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Abstract— This paper focuses on reducing the computational
complexity of the extended Kalman filter (EKF)-based multi-
robot cooperative localization (CL) by taking advantage of the
sparse structure of the measurement Jacobian matrix H. In
contrast to the standard EKF update, whose complexity is up
to O(N4) (N is the number of robots in a team), we introduce
a Modified Householder QR algorithm which fully exploits the
sparse structure of the matrix H, and prove that the overall
complexity of the EKF update, based on our QR factorization
scheme, reduces to O(N3). Finally, we validate the Modified
Householder QR algorithm through extensive simulations, and
demonstrate its superior performance both in terms of accuracy
and CPU runtime, as compared to the current state-of-the-art
QR decomposition algorithm for sparse matrices.

I. INTRODUCTION

Multi-robot teams (sensor networks) have recently at-

tracted significant interest in the research community because

of their robustness, versatility, speed, and potential applica-

tions, such as environmental monitoring [1], surveillance [2],

human-robot interaction [3], and target tracking [4]. Regard-

less of the application, every robot in the team must be

able to accurately localize itself in an unknown environment

to ensure successful execution of its tasks. While each

robot can independently estimate its own pose (position and

orientation) by integrating its linear and rotational velocities,

e.g., from wheel encoders [5], the uncertainty of the estimates

generated using this technique (dead-reckoning) increases

fast, and eventually renders them unreliable. Although one

can overcome this limitation by equipping every robot with

absolute positioning sensors, such as the Global Positioning

System (GPS) receivers, GPS signals are unreliable in urban

environments and unavailable in space and underwater. On

the other hand, by performing cooperative localization (CL),

where communicating robots use relative measurements (dis-

tance, bearing, and orientation) to jointly estimate the robots’

poses, the accuracy of the robot pose estimates can signifi-

cantly improve [6], even in the absence of GPS.

As shown in [5], in CL, each robot can process its

own proprioceptive measurements independently and dis-

tributively. However, since CL involves joint-state estima-

tion, the processing of exteroceptive measurements (i.e.,

relative robot-to-robot measurements) requires the robots to

communicate with each other and update the covariance
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matrix corresponding to all pose estimates in a centralized

fashion. Using the extended Kalman filter (EKF) framework,

the computational cost for processing each exteroceptive

measurement is O(N2) (N being the number of robots) [5].

Since at every time step the maximum possible number of

exteroceptive measurements is (N − 1)N , the overall cost

for updating the estimate’s covariance, in the worst case,

becomes O(N4) per time step. As N grows, this high com-

putational complexity may prohibit real-time performance.

In this paper, we investigate the computational complex-

ity1 of the centralized EKF-based CL algorithm, consid-

ering the most challenging case where the total number

of relative measurements per time step is (N − 1)N . The

main contributions of this work are the following: We show

that the computational cost of the covariance update can be

reduced to O(N3) by employing the Information filter (see

Sec. III-C). To further improve the numerical stability of the

Information filter, we present an EKF update approach based

on the QR factorization of the measurement Jacobian H in

Sec. III-D. While the Standard Householder QR algorithm

requires O(N4) operations for decomposing H, we present

the Modified Householder QR algorithm (see Sec. IV), which

exploits the sparse structure of H to reduce the cost of QR

factorization to O(N3). As a result, the overall computa-

tional complexity of the EKF-based CL is also reduced from

O(N4) to O(N3) per update step.

II. LITERATURE REVIEW

Multi-robot cooperative localization (CL) has received

considerable attention in the literature (e.g., [8], [9], [10],

[11]). Various system architectures, such as centralized [5],

[12] or distributed [13], [14], [15], have been proposed

for CL. These system architectures use various estimation

algorithms, such as the EKF [5], the maximum likelihood

estimator (MLE) [12], the maximum a posteriori estimator

(MAP) [15], and particle filters (PF) [9]. In this paper,

we focus our discussion on centralized or distributed EKF-

based CL. In what follows, we denote as N the number of

robots in the team and consider the worst-case computational

complexity where the total number of relative measurements

per time step is (N − 1)N .

1In the remainder of the paper, computational complexity refers exclu-
sively to time (or processing) complexity. For the analysis of space (or
memory) complexity, the interested reader can refer to [7] for more details.
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In [5], Roumeliotis and Bekey showed that within the EKF

framework, each robot can independently propagate its own

state and covariance in a fully distributed fashion. However,

during the update step, the observing robot needs to broad-

cast its relative measurements to the rest of the robots in the

team, and update the covariance matrix corresponding to all

pose estimates in a centralized fashion. In this approach, the

computational complexity for processing each exteroceptive

measurement is O(N2). Therefore, in the worst case, the

overall processing cost for sequentially updating the state

and covariance becomes O(N4) per time step. In order to

reduce the computational requirements of the EKF-based CL,

several approximate algorithms have been proposed in the

literature.

Panzieri et al. [16] presented a fully-decentralized al-

gorithm based on the Interlaced EKF [17], where each

robot only processes relative measurements taken by itself

to update its own pose estimate, while treating the other

robots’ poses as deterministic parameters. The computational

cost per robot and time step is O(N) [hence the overall cost

per time step is O(N2)] when relative measurements are

processed sequentially. Similarly to [16], Karam et al. [18]

proposed a distributed EKF-based method for CL. However,

contrary to [16], here the robots are restricted to exchange

their state estimates with others within communication range.

The computational cost per robot and time step is O(N2),
resulting in an overall cost of O(N3) per time step.

