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Abstract—We present a new strategy for active vision-based singlequery image is often not suf cient to uniquely localize

localization and navigation of a mobile robot in a visual the robot within the visual map. Instead, it will only proeid

memory, i.e., within a previously-visited area representeé as . .
a large collection of images. Vision-based localization isuch a set ofcandidatelocations (or hypotheses).

a large and dynamic visual map is intrinsically ambiguous, Most existing approaches that deal with this issue are
since more than one map-locations can exhibit the same vislia passive i.e., they do not control the camera/robot towards
appearance as the current image observed by the robot. Most 5qgitional non-ambiguous observations that will help ®- di

existing approaches are passive, i.e., they do not deviseyan . . L . .

strategy to resolve this ambiguity. In this work, we presentan ~ Cfiminate the true initial location among possible hypstie
activevision-based localization and navigation strategy that ca In order to address the problem of perceptual aliasing,
disambiguate the true initial location among possible hyptheses  in this paper we present a nesctive localization strategy

by controlling the mobile observer across a sequence of high : : : . i}
distinctive images, while concurrently navigating towards the that can uniquely localize the camera/robot in a larigeal

target image. The performance of our active localization ad ~Memorymap (organized as a Vocabulary Tree - VT [2]),
navigation algorithm is demonstrated experimentally on a pbot ~ while visually navigating to a target image through highly-
moving within a large outdoor environment. distinctive image paths. The rst innovative contribution
of this work is in the design of a sequential Bayesian
. approach that can discard false location candidates by col-
In order fof a rpbot 1o autonomously navigate toward§ cting additional observations during the robot motioheT
a target Iocatlorl, it must be able t_o §0Ive a Set, of rel"j‘teﬁe\cond contribution is the design of a path planning styateg
sut_)-tasks_; rst, |t_musglobally localizeitself, €., It mUSt  pased on entropy that guides the robot towards the target
estimate its location with respect to some environment re'?rhage across highly distinctive (i.e., low-entropy) image
resentatiqn (map) from little or no a priori pose infor_matio a graph representation of the VT. The main advantages of
Secopd, I mu_splan a pathto the target and, nally, it has this approach are the ability to discriminate the true robot
to reliably nawgate.along the path. location among multiple hypotheses, as well as increased
In order to achieve the above goals, robots oftep r(f:'%bustness when re-localization is necessary. It is inamort
on GPS. However, GPS cannot be used for navigating ote that our active strategy is here applied to the case

indoors or in urban environments with tall buildings, du§, nen no 3D scene or camera pose-prior is available, but

to Fhe limited or absent line-of-sight to satellites. T'me'can be easily extended to use such additional information.
of- ight laser scanners have also been used, but they a

e performance of our vision-based active localizatiod an

gxpensn_/e,and the'”"’e'ght' volume, qnd power reql‘,”,remeqﬁavigation algorithm is demonstrated experimentally on a
limit their use to large-size robots. Finally, disambigogt o moving in a large outdoor environment

between map locations using laser data is very chaIIenging,-l-he remainder of the paper is organized as follows. In

especially_when plan_ar Ias_er scanners are used. Instead, g&tion 11, we begin with an overview of the related litera-
are here_ mt_erested_ IN USINg VISIon Sensors that are mqfge ‘section 111 presents a summary of the proposed active-
informative, increasingly inexpensive, quite compact aad  |,calization and navigation algorithm. Section IV desesb

be gsed fo-r Iarge-scale map-based challzatlon (1], f2]. 'the proposed location-recognition algorithm using the VT.
particular, in t_hls_work we are fc_)cusmg on th? problerrbur entropy-based planning and the navigation strategy are
of robot localization and navigation using a V|§ua| maFf:)resented in Section V. Section VI describes the sequential
(constructed from a pre-recorded sequence of images) §£1yesian approach for location discrimination. Experitaen

the area_it.navigates in. Robot localization in allarge \Aisuaare presented in Section VII. Finally, conclusions and eitu
map exhibits several challenges. Among thespeieptual research directions are discussed in Section VIII.
aliasing which happens when the image database contains

