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Abstract— Bearing-Only SLAM describes the process of si-
multaneously localizing a mobile robot while building a map
of the unknown surroundings, using bearing measurements to
landmarks as the only available exteroceptive sensor information.
Commonly, the position of map features is estimated along with
the robot pose. However, consistent initialization of these positions
is a difficult problem in Bearing-Only SLAM, in particular
for distant landmarks. In previous approaches, measurements
to remote landmarks often had to be discarded, thus losing
valuable orientation information. In this paper, we present for
the first time a unifying framework allowing for non-delayed
initialization of both nearby and distant features. This is made
possible by a four-element landmark parametrization, combined
with a constraint-based inferred measurement.

I. INTRODUCTION

In recent research on Simultaneous Localization and Map-
ping (SLAM), attention has been drawn to using sensors that
do not provide sufficient information to estimate landmark
positions from a single measurement. This is the case for
range-only or bearing-only observations. Cameras are typical
examples of sensors that provide bearing-only measurements.
Due to their lower cost, size, weight and power consumption
compared to laser scanners, they are becoming increasingly
popular in robotics. Unfortunately, the problem of feature-
based SLAM using a bearing-only sensor (so-called Bearing-
Only SLAM) is more difficult than regular SLAM, since
at least two observations of the same landmark from two
sufficiently spaced locations are necessary to initialize its
position in the state vector. This initialization is normally
accomplished by triangulating the feature from two robot
positions. The landmark’s position is estimated to lie on
the intersection of the two lines defined by the robot poses
and bearing measurements. When these two lines become
almost parallel, the position estimate is ill-conditioned and
its accuracy deteriorates. This situation can occur when (i)
the baseline (the distance between the points of landmark
observations) is small, (ii) the observed feature is very far
away, or (iii) when the robot moves towards a landmark.

Existing approaches usually discard measurements to a
landmark that cannot be reliably initialized. However, bearing
measurements to distant landmarks can provide extremely
valuable information for improving the orientation accuracy
of a robot. Therefore, having to discard these measurements
should be avoided. We are able to address this challenge by
using a different representation of the landmark in the state
vector and a constraint-based measurement model. In essence,
instead of encoding landmarks by their Euclidean coordinates,

we employ two perspective projections in one real and one
virtual camera. To the best of our knowledge, this is the first
framework that allows for non-delayed landmark initialization
of both nearby and distant landmarks.

II. RELATED WORK

The problem of landmark initialization in Bearing-Only
SLAM has been addressed by several researchers. Generally,
one can distinguish delayed vs. non-delayed approaches. In
delayed initialization schemes, robot observations are accu-
mulated until a criterion is fulfilled that allows for well-
conditioned initialization of the landmark position in the
state vector. Deans and Hebert [1] use a nonlinear bundle-
adjustment procedure to initialize the landmarks from several
past observations. Bailey [2] proposes constrained initializa-
tion within the EKF framework. In this approach, measure-
ments to not-yet-initialized features are stored in the state
vector, together with the corresponding robot positions. At
a later stage, when the probability density of the landmark
position has become sufficiently Gaussian, it is initialized in a
batch EKF-update. Davison [3] uses a separate particle filter
to estimate the distance of a landmark independently from the
map, and initializes a candidate landmark only when the range
uncertainty has become sufficiently small.

Non-delayed approaches initialize a landmark into the state-
vector directly after the first observation. They make use of
the fact that each landmark, after the first observation, is
constrained to lie in a cone-shaped region centered around the
line that emanates from the current robot position towards the
direction of the landmark. The range to the feature along this
line is at this point completely uncertain and can be modeled
as uniformly distributed in the interval between the minimum
and maximum sensor range. In their multiple hypotheses
filter, Kwok and Dissanayake [4] initialize several instances
of one landmark, each with a different range hypothesis.
Invalid hypotheses are later eliminated from the state vector
by means of sequential probability testing. Solà et al. [5] use
an approximate sum of Gaussians to represent the uniform
range distribution. The number of Gaussians is a function of
the sensor range.