Martinelli [19] developed a distributed approach for CL

that uses hierarchical EKF filters to estimate the robots’

poses. In particular, the N robots in a team are divided into L

groups, each comprising M robots (N = LM ). Every group

contains a leader who processes all the relative measurements

between any two robots in that group and only updates the

pose estimates of the robots belonging to its group. A team

leader is in charge of processing all observations between

any two robots from different groups and only updates the

pose estimates of the L group leaders. The computational

cost per time step for each group leader and the team leader

are O(M4) and O(N(N −M)L2), respectively.

The main drawback of the aforementioned approximate

algorithms (see [16], [18], [19]) is that in order to reduce

the computational complexity of the EKF-based CL, these

approaches ignore cross-correlations amongst robots, which

often leads to overly optimistic and inconsistent estimates.

In this paper, we present an algorithm that reduces the com-

plexity of the EKF-based CL to O(N3), without introducing

any approximations, but, instead, by taking advantage of the

specific sparse structure of the measurement Jacobian matrix.

III. PROBLEM FORMULATION

Consider a group of N mobile robots performing CL in 2-

D by processing relative distance and bearing measurements.

In this paper, we study the case of global localization, i.e.,

the pose (position and orientation) of each robot is described

with respect to a fixed (global) frame of reference.

The pose of the ith robot (or robot-i) at time-step k is

denoted as xi
k = [(pi

k)
T φi

k]
T, where pi

k = [xi
k yik]

T

and φi
k represent the global position and orientation of

the ith robot at time-step k, respectively. The state vector

for the robot team at time-step k is defined as xk =
[(x1

k)
T (x2

k)
T . . . (xN

k )T]T ∈ R
3N . We assume that each

robot is equipped with proprioceptive sensors (e.g., wheel

encoders), which measure its linear and rotational velocities,

as well as exteroceptive sensors (e.g., laser scanners), which

can detect, identify, and measure the relative distance and

bearing to other robots.

A. State Propagation

The discrete-time state propagation equation for robot-i

from time-step k − 1 to k is

xi
k = f ik−1(x

i
k−1,u

i
k−1,w

i
k−1), i = 1, . . . , N,

where the control input ui
k−1 = [vik−1 ωi

k−1]
T, consisting

of the linear velocity measurement vik−1 and rotational ve-

locity measurement ωi
k−1 recorded by the robot’s odometric

sensors, is corrupted by zero-mean, white Gaussian process

noise wi
k−1 = [wi

k−1,v wi
k−1,ω ]

T with covariance Ci
w

.

In this work, we employ the extended Kalman filter (EKF)

for recursively estimating the robot’s pose xi
k, i = 1, . . . , N .

Thus the estimate of the ith robot pose is propagated by2

x̂i
k|k−1 = f ik−1(x̂

i
k−1|k−1,u

i
k−1,0), i = 1, . . . , N,

where x̂ℓ|j is the state estimate at time-step ℓ, after measure-

ments up to time-step j have been processed.

The covariance matrix corresponding to the state estimate

x̂k|k−1 is propagated as

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +Gk−1CwG

T
k−1, (1)

where Φk−1 = diag(Φ1
k−1, . . . ,Φ

N
k−1) with Φi

k−1 =
∇

x
i
k−1

f ik−1, and Gk−1 = diag(G1
k−1, . . . ,G

N
k−1) with

Gi
k−1 = ∇

w
i
k−1

f ik−1, i = 1, . . . , N . The overall process

noise covariance is Cw = diag(C1
w
, . . . ,CN

w
).

Note that due to the block diagonal structures of Φk−1

and Gk−1, the overall processing cost of (1) is O(N2) [5].

B. Measurement Model

At time-step k, the relative distance and bearing obser-

vations recorded by the exteroceptive sensors of robot-i

measuring robot-j (1 ≤ i 6= j ≤ N ) are given by

z
i,j
k = h

i,j
k (xi

k,x
j
k) + n

i,j
k , (2)

where h
i,j
k = [di,jk θ

i,j
k ]T, with d

i,j
k and θ

i,j
k denoting the true

distance and bearing from robot-i to robot-j at time-step

k, and n
i,j
k = [ni,j

k,d n
i,j
k,θ]

T is zero-mean white Gaussian

measurement noise with covariance Ci,j
n

. Without loss of

generality, we assume Ci,j
n

= I2 (1 ≤ i 6= j ≤ N ) in the

remainder of the paper.

2In the remainder of the paper, the “hat” symbol ˆ is used to denote
the estimated value of a quantity, while the “tilde” symbol ˜ is used to
signify the error between the actual value of a quantity and its estimate.
The relationship between a variable x and its estimate x̂, is x̃ = x − x̂.
Additionally, 0m×n and In represent the m × n zero matrix and n × n

identity matrix, and e1 is the unit vector with a 1 in the 1st coordinate and
0’s elsewhere.
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The measurement-error equation for z
i,j
k , obtained by

linearizing (2) around the current best estimate x̂k|k−1, is

z̃
i,j

k|k−1 = z
i,j
k − h

i,j
k (x̂i

k|k−1, x̂
j

k|k−1) (3)

≈ Ψ
i,j
k x̃i

k|k−1 +Υ
i,j
k x̃

j

k|k−1 + n
i,j
k = H

i,j
k x̃k|k−1 + n

i,j
k ,

where Ψ
i,j
k = ∇

x
i
k
h
i,j
k and Υ

i,j
k = ∇

x
j

k

h
i,j
k are 2 × 3

matrices, and the measurement Jacobian matrix H
i,j
k (of

dimensions 2 × 3N ) has a sparse structure (without loss of

generality, we assume i < j)

H
i,j
k =

[

02×3(i−1) Ψ
i,j
k 02×3(j−i−1) Υ

i,j
k 02×3(N−j)

]

. (4)

In fact, for the relative distance and bearing measurement

model, there are at most 9 nonzero elements in H
i,j
k (4 from

the distance, and 5 from the bearing measurement) [7].

