
A Resource-aware Vision-aided Inertial Navigation System for
Wearable and Portable Computers

Dimitrios G. Kottas, Ryan C. DuToit, Ahmed Ahmed,
Chao X. Guo, Georgios Georgiou, Ruipeng Li, and Stergios I. Roumeliotis

Abstract— In this paper, we address the problem of deploying
Vision-aided Inertial Navigation Systems (VINS) on resource-
constrained platforms such as cell phones and wearable com-
puters. In particular, we consider the case of a sliding-window
extended Kalman filter (EKF)-based estimator and focus on
optimizing its use of the available processing resources. This
is achieved by first classifying visual observations based on
their feature-track length and then assigning different portions
of the CPU budget for processing subsets of the observations
belonging to each class. Moreover, we introduce a processing
strategy where “spare” CPU cycles are used for (re)-processing
all or a subset of the observations corresponding to the same
feature, across multiple, overlapping, sliding windows. This way,
feature observations are used by the estimator more than once
for improving the state estimates, while consistency is ensured
by marginalizing each feature only once (i.e., when it moves
outside the camera’s field of view). The ability of the proposed
feature classification and processing approach to adjust to the
availability of processing resources is demonstrated experimen-
tally on a Samsung S4 cell phone and on the Google Glass
where VINS operates in real-time while occupying only half of
the CPU cycles of one of the ARM processor’s cores.

I. INTRODUCTION AND RELATED WORK

Navigating in GPS-denied areas (e.g., spacecraft [1] or
personal localization [2]) often requires combining visual
observations from a camera, with inertial measurements,
from an Inertial Measurement Unit (IMU) in what is
known as a Vision-aided Inertial Navigation System. Existing
approaches to VINS rely either on filtering or bundle-
adjustment (BA) optimization methods. BA methods opti-
mize over the entire trajectory of the sensor platform along
with a map of environment, comprising all observed land-
marks, which leads to processing and memory requirements
that inevitably increase with time [3]. Filtering approaches
can be divided into two categories: (i) Vision-aided Inertial
Odometry (VIO) algorithms that optimize over the most
recent camera poses [1], keeping a bounded computational
cost, and (ii) EKF-SLAM approaches that maintain a map
of the environment [4]. Existing VIO methods are able to
exploit all information provided via feature tracks within
their window, for estimating the motion of the platform.
However, these methods need to wait for a feature track to
reach its maximum length (ideally the whole length of the
optimization window) before employing it in the correction
of the platform’s trajectory estimate. Furthermore, to the
best of our knowledge, no rule exists for deciding, based
on the available computational resources, which features
should be processed at each time step and when they should
contribute to the estimator’s state and uncertainty estimates.
Our work addresses these limitations through the following
contributions:

• A modified Multi-State Constrained Kalman Filter
(MSC-KF) framework which repetitively uses visual
observations as they become available, for improving
the filter’s state estimate during multiple EKF updates,
before they are marginalized and their information is
used to reduce the estimator’s uncertainty.

• A method for classifying visual measurements based
on their span (i.e., the number of times that a feature
is observed within a sequence of consecutive camera
poses).

• A policy for deciding when and how to process a feature
track given the current processing constraints.

In what follows, we provide a brief description of the key
components comprising the proposed algorithm as well as its
experimental validation on resource-constrained platforms.

II. ALGORITHM DESCRIPTION

In this section, we present the main modules of the pro-
posed EKF-based VINS. First, we describe a modified MSC-
KF, which allows the (re)processing of a feature track during
different epochs of the sliding window. Second, we present
the categorization of feature tracks that we employ for
prioritizing the contribution of each feature to the filter’s state
estimate and covariance. Finally, we describe a measurement-
selection policy for deciding, which measurements will be
processed based on the available computational resources.

The state vector x comprises three parts, x =[
xT

Ik xT
C xT

F
]T

, corresponding to (i) the current IMU
pose, xIk , (ii) the set of M past camera poses, included
in the filter’s sliding window, xC =

[
xT

C1
. . .xCM

T]T , and
(iii) the mapped landmarks, currently included in the state
vector, xF =

[
xT

f1 . . .x
T
fL

]T
.

A. Visual Observations in Sliding Window Estimators
Within a sliding window filtering framework, the same

measurement is available for processing at different time-
instants, during different epochs of the sliding window of
camera poses. Following the traditional EKF framework,
such a feature track can be employed only in a single update
for correcting the state estimate and reducing its covariance.
For existing VIO algorithms, a feature track is processed only
once, when it has reached its maximum tracking length [1].
In practice, this will cause a depletion of features available
for an EKF update, leading to low performance. In order to
process any feature track spanning at least two poses of our
sliding window, we introduce the method of State-only EKF
updates. Specifically, among the different sliding window
epochs, corresponding to different EKF updates, we choose
only one for ”absorbing“ the feature track’s information
in the filter’s covariance matrix (i.e., marginalization when
the feature track is lost), while we are able to correct our

