
Decentralized Multi-robot Cooperative Localization
using Covariance Intersection

Luis C. Carrillo-Arce†, Esha D. Nerurkar‡, José L. Gordillo†, and Stergios I. Roumeliotis‡

Abstract— In this paper, we present a Covariance Intersection
(CI)-based algorithm for reducing the processing and communi-
cation complexity of multi-robot Cooperative Localization (CL).
Specifically, for a team of N robots, our proposed approximate
CI-based CL approach has processing and communication
complexity only linear, O(N), in the number of robots. More-
over, and in contrast to alternative approximate methods,
our approach is provably consistent, can handle asynchronous
communication, and does not place any restriction on the
robots’ motion. We test the performance of our proposed
approach in both simulations and experimentally, and show
that it outperforms the existing linear-complexity split CI-based
CL method.

I. INTRODUCTION

Accurate multi-robot localization, i.e., precisely determin-
ing the robots’ poses (position and orientation), is pivotal
for the successful execution of higher-level tasks such as
target tracking, path planning, mapping, etc. In GPS-denied
environments (e.g., outer-space, indoors, urban canyons,
and underwater), a commonly-used localization technique is
Cooperative Localization. In CL, groups of communicating
robots use all their individual motion measurements (e.g.,
velocity) and robot-to-robot relative measurements (e.g.,
distance, bearing, and orientation) to jointly estimate their
poses, hence improving the localization accuracy for the
entire team [16].

However, the improved estimation accuracy in CL is
achieved at the cost of increased computational and commu-
nication requirements. For example, consider the Extended
Kalman filter (EKF)-based CL [16], where a team of N
robots obtains a maximum of O(N2) relative measurements1

at each time step. Here, the computational complexity for
processing a single measurement is O(N2), resulting in an
overall cost of O(N4) per time step. Thus, as the size of
the robot team increases, these high processing requirements
can prohibit real-time operation. Moreover, since each robot
has to communicate its measurement information to the

* This work was supported by Consejo Nacional de Ciencia y Tecnologı́a
(CONACyT), the Center for Robotics and Intelligent Systems (CRIS), the
e-Robots Research Chair from Tecnológico de Monterrey, the University of
Minnesota through the Digital Technology Center (DTC), and the National
Science Foundation (IIS-0643680). E. D. Nerurkar was supported by the
UMN Doctoral Dissertation Fellowship

†L. C. Carrillo-Arce and J. L. Gordillo are with
the Center for Robotics and Intelligent Systems (CRIS),
Tecnológico de Monterrey, Monterrey, NL 64849, MEX
{lc.carrillo.phd.mty|jlgordillo}[at]itesm.mx

‡E. D. Nerurkar and S. I. Roumeliotis are with the Department of
Computer Science and Engineering, University of Minnesota, Minneapolis,
MN 55455, USA {nerurkar|stergios}[at]cs.umn.edu

1This corresponds to the scenario where each robot obtains a relative
measurement to all robots in the team.

team or a fusion center, the communication cost of CL
can be as high as O(N) per robot, at each time step.
In communication-bandwidth-constrained applications, these
requirements may far exceed the power/battery resources of
the robot team. Additionally, for robot teams navigating in
large environments, the robots may not be able to exchange
information with the fusion center, or they may be able to
communicate with only a part of the team at each time step
(asynchronous communication).

To address these issues, various decentralized estimation
algorithms have been developed in the literature. In particu-
lar, some of the proposed approaches are able to distribute
the processing for only a part of the CL algorithm [16], [2],
while other fully-distributed algorithms require synchronous
communication among the robots [14]. Approaches that
can handle asynchronous communication have been pro-
posed [11], [15], [10], but these are based on approximations
(ignoring cross-correlations between robot pose estimates)
which may lead to inconsistent estimation.

