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Abstract— In this paper we present an analysis of the positioning un-
certainty increase rate for a group of mobile robots. The simplified ver-
sion for a group of N robots moving along one dimension is considered.
The one dimension restriction permits us to extract an exact expression for
the accumulation of positioning uncertainty in a group of robots equipped
with proprioceptive (odometric in this case) and exteroceptive (relative dis-
tance between robots) sensors. The solution obtained provides insight in
the structure of the multirobot localization problem. In addition, it serves
both as an approximation and a starting point for examining the more re-
alistic case ofN robots moving on a plane. Our derivation is based on a
Kalman filter estimator that combines all measurements from all robots in
the group. Furthermore, we analyze the effect of initial uncertainty, num-
ber of robots (N ) and sensor noise on the rate of positioning uncertainty
increase. The analytical results derived in this paper and the impact of the
different parameters are validated in simulation.

Keywords— Multirobot Localization, Cooperative Localization, Net-
works of Robots.

I. INTRODUCTION

This paper studies the localization accuracy of a team of mo-
bile robots that closely cooperate while navigating an area. We
consider primarily the most challenging scenario where the ab-
solute positions of the robots cannot be measured or inferred,
and no external positioning information is obtained from a GPS
receiver or a map of the environment. One of the advantages
of multi-robot systems is that robots can accurately localize by
measuring their relative position and/or orientation and commu-
nicating localization information throughout the group. In this
case the uncertainty in the position estimates for all robots will
continuously increase. However, previous work on cooperative
localization [1], [2], [3] has demonstrated that the localization
uncertainty increase across groups of robots is lower compared
to the situation where each robot is estimating its position with-
out cooperation with the rest of the team.

The theoretical analysis of the positioning uncertainty prop-
agation during cooperative localization has been an open prob-
lem to this date. In this paper we present the necessary first
step for determining upper bounds on the position uncertainty
accumulation for a group of N robots. The 1-D case is exam-
ined where the N robots move only along one dimension and
they continuously measure the relative distance to each other.
The upper bound is calculated by solving the continuous time
Riccati equation for the covariance of the errors in the position
estimates. The key element in our derivation is the separation
of the covariance matrix into two sets of submatrices, those that
converge to steady state values and those that capture the time
dependence of the uncertainty increase during cooperative local-
ization. Throughout the paper we assume that all robots move
at the same time.
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The 1-D case is interesting by itself as it provides insights in
the solution of the Riccati equation by examining the evolution
of the covariance matrix until it reaches a steady state. The be-
haviour of the Riccati equation in 1-D also serves as a starting
point for solving the more general 2-D case. Discussion of the
2-D case is out of the scope of this paper and can be found in
[4].

In the following section we outline the main approaches to
cooperative localization. In Section III we present the formu-
lation of the multi-robot localization problem in 1D and study
the effect of consecutive relative position updates on the struc-
ture of the Riccati equation which describes the time evolution
of the uncertainty in the position estimates. In Section IV sim-
ulation results are presented that validate the derived analytical
expressions for the rate of localization increase. Finally, Section
V draws the conclusions from this analysis and suggests direc-
tions of future work.

II. RELATED WORK

An example of a system designed for cooperative localiza-
tion was first reported in [1]. A group of robots is divided into
two teams in order to perform cooperative positioning. At each
instant, one team is in motion while the other team remains sta-
tionary and acts as a landmark. Improvements over this system
and optimum motion strategies are discussed in [5], [6] and [7].
Similarly, in [8], only one robot moves, while the rest of the
team of small-sized robots forms an equilateral triangle of lo-
calization beacons in order to update their pose estimates. An-
other implementation of cooperative localization is described in
[2] and [9]. In this approach a team of robots moves through
the free space systematically mapping the environment. These
approaches have the following limitations: (a) Only one robot
(or team) is allowed to move at any given time, and (b) The two
robots (or teams) must maintain visual (or sonar) contact at all
times.

A Kalman filter-based implementation of a cooperative navi-
gation schema is described in [10]. In this work the effect of the
orientation uncertainty in both the state propagation and the rel-
ative position measurements is ignored resulting in a simplified
distributed algorithm. In [3], [11] a Kalman filter pose estimator
is presented for a group of simultaneously moving robots. The
Kalman filter is decomposed into a number of smaller commu-
nicating filters, one for every robot, processing sensor data col-
lected by its host robot. It has been shown that when every robot
senses and communicates with its colleagues at all times, every
member of the group has less uncertainty about its position than
the robot with the best (single) localization results.

