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Abstract— This paper addresses the problem of estimating
the parameters of the advection-diffusion equation, which
describes the propagation of an instantaneously released
gas. A team of mobile robots, equipped with appropriate
sensing devices, are used for collecting gas concentration
measurements. In addition, each of the robots has sensitive
anemometric vanes for determining the velocity and the
direction of the wind. The selection of the sequence of
locations, where the robot should go to collect the gas
concentration measurements, is performed in real-time and is
based on the minimization of the uncertainty of the estimated
parameters and on reducing the time to convergence of this
estimation problem. Simulation results are presented in order
to confirm the described approach, which has significantly
lower computational requirements than other well-known
techniques based on exhaustive global search.

I. INTRODUCTION

The use of chemical and biological agents either within
the context of military warfare or in a terrorist attack,
is becoming an increasing danger in today’s world. We
have seen a rise in the use of these agents to inflict terror
amongst populations, such as the Sarin gas attack on the
subway system of Tokyo in 1995. In addition, there are
numerous chemical refineries and storage areas where the
threat of an accidental release of these harmful agents
could invoke numerous casualties as well as environmental
devastation such as the Union Carbide release in Bhopal,
India [1] in 1984. In situations such as these, the possibility
of contamination is not confined merely to the immediate
vicinity of the initial release, but can be spread to sur-
rounding areas quickly due to the wind transfer of gas
particles. Considering the potentially catastrophic effects,
the necessity for specially trained personnel, who are able
to rapidly and accurately predict the spread of these agents
as well as the potential consequences of the release, is
essential.

The prediction of consequences and the estimation of
gas explosion parameters require a significant amount of
information. The advection-diffusion equation (Eq. (2))
describes the propagation of an instantaneously released
gas. It is a function of the released agent mass (Q), release
time (t0) and location (x0, y0, z0) and the dispersion
coefficient K for the chemical agent in given environment.
In an ideal case, where values of these parameters would
be known a priori, the consequences of the explosion could

be determined precisely. However, in a real world scenario
sufficient prior knowledge is unavailable or potentially
inaccurate. Thus, these parameters should be estimated by
collecting gas concentration measurements from the area of
the explosion. This in turn requires that specially trained
people with appropriate protective equipment enter this
hazardous area and obtain the requisite samples.

However, the use of special human forces for collect-
ing measurements of the chemical agent concentration
increases the financial cost of the operation and it heightens
the human risk. In an ideal scenario, the collection of the
measurements can be achieved by a team of mobile robots.
This would require that each of the robots has some means
of obtaining samples, registering the locations and times
where the measurements were recorded and processing
this information to compute accurate estimates for the
parameters of the advection-diffusion equation.

The time-crucial nature of the problem requires the
development of appropriate methods for collecting mea-
surements. Random walk or exhaustive search of the
affected area may not be sufficient to estimate the
advection-diffusion equation parameters rapidly and ac-
curately. Therefore, an appropriate sequence of locations
should be selected for each robot, so that the measurements
to be recorded are the most informative, i.e., they minimize
the uncertainty of the estimated parameters.

This paper presents a new approach for real-time estima-
tion of the parameters of the advection-diffusion equation
using multiple autonomous robotic systems. Each of the
robots can be localized in an outdoor environment using
GPS. In order to establish the feasibility of the method, this
initial approach is simulated in a simple flat and obstacle
free terrain without climate variations.

II. RELATED WORK

A. Source Localization methods

A number of methods inspired by the behavior of species
for identification of airborne or waterborne agents, have
been proposed for the solution of the odor localization
problem. Chemotaxis and Anemotaxis are the most com-
mon techniques used in nature. Chemotaxis relies on the
local gradient of the chemical agent concentration while
Anemotaxis-based approaches require that the agent moves
in the upwind direction. Even though both these methods



are well-accepted for Chemical Plume Tracing (CPT),
they suffer from two significant drawbacks. Chemotaxis
is not feasible in an environment with a medium or high
Reynolds number, where it could lead to regions with high
concentration that are not the source (e.g., the corner of a
room) [2]. Anemotaxis, on the other hand, should not be
applied in an environment without strong ventilation [3].