In this paper, we consider the most challenging, in terms

of computational requirements, scenario where the sensing

range of the exteroceptive sensors is sufficiently large so

that each robot can detect, identify, and measure the relative

distance and bearing to the remaining N − 1 robots at every

time step.3 Thus, the total number of relative measurements

per time step is (N − 1)N .

The measurement-error equation for the robot team, ob-

tained by stacking all the measurement residuals z̃
i,j

k|k−1
(1 ≤ i 6= j ≤ N ) [see (3)] into a column vector, is

z̃k|k−1 ≈ Hkx̃k|k−1 + nk,

where z̃k|k−1 = [(z̃1,2
k|k−1)

T . . . (z̃i,j
k|k−1)

T . . . (z̃N,N−1
k|k−1 )T]T

is the measurement residual error vector of dimension

2(N− 1)N , and nk = [(n1,2
k )T . . . (ni,j

k )T . . . (nN,N−1
k )T]T

is zero-mean, white Gaussian measurement noise with co-

variance Cn = I2(N−1)N .
The overall measurement Jacobian matrix Hk =

[(H1,2
k )T . . . (Hi,j

k )T . . . (HN,N−1
k )T]T, whose dimensions

are 2(N − 1)N × 3N , has the following sparse structure
[see (4)]

Hk =

























































Ψ
1,2

k Υ
1,2

k

Ψ
1,3

k Υ
1,3

k

.

..

Ψ
1,N

k Υ
1,N

k

Υ
2,1

k Ψ
2,1

k

Ψ
2,3

k Υ
2,3

k

.

..

Ψ
2,N

k Υ
2,N

k

.

..
.
..

.

..

Υ
N,1

k Ψ
N,1

k

Υ
N,2

k Ψ
N,2

k

...

Υ
N,N−1

k Ψ
N,N−1

k

























































. (5)

Remark 1: We highlight two important properties of Hk.

Firstly, due to its sparse structure [see (4)-(5)], each row of

3For the general case when the number of measurements is less than
(N − 1)N due to the limited sensing range of each robot, our proposed
method (see Sec. IV) can be readily applied without modifications.

Hk has at most 5 non-zero elements. Per column, there exist

at most 4(N − 1) non-zeros [7], e.g., the nonzero elements

of the first column of Hk originate from the first columns

of the matrices Ψ
1,j
k and Υ

j,1
k , j = 2, . . . , N . Therefore

nnz(Hk) ∼ O(N2), where nnz(H) denotes the number of

nonzero elements of H. Secondly, since all the exteroceptive

measurements are relative observations between each pair of

robots, and absolute pose measurements (such as GPS) are

unavailable, it can be shown [7] that rank(Hk) ≤ 3N − 2,

i.e., Hk is not full (column) rank.

C. State and Covariance Update

Once all the relative measurements z
i,j
k , 1 ≤ i 6= j ≤ N ,

become available, the state estimate and its covariance can

be updated as

x̂k|k = x̂k|k−1 +Kkz̃k|k−1, (6)

Pk|k = Pk|k−1 −KkSkK
T
k , (7)

where Kk = Pk|k−1H
T
k S

−1
k is the Kalman gain, Sk =

HkPk|k−1H
T
k+Cn is the measurement residual covariance.

Unfortunately, the computational complexity of (6)-(7) is

O(N6), due to the inversion of a dense matrix Sk whose

dimensions are 2(N − 1)N × 2(N − 1)N . Therefore, the

real-time implementation of (6)-(7) becomes prohibitive as

the number of robots, N , increases.

It is possible to avoid the inversion of Sk by processing

the (N − 1)N exteroceptive measurements sequentially. In

this case, and since the computational cost for processing

every relative measurement z
i,j
k is O(N2) [5], the total

computational cost per time step becomes O(N4). Note,

however, that due to the nonlinearity of the measurement

model [see (2)], the robot pose estimates obtained by se-

quential updates are less accurate than these computed by

concurrent updates [see (6)-(7)].

Another alternative approach for updating the state and

covariance is to employ the Information filter [20, Ch. 5,

Sec. 5.6], i.e., for Cn = I2(N−1)N ,

Pk|k =
(

P−1
k|k−1 +HT

kHk

)−1

, (8)

x̂k|k = x̂k|k−1 +Pk|kH
T
k z̃k|k−1. (9)

It is worth noting that computing HT
kHk and Pk|kH

T
k z̃k|k−1

has computational cost only O(N2) [7], due to the sparse

structure of Hk [see (5)]. Hence, the most computationally

demanding operation of (8)-(9) involves the inversions of

two matrices (i.e., Pk|k−1 and P−1
k|k−1 + HT

kHk), whose

dimensions are linear in N . Thus, the total computational

complexity of the state and covariance updates using (8)-(9)

is O(N3), a significant complexity reduction as compared to

the standard EKF updates (6)-(7).