To the best of our knowledge there exist only two cases in the
literature where uncertainty propagation has been considered in



the context of cooperative localization. In [10] the improvement
in localization accuracy is computed after only a single update
step with respect to the previous values of uncertainty. In [12]
the authors have explored the effect of different robot tracker
sensing modalities on the effectiveness of cooperative localiza-
tion. Statistical properties were derived from simulated results
for groups of robots of increasing size N when only one robot
moved at a time.

In the following sections we present the details of our ap-
proach for estimating the uncertainty propagation during coop-
erative localization in 1-D. Our initial formulation is based on
the algorithm described in [11].

III. COOPERATIVE LOCALIZATION IN 1-D

Consider the case of N robots moving randomly along one
dimension (without loss of generality let the dimension be the
x � axis). Each robot is equipped with odometric sensors that
measure the velocity of the robot and a robot tracker sensor that
measures the relative position between any two robots, and pos-
sesses no other sensing ability. A Kalman Filter estimator is
employed to combine the two sensor measurements and provide
an optimal position estimate for each robot together with a po-
sition uncertainty estimate. In the next subsections we provide
an analytical expression for the position uncertainty as it grows
over time.

A. Motion Model

For the case of a single robot moving in a 1-D environment, its
motion is described (in discrete time) by the following equation

xi(k + 1) = xi(k) + Vi(k)Æt (1)

If a sensor on board the robot measures its velocity then the
estimate for this motion is given by

x̂i(k + 1) = x̂i(k) + Vmi(k)Æt (2)

with
Vmi(k) = Vi(k)� wVi(k) (3)

where wVi is a zero-mean white Gaussian process, the noise
in the velocity measurement for robot i, with covariance q =
Efw2

Vi
g. Since each robot carries its own proprioceptive sensor

that measures the velocity of the vehicle, these measurements
are independent, i.e. EfwViwVjg = 0 for i 6= j. The error in
the position estimate is given by:

exi(k + 1) = xi(k + 1)� x̂i(k + 1)

= xi(k)� x̂i(k) + (Vi(k)� Vmi(k)) Æt

= exi(k) + wVi(k)Æt

= [1]exi(k) + [Æt]wVi(k)

= Fiexi(k) +GiwVi(k)

Expanding the previous expression to the case of N robots, we
have2
64
ex1(k + 1)

...exN (k + 1)

3
75 =

2
64
ex1(k)

...exN (k)

3
75+ Æt

2
64

wV1(k)
...

wVN (k)

3
75,

eX(k + 1) = � eX(k) +GW (k),eX(k + 1) = I eX(k) + ÆtIW (k) (4)

The same equation in continuous time is given by

_eX(t) = F eX(t) +GcW (t),
_eX(t) = 0 eX(t) + IW (t) (5)

B. Measurement Model

When one of the robots in the group detects another robot and
measures their relative position, the measurement equation is:

zij(k + 1) = xj(k + 1)� xi(k + 1) + nij(k + 1) (6)

where nij(k + 1) is the noise associated with the relative po-
sition measurement. This noise is assumed to be a zero-mean
white Gaussian process with known variance Efn2ij(k + 1)g =
r. Note also that the measurements nij are independent, i.e.
Efnijnklg = 0 for ij 6= kl. The estimated measurement would
be

ẑij(k + 1) = x̂j(k + 1)� x̂i(k + 1) (7)

and the residual (error) for this measurement is

ezij(k + 1) = zij(k + 1)� ẑij(k + 1)

= xj(k + 1)� xi(k + 1)�

(x̂j(k + 1) � x̂i(k + 1)) + nij(k + 1)

= exj(k + 1)� exi(k + 1) + nij(k + 1)

= [ 0 : : :� 1 : : : 1 : : : 0 ]
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= Hij eX(k + 1) + nij(k + 1) (8)

If each of the robots measures its relative position with re-
spect to all robots in the group then the resulting N(N � 1)
measurement error equations can be written in a compact form
as:2
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By employing the previous expression, the covariance of the
residual (measurement error) is given by:

S = Ef eZ eZT g = HP(k + 1=k)HT + rI (10)

where P(k + 1=k) is the covariance for the position estimate
at time k + 1 using measurements up to time k and I is the
(N(N � 1))2 identity matrix. Here we have assumed that all
relative position measurements between the robots have the
same level of accuracy.