similarly appearing locations, and results in more than one 1. RELATED WORK
location having the same visual appearance as the curren{, \what follows. we provide an overview of the rep-
robot image. As a consequence, location recognition from e ntative literature on localization and navigationebas
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compute off-line gglobal 3D map of the environment. When regard, our work is also relevant to the literature in active
re-navigating the learned path, the robot computes its pokmalization and vision-based location recognition.
from 3D-to-2D correspondences between the map and theln [11], Jensfeltet al. presented an active global localiza-
observed scene, respectively. Fontanetlial. [4] recently tion strategy that uses Kalman ltering (KF) to track mulép
presented a similar strategy to visually navigate the robeobbot pose hypotheses. This is done jointly with a proba-
across a path connecting totally different initial and debi  bilistic approach for evaluating hypothesis correctn&seir
views. While their navigation approach can deal with th@pproach provides improvements over traditional gridedas
eld-of-view constraints imposed by monocular camerasstrategies [12] because it can be used even with incomplete
their localization algorithm also requires atcurate 3D maps and with computational complexity independent on the
global map of this large environment. size of the environment. However, a key difference to our

Goedemeéet al. [5] relaxed the above assumptions andwvork is that their navigation strategy simply guides theatob
built a wheelchair robotic system that can automaticallyo places with a high concentration of map features, without
navigate in a pre-computed visual map made of a spartaking into account their distinguishability.
set of panoramic images. However, and differently from our Arbel and Ferrie presented in [13] a gaze-planning strategy
approach, their navigation strategy uses the relative mmehat moves the camera to another viewpoint around an object
orientation and the (scaled) translation computed fromp@pi in order to recognize it. The new measurements, accumulated
lar geometry decomposition, which can be sensitive to imagever time, are used in a one-step-ahead Bayesian approach
noise [6]. In addition, their algorithm still requires an-bime  that resolves the object recognition ambiguity, while gat
estimate of the 3Docal map of the observed scene. ing an entropy map. Differently from their work, our proba-

In general, 3D map- and pose-reconstruction is not nedbilistic approach seeks informative images overeatended
essary, since moving from one reference image to the netkine-horizon More recently, LaPortet al. [14] proposed
can also be done by relyirgplelyon visual information [7]. a computationally ef cient viewpoint-selection stratetiat,
Recently, an interesting quantitative comparison of the pejointly with sequential Bayesian recognition, can disam-
formance of some appearance-based controllers has bdeguate among competing hypotheses on both object class
presented by Cherubiet al. [8]. However, all of these con- and pose. However, and differently from the two strategies
trollers assume that the camera/robot is moving with pasiti described above, our approach can visually navigate the
linear velocity. Additionally, an estimate of the distantwe robot to the target image without requiring any camera pose
each observed feature is still necessary, thus affecting tinformation.
convergence properties of the proposed strategies. Ith®],  Other researchers recently proposed to address the prob-
authors present an image-based robot navigation stratagy tlem of image ambiguity in location recognition, by either
uses visual memory. Their closed-loop control law does nafuerying twice the VT (in order to detect at the second time
require global 3D reconstruction. However, and diffengntl more distinctive features) [15], or by incorporating aadigl
from our approach, their strategy does not make use of akyowledge about the camera location among consecutive
ef cient and scalable vocabulary tree (VT) scheme. images [16]. Such additional information can also be used in

As an extension over the previous approaches, Fraundorfasr algorithm. However, to the best of our knowledge, our
et al. presented in [10] a vision-based localization algorithmwvork is the rst to introduce active localization in a large
that globally localizes the robot using a VT and allows thémage database, that seeks to guide the robot towards the
robot to navigate a large image map. This visual-memortarget through a path of highly-distinctive images.
map ?s_rep.resented as a graph, in whi_ch. nqdes correspond 1. ALGORITHM DESCRIPTION
to training images, and links connect similar images. How- . ,
ever, their navigation strategy does not guarantee asyimpto 19- 1 shows the block diagram of the proposed active-
convergence to the next node. Moreover, their experimenﬂ&c""l'zm'on algorithm. _ _
results are limited to the case of a robot navigating along a W& hereafter assume that the robot has previously vis-
limited indoor path. !ted the environment and has collected a sgttrqfnmg