1) Concentration Gradient-based: The Adapted Moth
Strategy is employed for odor localization in an unventi-
lated environment [4]. A mobile robot or, a team of robots,
equipped with a gas sensor performs a random search until
it identifies concentration of the chemical agent. Thereafter,
the robot starts a zigzag motion by turning approximately
65◦ to the side of the highest concentration. When the
robot completes six zigzag turns, it executes a circular
motion with a radius of 50cm. If the sensors record an
increased value of the gas concentration, the motion pattern
is restarted. A biased random walk approach to CPT is
presented in [5]. A mobile robot records concentration mea-
surements and localizes multiple sources by employing two
modes. In the first one, named “run”, the robot navigates
towards the source by computing the local gradient. In
the second mode, named “tumble”, the robot randomly
reorients itself in a new direction, which will be the
direction of the next run. After performing a run, if the
sensors record a positive gradient, it decreases the tumbling
frequency and increases the run length. A negative gradient
triggers a tumble without affecting its frequency.

2) Flow Direction-based: A number of methods have
been inspired by the general perception that diffusion
is a slower mass-transfer mechanism compared to wind.
Based on this observation, a robotic system, equipped with
anemometric devices and gas sensors, was designed by
Ishida et al [6]. This work presents two approaches to
source localization. In the first one, called “step-by-step”,
the robot moves at an angle in-between the direction against
the wind and that towards the gas sensor with the highest
response. In the second approach, called “zigzag”, the
vehicle moves obliquely upwind across the plume. Once
it reaches the boundary of the plume, it changes direction
and heads towards the boundary on the opposite side. An
extension of this work to environments where there is no
uniform wind direction is presented in [7]. As long as
the gas sensors receive reliable measurements, the robot
computes and follows the local gradient. When it reaches
a region of low concentration, it turns and moves upwind.

In [8], a mobile robot equipped with a chemical sensor,
a bumper sensor, and a wind vane, moves in an indoor
environment in order to detect a chemical leak. Initially,
the robot calculates the location of the plume centroid by
collecting measurements of the gas concentration across
the plume. Subsequently, it moves towards the center and
against the wind until it detects the source. The Spiral
Surge Algorithm [9] is one of the most popular CPT
algorithms in the field of Swarm Intelligence. A mobile

robot follows a spiral trajectory collecting data of the gas
concentration. Once a plume is detected, the robot moves
in the upwind direction for a specific time interval. If the
plume is detected again, the robot continues the upwind
trajectory, otherwise it starts a new spiral trajectory in order
to re-encounter the plume.

A behavior-based approach to CPT for an Autonomous
Underwater Vehicle (AUV) is presented in [10]. Initially,
the AUV searches for chemical traces by moving obliquely
to the current. Once a plume is detected, the robot moves
against the direction of the flow. If the chemical distribution
becomes intermittent, e.g., due to turbulent fluid flow, the
robot continuous to move mostly up-flow, but at a varying
angle. Finally, if no measurements are available, over a
large time interval, it switches to a reacquisition behavior
and follows a clover leaf shaped trajectory.

3) Fluid Dynamics-based: A CPT approach based on
principles of fluid dynamics is presented in [2], [3]. This
method, referred to as Fluxotaxis, relies on the computation
of the one-dimensional Gradient of Divergence of Mass
Flux (GDMF) in order to lead a team of autonomous agents
to the location of the chemical emitter.

Methods previously used for predicting meteorological
phenomena and pollution tracking, such as the Ensemble
Kalman filter [11], have also been applied to the odor
localization problem. The Process Query System (PQS) is
appropriate for filtering large numbers of data originating
from a network of sensors [12]. In this work, the source
location determination is formulated as a two-dimensional
inverse problem based on the diffusion equation.

At this point, we should note that the aforementioned
methods can be used for source localization and not for es-
timating the parameters of the advection-diffusion equation
that describes the propagation or spread of the chemical.