One limitation of all aforementioned approaches is their
inability to deal with landmarks that are effectively at “infinite
distance”, or, equivalently, to allow for a sensor with sensing
range significantly larger than the range of motion of the robot.
For a landmark at “infinite distance”, sufficient baseline for
a well-conditioned initialization cannot be established, and a



sensible partitioning of the range span by a tractable number
of hypotheses (Gaussian kernels or particles) is difficult. In
his particle-filter approach, Davison [3] acknowledges without
further elaboration that, compared to the 100 particles in the
range between 0.5 m and 5.0 m which he proposes for indoor
scenarios, “quite a different type of prior” may be required for
outdoor environments. Solá et al. [5] suggest a heuristic that
yields seven Gaussians for covering the range between 1 m
and 1000 m, but do not consider landmarks further away.

It is well known that very distant landmarks provide in-
valuable orientation information. Intuition suggests that a
prominent feature on the horizon, e.g., a mountain peak or a
tall building, can serve to “get one’s bearings”. If the positions
of these landmarks are known in a global frame of reference,
then the bearing measurements are equivalent to unit vector
observations with which one’s pose can be estimated [6]. In
the case of sufficiently distant landmarks, so that the position
displacement during operation yields only negligible change
in the unit vector towards that feature, these landmarks can
be used for orientation estimation without explicit knowledge
of their position. It suffices to determine the corresponding
unit vector in a desired fixed reference frame. An example of
the latter case is the magnetic compass. If, for example, it is
decided that the unit vector provided by the compass should
coincide with the global x-axis, the compass information
can henceforth be used directly as an absolute orientation
measurement. Sun sensors and star trackers apply this principle
in the field of 3D spacecraft attitude determination [7].

Apart from observations of very distant landmarks, the use
of features that lie along the direction of travel of the robot is
another challenging issue [5]. A delayed initialization scheme
as proposed by Bailey [2] would not be able to initialize
such a landmark within reasonable time due to insufficient
baseline. However, since this scenario could arise frequently
for a forward-sensing robot moving in a straight line, an
efficient algorithm should be able to use such landmarks for
pose updates as well.

In this paper, we present for the first time a unified formu-
lation capable of incorporating information from nearby and
distant landmarks as well as those lying in the direction of
travel of the robot.

III. BEARING MEASUREMENTS TO NEARBY VS. DISTANT

LANDMARKS

In this section, we outline the differences in the treatment
of nearby and distant features in 2D Bearing-Only SLAM
(BOSLAM). We first present the commonly used method
for close-by features, where a landmark’s (x, y)-position is
estimated in the state vector, followed by procedures for
handling measurements to landmarks at infinite distance. This
will provide the necessary background for the development
of our novel algorithm capable of dealing with both cases
simultaneously. In particular, we will address the issue of
feature initialization.

Another very challenging issue in BOSLAM is data asso-
ciation, since multiple features can lie on a single ray. For
non-initialized landmarks, any two bearing measurements may
intersect and produce tentative feature candidates, some of
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Fig. 1. (a): Illustration of robot orientation φi, relative bearing angle ψi and
global bearing angle θi towards a landmark. (b): The projections of the robot
location and the landmark location onto the unit vector perpendicular to the
measurement are equal (cf. Eq. (10)).

which are phantom landmarks that have no physical meaning.
The issue of data association is addressed for example by
Costa et al. [8]. However, for the purpose of this paper, we
will assume data association to be solved and focus on the
description of a new formulation for BOSLAM that allows
us to represent and process measurements to both nearby and
distant features.

A. Nearby Landmarks

In SLAM, the state vector to estimate consists of the robot
pose xr and the map xM

x =
[
xT
r xT

M

]T
(1)

where the robot pose is defined as xr(ti) =
[
xi yi φi

]T
and the map as the set of k landmarks xM =[
xL1 yL1 . . . xLk

yLk

]T
. In the remainder of the paper,

we will develop the equations for only one landmark in order
to facilitate notation.