At this point, it is important to remark a key difference/Mag€s flig (i =1;::N). All of these training images
betweenall previous approaches and our strategy: They afd€ Used to create thesual-memorymap: Speci cally, a
passive, i.e., they do not control the mobile observer tﬁ_et of SIFT image descnptoﬂsfzig IS rst e>§tracted off-
actively seek new images that can reduce the localizatidige from all the Images z?md is used to build the VT (cf.
ambiguity caused by different locations exhibiting simila Sec. V). Then, -and S|_m|IarIy to [_5]’_ [91, [10], a _graph
visual appearance. In contrast, addressing the problem 'GPresentationG, is obtained from this image collection by
perceptual aliasing by actively controlling the robot/eamis  I"KiNg two nodes/images that share a minimum number of
our main contribution. Speci cally, we introduce a plangin SIFT matches, thus indicating the possibility for the rotaot

strategy that allows the robot to visually explore thosegea ViSUally navigate among similar images. In order to measure
paths that maximize discriminability, while leading to thet€ distinctiveness of an image in the VT, an entropy measure

target image. As new distinctive images are collected, § cOmputed and assigned to each node.

sequential Baygsian approach is used. to infer the mosylikel 15, method uses SIFT keypoints [17], [18], but can be extertdeuse
robot location in a graph representation of the VT. In thisther types of descriptors.



inital | o so on until the robot reaches . Otherwise, the robot rst

visually navigates back to the initial image and then réstar
Zo the navigation process using a different hypothesis for the
starting location.

Note that, instead of navigating back tg, we could
have chosen to re-plan the robot's path starting from the
current location where it rst realized the initial hypotis
was wrong. However, we chose not to do so for the following
reasons(i) our active localization strategy can rapidly detect
a wrong hypothesis [cf. Sec. VII], so that the robot only
needs to move back few step@) tracing back a traveled
path is more robust compared to exploring a new (possible)
path to the goal(iii) fewer computations are required, since
the paths from all the initial hypotheses have already been
computed.

Location recognition
with Vocabulary Tree

Xo2f x1;x20=f2; 169
Path Planning

P =f2;3;4;8;11;12g
. S —

Correct path

Y YES
Irr;\lage,-B?sed ayesian IV. LOCATION RECOGNITION USING A VOCABULARY
avigation moothing TREE
bg,iz“—T Given an initial image o, our rst step towards solving the
Current global localization problem is to us&y to query the visual

map to nd the most similar image. For this purpose, we

Fig. 1. Block diagram of our active vision-based localiaatin a visual employ a vocabulary-tree approach [2], due to its ef ciency
map. and speed, as well as its compact image representation and
robustness to background clutter and occlusions. Our globa
I(fcalization algorithm uses a set of SIFT descriptdgsto
3uery the VT in order to determinXg, i.e., the location
(node) index of the training images most similarltg

We have used a tree with depth = 4 and branching
factork = 10. The leaves of the tree correspond to quantized
%IFT descriptors (visual words) obtained by clusteringtiwi

After this initial (off-line) phase, the robot is powered
up somewhere in the environment and the active glob
localization phase starts. First, the on-board camerastake
initial image | o and the SIFT descriptorg,o, are extracted
from it and used to query the VT (cf. Sec. IV) to nd the
most similar candidate image in the visual map. Due t
perceptual aliasing, this query may returgsed of M ¢ similar
candidate imagesl ; ; | _.1’ Mog f.l LsIng MO. < To each leaf node we assign a list of indices of thé ’training
N, and the corresponding set oéindidatenode locations . hat had at least one descriotor assianed to it this
fxj 2 N; j =1;:5Mog f 1;::5Ng. We will represent Images tha P 9 '

a candidate location with the random variabte). For icrsgzt;—measSt;ae'rzggéi(:n;ﬁtE/Ze(():]t'wNe)g',\Iov\r/ eia_c q.t.r.?lmng
H H —_ . - . i di = [AEERS] 1

example, in Fig. 1Mo =2 andXo 21 x1;x29 = 12,16 3 7l (withw = k). Each entry ofvg contains