Unfortunately, (8) often suffers from numerical instability,

due to κ(HT
kHk) = κ2(Hk) [where κ(H) is the condition

number of H], which renders the algorithm (8)-(9) numeri-

cally less robust [21], [22].
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D. State and Covariance Update through QR Factorization

An effective strategy to overcome the numerical instability

of the Information filter [see (8)-(9)] is to apply thin QR

factorization [22] on Hk [21], i.e.,

Hk = QkRk, (10)

where Qk is a 2(N − 1)N × 3N matrix with orthonormal

columns (i.e., QT
kQk = I3N ), and Rk is upper triangular.4

Substituting (10) into (8), we obtain the EKF update

equations based on QR factorization, i.e.,

Pk|k =
(

P−1
k|k−1 +RT

kRk

)−1

= Pk|k−1 −Pk|k−1R
T
kΣ

−1
k RkPk|k−1, (11)

x̂k|k = x̂k|k−1 +Pk|kH
T
k z̃k|k−1, (12)

where Σk = RkPk|k−1R
T
k + I3N , and the second equality

in (11) is established using the matrix inversion lemma [22].

Note that in contrast to Sk [see (7)], whose dimensions are

2(N − 1)N × 2(N − 1)N , the matrix Σk in (11) has dimen-

sions only 3N × 3N . Thus, assuming that Rk is given, the

total computational cost of the state and covariance updates

using (11)-(12) is O(N3), the same order of complexity as

when using (8)-(9). Most importantly, κ(Rk) = κ(Hk) [22].

Hence the numerical stability of (11)-(12) is significantly

better as compared to (8)-(9).

Therefore, in order to ensure that the computational com-

plexity for the state and covariance updates through QR

factorization [see (11)-(12)] remains O(N3), we conclude

that the maximum number of operations to implement (10)

should also be within O(N3).
There exist several methods for performing QR factor-

ization (or QR decomposition), such as the Cholesky de-

composition (CHO), the modified Gram–Schmidt process

(MGS), the Givens rotations (GIV), and the Householder

transformations (or Householder reflections) [22]. Due to its

simplicity and numerical stability, we adopt the QR factoriza-

tion algorithm utilizing Householder transformations, which

is termed as the Standard Householder QR in this paper.5

In what follows, we present an overview of the main steps

of the Standard Householder QR algorithm. The purpose of

this is to show that when applying the Standard Householder

4In the implementation of QR decomposition, it is necessary to invoke
column pivoting (or permutation) techniques since Hk is not full-column
rank (see Remark 1). Specifically, (10) is modified to HkΠk = QkRk ,
where Πk is a column permutation matrix, and the absolute value of the
diagonal elements of Rk are arranged in decreasing order. In practice,
column pivoting can be efficiently achieved using pointers. Furthermore,
it can be shown that the computational overhead associated with column
pivoting is O(N2) [7], thanks to the effective updating of the column
norms discovered by Businger and Golub [23]. Since the most dominant
computational cost is O(N3) (see Sec. IV-B), without loss of generality, in
the following analysis we assume Πk = I3N . The simulation results shown
in Sec. V are based on the Modified Householder QR algorithm with column
pivoting techniques, whose implementation is described in [7].

5We have also conducted computational analysis when employing CHO,
MGS, and GIV. It can be shown [7] that the complexity of CHO is O(N3),
due to the sparse structure of Hk . However, CHO is not applicable since
it requires HT

k
Hk to be positive definite, or equivalently, Hk to be full

column rank [22]. On the other hand, both MGS and GIV require O(N4)
arithmetic operations [7].

QR factorization to the matrix Hk appearing in CL, the

computational complexity becomes O(N4). For clarity, the

time-step index k is dropped from (10) throughout the rest

of the paper, with m = 2(N − 1)N and n = 3N denoting

the number of rows and columns of Hk, respectively.

E. Overview of the Standard Householder QR Algorithm

We first introduce an orthogonal and symmetric House-

holder (reflection) matrix Q = I− βvvT, where β = 2
‖v‖2

2

,

and the nonzero vector v is called a Householder vector. The

Standard Householder QR algorithm [22, Algorithm 5.2.1]

applies a sequence of Householder matrices (multiplies H

from the left with Q) to gradually transform H into an upper

triangular form R. Specifically, suppose that after (ℓ − 1)
Householder matrices {Qi = Im−βiviv

T
i , i = 1, . . . , ℓ−1}

have left-multiplied the original H, the resulting matrix

H(ℓ−1) takes the following block form:

H(ℓ−1)=
(

ℓ−1
∏

i=1

(Im−βiviv
T
i )
)

H=

[

H
(ℓ−1)
1,1 H

(ℓ−1)
1,2

0 H
(ℓ−1)
2,2

]

, (13)

where H
(ℓ−1)
1,1 is an upper triangular matrix of dimensions

(ℓ−1)× (ℓ−1).
At the ℓth iteration, we seek a Householder matrix Qℓ =

Im − βℓvℓv
T
ℓ such that the first ℓ columns of H(ℓ) =

(Im − βℓvℓv
T
ℓ )H

(ℓ−1) become upper triangular. This can

be achieved [22] by selecting vℓ = [01×(ℓ−1) v
T]T, with

v = u+ sign(u1)‖u‖2e1, (14)

where the vector u is the first column of H
(ℓ−1)
2,2 , and u1 is

the first element of u. Furthermore, βℓ =
1

‖u‖2

2
+|u1|‖u‖2

.