B. Spread Estimation methods

A number of methods have been developed for predicting
the spread of a chemical agent after a gas explosion. Most
of these are based on the computation of the advection-
diffusion equation parameters. This equation describes the
propagation of an instantaneously released gas as a function
time [13]. A method for estimating six of the parameters
that appear in the advection-diffusion equation is proposed
in [14]. In this work, measurements of the gas concentra-
tion are collected and the parameter values are estimated
off-line. This is known as inverse modelling and has been
formulated as a nonlinear least-squares estimation problem.
Extensions to [14] are presented in [15], [16] for the case
of a continuously released chemical agent.

Finally, a technique for modelling the distribution of
the chemical agent concentration in an unventilated indoor
environment is presented in [17]. A mobile robot is used for
producing a grid-map description of the area. An estimated
value of the gas concentration is assigned to each cell of
the grid.



III. ADVECTION - DIFFUSION MODEL

The approach presented in this paper uses the advection-
diffusion model developed in [14]. In this model, a standard
Cartesian coordinate system is used with the X-axis cor-
responding to the mean wind direction. An instantaneous
release of Q kg of gas occurs at time t0 at location
(x0, y0, z0). This is then spread by the wind with mean
velocity U = [u, 0, 0]T . The concentration, C, of the
released agent at an arbitrary location (x, y, z) and time
t is described by the following equation:

∂C

∂t
= −∇q (1)

Vector q represents the total mass of all particles of the
released substance which move through a location within
a given time interval.

A. Solving the Advection - Diffusion equation

Solving Eq. (1) requires determining both the initial
and boundary conditions. Assuming that the release of
the contaminant is instantaneous, the initial conditions can
be modeled by a Dirac delta function at (x0, y0, z0).
Boundary conditions result from the following two obser-
vations: (i) the concentration is zero at infinity in all spatial
directions and (ii) it is assumed that the contaminant is not
absorbed by the ground.

In order to simplify the derivation, certain factors, such
as the structure of the landscape and variations in humidity,
are not taken into consideration. Furthermore, to allow for
a closed-form solution, the velocity of the wind, u, as well
as the eddy diffusivities, Kx, Ky and Kz are assumed to be
constant. Using these assumptions, the solution of Eq. (1)
is:

C(x, y, z, t) =
Q

8π
3
2 (KxKyKz)

1
2 (∆t)

3
2

× e
− (∆x−u∆t)2

4Kx∆t − ∆y2

4Ky∆t

×
(
e−

∆z2
4Kz∆t + e−

∆z′2
4Kz∆t

)
(2)

where ∆x = x− x0, ∆y = y − y0, ∆z = z − z0, ∆z′ =
z + z0 and ∆t = t− t0. For the problem at hand, a mobile
robot is used to collect concentration measurements. Unless
special custom-designed robots are used, it is clear that the
measurements can only take place very close to the ground.
We model this situation by assuming that all measurements
are recorded at z = 0, and the release occurs at ground
level, i.e., z0 = 0. Thus, Eq. (2) can be modified as follows:

C(x, y, 0, t) =
Q

4π
3
2 (KxKyKz)

1
2 (∆t)

3
2

× e
− (∆x−u∆t)2

4Kx∆t − ∆y2

4Ky∆t (3)

This expression resembles a Gaussian function, with time
varying standard deviations along both the X and Y axes.
A visualization of the iso-concentration contours of the
chemical agent is depicted in Fig. 1.

B. Problem Formulation

We now focus on the inverse problem of determining
the parameters of the instantaneous gas release from mea-
surements of the gas concentration. We seek to estimate
the location (x0, y0) and time t0 of the explosion, the gas
release mass Q, and the eddy diffusivities along the X
and Y axes, assumed to be equal, Kx = Ky .1 The wind
velocity u is provided by an anemometer and is treated as
a known constant.

We formulate a least-squares estimation problem for
determining the parameter vector θ = [Q Kx x0 y0 t0]T ,
using measurements Zk of the concentration Ck =
C(xk, yk, 0, tk;θ) of the chemical agent corrupted by zero-
mean white Gaussian noise n(tk):

Zk = Ck + n(tk) (4)

where σ2
n = E

[
n(tk)2

]
is the variance of this noise.