In this paper, we present an approximate decentralized
algorithm for CL, with reduced processing and commu-
nication requirements. In our proposed approach, instead
of maintaining the joint state of all robots along with the
O(N2) covariance matrix (as is done in the standard EKF-
based CL), each robot i locally maintains an estimate for
only its own state and the corresponding covariance. When
robot i obtains a relative measurement to another robot j,
robot i uses this measurement and its local information to
generate a state-covariance estimate pair for robot j. This
information is then communicated to robot j. In order to
ensure consistent information fusion, robot j uses the CI
algorithm [7] to fuse the received estimate (from robot i) with
its local information, thus obtaining an improved estimate for
itself. The key contributions of our approach are as follows:

• Since each robot maintains only its own state estimate
and covariance, the processing and communication re-
quirements of our proposed algorithm are only O(N)
per robot, at each time step.

• Our approach can efficiently handle asynchronous com-
munication since it places no restrictions on the team’s
underlying communication network or the robots’ mo-
tion profile. Robots i and j need to communicate only
when they obtain relative measurements to each other.

• The proposed estimator is provably consistent2. Even
though the robots do not maintain a joint state, each

2A state estimator is consistent if the estimation errors are zero-mean and
have covariance equal to the one calculated by the filter [3].



robot is able to generate consistent estimates by using
the CI algorithm.

II. RELATED WORK

Existing work on CL can be classified based on: (i) the
estimation architecture used (centralized [5] vs. decentral-
ized [14]), and (ii) the estimation algorithm used (e.g.,
Maximum Likelihood (ML) [5], Maximum A Posteriori
(MAP) [14], Particle Filter [4], CI [1], Split CI (SCI) [10],
and EKF [16]). In what follows, we focus on both optimal
(i.e., methods that utilize all available measurement informa-
tion) and approximate decentralized CL approaches, devel-
oped for reducing the computational and/or communication
requirements of CL.

Optimal EKF-based and information filter-based CL al-
gorithms, that distribute the processing of proprioceptive
measurements, have been proposed by Roumeliotis and
Bekey [16], and Bailey et al. [2], respectively. However,
these approaches are able to distribute only a part of the
estimation algorithm since the processing of exteroceptive
measurements for both approaches is centralized. A fully-
distributed MAP-based approach is presented by Nerurkar
et al. in [14], but it requires synchronous communication
among robots, i.e., each robot has to communicate with the
team at every time step.

Approximate CL approaches include the measurement-
selection technique of Mourikis and Roumeliotis [13] where
robots select and process only a subset of the available
measurements, subject to communication and processing
constraints. In [9], each robot maintains the joint-state but
processes only its own locally-available measurements. Pe-
riodically, robots within communication range fuse their
estimates and covariance using the EKF to obtain improved
estimates for that particular time step. Note that despite the
approximations involved, the computational complexity of
these approaches remains O(N2) per measurement. More-
over, these approaches generate consistent estimates for the
robots’ poses.

Panzieri et al. [15] present an Interlaced EKF-based CL
approach, where each robot processes only its own measure-
ments to update its state, while considering the other robots’
states as deterministic parameters. These state-covariance
estimates are broadcast to robots within communication
range. The computational and communication costs of this
approach are O(N) and O(1) per measurement, respectively.
In Martinelli’s hierarchical EKF algorithm [11], the robot
team is divided into L bounded-size groups, each of size M,
such that N = LM. Each group has a leader that receives
measurements from the robots in its group and processes
them with computational cost O(M4) per time step. Fur-
thermore, the group leaders can also form groups in a
hierarchical manner, ensuring that the size of each group
remains bounded. The main drawback of both [15] and [11],
however, is that they ignore cross-correlations in order to
reduce processing and communication costs, which may lead
to overly optimistic and inconsistent estimates.

In the decentralized MLE-based CL by Howard et al. [6],
each robot independently minimizes the part of the nonlinear
cost function that contains terms involving its own state,
considering the other robots’ pose estimates as constants.
When within communication range, robots exchange their
state estimates. These estimates, received from other robots,
are used to update the corresponding quantities in the local
cost function. The main issue of concern, however, with this
approach is that there exists no proof of its convergence.