For clarity, we decompose the matrices H
(ℓ−1)
1,2 and H

(ℓ−1)
2,2

as follows: H
(ℓ−1)
1,2 = [t H

(ℓ−1)

1,2 ], where the vector t

represents the first column of H
(ℓ−1)
1,2 and the matrix H

(ℓ−1)

1,2

consists of the remaining columns; similarly H
(ℓ−1)
2,2 =

[

u H
(ℓ−1)

2,2

]

=

[

u1 s̄T

u−1 H
(ℓ−1)
2,2

]

, where H
(ℓ−1)

2,2 consists of

all but the first column of H
(ℓ−1)
2,2 , u−1 denotes the vector

obtained by removing the first element of u, the row vector

s̄T corresponds to the first row of H
(ℓ−1)

2,2 , and the matrix

H
(ℓ−1)
2,2 is obtained by removing s̄T from H

(ℓ−1)

2,2 . Following

this notation, it can be shown that H(ℓ) has the following

block structure [7]

H(ℓ) = QℓH
(ℓ−1) =

[

H
(ℓ)
1,1 H

(ℓ)
1,2

0 H
(ℓ)
2,2

]

, (15)

where H
(ℓ)
1,1 =

[

H
(ℓ−1)
1,1 t

0 α

]

is an upper triangular matrix

with α = −sign(u1)‖u‖2; H
(ℓ)
1,2=

[

(

H
(ℓ−1)

1,2

)T
s

]T

, where

s = s̄− v1δ, (16)

H
(ℓ)
2,2 = H

(ℓ−1)
2,2 − u−1δ

T, (17)

and v = [v1 vT
−1]

T, δ = βℓ

(

H
(ℓ−1)

2,2

)T
v.
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Remark 2: A key observation of (14) is that the vectors

v and u differ only by the first element, i.e., v−1 = u−1.

The above process terminates at ℓ = n, with outputs Q

corresponding to the first n columns of the matrix product

Q1 · · ·Qn and R selected as the first n rows of H(n).

We have conducted a detailed computational complexity

analysis of applying the Standard Householder QR to factor-

ize H [see (10)]. Unfortunately, it turns out that the Standard

Householder QR requires O(N4) arithmetic operations, due

to the fact that the original sparse structure of H is destroyed

and nnz(H
(ℓ)
2,2) increases quadratically at every iteration

ℓ [7]. Due to space limitations, the detailed computational

complexity analysis of the Standard Householder QR algo-

rithm is provided in [7]. This motivates us to develop the

Modified Householder QR algorithm, which is based on the

Standard Householder QR algorithm but explicitly exploits

the sparse structure of H, to achieve QR decomposition

in O(N3). In the next section, we describe the main idea

behind the Modified Householder QR algorithm, as well as

its complexity analysis.

IV. MODIFIED HOUSEHOLDER QR ALGORITHM

The Modified Householder QR algorithm is derived

from [24], where Kaufman proposed an idea that exploits

the sparsity of the original matrix. However, in [24], Kauf-

man assumes that the Householder reflection matrices (or

equivalently, the Householder vectors) are known in advance,

which is not the case in our scenario. We make several

modifications to the original algorithm proposed in [24], and

term this new algorithm as the Modified Householder QR in

Sec. IV-A. We further analyze its complexity when applied

to H [see (5)] and show in Sec. IV-B that the computational

cost is reduced from O(N4) to O(N3).

A. Description of the Modified Householder QR Algorithm

To facilitate the description and derivation of the Modified

Householder QR algorithm, we adopt the same notation used

in Sec. III-E. Furthermore, we use hi and h
(ℓ)
i , i = 1, . . . , n,

to denote the ith columns of the original matrix H and the

updated matrix H(ℓ) after the ℓth Householder reflection is

processed, respectively. From (13), we have

h
(ℓ−1)
j =

(

ℓ−1
∏

i=1

(Im − βiviv
T
i )

)

hj , j = ℓ, . . . , n. (18)

Hence h
(ℓ−1)
j (j = ℓ, . . . , n) is a linear combination of hj and

the Householder vectors {vi, i = 1, . . . , ℓ−1}. Additionally,

a crucial property of the Householder transformation (see

Remark 2) is (vi)−i = (h
(i−1)
i )−i, i = 1, . . . , ℓ−1, where

v−i denotes the vector obtained by removing the first i

components of v. Accordingly, (vi)−(ℓ−1) = (h
(i−1)
i )−(ℓ−1)

for 1 ≤ i ≤ ℓ− 1. Hence, (h
(ℓ−1)
j )−(ℓ−1) (j = ℓ, . . . , n)

can be expressed as a linear combination of (hj)−(ℓ−1) and

{(h
(i−1)
i )−(ℓ−1), i = 1, . . . , ℓ−1}, i.e.,

(h
(ℓ−1)
j )−(ℓ−1) = (hj)−(ℓ−1) +

ℓ−1
∑

i=1

(h
(i−1)
i )−(ℓ−1) χ

(ℓ−1)
i,j ,

for some coefficients χ
(ℓ−1)
i,j . Furthermore, notice that every

vector h
(i−1)
i , i = 2, . . . , ℓ−1, itself is a linear combination

of hi and the Householder vectors {vη, η = 1, . . . , i−1}

[see (18)], and recall that (vη)−(ℓ−1) = (h
(η−1)
η )−(ℓ−1) for

η = 1, . . . , i− 1. Thus, (h
(i−1)
i )−(ℓ−1) (i = 2, . . . , ℓ− 1)

can be expressed as a linear combination of (hi)−(ℓ−1) and

{(h
(η−1)
η )−(ℓ−1), η = 1, . . . , i−1}. In addition, h

(0)
1 = h1 by

definition, and hence, (h
(0)
1 )−(ℓ−1) = (h1)−(ℓ−1). Therefore,

we conclude by recursion that each vector (h
(ℓ−1)
j )−(ℓ−1), j =

ℓ, . . . , n, can be expressed as a linear combination of

(hj)−(ℓ−1) and {(hi)−(ℓ−1), i = 1, . . . , ℓ−1}, i.e.,

(h
(ℓ−1)
j )−(ℓ−1) = (hj)−(ℓ−1) +

ℓ−1
∑

i=1

(hi)−(ℓ−1) γ
(ℓ−1)
i,j , (19)

where the coefficients γ
(ℓ−1)
i,j , i = 1, . . . , ℓ−1, j = ℓ, . . . , n,

need to be determined at each iteration. In what follows,

we will provide a formula [see (30)] that updates γ
(ℓ−1)
i,j

recursively.