C. Riccati Equation

Since none of the robots in the group receives absolute posi-
tioning information, the system of the N robots is not observ-
able and the covariance matrix will increase without bound. In
order to determine the rate of increase of the covariance matrix
we first write the discrete time propagation and update equations
for it:

P(k + 1=k) = �P(k=k)�T +GQGT = P(k=k) +Qd (11)

where we substituted � = I from Eq. (4). The covariance
update equation in its inverse form is given by:

P�1(k + 1=k + 1) = P�1(k + 1=k) +HTR�1H

= (P(k=k) +Qd)
�1 +HTR�1H (12)

or, in order to simplify the notation

P�1

k+1 = (Pk + qdI)
�1 +

1

r
HTH (13)

where we substituted R = rI and Qd = qdI = qÆt2I. This
equation computes the inverse covariance of the system of N
robots after two consecutive steps of propagation and update.
Matrix HTH is constant and it only depends on the number of
robots N . It can be computed as:

HTH =
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Assume that at step k = 0 all robots know their position with
the same level of accuracy, that is P0 = p0I. The covariance
matrix P is symmetric with equal non-diagonal terms (here all
zero) and also equal diagonal terms (here all p0). We will prove
that after any number of steps the covariance matrix sustains this

structure. By substitutingP0 = p0I in Eq. (13) we have
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By employing the relations in the Appendix the covariance ma-
trix can be computed as:

P1 =
1

v01
I�

u01
v01(v

0

1 +Nu01)
1 = v1I+ u11 (17)

Note again that both the diagonal and non-diagonal elements of
this matrix are equal between themselves (i.e. Pii = Pjj ; 8i; j,
Pij = Pkl; 8 i 6= j; k 6= l). Assume that after a certain number
of propagation and update steps, at step k = m the covariance
matrix has still equal diagonal and equal non-diagonal elements.
That is

Pm = vmI+ um1 (18)

We will prove that the covariance matrix Pm+1 also has equal
diagonal and non-diagonal elements. By substituting in Eq. (13)
we have:

P�1
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By employing the relations in the Appendix the covariance ma-
trix can be computed as:

Pm+1 =
1

v0m+1

I�
u0m+1

v0m+1
(v0m+1

+Nu0m+1
)
1

= vm+1I+ um+11

We have proven the following:
Lemma 1: The covariance matrix for a group of N robots

with the same level of uncertainty for their proprioceptive
and exteroceptive measurements when performing cooperative
localization is a matrix with equal diagonal and equal non-
diagonal terms.
A direct result of the previous lemma is the following:

Corollary 2: A group of N robots with the same level of
uncertainty for their proprioceptive and exteroceptive measure-
ments experience when performing cooperative localization the
same level of positioning uncertainty and they share the same
amount of information.



The amount of information shared by two robots is captured in
the cross-correlation terms (non-diagonal) of the covariance ma-
trix. At this point we employ Lemma 1 to derive an analytical
expression for the rate of increase in the localization uncertainty
for the group of robots.

Lemma 3: For a group ofN � 2 robots with the same level of
uncertainty for their proprioceptive q and exteroceptive r mea-
surements, when they perform cooperative localization their po-
sitioning uncertainty and cross-correlation terms grow linearly
with respect to time. i.e.

Pij(t) =

8<
:
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Here we use the continuous time Riccati equation for the prop-
agation and update of the covariance matrix, that is:

_P = FP+PFT +GcQG
T

c
�PHTR�1HP (21)

where F = 0, Gc = I, Q = qI, R = rI, HTH = (2N)I� 21
andP = vI+u1. Substituting in the previous equation we have
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The last relation can be divided into two differential equations.
The first one is:

_v = �
2N

r
v2 + 0v + q (22)

It can be shown [4] that the solution of this Riccati equation in
steady state is given by

v(t) =

r
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where vc is a constant. The second differential equation is

_u =
2v2

r
(24)

By rewritting Eq. (22) as

v2(t) =
r

2N
(q � _v(t)) (25)

and substituting in Eq. (24), for u(0) = 0 we have
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where we have employed the initial condition v(0) = p(0).
The covariance matrix can now be written as

P(t) = v(t)I +
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and after sufficient time this would be
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where we employed the results from Eq. (23). From this last
equation it is evident that after sufficient time, the positioning
uncertainty for this group of robots increases linearly with time,
i.e.