From Eq. (2), the following expression for the natural
logarithm of the concentration of the gas is derived:

hk (θ) = lnCk = ln

(
Q

4π
3
2 (K2

xKz)
1
2

)
− 3

2
ln (∆t)

−
(

∆x2

4Kx
+

∆y2

4Kx

)
1

∆t

−u2∆t

4Kx
+

2u∆x

4Kx
(5)

Note that this formula contains no exponential terms, which
greatly simplifies the following derivations. Eq. (5) relates
the logarithm of the concentration with the parameter
vector θ, defined above. The natural logarithm of each
measurement of the concentration, Z̄k, is given by:

Z̄k = ln
(

Ck + n(tk)
) � ln Ck + n̄(tk) (6)

where n̄(tk) is a noise process corrupting the logarithm of
the concentration.

At this point, a comment regarding the distribution of
the samples of the noise process n̄(tk) is necessary. The
basic assumption is that the measurement noise is a white,
zero-mean, Gaussian process. By plotting a histogram of
the samples of this noise process, empirically determined
through Monte Carlo simulation as shown in Fig. 2, we ob-
serve that the spread of n̄(tk) can be well approximated by
a Gaussian probability density function (pdf). Linearization
of Eq. (6) yields

n̄(tk) � 1
Ck

n(tk) (7)

Thus the variance σ2
n̄ (scalar) of n̄ is given by:

σ2
n̄ = E[n̄2(tk)] =

1
C2

k

E[n2(tk)] =
σ2

n

C2
k

=
1
α2

(8)

where α2 is the constant signal to noise ratio (SNR).

1Kz can be found by using models such as those described in [18].
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The cost function we seek to minimize is

f (θ) =
(
Z̄ − h (θ)

)T
R−1

(
Z̄ − h (θ)

)
(9)

where Z̄ =
[

Z̄1 . . . Z̄N

]T
is the vector of all (loga-

rithmic) measurements collected by the team of robots,
h(θ) = [ h1(θ) . . . hN (θ) ]T is the vector of the cor-
responding expected measurements and R = σ2

n̄IN×N

is the measurement noise matrix. It is clear that f is
a nonlinear function of the elements of θ and cannot
be solved in closed-form for θ. Therefore, we resort to
linearization of this formula by employing the Taylor series
expansion of h(θ) � h(θ̂) + H (θ − θ̂), where H =

H(θ̂) =
[

HT
1 . . . HT

N

]T
is the N × 5 Jacobian matrix

of h(θ). Since there are five parameters in the estimated
vector θ, a minimum of five (non-degenerate) concentration
measurements are required, in order for a unique solution
to exist.

C. Levenberg - Marquardt Optimization for estimating θ

In our implementation, the Levenberg-Marquardt method
(L-M) has been employed for the iterative minimization
of the cost function in Eq. (9). L-M is a combination
of the Gauss-Newton and the Steepest Descent methods.
It employs function evaluations and gradient information
while estimates of the Hessian matrix are computed as the
sum of the outer product of the gradients. The behavior of
the L-M method is determined by the positive coefficient
µp. For small values of µp, L-M approximates the Gauss-
Newton method, whereas for large values of µp it behaves
as a Steepest Descent.

Given an initial estimate, from the previous time step,
θ̂

0

k = θ̂k, a recursive relation for the vector of the estimated

parameters θ̂k+1 = θ̂
m+1

k , where m is the last L-M
iteration, can be obtained by employing the following
iterative process for the minimization of the linearized cost
function in Eq. (9):

θ̂
p+1

k = θ̂
p

k +

(
k∑

i=1

HT
i Hi +

µp

α2
· Ik×k

)−1

×
k∑

i=1

HT
i

(
Zi − hi(θ̂

p

k)
)

(10)

Note that all quantities related to θ̂, on the right hand
side of this equation, are computed using the estimated
parameter vector θ̂

p

k from the p-th iteration. The covariance
matrix of the estimated parameter vector θ̂k is given by

Pk =
1
α2

(
k∑

i=1

HT
i Hi

)−1

(11)