As shown in Fig. 1(a), the bearing-only sensor measures
the relative bearing angle ψ between the landmark and the
robot at time i, corrupted by noise. In the case of an already
initialized landmark, the measurement model is

zψ(ti) = ψi + n = atan2 (yL − yi, xL − xi) − φi + n (2)

where n represents white, zero-mean Gaussian noise.
In addition to the relative bearing angle, we can also define

the global bearing angle θi

θi = ψi + φi (3)

From two positions xi and xj and corresponding global
bearing angles θi and θj , we can compute the landmark
position according to [2][
xL
yL

]
=

1
sicj − sjci

·
[
xisicj − xjsjci + (yj − yi)cicj
yjsicj − yisjci + (xi − xj)sicj

]
(4)

where we have used the abbreviated notation ci = cos(θi) and
si = sin(θi).

It is important to note that this equation becomes singular
when sicj − sjci = 0, that is, when θi = θj . This can occur
in cases of zero baseline, movement in landmark direction
or when a landmark is at infinite distance. Evidently, there



are a number of cases when initialization fails, even though
a landmark was sighted repeatedly. Without successful initial-
ization, or appropriate representation of these observations, the
information contained therein is inevitably lost.

B. Known Landmarks at Infinite Distance (Compass)

Let us now consider a known landmark at infinite distance.
Its global bearing angle will remain constant, independent of
the robot position. In the case of a magnetic compass, for
example, this bearing angle with respect to the global map
is known a priori. Therefore, the compass measurement can
be used directly as an absolute measurement of the robot
orientation

zc(ti) = c− φi + n (5)

where c is a deterministic constant depending on the magnetic
declination.

C. Unknown Landmarks at Inf. Distance (Acquired Compass)

A slightly different scenario develops, when the direction
to a previously unknown landmark at infinite distance is
measured for the first time only after a certain period of
robot operation. In this case, the global angle θ towards that
landmark is a random variable with associated uncertainty
due to accumulated odometry errors. Correlations between
this and future measurements to the same feature can be
used in order to improve the localization accuracy of a robot.
Such an estimation process requires this global direction to
be initialized in the state vector. In a sense, initializing this
landmark corresponds to acquiring a compass. For the acquired
compass, the measurement model is

zac(ti) = θ − φi + n (6)

The initialization process works as follows: We first add a
new variable θ to the state vector that is completely uncorre-
lated with any other variable and has infinite variance Pθθ. It
can be shown that after one Kalman filter update, this variable
will be initialized1 to

θ̂ = zac + φ̂i (7)

and the updated covariance matrix will be

P⊕ =



P�
xx P�

xy P�
xφ P⊕

xθ

P�
yx P�

yy P�
yφ P⊕

yθ

P�
φx P�

φy P�
φφ P⊕

φθ

P⊕
θx P⊕

θy P⊕
θφ P⊕

θθ


 (8)

where P⊕
xθ = P�

xφ, P
⊕
yθ = P�

yφ, P
⊕
φθ = P�

φφ and P⊕
θθ = P�

φφ +
R. R denotes the measurement noise variance. Obviously, in
order to minimize uncertainty it is desirable to incorporate
distant landmarks into the state vector as early as possible.

From the previous sections, we can conclude that two pa-
rameters are the minimal representation for nearby landmarks,
whereas only one parameter suffices to represent very distant
features. At the beginning, when only a limited number of
measurements are available, it is usually impossible to make
the decision whether a landmark is close-by or far away. In

1From now on, estimated quantities are denoted by “̂”, and errors by “˜”.

the next section, we develop a new algorithm that can treat
both cases simultaneously, without having to commit to either
representation.

IV. PROBLEM FORMULATION

We now present the main contribution of our work, namely
a unified framework to handle both nearby and distant land-
marks. The key underlying idea is a non-minimal representa-
tion of the landmark observations within the state vector, along
with a constraint-based inferred measurement. Instead of us-
ing the relative bearing measurement zψ directly (cf. Eq. (2)),
we incorporate it into a constraint between three robot po-
sitions and the corresponding global bearing measurements
towards a landmark.