Fig. 1. Feature categories based on their span across the sliding window
of camera poses.

state estimate during all state updates, up to that point. Due
to space limitations, we describe the key idea that allows
the processing of the same visual observation over multiple
EKF updates. An EKF update step, processing m visual
measurements, can be written as a single Gauss-Newton
iteration, optimizing over x, the cost function [5],

c(x) = cp(x,P)+
m

∑
i=1

ci(zi,x) = ||x− x̂||P +
m

∑
i=1
||zi−h(x)||Ri

comprising of a prior term, cp
1, and a set of quadratic terms

ci, corresponding to visual measurements zi, i = 1 . . .m.
Upon employing a measurement zi for updating the filter’s
covariance, the corresponding cost term ci is absorbed into
the filter’s prior, represented by the cost term, cp, of the
next EKF update. In contrast by using a measurement zi
for updating only our state, the corresponding cost term
ci is exploited for improving our state estimate, without
being absorbed into cp. Hence the measurement zi, along
with the corresponding cost term ci, remain available for the
next epoch of the sliding window filter and the next EKF
update. As opposed to the feature depletion encountered in
the regular MSC-KF framework, such a strategy leads to
a plethora of visual measurements available for processing
during a single EKF update, which presents two critical
questions:
• At which one, among all tracking epochs, should a

feature track both correct the filter’s state estimate and
reduce its uncertainty?

• Which features, should be processed such that the com-
putational cost of the filter remains within the available
resources?

B. Feature Tracks’ Classification
Before using any visual observations, we classify all

feature tracks within the current window of camera poses.
Specifically, features are divided into 6 disjoint sets
FSR, FAPF , FIPF , FOSF , FOF , and FNSF (see Fig. 1):
• SLAM re-observations (SRs) denoted by FSR, corre-

spond to observations of features being mapped.

1Note that we consider that all IMU measurements, over the optimiza-
tion window, have been integrated and incorporated into cp

• Active Persistent Features (APFs) denoted by FAPF ,
correspond to feature tracks that span the whole window
of camera poses and are actively tracked beyond the
size of the current sliding window. Such features have
currently reached their maximum length. Hence they are
the most informative regarding the motion of the camera
poses, and they can also be initialized as new SLAM
features such that they evolve to SRs.

• Inactive Persistent Features (IPFs) denoted by FIPF ,
correspond to feature tracks that span the whole window
of camera poses, but are not tracked beyond the size of
the current sliding window.

• Old Short Features (OSFs), denoted by FOSF , corre-
spond to feature tracks that start from the oldest image
but do not reach the newest (most recent) camera pose.

• Opportunistic Features (OFs) denoted by FOF , corre-
spond to feature tracks that do not start from the oldest
camera pose but are observed in the newest image. Such
features have not yet reached their maximum potential
tracking length, and may evolve to PFs.

• New Short Features (NSFs), denoted by FNSF , corre-
spond to feature tracks that do not start from the oldest
image and do not reach the newest image.

C. Processing Methods

During each epoch of the sliding window, feature tracks
are assigned to 4 disjoint sets PSR,PSO,PSC,PSI correspond-
ing to different methods of processing within the same EKF
update. Specifically, these methods correspond to:
• SLAM re-observations (PSR) Processing of measure-

ments to mapped features, using the regular EKF SLAM
measurement model. Clearly, features belonging to FSR
are the only ones that can reach this group.

• State & Covariance Update VIO Features (PSC) Cam-
era measurements processed using the regular MSC-
KF measurement model, contributing both to a state
correction and a reduction of the estimator’s uncertainty.
As in the regular MSC-KF, features that have reached
their maximum length across all sliding window epochs,
are used for contributing a state correction as well as
new information for the estimator, by reducing its co-
variance. Following the feature classification described
previously, this corresponds to selecting features from
FIPF and FOSF .

• SLAM Initialization Features (PSI) Active persistent
features that span beyond the length of the sliding
window (FAPF) should reach this set, since they have
both reached their maximum length and can evolve
into SR features in the future, upon their successful
initialization as mapped features.

• State-only Update Features (PSO) Any of the features,
belonging to the remaining groups, will contribute only
to a state correction. Intentionally the filter’s updated
covariance will not reflect any information provided
from these features, since they have either not reached
their maximum potential (i.e., OFs) or because they will
contribute to the filter’s covariance, later on once a better

linearisation point has been determined for them (i.e.,
NSFs).

D. Processing Budget

In an ideal scenario that we have access to infinite com-
putational resources, the sets of features to be processed
(i.e., PSR,PSO,PSC,PSI) should be allowed to reach their
maximum size, such that all available visual observations are
employed in an EKF update. In many cases, however, VINS
needs to be deployed on resource-constrained platforms
that need to operate in real-time. Motivated by this, we
bound the maximum number of CPU cycles allowed for
each EKF update. We define a maximum CPU budget of
allowed floating-point operations BMAX , corresponding to the
4 different types of processing methods:

BMAX =BSR
MAX +BSC

MAX +BSI
MAX +BSO

MAX .