_P(t) =
q

N
1 (29)

From this last equation the following are true:
� The rate of increase is proportional to the odometric uncer-
tainty q of each robot and inversely proportional to the number
N of robots.
� The rate of uncertainty increase in steady state does not de-
pend on the accuracy (determined by their covariance r) of the
relative position measurements.
� The time for the system to reach steady state is determined by
the time constant of the system

� =
1
p
D

=
1

2

r
r

2Nq
(30)

which depends on the odometric accuracy q of the robots, their
number N and the accuracy r of the relative position measure-
ments. Inaccurate relative position measurements will delay the
system reaching steady state. On the other hand large teams of
robots will quickly reach steady state. Finally, robots with very
precise odometric information (small q) will depend less on the
relative position measurements and more on their own odometry
for a longer period of time.
Up to this point, we have assumed that all robots have the same
odometric uncertainty qi = q; 8i and relative position measure-
ment uncertainty ri = r; 8i. This was done in order to facilitate
the previous derivations and thus gain insight in the structure
of the cooperative localization problem. Nevertheless, Eq. (28)
can be used to determine the bounds for the expected uncertainty
growth for q = max(qi), r = max(ri). That is
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IV. SIMULATION RESULTS

We performed a series of experiments in simulation to verify
the performance of cooperative localization and the effect of the
different parameters (e.g. number of robots, initial uncertainty
and sensor uncertainty) on the increase in the uncertainty of the
system. The results obtained validate the theoretical analysis
presented in the previous section.

Figure 1 presents the actual (solid line) and theoretical (dash-
dotted line) covariance values over time for different numbers
of robots. As expected, after the robots reach steady state the
values are very similar. It is worth noting that as the number of
robots increases the rate of uncertainty increase reduces follow-
ing a law of diminishing returns: the larger the group the less
value each additional robot adds to the localization. The effect
of the initial position uncertainty P (0) is presented in Figure 2
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Fig. 1. Actual and theoretical covariance values for robot groups of different
size N .
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Fig. 2. Actual and theoretical covariance values for a group of N = 2 robots
for different values of initial uncertainty P (0).

for a group of two robots; again, after an initial period the theo-
retical and the simulated uncertainty agree. Clearly, as predicted
by the theoretical analysis, the initial position uncertainty P (0)
does not affect the rate of uncertainty increase.

The final significant result is illustrated in Figure 3: the qual-
ity of the robot tracker measurements does not influence the rate
of position uncertainty increase. In other words, in the case
where all the robots move simultaneously, cooperative localiza-
tion enables the uncertainty of each robots position to decrease
inversely proportional to number of the robots in the group but
the accuracy of the robot tracker adds only an initial (constant)
improvement. Figure 3 shows for a group of two robots that the
simulated uncertainty matches the theoretically calculated val-
ues.
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Fig. 3. Actual and theoretical covariance values for a group of N = 2 robots
for different values of relative position measurement uncertainty r.

V. CONCLUSIONS

This paper presented a theoretical analysis for the propaga-
tion of position uncertainty for a team of mobile robots moving
in one dimension. The most challenging case of localization
was considered based only on inter-robot observations (cooper-
ative localization) and dead reckoning estimates. Furthermore,
all robots moved simultaneously, in contrast to previous work
where often the robots take turns to move and to act as land-
marks. An analytical formula was derived that expresses the
upper bound of the uncertainty accumulation as a function of
time and the noise characteristics of the robot sensors.

The analysis presented here is a required first step for the
treatment of the more general case of N robots moving simul-
taneously on flat terrain. The analytical solution presented here
generalizes to the 2-D case under certain assumptions [4] as an
upper bound of the accumulation of position uncertainty.
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APPENDIX

Special Case of Matrix Inversion: The inverse of the N �N
symmetric matrix
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This can be shown by computing the product TT�1 and substituting from the
previous expressions.