We first describe the landmark position in terms of each
robot position xi and global bearing angle θi

xL = xi + ρiui , i = 1, 2, 3 (9)

where ρi stands for the unknown distance to the landmark,
and ui denotes the unit vector towards the landmark, ui =[
ci si

]T
.

In order to eliminate the distance ρi from these equations,
we multiply both sides of the above equations with the
perpendicular unit vector u⊥

i =
[−si ci

]T
(cf. Fig. 1(b))

xT
Lu⊥

i = xT
i u⊥

i , i = 1, 2, 3 (10)

By adding the three above equations (Eq. (10)) after having
multiplied with sin(θ3 − θ2) for i = 1, sin(θ1 − θ3) for i = 2,
and sin(θ2 − θ1) for i = 3, we obtain the constraint

0 = h(x1,x2,x3, θ1, θ2, θ3) (11)

= (x3 − x1)s1c2s3 + (x2 − x3)c1s2s3 + (x1 − x2)s1s2c3
+(y3 − y1)c1s2c3 + (y2 − y3)s1c2c3 + (y1 − y2)c1c2s3

In order to incorporate this constraint into a filter algorithm,
we could at first store two triplets (xi, yi, θi) corresponding
to landmark observations at different robot positions in the
state vector. Subsequent bearing measurements would then
be used to update the state vector via the constraint of
Eq. (11), with the current robot pose serving as the third
point in the equation. Such a procedure would require six
elements per landmark in the state vector. As we have seen
in the previous section, a minimal representation consists of
two or even only one variable per feature. The 6-element
representation will lead to four zero eigenvalues in the steady
state covariance matrix for a nearby landmark, or five in the
case of a distant feature. Additionally, it raises the question
how to select the two position-bearing sets that best represent
a landmark. What is more, for larger environments, this six-
elements per landmark representation will further exacerbate
the computational complexity of SLAM.

We therefore introduce a different representation. When
the landmark is observed for the second time, we will not
simply record the position-bearing triplet in the state vector,
but instead project it onto an artificial position, a new vantage
point (x2, y2) completely correlated with (x1, y1) (cf. Fig. 2).

x2 = x1 + ρ cosϕ
y2 = y1 + ρ sinϕ (12)
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Fig. 2. Instead of storing the robot pose (xm, ym) at the second landmark
observation, we project it onto an artificial position (x2, y2) that is fully
correlated with (x1, y1).

In order to locally maximize the baseline, we choose the point
(x2, y2) to lie on a line orthogonal to the direction towards the
landmark, i.e.,

ϕ = θ1 − π/2 (13)

The distance is determined by a scaled projection of the current
robot position (xm, ym) onto that line

ρ = η · (xm − x1)T
[
cosϕ
sinϕ

]
(14)

where η is a scaling factor and xm denotes the robot position
at the time of the second landmark observation. For the
stability of the algorithm it is important that ρ �= 0. If
moving towards the landmark (that is, if the angle between[
cos(θ1) sin(θ1)

]T
and (xm−x1) is below a certain thresh-

old) we modify the projection strategy such that the projection
will not change the location of the vantage point.

Effectively, the projection of the robot position onto a new
vantage point completely correlated with (x1, y1) corresponds
to a conversion of position uncertainty to orientation uncer-
tainty. Imagine selecting ρ, φ such that x2 and y2 coincide with
(xm, ym), but (x1, y1) (and thus (x2, y2)) have a considerably
lower position uncertainty than (xm, ym). In this case, θ2
would be initialized to θ2 = θm (i.e., the estimate would not
change), but its uncertainty can be shown to grow [9].