For each family of measurements we determine the amount
of CPU operations required for its processing, denoted by
B, as a function of the corresponding set P:

BSR(P) = |P|3, BSC(P) = ∑
f∈P

`(f)3

BSI(P) = ∑
f∈P

`(f)3 + |P|2, BSO(P) = ∑
f∈P

`(f)3

where |S| denotes the cardinality of the set S, and `(f) the
length of a feature track f within the estimator’s window.
For clarity, we omitted lower-order terms, depicting only the
leading terms of the computational cost for each family of
measurements. The proposed2 estimation policy examines
the available feature tracks and assigns them to one of
the four available groups, after checking that the projected
computational cost does not exceed the allocated CPU budget
for this EKF update. Such a measurement selection policy
is depicted for the simple case of re-observations of SLAM
features (PSR) in Alg. 1.

Algorithm 1 Measurement Selection for SLAM features
PSR← /0
for f ∈ FSR do

if BSR(PSR∪ f)≤BSR
MAX then

PSR← PSR∪ f
end if

end for

III. EXPERIMENTAL RESULTS

We validated the computational efficiency of the pro-
posed algorithm over two resource-constrained navigation
platforms. In the first case, the filter was running online on
Samsung S4 (SGH-M919), which operates on Android 4.3,
and is equipped with an IMU and a rolling shutter camera. It
features a 1.9GHz quad core ARMv7 CPU with 2GB RAM.
As it is depicted in Table. I, the filter, along with the image

2Note that the distribution of resources (BMAX) between
BSR

MAX , B
SI
MAX , B

SC
MAX , B

SO
MAX , is predetermined based on the motion

profile and the availability of lengthy feature tracks (e.g., more SLAM
features are used when ”flying” over the same region).

TABLE I
SINGLE-THREADED ONLINE SAMSUNG S4 VINS

TOTAL CPU TIME PER SECOND: 15×10+5×47+5×18 = 475 (ms)

LOOP-CLOSURE ERROR 0.5-1.5% OF DISTANCE TRAVELLED

Module Frequency (Hz) Time (ms)
Harris Corner Extr. 5 18
KLT 15 10
EKF 5 47

TABLE II
SINGLE-THREADED OFFLINE VINS RUNNING ON GOOGLE GLASS

TOTAL CPU TIME PER SECOND: 15×20+5×45+5×5 = 550 (ms)

Module Frequency (Hz) Time (ms)
Harris (scaled images) 5 5
KLT 15 20
EKF 5 45

processing module, was able to operate two times faster than
real-time, for relatively heavy configurations (i.e., a sliding
window of 10 images, 20 SLAM features included in the
state vector, with |PSC|+ |PSI | ≤ 30, |PSO| ≤ 50, |PSR| ≤
20). Inertial measurements were sampled and propagated at
100Hz while camera images were acquired at 15Hz.

Pushing the ability of our framework to tune its config-
uration based on the available computational resources, we
tested our VINS implementation on a much more constrained
platform, Google Glass. Google Glass operates on Android
4.0 and features a dual core Texas Instruments OMAP 4430
CPU, clocked at 1.2GHz with 682MB of RAM. Our prelimi-
nary results use the following configuration: Sliding window
size of 7 images, 0 SLAM features, with |PSC| ≤ 20, |PSO| ≤
30). As presented by the preliminary (offline) results at
Table. II, the system was able to operate almost two times
faster than real-time, albeit for a lighter configuration. All
linear algebra operations where carried out using the Eigen
C++ Library or pure C array operations. Image processing
modules, such as the Harris Corner Extraction and the Lucas-
Kanade (KLT) feature tracking, were implemented in ARM
NEON assembly. All modules were wrapped in an object-
oriented C++ framework, allowing easy organization of mea-
surements, state estimates and corresponding uncertainties.

REFERENCES

[1] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Trans. on Robotics, vol. 25, pp. 264–280,
Apr. 2009.

[2] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “To-
wards consistent vision-aided inertial navigation,” in Proc. of the 10th
International Workshop on the Algorithmic Foundations of Robotics,
(Cambridge, Massachusetts), pp. 559–574, June 13–15 2012.

[3] E. D. Nerurkar, K. J. Wu, and S. I. Roumeliotis, “C-KLAM: Constrained
Keyframe Localization and Mapping for long-term navigation,” in
Workshop on Long-term Autonomy of the IEEE International Confer-
ence on Robotics and Automation, (Karslruhe, Germany), May 10 2013.

[4] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and
localization: A scalable real-time causal approach,” The International
Journal of Robotics Research, vol. 30, no. 4, pp. 407–430, 2011.

[5] A. Jazwinski, “Stochastic processes and filtering theory,” Mathematics
in science and engineering, no. 64, 1970.