_ After this global Iocallzat|_0n phase, a planning algorlthr'r}he number of descriptor vectod; with a path through
Ilfn:rsnet;ji ?Jrc],52?me:tg?pé%velggﬁdeg:;i@;g digit;het;iij the corresponding leaf node, weighted using the inverse-

oal nogéx [cf S%c pV] A’mon all themt ossibjle aths document-frequency (IDF) [2]. The s&, of descriptors
9 S o 9 Vo P P ' extracted from robot's current imagde is used to obtain the
only the one with the lowest entropl,, is selected and the

image-based navigatioalgorithm starts to guide the robot query vectorve 2 N © . After normahzmg_the "ecmmg'
. ”) andvg, we compute theit , distancedp; = kvg vgike,
across images if . :

As the robot moves from time step= 1 to an interme- and use it as their similarity score. The output of each query

. . _ : . _process can be summarized by this score function that is
glljarteemtérrr:teszstea _f; " f'f\“szetgoifsn:)\(/;/rascltlég ?2‘?:':;2; r:;i‘/ de ned over the domain of all thdl training image indices.
1:T » 1y eeey T —

. . . - In an ideal case, if queried with an imade = 1,
image and used to compupéX ojZo:7), i.e., the probability | . : . -~ . .
that the robot started from one of the initial candidatéhIS score function will exhibit a unique peak localized at

locations (or hypotheses). We do this by adoptBayesian the |nde);Xo - _Howiyer,t due to preselz:)nf:el( of clzllyna;mc or
smoothing[19] over the set of the initialMy location commonly occurring objects (e.g., oor, brick walls, eta3

hypotheses foX o (cf. Sec. VI). At timeT, if the point of well as changes in illumination and viewpoint, the similari

maximum of the posterior pdf still coincides with the index>core may e.Xh't.)'t multiple p‘?aks (see F|g_. 2.) or even a
uniform distribution over a wide range of indices. These

of the initially-chosen hypothesis for the starting looati ; . S .
then the visual navigation continues to the next node ar{gpresent indeed the cases in which it is extremely dif cult
" 710 uniquely localize the query image in the database. Fig. 3

2We assume that the target image is not ambiguous, so that the shows_an example in which the effects of perceptual aliasing
corresponding< is unique. are evident.



]4/ candidate imagel

&reshold

Similarly to previous works [10], [5], we use a graph
representationG = (V;E) of the image collection (see
Fig. 1), in which each nodé 2 V is associated to a
training imagel ;, (i = 1;:::;N). Moreover, a link between
two nodes is established when the associated images share
a minimum number of SIFT keypoint matches (20, in our
implementation), thus indicating that the robot can effety
servo between the two associated images. Once the graph
G = (V;E) is built, then it can be used to compute a
traversable path from the starting to the target node/image

© 0 10 L0 140 1
# Training Images

A possible path-planning strategy would be to apply
Dijkstra's algorithm [19] on the grapl® using as distance
- between two nodes the inverse of the number of SIFT
Candidate imagel (s5) matches. However, such strategy cannot cope with perdeptua
) . () N aliasing. As an illustrative example, consider the case of
Fig. 2. Location recognition using a vocabulary tree withuaique . . .
match (indoor sequence). (a) The initial image is used to query the F_'Q-_ 4 where a sequence of images was t_aken in frc_)nt of two
VT (N = 188); (b) The resulting normalized score function shows onlysimilarly-appearing buildings. Even if the image-pairsraj
one candidate nodeX(, = 38) that exceeds a preset threshold (percentagfhe pathPl (dashed thick curve) share (among them) a Iarge
of the maximum value). (c) The corresponding training image, which , . .
is very similar tol o. number of SIFT matchesY), navigation through the st
can be confused with going through €&t This ambiguity

L can negatively affect the navigation performance, for exam
Note that the effect of perceptual aliasing may be reduc;e;ga 9 y 9 b

by using additional information (e.g., epipolar geometr
constraints [15], [16]). However, there exists no methaat th
can guarantee that the images will be matched unequivocal
To address this issue, in what follows we present oyr

. S ol
active-localization-based approach that controls thé pét _
the robot so as to maximize the information acquired for In order to address this challenge, we propose to augment

e, when the robot needs to re-localize after unexpected
disturbances (e.g., sudden illumination changes, image bl
tc.). If this re-localization process takes place withireo
Ef these ambiguous image sets, then the robot might start to
low erroneous paths that will drive it far from its goal.