Closely related to our proposed approach are the works of
Arambel et al. [1] and Li and Nashashibi [10] that are based
on the CI algorithm [7], which enables consistent fusion of
estimates with unknown correlations. In [1], Arambel et al.
develop a CI-based CL algorithm where each robot maintains
the joint-state estimates of the entire team along with the
corresponding O(N2) dense covariance matrix. Each robot
locally processes its own relative measurements, using an
EKF, to obtain updated joint-state estimates and covariance
with processing cost O(N2) per measurement. The updated
state-covariance estimates are then communicated to robots
within communication range with O(N2) communication
overhead. Robots fuse their local estimates with those re-
ceived from other robots using CI.

In Li and Nashashibi [10], each robot maintains the decou-
pled state for the entire team. Specifically, each robot stores
and updates only the 3×3 covariance matrix for every robot
in the team, instead of the O(N2) dense covariance matrix
for the joint state. On obtaining a relative measurement,
the observer robot updates its local state-covariance using
SCI [8] with processing cost O(1). It then communicates
its local information to other robots with cost O(N), for
fusion using the SCI again. This approach, however, ignores
correlations while locally processing relative measurements
using SCI (see Section III for details), which may lead to
inconsistent and overly optimistic estimates.

The CI-based CL algorithm presented in this paper has two
main advantages over [10] and [1]. First, as opposed to [10],
our proposed algorithm is provably consistent. Second, as
compared to [1], both its processing and communication
requirements are only O(1) per relative measurement, with
a worst-case complexity of O(N) per robot, per time step.
We now present the details of our proposed algorithm.

III. COVARIANCE-INTERSECTION BASED COOPERATIVE
LOCALIZATION

A. Problem Setup

Consider a team of N collaborating robots moving in
2D. We assume that each robot is equipped with (i) pro-
prioceptive sensors (e.g., wheel encoders) that provide mea-
surements of its ego-motion, (ii) exteroceptive sensors (e.g.,
camera, or laser scanner) that allow it to identify and obtain
relative pose measurements to other robots in the team,
and (iii) communication devices that permit information
exchange between robots. Also, we assume that the robots’
communication radius is larger than their sensing radius.

The state of the i-th robot (or Ri) at time-step k is denoted
as xi

k = [(pi
k)

T ,θ i
k]

T , where pi
k = [xi

k,y
i
k]

T and θ i
k denote the



robot’s position and orientation, respectively, in the global
frame of reference. The discrete-time motion model for Ri
is given by:

xi
k+1 = f(xi

k,u
i
m,k), i = 1, . . . ,N (1)

where f is, in general, a nonlinear function, and ui
m,k =

ui
k +wi

k. Here, ui
k = [vi

k,ω
i
k]

T denotes the robot’s true linear
and angular velocity, which is corrupted by zero-mean, white
Gaussian noise wi

k = [wi
v,k,w

i
ω,k]

T , with covariance Qi
k, to

provide the corresponding measurement, ui
m,k.

The measurement model at time-step k+ 1, when Ri ob-
tains a relative pose measurement, zi, j

k+1, to R j, i, j = 1, . . . ,N,
j 6= i, is given by:

zi, j
k+1 = hi, j(xi

k+1,x
j
k+1)+ni, j

k+1 (2)

= Γ
T
xi

k+1
(x j

k+1−xi
k+1)+ni, j

k+1 (3)

with

Γxi
k+1

=

[
C(θ i

k+1) 02×1
01×2 1

]
C(θ i

k+1) =

[
cosθ i

k+1 −sinθ i
k+1

sinθ i
k+1 cosθ i

k+1

]
Here, hi, j denotes the true relative pose between Ri and R j

at time-step k+1, and ni, j
k+1 is the zero-mean white Gaussian

measurement noise with covariance, Ri
k+1.

B. Algorithm Description

Consider all available measurement information up to
time-step k + 1, i.e., the velocity and relative pose obser-
vations, ui

m,K and zi, j
K+1, i, j = 1, . . . ,N, i 6= j, K = 0, . . . ,k,

respectively. In the standard EKF-based CL approach, each
robot (or the fusion center) uses all the above information
to calculate the joint-state estimates (of dimensions 3N ×
1) of all robots, i.e., xk+1 = [x1

k+1
T
,x2

k+1
T
, . . . ,xN

k+1
T
]T , at

the current time-step k + 1, along with the corresponding
3N×3N covariance matrix. Such an approach, however, in-
curs substantial computational, O(N4), and communication,
O(N), overhead per robot at each time step [16].