We can now express x2 and y2 in terms of the state variables
x1 and y1, as well as the deterministic variables ρ and φ, which
do not need to be kept in the state vector. We thus require
only four state vector elements per landmark, namely x1, y1, θ1
and θ2. This representation, albeit non-minimal, allows us to
use landmark observations to update the robot pose without
having to decide whether the landmark is nearby or very
distant. In comparison, delayed initialization schemes require
storing three elements per observation in the state vector, until
the landmark can be initialized. Depending on the landmark’s
distance and direction, this may take considerable time, and
a large number of observations and robot poses need to be
included in the state vector. In ill-conditioned cases where
initialization fails completely, all this stored information has
to be discarded. Our approach, in contrast, requires a low, fixed

number of variables per landmark and allows immediate use
of bearing measurements to update the estimated state.

V. THE FILTER ALGORITHM

Having derived the new parametrization and constraint
for bearing-only measurements to a landmark, we will now
demonstrate how to incorporate them into a filter algorithm.

A. Initialization

Before a landmark is initialized in the state vector, we
can assume that its four state variables x1, y1, θ1 and θ2
have infinite uncertainty and are uncorrelated with any other
variable. In this section, we outline the procedure to initialize
their estimates and their covariance matrix.

1) Initialization of x1, y1 and θ1: Let the current robot
pose be denoted by x� =

[
x� y� φ�

]T
and the current

state vector by x =
[
xT
� x1 y1 θ1 θ2

]T
. Furthermore,

let an estimate of a variable x prior to (after) performing an
update be denoted by x̂� (x̂⊕). Upon first observation of a
landmark, the current robot pose estimate x̂� and the relative
bearing measurement zψ�

are used to initialize the first three
parameters x1, y1 and θ1 according to

x̂⊕1 = x̂�� ŷ⊕1 = ŷ�� θ̂⊕1 = φ̂�� + zψ�
(15)

The position coordinates (x̂1, ŷ1) are completely correlated
with the current robot position estimate (x̂�, ŷ�), and the error
in θ̂1 is correlated with that of the robot orientation. The
measurement error, assumed uncorrelated with the state, only
enters in the variance of θ1, that is, in the term P(6, 6) of the
covariance matrix in the following equation. Thus, the updated
covariance matrix can be shown to be [9]

P⊕ = lim
µ→∞




P�
xx P�

xy P�
xφ P�

xx P�
xy P�

xφ 0
P�
yx P�

yy P�
yφ P�

yx P�
yy P�

yφ 0
P�
φx P�

φy P�
φφ P�

φx P�
φy P�

φφ 0
P�
xx P�

xy P�
xφ P�

xx P�
xy P�

xφ 0
P�
yx P�

yy P�
yφ P�

yx P�
yy P�

yφ 0
P�
φx P�

φy P�
φφ P�

φx P�
φy P�

φφ +R 0
0 0 0 0 0 0 µ




Note that θ2 has not yet been initialized and therefore still has
infinite variance µ.

2) Initialization of θ2: Assume the robot has moved to a
new pose xm and a new relative bearing measurement to the
landmark zψm

is available (cf. Fig. 2). We can now initialize
θ2. First, we project the current robot position onto the new
vantage point (x2, y2), using Eqs. (13) and (14) to compute ρ
and ϕ.

In order to compute an estimate for θ2 and its covariance, we
will use a modified form of the constraint Eq. (11), substituting
(x2, y2) with the expression from Eq. (12).

0 = h(xm, θm,x1, θ1, θ2) (16)

= (x1 − xm)sm sin(θ1 − θ2) + ρ cos(ϕ)s2 sin(θ1 − θm)
−(y1 − ym)cm sin(θ1 − θ2) − ρ sin(ϕ)c2 sin(θ1 − θm)



Here, θm = φm+ψm denotes the current global bearing angle
to the landmark. According to this constraint equation, the
inferred measurement is

ζ = h(xm, ψm) = 0 (17)

and therefore deterministically known. The expected measure-
ment, however, is based on the current state estimate and the
measured bearing angle zψm

.