disambiguating its location. the graph with information, assigned to the edge weights in
G, about the entropy of the training images, and use it to plan
V. APPEARANCEBASED PATH-PLANNING AND a path through the most distinctive (i.e., low entropy) iesg

NAVIGATION IN THE ENTROPY SPACE In the example of Fig. 4P, (continuous thick curve) will be

In this section, we present a new strategy to plan a noghosen as the least ambiguous path, since its edge weights
ambiguous visual path, from an initial image to a target have low-entropy valuew. In contrast, the edge weights for
i the images in the A- ar}d B-segments qf p&th have high
1st candidate values ofw (not shown in gure due to limited space).

e The main steps of this algorithm are detailed hereafter.
Speci cally, to each nodé=1;:::;; N we assign a score that
measures thdistinctivenessf each node/image in the entire
vocabulary tree. This score is given by thetropyH; 2 R,

20 4 60 8 100
#Training Images X1 X

©,
7

building trees

1st Candidatel(ss ) 2nd Candidatel(gg )

(9 d : ; i
Fig. 3. Location r(egzognition using a vocabulary Ere)ze withltiple matches ~ Fi9- 4. The sets of views A and B along the p&th (dashed thick curve)
(outdoor sequence). (a) Query imagg (b) The score function shows two contain amblguo_us |mages_of two identical bu_lldmgs. B)_ngs!he entropy
candidatesX o = fx1;x2g = f64;88g; (c)-(d) While T ¢4 appears very measure for setting the weights of the graph links (contisublack lines),

similar tol o, T ss does not. However, both images have very similar featurdh® Planner will correctly discard the ambiguous path(even if its images
representation in the VT. contain a large number of SIFT descriptars). Instead, it will select path

P (continuous thick curve) whose edges have low values obpwtfw #).



de ned as approach whose goal is to maximize the belief oXay
B X _ B for the initial location. In particular, as the robot moves,
Hi, H(XjZ;)= p(X=jjzZi) logp(X=jjZ;); (1) the camera collectsew measurement<Zo.7, that are used

j=1 to evaluate the posterign(XojZo.7), by formulating our
wherep(X jZ;) is obtained as the result of querying the VTProblem as Bayesian smoothing [19]:
with each training imagé; over all the graph nodes = j, X i7 _ p(Xo;Zo;Z1:1)
(j =1;:5N). The result of the query is then normalized so P(XojZoT) = p(Zo; Z11)
as to represent a pdf. P(Z 17X 0)p(X 0jZ0)
A low value of entropy indicates a highly-distinctive = P(Z11iZo)
image, while higher entropy values indicate a node assatiat I p(XoiZo) P(Z17iXo0) ; 3)

to an image similar to many others (i.e., not an informative
image). The entropy; is then used to compute an entropy-where p(XojZo) is the prior pdf over the domain of the
related weightw;; for each edge irE between two nodes candidate nodeXo, given the initial image. We assume
(i;j ) that share a minimum number of SIFT descriptorsP(XojZo) is uniform, due to the selection of the initial
Each weightw; is computed as the average of the entropjocation candidates by thresholding the normalized score

at the nodes andj, i.e.? function (cf. Sec. IVj. This choice re ects the assumption
Hi + H; that all the hypotheses have the same probability. While
Wi = Ti (2)  this assumption might change when other measurements are

available (e.g., SIFT matches), we note that this will not
cancel perceptual aliasing. The likelihopfZ1.1jX ) in (3)
can be written as

Once the edge weights; are computed, Dijkstra's algo-
rithm is used to select the least uncertain péth

So far we have considered the case of a single hypothesis X
for the initial location. Whemmultiple initial-location can- pP(Z1:7jX0) = P(Z1:7jX1;X0) pP(X1jX0);  (4)
didatesX o = fX1; X2; i1 Xm, g exist, we follow the same X1

procedure described above to compute the weightsfor  where X ; represents the nodes that can be reached by the
G. Next, Dijkstra's algorithm is used to compute a seMy  robot starting fromX o through visual servoing.Employing
possible paths, for all the initial hypothesesXn. Finally, the Markov assumption, (4) can be written as
only the path® with the minimum entropy is chosen. _ X _ _ .