To address this problem, in our proposed approximate
approach, each robot Ri locally maintains state and covari-
ance estimates only for its own state xi

k+1. When Ri obtains
a relative measurement, zi, j

k+1, to R j, it generates a state-
covariance estimate for the pose of R j, using this relative
measurement and its own state-covariance estimate. Next, Ri
communicates this information to R j who then fuses it with
its own local state-covariance estimate using CI. We now
present the mathematical details of this approach.

Using the motion model in (1), the state propagation
equation for Ri is given by:3

x̂i
k+1|k = f(x̂i

k|k,u
i
m,k), i = 1, . . . ,N. (4)

3ŷl|m denotes the estimate of the random varaible y at time-step l, given
measurement information up to time-step m.

The corresponding covariance propagation equation for Ri
is:

Pi
k+1|k = Φ

i
kPi

k|kΦ
i
k

T
+Gi

kQi
kGi

k
T

(5)

where Φi
k = ∇xi

k
f
∣∣∣
xi

k=x̂i
k|k,w

i
k=0

and Gi
k = ∇wi

k
f
∣∣∣
xi

k=x̂i
k|k,w

i
k=0

.

Since the dimensions of xi
k are 3× 1, from (4) – (5), we

see that each robot Ri can propagate its own state-covariance
estimate with processing cost O(1) per time step.

When Ri obtains a relative pose measurement, zi, j
k+1, to R j,

Ri uses this measurement to generate an estimate, x̂ j∗
k+1, for

R j, as follows [see (3)]:

x̂ j∗
k+1 = x̂i

k+1|k +Γx̂i
k+1|k

zi, j
k+1 (6)

The error in this estimate is given by:

x̃ j∗
k+1 = H̃i, j

k+1x̃i
k+1|k−Γx̂i

k+1|k
ni, j

k+1 (7)

where

H̃i, j
k+1 =

[
I2 J(p̂ j∗

k+1− p̂i
k+1|k)

01×2 1

]
, J =

[
0 −1
1 0

]
,

and I2 is the identity matrix. Note that H̃i, j
k+1 =

∇xk hi, j
∣∣
xi

k=x̂i
k+1|k,x

j
k=x̂ j∗

k+1
. Therefore, the corresponding covari-

ance is calculated as:

P j∗
k+1 = H̃i, j

k+1Pi
k+1|kH̃i, jT

k+1 +Γx̂i
k+1|k

Ri
k+1Γ

T
x̂i

k+1|k
(8)

We make three main observations regarding this step:
(i) the Jacobians in (8) can be completely evaluated using
Ri’s locally-available estimates, x̂i

k+1|k and x̂ j∗
k+1, respectively,

(ii) the processing cost is O(1), and (iii) even though each
robot Ri does not include R j’s state in its local state vector,
it can generate an estimate for R j every time it obtains a
relative measurement, zi, j

k+1, to R j.
After Ri computes a state-covariance estimate for R j

[see (6) and (8)], it communicates this information to R j

with communication cost O(1). Next, R j fuses x̂ j∗
k+1 and

P j∗
k+1 with its own local state-covariance estimate, x̂ j

k+1|k
and P j

k+1|k, to obtain improved estimates for itself. Here,

it is important to note that the estimates x̂ j∗
k+1 and x̂ j

k+1|k,

for the random variable, x j
k+1, are not independent. This is

because, if robots Ri and R j have exchanged information
either directly or indirectly, through other robots, at any
previous time-step m, m ≤ k, then their estimates at time-
step k + 1 are correlated. Since the robots do not keep
track of these cross-correlation terms in our approach, the
correlations between these estimates is unknown. Therefore,
the commonly used EKF update step [12], designed for
fusing independent estimates, cannot be employed here as
it may lead to estimator inconsistency due to information
reuse.