ζ̂ = h(x̂m, zψm
) (18)

In order to compute the covariance of the residual, we need
to linearize the constraint equation

ζ̃ = ζ − ζ̂ � ∇T
xh · x̃ −∇T

ψh · n = hTx̃ − γn (19)

The covariance S of the residual is

S = hTP�h + γ2R (20)

while the remaining EKF update equations are [10]

x̂⊕ = x̂� − kζ̂ , P⊕ = P� − kSkT (21)

with Kalman Gain k = P�hS−1 (22)

After one update to initialize θ2, only the elements in the
last row and column of the covariance matrix change. Using
Matlab notation, we can compute the first six elements of the
last column of P as

P⊕(1 : 6, 7) = − 1
hθ2

P�(1 : 6, 1 : 6)h(1 : 6, 1) (23)

and P⊕(7, 1 : 6) = P⊕T(1 : 6, 7). The variance of θ2 is

P⊕(7, 7) =
1

h2
θ2

(
hT(1, 1 : 6)P�(1 : 6, 1 : 6)h(1 : 6, 1) + γ2R

)
(24)

In these expressions

hθ2 =
∂h

∂θ2
, γ =

∂h

∂n
=

∂h

∂θm
=

∂h

∂ψm
=

∂h

∂φm
(25)

Due to the highly non-linear constraint, one EKF update
will not yield a sufficiently accurate estimate for θ2. Instead,
we solve the constraint (Eq. (16)) for θ2 and obtain

θ2 = atan2
(
∆x1ms1sm − ∆y1ms1cm − ρ sin(ϕ) sin(θ1 − θm),

∆x1mc1sm − ∆y1mc1cm − ρ cos(ϕ) sin(θ1 − θm)
)

(26)

where ∆x1m = x1−xm, and ∆y1m = y1−ym. This formula is
correct up to ±π, and we can determine the appropriate value
by constraining θ2 to lie in the same half-plane as θ1. In the
singular case where θ1 = θm, i.e., both robot positions and the
landmark location are aligned, or the landmark is at infinite
distance, the above formula initializes θ2 = θ1 as desired. It
can be shown that the linearized variance Pθ2θ2 of this estimate
is equal to the one computed by the Kalman filter update [9].

All four state vector elements for this landmark are now
initialized, and we can use subsequent bearing measurements
via the constraint Eq. (16) to update the state estimate. This
process has been outlined in Eqs. (17)-(22). Instead of having
to store observations until a landmark’s position estimate
becomes sufficiently well-conditioned, we are able to make
immediate use of all available sensor information, regardless
of the distance to the observed landmarks.

B. Increasing the baseline

After a sufficient number of regular updates, the uncertainty
of θ2 will become increasingly small. Due to the small baseline
accumulated at initialization (i.e., small value of ρ), the filter
is prone to numerical instability and divergence. It seems
therefore advisable to increase the baseline (distance between
the two stored vantage points) artificially. The criterion used
for this purpose is the value of Pθ2θ2 . When it drops below a
threshold, we increase the baseline, thereby in effect causing
the uncertainty of the new θ2 to increase as well. In this
section, we outline the corresponding procedure, which is
similar to the initialization of θ2. An increase of ρ to ρn
defines a new position along the same line perpendicular to
the direction towards the landmark

xn = x1 + ρn cos(ϕ) (27)

yn = y1 + ρn sin(ϕ) (28)

with a corresponding new global bearing angle θn. The latter
is initialized based on x1, y1, θ1, x2, y2 and θ2 as

θn = atan2
(
ρs1 sin(ϕ − θ2) − ρn sin(ϕ) sin(θ1 − θ2),

ρc1 sin(ϕ − θ2) − ρn cos(ϕ) sin(θ1 − θ2)
)

(29)

As this is again ambiguous up to ±π, we compare the value
to θ2 to decide on the correct half plane.