P(Z1TiXo0) = P(Z1jX1) P(Z2:7)X1) P(X1jX0):  (5)

A. Image-based Visual Route Navigation X1

Once the candidate rouf® is generated, a vision-basedNote thatp(X1jXo) represents the motion model in the
navigation strategy is used to navigate to the next nodgémaplanned path from nodes Ko to nodes inX;. Since the
and towards the goal. To achieve this, we use our epipolgotion is planned on a graph, and the visual servo algorithm
based visual servoing (IBVS) algorithm described in [21]is globally convergent [cf. Sec. V-A], we can assume that thi
This algorithm has certain desirable advantages comparedi$ also uniform over all possible nodesn linked to nodes
alternative approaches. In particular, it is free from lonam- N Xo. p(Z2:7jX1) represents the recursive call to (5) itself.
ima and singularities (typically encountered in other IBVS The pdf p(Z1jX1) in (5) represents the measurement
schemes based on image Jacobians [7], [8]). Secondly,st ddikelihood. In order to nd an expression for it, consideeth
not require any additional geometric knowledge about the 3Base in which the robot has moved to a speci ¢ nod&in
scene. Finally, it guaranteggobal asymptotic convergence In this case, a vocabulary-tree query using the current came
to the desired con guration, even in the case of unknowmeasuremeni; will return a normalized score function that
focal length. matches with the one obtained by querying the VT using the

training measurement; (associated with a speci ¢ node
V1. L OCATION DISCRIMINATION in X1). We use the Jeffrey divergende[14] as a distance

Among the set of candidate patfizo; Py;:::; Py, g (each measure between the expected quety p(X1jZ;) and the
of them made of highly distinctive images), the strateggurrent oneh, p(XijZi), i.e.,
proposed in the previous section selects the patthat is J(hjih% = D(hjjh® + D (hYjh) (6)
the least ambiguous path to travel. As the robot navigates
along P, additional information is still needed in order toWhere D(hjjh9) is the Kullback-Leibler divergence [22]
uniquely discriminate the correictitial robot locationamong ~ 9iven by
all the My initial hypotheses irX . In order to discriminate
the assumed initial location in the visual map, our active
strategy collects additional images from the moving onrtoa
camera. This new data is used in a sequential Bayesian

4In our case the threshold is set as a percentage of the maxivalua
3Note that the sum of the weights from an initial to a nal nodguals  of the score function.
the sum of the entropies of all the intermediate nodes plusnatant term 5In our implementation we considered nodes in the graph atedevith
equal to the average entropy of the initial and nal nodes. X o up to distance 2.

h(X1) .

X
D(jihY) = " h(X:) logEpe?s

X1

()



and nally we can model the likelihoo@(Z1jX ) as particular, we present two experiments that are repretenta
J(hjjh9? qf the single- and muItipIe—IocatiQn cgndidatg cases,@esp
7%y = — . 8 tively. The vocabulary tree used in this case is the same one
P(Z1)X1) p==¢ ' (8) generated for the results described in Sec. VII-A.

The peak of the posterior distributiqn(X ojZo-1) com- In the rst experiment, the camera/robot observes an initia

puted as in (3) from (4)-(8), will most likely be at the node!Mage !l o that is uniquely associated by the VT to node
hypothesisx; which corresponds to the true initial Iocati0n5‘,1_ in trl1e graph (see Fig. 6(a)). Starting from th',s node,
of the robot. In case that this value is different from theiati  Diikstra’s algorithm computes a path to the desired image

hypothesis selected for starting the path, the robot witi us ~ (10de88) comprising a sequence of indices of images to
the images stored up f to servo back to the initial image, be visually navigated. The resulting robot/camera mot#n i

and start to navigate along the new path which xjaas its shown in Fig. 6(a), superimposed to the satellite view of the
initial node. experimental site.

