968), corrections in 5(1971) pp. 95–96

12. Krishnan, L., Van Wyk, E.: Termination analysis for higher-order attribute gram-
mars. In: Proc. of 5th the Intl. Conf. on Software Language Engineering (SLE
2012). LNCS, vol. 7745, pp. 44–63. Springer (2012)

13. Saraiva, J., Swierstra, D.: Generic Attribute Grammars. In: 2nd Workshop on
Attribute Grammars and their Applications. pp. 185–204 (1999)

14. Schwerdfeger, A., Van Wyk, E.: Verifiable composition of deterministic grammars.
In: Proc. of PLDI. ACM (June 2009)

15. Sloane, A.M.: Lightweight language processing in Kiama. In: Proc. of the 3rd
Summer School on Generative and Transformational Techniques in Software En-
gineering III (GTTSE 2009). LNCS, vol. 6491, pp. 408–425. Springer (2011)

16. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proc. 11th Intl. Conf. on Com-
piler Construction. LNCS, vol. 2304, pp. 128–142 (2002)

17. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute gram-
mar system. Science of Computer Programming 75(1–2), 39–54 (January 2010)

18. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute grammar-based
language extensions for Java. In: Proc. of ECCOP. LNCS, vol. 4609. (2007)

19. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible lan-
guages. In: Intl. Conf. on Generative Programming and Component Engineering,
(GPCE). ACM Press (October 2007)

20. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in Haskell. In: Proc. of 2009 International
Conference on Functional Programming (ICFP’09) (2009)

21. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. In: Rewriting Techniques and Applications (RTA’01). LNCS, vol. 2051,
pp. 357–361. Springer (2001)

22. Vogt, H.: Higher order attribute grammars. Ph.D. thesis, Department of Computer
Science, Utrecht University, The Netherlands (1989)

23. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: ACM
Conf. on Prog. Lang. Design and Implementation (PLDI). pp. 131–145 (1989)

20