Making the appropriate substitutions, the constraint is for-
mulated as

0 = h(x1, θ1,x2, θ2, θn) (30)

= − ρn cos(ϕ)s1c2sn − ∆ρ cos(ϕ)c1s2sn + ρ cos(ϕ)s1s2cn

− ρn sin(ϕ)c1s2cn − ∆ρ sin(ϕ)s1c2cn + ρ sin(ϕ)c1c2sn

where ∆ρ = ρ−ρn. As in the previous derivations, we assume
that θn has an uninformative prior, and is uncorrelated with any
other variable before initialization. Initialization corresponds
to performing one Kalman filter update step.

Note that the only non-zero partial derivatives are hθ1 , hθ2
and hθn

. The updated covariance matrix only changes in the
row/column pertaining to θn, according to

P⊕(1 : 7, 8) = P⊕T(8, 1 : 7) = − 1
hθn

P�(1 : 7, 6 : 7)
[
hθ1
hθ2

]

P⊕(8, 8) =
1
h2
θn

[
hθ1 hθ2

]
P�(6 : 7, 6 : 7)

[
hθ1
hθ2

]
(31)

After this step, we have successfully increased the baseline.
We can now replace θ2 by θn, ρ by ρn and discard the row
and column corresponding to θ2 in the covariance matrix.

VI. SIMULATION RESULTS

The new algorithm was tested extensively in simulations.
Contrary to existing methods, it proved able to successfully
incorporate observations even of faraway landmarks. Interest-
ingly, simulation results showed that our formulation performs
particularly well with distant landmarks, whereas very close-
by landmarks can sometimes lead to inconsistent estimates for
the corresponding θ2 angles (however, with surprisingly little
adverse effect on the robot’s pose estimate). Computation of
landmark position estimates and their covariances provided
an intriguing argument in favor of our new formulation. In
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Fig. 3. Bearing-Only SLAM when estimating the positions of two nearby
landmarks in the state vector (S-BOSLAM). Error and 3σ-bounds for the
robot pose.

fact, the results showed that even though all four parameters
x1, y1, θ1 and θ2 were estimated consistently, the landmark
position estimate frequently was not. This can be partly
explained by the error incurred by employing a linearized
approximation to compute the covariance of the position
estimate. The inconsistency hints at the possible problems if
one were to attempt to represent distant landmarks by a regular
position parametrization instead of our new approach.

The two main concerns of our algorithm are the high non-
linearity of the measurement model, coupled with numerical
instability due to the non-minimal landmark parametrization.
Although the constraint is mathematically correct, the afore-
mentioned problems are difficult to handle with an Extended
Kalman Filter. We therefore employed the Unscented Kalman
Filter (UKF) introduced by Julier et al. [11], that is consider-
ably better suited to deal with nonlinearities than the regular
EKF. Experiments showed that for this particular problem it
also outperformed the Square Root Filter, a formulation of the
Kalman filter which improves numerical accuracy [10]. When
used in scenarios with only one landmark, our new algorithm
exhibits signs of instability. It performs robustly, however, if
several landmarks with sufficient angular spacing are included
in the map.

In order to demonstrate the algorithm’s performance, we
present results for a sample, random trajectory in an en-
vironment containing only two landmarks. We compare the
estimates produced by an EKF using the standard landmark
position parametrization (from now on referred to as S-
BOSLAM2) with those generated through a UKF with our
proposed four parameter representation (henceforth denoted
as NDL-BOSLAM3). While the first algorithm is limited to
nearby features (∼20 m), our algorithm was able to utilize ob-
servations of landmarks at much greater distances (∼3500 m).
Both algorithms produce consistent estimates and increase the
localization accuracy by an order of magnitude compared to
dead-reckoning only.

Closer inspection of the pose errors and error bounds (cf.

2S-BOSLAM for “Standard Bearing-Only SLAM”
3NDL-BOSLAM for “Near-and-Distant-Landmarks Bearing-Only SLAM”
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Fig. 4. Bearing-Only SLAM when estimating the positions of two nearby
landmarks in the state vector (S-BOSLAM). Error and 3σ-bounds for the
landmark positions.
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Fig. 5. Bearing-Only SLAM using our proposed framework, allowing usage
of two more distant landmarks instead (NDL-BOSLAM). Error and 3σ-
bounds for the robot pose.