In the second experiment, we consider the case in which
VII. EXPERIMENTAL RESULTS the localization algorithm, queried with the initial viely,
In this section, we present experimental results to tegrovidestwo initial view hypotheses) ; and | gg, corre-
the effectiveness of the proposed localization and imageponding to the two nodes; = 1 and x, = 68 in the
based navigation algorithms. Our experimental platform igraph (see Fig. 6(b)) (the correct result from the query
a nonholonomic Pioneer 3-DX. Our robot is only equippe@hould have beem;). For each candidate, a path towards
with a IEEE 1394 camera that captures in real-tibQd24 the desired image in the topological graph is generated and
768 pixel images. X2 is erroneously selected as the hypothesis for the robot's
A. Vision-based localization performance initial location. Consequently, the paﬁl = P2 is used for
navigating towards the goal. This wrong initial belief on
nthe robot's initial location makes the robot move forward
éand away from the goal imagde ), as it would have been
Jyecessary for going fronmigg to | . This (initial) phase
ghows that perceptual aliasing can indeed defeat a simaplist
visual navigation baseahnly on queries to a VT. The forward
8tion for T = 2 steps is represented in the inset of

We rst present the performance of the initial global

localization algorithm using the VT. The robot was drive
to capture two sets of images, from an indoor (of ce) an
an outdoor sequence. In particular, the latter one is
approximately 200 m, with changing sunlight conditions du
to trees and building shadows.
(k Iio]r-oe,ali:hzlT)a'lg_?h?;(,]ufg?;e,gillglr(])c:ubrl:fg ;rffe:;ig;?oegggg. 6(b). At this point, as described in Sec. VI, our Bayasia
and for an increasing number of SIFT descriptors (randoml)?—pproa(:h uses the collected data, and gvaluates the
chosen for each database image), the VT was queried & gsteriom(X ojZoz) for each of the tW(_) cand.|date nodes (cf.
the best matching image obtained. The percentage of succ&ss " VI). This yieldsp(X ojZo) = f0:938 0:062, which

in localizing the correct image for the of ce sequence i early indicates that the initial node location = 1 was

depicted in Fig. 5(a) and, as expected, shows that the bé@? correct hypothesis (instead.)qj_: 68)' The robot then
retrieval performance (9%) is obtained wheall the descrip- visually nawgates_ back to the initial image and selects the
tors in the image are used for the query. By decreasing tﬁg:;]ectbpc’;lttfpl,tWhIC? nall¥ 'I:gadz tge robottd , as shown
number of descriptors, the retrieval performances degkadén € bottom trajectory of Fig. 6(b).

to 70%. Similar performances is observed for the outdoor Table 1 contains the posterior distribution(X ojZo:)
sequence (see Fig. 5(b)) obtained for increasing tim& and shows that the probability

We also implemented atop-list [2] which penalizes of the correct locatiorx; increases rapidly as more images

those images from the query that have a high number gre considered for computing the posterior distribution.

descriptors commonly occurring in the database (e.g..etarp VIIl. CONCLUSIONS
or pavement textures). This is done by blocking from scoring ] o . . )
those inverted les that are above a certain length. In oyr L0cation recognition in large and dynamic environments is
implementation, the use of a stop-list led to an improvemeffitrinsically ambiguous. Existing approaches do not eiplo
in the retrieval quality, as shown in our results. -
The obtained results suggest that trying to reduce th&”
query time to the VT by decreasing the number of SIFT
descriptors used, will increase the risk of perceptuakaliz
thus motivating the use of ouwactive localization strategy.
Other approaches (e.g., stop-list) can only alleviate,nmit

eliminate, the perceptual aliasing. w ey

3

Success in image retrieval
Success in image retrieval [%]

stoplist: NO

B- ACt'Ve path plannlng and naV|gat|0n F?en;enlazgue#01SA;)FTdes?:urip!ors:jgedfor?]’ilerying?20 F(’)ercen(:gne#of;?FTdeseé)r\plorsiosedforlgfjerymézo
We hereafter present the results obtained for all threFe 5 Locaild . @ of (b) .
H e H : 1g. o. Ocallization performance(a, ce sequence: percentage o
phases (location recognition, path planning and visuat na\éugccess; (b) Outdoor quuence: Dereantags of ety 9
igation) of our active localization algorithm (Sec. VI). In



algorithms is demonstrated experimentally on a robot ngvin
\ in a large outdoor scenario.
Our future work will address the extension of our exper-
| g =54 imental results to a city-scale scenario as well as to visit
previously unexplored locations. We are also planning to
design new methods for graph representation of the visual
map that will include both geometric constraints between
images, as well as discriminative features [16].
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