To address this problem, we fuse these estimates using
the CI algorithm. Presented in [7], the CI is designed to
consistently fuse estimates with unknown correlations (see



Appendix A). Using CI, the covariance update step in our
algorithm is given by:

P j
k+1|k+1 =

[
ω(P j

k+1|k)
−1 +(1−ω)(P j∗

k+1)
−1
]−1

(9)

where ω ∈ [0,1] is chosen so that the trace of P j
k+1|k+1 is

minimized.
The updated pose estimate, x̂ j

k+1|k+1, is computed as
follows:

x̂ j
k+1|k+1 = P j

k+1|k+1

[
ω(P j

k+1|k)
−1x̂ j

k+1|k

+(1−ω)(P j∗
k+1)

−1x̂ j∗
k+1

]
(10)

Importantly, both x̂ j
k+1|k+1 and P j

k+1|k+1 can be calculated
by R j with processing cost O(1). Therefore, both the overall
processing and communication requirements of our proposed
consistent algorithm remain O(N) per robot per time step. As
a final remark, we note that the two terms in the covariance
update [see (8)] are not independent, since they both depend
upon the estimate, x̂i

k+1|k, of robot Ri. Therefore, they cannot
be fused using the SCI algorithm, as claimed in [10].

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulations

The performance of the proposed decentralized CI-based
CL algorithm was tested in simulation with a team of N = 3
robots in 2D, following circular non-concentric trajectories.
The robots move in an area of approximately 25 m×30 m
for 6000 time steps (each time step has a duration of
0.01 sec). Each robot measures its linear, vm, and rotational,
ωm, velocity, as well as the relative pose, z = [∆x,∆y,∆θ ]T ,
[as described in (3)] of other robots in the team. The mea-
surement noise is modeled as zero-mean white Gaussian with
standard deviation of σvm = 2%v, σωm = 1 deg/sec for the
linear and rotational velocity, respectively, and σ∆x = 0.05 m,
σ∆y = 0.05 m, and σ∆θ = 1 deg for the corresponding relative
measurements. Each robot propagates its own state at every
time step, while the measurement update is carried out every
5 time steps. The criterion established for robot detection is
based on the relative distance, d, which in this case is set to
d ≤ 10 m.

We compared the performance of the following CL ap-
proaches: (i) EKF-CL (processing and communication com-
plexity, O(N4) and O(N), respectively, per robot at each
time step), (ii) Proposed CI-CL (both processing and com-
munication complexity O(N) per robot at each time step),
and (iii) SCI-CL [10] (both processing and communication
complexity, O(N), per robot per time step).

We employ the root mean square error (RMSE) criterion
to test the accuracy of these 3 approaches. Fig. 1 shows the
RMSE in the robot’s position estimates (averaged over 50
runs) at each time step. As expected, the EKF-CL, which is
our benchmark, is the most accurate. This is due to the fact
that it maintains the joint-state for the robots, along with the
corresponding dense covariance matrix that keeps track of the
cross-correlations between the state estimates. Our proposed
CI-CL approach, is less accurate than EKF-CL, since it does

not compute the cross-correlations between the robots’ state
estimates. However, it reduces the computational cost and
guarantees a consistent result, while sacrificing estimation
accuracy. Finally, the SCI-CL method [10], which has the
same processing and communication requirements as our
proposed CI-CL approach, is the least accurate. This can
be attributed to the fact that the SCI-CL performs two
approximations (SCI updates), resulting in additional loss of
information.

Fig. 2, that depicts the RMSE in the orientation estimates,
corroborates the results of Fig. 1. As is expected, the EKF-
CL is the most accurate, followed by our CI-CL implemen-
tation which outperforms the SCI-CL. Furthermore, Fig. 3
shows the sum of the standard deviations in the robots’
position estimates. As we can see, EKF-CL has the lowest
standard deviation, followed by our CI-CL, while the SCI-
CL is the most conservative. As stated above, the loss of
information in the SCI-CL can be attributed to the additional,
artificial noise that is injected in the propagation model
in [10], along with the successive application of two SCI
updates. Finally, Fig. 4 shows the Normalized Estimation
Error Squared (NEES) for the 3 approaches, averaged over
50 runs. From the figure we see that the NEES for the EKF-
CL, that maintains the joint-state is around the ideal value
of 9. For the proposed CI-CL, the NEES for each robot is
around the ideal value of 3. This indicates that both these
approaches are consistent. The NEES for SCI-CL is higher
than the ideal value of 3 for each robot, indicating that this
algorithm is inconsistent.