Figs. 3 and 5) reveals, however, that NDL-BOSLAM has a
significantly better steady state orientation accuracy. Its 3σ-
bound is approximately half of that produced by S-BOSLAM,
leveling out at ±0.016rad. As expected, the use of very
distant landmarks improved mainly the orientation estimate.
In terms of position accuracy, on the other hand, our filter’s
performance is only slightly inferior to the one obtained
using the position representation. The robot’s position estimate
benefits in particular from measurements to landmarks at close
distance whose relative bearings change quickly [6].

Fig. 4 shows the estimate of the landmark positions gener-
ated by the S-BOSLAM algorithm. The position error reaches
steady state around timestep 300. In comparison, Figs. 6 and 7
show the errors associated with the global bearing angles
θ1 and θ2 used in the new NDL-BOSLAM. While θ1 was
estimated at the very beginning of the robot trajectory, and
therefore remained accurate and almost constant, θ2 exhibits
periodic jumps in the error bounds, caused by baseline exten-
sions. As discussed in Section V, these serve to avoid filter
divergence and are a mechanism to store indirect information
about a landmark’s position.

The effects of these baseline extensions are visible in the
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Fig. 6. Results of NDL-BOSLAM. Error and 3σ-bounds for θ1.
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Fig. 7. Results of NDL-BOSLAM. Error and 3σ-bounds for θ2.

robot’s orientation estimate. Fig. 5 shows an increase of the
error bound in φ approximately up to timestep 110. During
this initial phase, the covariance of the residuals was very
small and many observations were discarded in order to avoid
destabilizing the filter. Once a few measurements were incor-
porated, the uncertainty of θ̂2 decreased quickly and multiple
baseline extensions took place, as can be seen in Fig. 7. When
the baseline had grown sufficiently large, orientation accuracy
improved drastically (around timestep 180) and soon reached
steady state. Note that this is no hidden delayed initialization.
Measurements are incorporated as soon as θ2 is initialized
and affect the orientation accuracy immediately. However, the
effect of the measurement updates heightens after the baseline
has been increased several times.

TABLE I

SIMULATION PARAMETERS

∆t = 0.1 s Timestep

V = 1 m/s Robot Velocity

σV = 0.2 m/s Velocity Msmt. Noise

σω = 0.08 rad/s Turn Rate Msmt. Noise

R = 2.7 · 10−5 rad2 Rel. Bearing Msmt. Noise

xL1 = 5 m, yL1 = 20 m Nearby Landmark

xL2 = 15 m, yL2 = -10 m Positions

xL1 = 2500 m, yL1 = -2960 m Distant Landmark

xL2 = -190 m, yL2 = -3252 m Positions

VII. CONCLUSION

In the previous sections we have outlined a novel, unified
framework to allow for non-delayed initialization of near and
distant landmarks in Bearing-Only SLAM. Contrary to exist-
ing algorithms, that either had to delay landmark initialization
until a sufficient baseline was established, or were only able
to address objects within limited range, our algorithm can
initialize landmarks almost immediately and use information
even from features at infinite distance. Measurements of the
latter are particularly interesting, since they provide very ac-
curate attitude information, crucial for precise navigation. Our
algorithm works by employing a four-element landmark repre-
sentation in combination with a constraint-based measurement
model. The procedure was tested in extensive simulations,
some of which were presented in this paper.

A major aspect of past and ongoing work is to cope
efficiently with the numerical sensitivity of the approach
due to the non-minimal state-representation and the highly
nonlinear measurement model. One possible future way to
avoid the issues related to non-minimal parametrization is to
use the formulation presented in this paper as an intermediate
representation until we can determine, with sufficient certainty,
whether the landmark is close or far away. We could then
switch to a two- or one-parameter representation as discussed
in Section III. This would allow for non-delayed initialization
of all classes of landmarks while enhancing stability of the
algorithm.
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