Notice that the matrix H
(ℓ−1)
2,2 [see (13)] comprises all the

column vectors (h
(ℓ−1)
j )−(ℓ−1), j = ℓ, . . . , n. Hence, (19) can

be summarized into a compact matrix form

H
(ℓ−1)
2,2 = H−(ℓ−1)

[

Γ(ℓ−1)

In−ℓ+1

]

, (20)

where H−(ℓ−1) = [(h1)−(ℓ−1) . . . (hn)−(ℓ−1)] is the sub-matrix

of H resulting by removing its first (ℓ−1) rows. The (ℓ−1)×

(n− ℓ+1) matrix Γ(ℓ−1) = [γ
(ℓ−1)
i,j ] is termed the coefficient

matrix. In order to facilitate the presentation of the ensuing

derivations, Γ(ℓ−1) is written as [γ
(ℓ−1)
ℓ Γ

(ℓ−1)
], where γ

(ℓ−1)
ℓ

is the first column of Γ(ℓ−1).

As shown in [7], in contrast to the original vector

(hj)−(ℓ−1), j = ℓ, . . . , n, which has at most O(N) non-zero

elements [see Remark 1], the vector (h
(ℓ−1)
j )−(ℓ−1), obtained

after the (ℓ − 1)th Householder reflection is processed,

has nnz((h
(ℓ−1)
j )−(ℓ−1)) ∼ O(ℓN), which results in the

computational cost of O(N4) when employing the Standard

Householder QR algorithm. In order to preserve the original

sparsity of H, and at the same time reduce the memory

usage, our modification to the Standard Householder QR

algorithm is that the explicit form of H
(ℓ−1)
2,2 in (20) [or equiv-

alently, the explicit form of the vectors (h
(ℓ−1)
j )−(ℓ−1), j =

ℓ, . . . , n, in (19)] is not calculated. Instead, H
(ℓ−1)
2,2 is stored

and represented implicitly by the coefficient matrix Γ(ℓ−1)

[see (20)].

In what follows, we address two key issues in the Modified

Householder QR algorithm. Firstly, computing the matrices

H
(ℓ)
1,1, H

(ℓ)
1,2 in (15); Secondly, deriving the recursive rule

for obtaining Γ(ℓ) from Γ(ℓ−1). Or equivalently, we seek the

expression of Γ(ℓ) such that

H
(ℓ)
2,2 = H−ℓ

[

Γ(ℓ)

In−ℓ

]

, (21)

where H−ℓ = [(h1)−ℓ . . . (hn)−ℓ] is the sub-matrix of H
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resulting after removing its first ℓ rows.

To proceed, we first note that the vector u = (h
(ℓ−1)
ℓ )−(ℓ−1),

i.e., the first column of H
(ℓ−1)
2,2 , plays an important role

in generating the Householder vector and the subsequent

process. Hence, we explicitly compute u using (20), i.e.,

u = (h
(ℓ−1)
ℓ )−(ℓ−1) = (hℓ)−(ℓ−1) +H1

−(ℓ−1) γ
(ℓ−1)
ℓ , (22)

where H1
−(ℓ−1) = [(h1)−(ℓ−1) . . . (hℓ−1)−(ℓ−1)] consists of

the first (ℓ− 1) columns of H−(ℓ−1). Note that we explicitly

compute only the vector u = (h
(ℓ−1)
ℓ )−(ℓ−1), the first column

of H
(ℓ−1)
2,2 , while the remaining columns (h

(ℓ−1)
j )−(ℓ−1), j =

ℓ + 1, . . . , n, are not explicitly computed. Instead, they are

represented implicitly by Γ
(ℓ−1)

.

Once the explicit form of u, computed by (22), is known,

‖u‖2 can be calculated as well. Thus, the scalar βℓ and

the Householder vector vℓ (or equivalently v) are readily

available. Notice that computing v from u only requires

updating the first element of u [see (14)].

Now we are ready to present the recursive formulas for

computing H
(ℓ)
1,1, H

(ℓ)
1,2, and Γ(ℓ).

1) Computing H
(ℓ)
1,1: Notice that the terms H

(ℓ−1)
1,1 as well

as t are already available after the (ℓ − 1)th Householder

transformation. Hence the only unknown in H
(ℓ)
1,1 [see (15)]

is the scalar α, which can be calculated from ‖u‖2 in a fixed

number of arithmetic operations.

2) Computing H
(ℓ)
1,2: Since H

(ℓ−1)

1,2 is known after the (ℓ−

1)th Householder transformation, updating H
(ℓ)
1,2 is equivalent

to calculating the vector s from (16), which requires s̄ and

δ = βℓ

(

H
(ℓ−1)

2,2

)T
v. Remember that we do not have the

explicit forms of s̄ and H
(ℓ−1)

2,2 . However, using the fact that

s̄T is the first row of H
(ℓ−1)

2,2 and based on (20), we can

rewrite H
(ℓ−1)

2,2 and s̄ as follows

H
(ℓ−1)

2,2 = H2
−(ℓ−1) +H1

−(ℓ−1) Γ
(ℓ−1)

, (23)

s̄ = ρ2 +
(

Γ
(ℓ−1))T

ρ1, (24)

where H2
−(ℓ−1) = [(hℓ+1)−(ℓ−1) . . . (hn)−(ℓ−1)] comprises the

last (n − ℓ) columns of H−(ℓ−1), and ρT
1 and ρT

2 are the

first rows of H1
−(ℓ−1) and H2

−(ℓ−1), respectively. From (23),

we compute the vector

δ = βℓ

(

H
(ℓ−1)

2,2

)T
v = δ2 +

(

Γ
(ℓ−1))T

δ1, (25)

where δ1 = βℓ

(

H1
−(ℓ−1)

)T
v and δ2 = βℓ

(

H2
−(ℓ−1)

)T
v.