B. Experiments

The performance of the proposed decentralized CI-CL
algorithm was also tested with real hardware. We used a
dataset consisting of the odometry measurements recorded
by 4 Pioneer 3DX robots moving in a 2D environment,
while an overhead camera computes their ground truth. The
robots move in an area of approximately 2.5 m×4 m for
950 time steps (each time step has a duration of 1 sec). The
relative pose measurements are computed synthetically using
the ground truth corrupted by zero-mean white Gaussian
noise with standard deviations σ∆x = 0.05 m, σ∆y = 0.05 m,
and σ∆θ = 1 deg. The sensing radius for the robots is set to
2 m.

Figs. 5 and 6 show the error in robots’ position and
orientation respectively, during the experiment. As evident,
the performance of our proposed approach, with only linear
processing and communication requirements, is very close
to that of the EKF-CL, which has quadratic processing
and linear communication requirements. Moreover, our CI-
CL approach clearly outperforms the competing linear-time
solution of SCI-CL.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approximate decentral-
ized algorithm for CL based on the CI algorithm. The
proposed approach, where each robot only maintains an
estimate of its own state and covariance, reduces both the
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Fig. 1. Simulation results: RMSE in the robots’ position estimates.
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Fig. 2. Simulation results: RMSE in the robots’ orientation estimates.
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Fig. 5. Experimental results: error in the robots’ position estimates.

processing and communication costs of CL to O(1) per
relative measurement, by avoiding the costly computation
of the cross-correlation terms between the robots. More-
over, our approach is consistent and can efficiently handle
asynchronous communication constraints. Lastly, simulation
and experimental results have validated the performance and
accuracy of our proposed algorithm and shown that it out-
performs alternative approximate CL methods of comparable
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Fig. 6. Experimental results: error in the robots’ orientation estimates.

processing and communication costs. As part of our future
work, we will extend our proposed approach to robot teams
navigating in 3D using visual and inertial measurements.

APPENDIX

A. Review of Covariance Intersection

Consider two consistent estimates, â and b̂, of a quantity
of interest, x, with corresponding covariances and cross-



correlation terms given by Paa, Pbb, and Pab respectively.
These estimates can be combined to obtain an improved
consistent estimate ĉ with covariance Pcc as follows:

ĉ = Waâ+Wbb̂
Pcc = WaPaaWT

a +WaPabWT
b +WbPbaWT

a +WbPbbWT
b

(11)

where Wa and Wb are weights chosen to minimize the trace
of Pcc. Note that when these two estimates are indepen-
dent, i.e., Pab = 0, this fusion step becomes identical to
the conventional Kalman filter update [12]. However, when
Pab 6= 0, if the conventional Kalman filter equations are used,
which ignore this cross-covariance term, information will
be re-used, resulting in overly optimistic and inconsistent
estimates.

To address this problem, Julier and Uhlmann introduced
the Covariance Intersection (CI) algorithm in [7] for fusing
estimates (of the same quantity) with unknown correlations.
CI uses a convex combination of the mean and covariance
estimates ({â,Paa} and {b̂,Pbb}) to obtain a new estimate ĉ∗
with covariance P∗cc, which is guaranteed to be consistent, as
follows:

P∗cc =
(
ωP−1

aa +(1−ω)P−1
bb

)−1
(12)

ĉ∗ = P∗cc
(
ωP−1

aa â+(1−ω)P−1
bb b̂
)

(13)

where ω ∈ [0,1] is a parameter chosen to minimize either
the trace or determinant of Pcc.

The intuition behind CI arises from a geometric interpre-
tation of (11), based on which, Pcc will always lie in the
intersection of Paa, Pbb for any value of Pab. Fig. 7 shows
this for different values of Pab. This interpretation led to the
development of an updating strategy (i.e., the CI algorithm)
that finds the Pcc, which encloses the intersection region of
Paa and Pbb ensures consistency without the need of knowing
the value of Pab. Fig. 8 illustrates this strategy for different
values of ω .
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