Substituting (24) and (25) in (16), we arrive at the follow-

ing update equation for s (or equivalently, H
(ℓ)
1,2), i.e.,

s =
[

ρ2 − v1δ2
]

+
(

Γ
(ℓ−1))T[

ρ1 − v1δ1
]

. (26)

3) Computing Γ(ℓ): To determine Γ(ℓ), we begin

with (21) and (17). Recall that we do not have the explicit

expression of H
(ℓ−1)
2,2 . However, since H

(ℓ−1)
2,2 corresponds to

H
(ℓ−1)

2,2 with the first row removed, we obtain [from (23)],

H
(ℓ−1)
2,2 = H2

−ℓ +H1
−ℓ Γ

(ℓ−1)
, (27)

where H1
−ℓ = [(h1)−ℓ . . . (hℓ−1)−ℓ] and H2

−ℓ =
[(hℓ+1)−ℓ . . . (hn)−ℓ].

Next we explore the property v−1 = u−1 [see Remark 2].

In particular, based on (22), we have

v−1 = u−1 = (hℓ)−ℓ +H1
−ℓγ

(ℓ−1)
ℓ . (28)

Finally, we substitute (27), (28), and (25) into (17), and

notice that H−ℓ = [H1
−ℓ (hℓ)−ℓ H2

−ℓ], to arrive at

H
(ℓ)
2,2 = H1

−ℓ

(

Γ
(ℓ−1)

− γ
(ℓ−1)
ℓ δT

)

− (hℓ)−ℓδ
T +H2

−ℓ

= H−ℓ







Γ
(ℓ−1)

− γ
(ℓ−1)
ℓ δT

−δT

In−ℓ






. (29)

Comparing (29) and (21), we immediately obtain

Γ(ℓ) =

[

Γ
(ℓ−1)

− γ
(ℓ−1)
ℓ δT

−δT

]

. (30)

Note that the upper part of Γ(ℓ) is a rank-one modification

of the existing matrix Γ
(ℓ−1)

, which has a relatively low

computational cost. Furthermore, (30) affirms that every

vector (h
(ℓ)
j )−ℓ, j = ℓ + 1, . . . , n, is a linear combination

of (hj)−ℓ and {(hi)−ℓ, i = 1, . . . , ℓ}.

In summary, we outline the algorithmic flow chart of the

Modified Householder QR in Algorithm 1.

Algorithm 1 Modified Householder QR

Require: H

Ensure: R [see (10)].

1: for ℓ = 1, . . . , n, do

2: Compute u from (22) and calculate ‖u‖2.

3: Calculate v, βℓ, α [see Sec. III-E], and update H
(ℓ)
1,1.

4: Determine δ1, δ2, and δ in (25).

5: Calculate s from (26), and update H
(ℓ)
1,2.

6: Update Γ(ℓ) based on (30).

7: end for

8: Return R = H
(n)
1,1 .

B. Computational Complexity Analysis

In this section, we briefly analyze the computational cost

of applying the Modified Householder QR algorithm to

factorize H [see (10)]. We claim that its complexity is

O(N3). To prove it, we will identity the number of flops for

every line inside the “for loop” in Algorithm 1, and show that

the number of arithmetic operations required per iteration is

bounded above by O(N2). Since the maximum number of

iterations is 3N , the overall computational cost is O(N3).

• Computational cost of Line 2:

Recall that nnz(hj) ∼ O(N), j = 1, . . . , 3N [see Re-

mark 1], hence nnz((hi)−(ℓ−1)) ∼ O(N), i = 1, . . . , ℓ.
Therefore, computing u from (22) requires O(ℓN)
operations. Additionally, nnz(u) ∼ O(ℓN), thus cal-

culating ‖u‖2 is of O(ℓN) operations. Hence, the cost

of performing Line 2 is of O(ℓN), where ℓ ≤ 3N .
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• Computational cost of Line 3:

Once u and ‖u‖2 become available, determining the

scalars α and βℓ requires constant number of arithmetic

operations. Furthermore, updating v from u only re-

quires the modification of the first element of u, which

requires O(1) running time. In summary, the cost of

performing Line 3 is of O(1).
• Computational cost of Line 4:

Since each column of H1
−(ℓ−1) and H2

−(ℓ−1) has O(N)
non-zeros, which is attained by preserving the original

sparse structure of H, computing δ1 and δ2 has a cost of

O(N2), regardless of the structure of v. Additionally,

calculating δ from δ1 and δ2 has a cost of O(ℓN),
since (25) involves an (3N − ℓ) × (ℓ − 1) matrix

multiplied by an (ℓ− 1)× 1 vector and a vector-vector

addition of dimension 3N − ℓ. In summary, the cost of

performing Line 4 is of O(N2).
• Computational cost of Line 5:

Since (26) involves a (ℓ−1)×1 vector multiplying with

an (3N−ℓ)×(ℓ−1) matrix and a vector-vector addition

of dimension 3N − ℓ, the overall cost of performing

Line 5 is of O(ℓN).
• Computational cost of Line 6:

In (30), the vector δ [see (25)] is available from Line 4

and does not need to be recomputed. Hence, we only

need to focus on the upper part of (30), which is a

rank-one update of the existing matrix Γ
(ℓ−1)

. Since

the vectors γ
(ℓ−1)
ℓ and δ are of dimensions ℓ − 1 and

3N − ℓ, respectively, we conclude that the overall cost

of performing Line 6 is of O(ℓN).

In summary, the most demanding computational cost of

Algorithm 1, from Line 2 to Line 6, is of O(N2). Therefore,

we have shown that the number of arithmetic operations

required per iteration is bounded above by O(N2), and

the worst-case computational complexity of applying the

Modified Householder QR algorithm on H is O(N3).
Furthermore, we would like to point out that the Modi-

fied Householder QR algorithm is applicable to any sparse

matrix H of sparsity pattern other than that of the mea-

surement Jacobian matrix [see (5)]. In particular, suppose

that the dimensions of H are m × n, and denote τ =
max(nnz(h1), . . . , nnz(hn)). We have shown that the com-

putational complexity of the Modified Householder QR al-

gorithm is of O(τn2) [7], in contrast to O(mn2) of the

Standard Householder QR algorithm [22].

V. SIMULATION RESULTS

In the previous section, we have shown that the worst-

case computational complexity of the Modified Householder

QR algorithm on the sparse matrix H is O(N3). In order

to corroborate our theoretical analysis, we have evaluated

the running time required by the Modified Householder

QR algorithm for a team of N robots performing CL.

Specifically, we randomly generate the poses of the robots

and assume that each robot is able to detect, identify, and

measure both relative distance and bearing to the remaining

N − 1 robots. Hence, H has dimensions 2(N − 1)N × 3N .

TABLE I

CPU RUNTIME (SEC)

N SS-QR MH-QR

6 7.5378× 10−5 4.9683× 10−5

21 1.3985× 10−3 1.4737× 10−3

26 2.8506× 10−3 2.8315× 10−3

51 2.8017× 10−2 2.2363× 10−2

101 3.2935× 10−1 1.8164× 10−1

201 4.3048× 100 1.5436× 100

301 1.9804× 101 6.7462× 100

401 5.7972× 101 1.8523× 101

501 1.5869× 103 3.8437× 101

551 N/A 5.3501× 101

601 N/A 7.0800× 101

701 N/A 1.1808× 102

801 N/A 1.8626× 102

901 N/A 2.6653× 102

1001 N/A 3.7570× 102
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Fig. 1. Average runtime of QR decomposition of H. Comparison between
SuiteSparseQR (SS-QR) and the Modified Householder QR (MH-QR).

We have examined the scalability of our algorithm by

varying N from 6 to 1001, and for every value of N ,

we have conducted 120 simulations. We count the CPU

running time for a complete QR decomposition of (10) when

employing the Modified Householder QR algorithm. The

average running times are summarized in Figure 1, as well

as in Table I.6 Furthermore, we compared our results with

the CPU running time when employing SuiteSparseQR [25],

the current state-of-the-art QR decomposition package for

sparse matrices, which is an implementation of the multi-

frontal sparse QR factorization algorithm. All simulations

were run on a Linux (kernel 2.6.32) desktop computer with

a 2.66 GHz Intel Core-i5 Quadcore CPU and 4 GB of RAM.

The results presented in Table I and Figure 1 illustrate

6Due to space limitations, we only list partial results of the average CPU
runtime in Table I. For complete results, please refer to [7].
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that when the number of robots is small (N ≤ 21), both

SuiteSparseQR and the Modified Householder QR achieve

indistinguishable performances, with SuiteSparseQR slightly

faster as compared to the Modified Householder QR. How-

ever, as N increases (N ≥ 26), the Modified Householder

QR algorithm significantly outperforms SuiteSparseQR. Ad-

ditionally, we were unable to run QR decomposition using

SuiteSparseQR when N ≥ 551, due to memory shortage. In

contrast, the Modified Householder QR is applicable even

when the number of robots increases to 1001, and it success-

fully performs QR factorization on H, whose dimensions are

around 2 million by 3 thousand, in about 375 seconds.

Furthermore, we have examined the accuracy of the pro-

posed Modified Householder QR. In particular, we computed

the Frobenius norm of HTH − RTR, which is 0 in the

ideal case. We have compared the Frobenius norms of

SuiteSparseQR and the Modified Householder QR. The re-

sults demonstrate that the Modified Householder QR attains

higher arithmetic accuracy than SuiteSparseQR. Due to space

limitations, we are unable to include the results in the paper.

The interested reader can refer to [7] for more details.

VI. CONCLUSION

In this paper, we have developed an efficient algorithm

for QR decomposition of sparse matrices, namely the Mod-

ified Householder QR. The proposed algorithm has been

successfully applied to 2-D multi-robot CL. In particular,

we have shown that the overall computational complexity

per EKF update using QR factorization, when implemented

using the Modified Householder QR algorithm, is of O(N3),
i.e., at least one order of magnitude reduction as compared

to the standard EKF update process. Simulation results

demonstrate that for large number of robots, the Modified

Householder QR algorithm attains higher accuracy and sig-

nificantly outperforms SuiteSparseQR, the current state-of-

the-art QR decomposition algorithm of sparse matrices, in

terms of CPU runtime.

In our future work, we plan to extend our current approach

and apply it to CL in 3-D. Finally, we intend to investigate

distributed and decentralized implementations of the Mod-

ified Householder QR algorithm to ensure that the overall

computational load is evenly shared among every robot in

the team [15], as well as to account for limitations on the

robots’ communication bandwidth and range [13], [26], [27].
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