IV. TRAJECTORY GENERATION

The selection of the locations that the robots should
move to in order to collect the chemical agent concentration
measurements is based on the minimization of the uncer-
tainty of the estimated parameter vector θ. This is described
by the trace of the expected covariance matrix P̂k+1,
computed in Eq. (11) using the expected values of the ma-
trices Hi(jxi,

jyi) for any candidate location(s) (jxi,
jyi)

considered by the jth robot for collecting the next measure-
ment(s). Through a large number of simulations we have
determined that the trace of the expected covariance matrix
is locally concave. Therefore, the selection of the sequence
of locations where the measurements should be recorded is
based on the minimization of a locally concave function.
By employing the following theorem, adapted from [19],
we conclude that the optimum solution is achieved at an
extreme point in its domain.

Theorem 1: Let f be a function defined on the bounded,
closed concave set Ω. If f has a minimum over Ω, it is
achieved at an extreme point of Ω.
Fig. 3 shows that the current position of robot j (indicated
by a dashed line) is around the global maximum of the
cost function. Based on Theorem 1, a robot should move
as far as possible from its current location, towards the
boundary of the locally concave function, before it collects
the next measurement. Therefore, the robots should move
in their environment with their respective maximum veloc-
ity jVmax. Having determined the velocity of the robots,
we focus on determining the set of directions of motion
jφk, k = 1 . . . N, j = 1 . . . M, (where N, M are the
total number of measurements and robots, respectively)
that minimize the trace of the expected covariance matrix,
P̂k+1.

The spatiotemporal distribution of the measurements Z,
processed for determining the parameter vector θ, has a
significant impact on the accuracy and the convergence
properties of this estimation problem. The collection of
measurements at each time instant is performed simulta-
neously by the team of robots. Thus, if we assume that the
team is comprised of M robots, the recorded measurements,
at time instant tk, are Zk =

[
1Zk

2Zk . . . MZk

]
.

It is unrealistic to assume that the measurement times
and locations can be selected arbitrarily. Thus, a trajectory
generation method must be devised that allows for both
accurate and timely estimation of the release parameters.
Assume that at time tk, the jth robot is located at position
(jxk, jyk). The robot should be able to move at its
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Fig. 4. Robot trajectory.
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maximum velocity jVmax for some sampling time interval
∆T . This provides a set of reachable points that form a
circle of radius rj = jVmax · ∆T . Thus, the next location
for sampling becomes a function of its heading jφk and is
provided by the following equations:

jxk+1 = jxk + rj cos
(
jφk

)
, jyk+1 = jyk + rj sin

(
jφk

)
Schematically, the motion of the jth robot from one posi-
tion to another is depicted in Fig. 4. The same procedure
is also followed by the rest of the team.

A. Globally Optimal Trajectory (GOT)

Several techniques can be applied to generate the optimal
trajectories of the robots. Exhaustive search is probably
the simplest method and is based on the calculation of
all candidate sets of trajectories and choosing the “best”
among them. The optimization criterion that is used for the
determining the optimal trajectories is the minimization of
the trace of the expected covariance matrix. This involves
discretizing the reachable set, for each time step and for
each robot, into δφd = 2π/d intervals. Thus, if there are
N steps along the path, then O(dN ) candidate trajectories
must be generated for each robot. If the team is comprised
of M robots then the complexity of the problem increases
to O(dNM ). It is clear that for large values of M and N
this approach is computationally intractable.

B. Locally Optimal Trajectory (LOT)

A new technique is now described that makes only one-
step ahead prediction for the next positions where the
robots should move, in order to register the next group
of measurements. This approach, referred to hereafter as
Locally Optimal Trajectory (LOT), has both reasonable
computational cost and convergence time.

The iterative one-step optimization process that describes
the new motion strategy for collecting the gas concentration
measurements, is based on the following recursive crite-
rion:

juk = arg min
jφk

trace
(
Ak + HT

j(k+1)(
jφk)Hj(k+1)(

jφk)
)−1

(12)

In this relation, the second term
HT

j(k+1)(
jφk)Hj(k+1)(jφk) is a function of the

direction jφk that the jth robot should follow in

order to collect its next measurement jZk+1. Here, Ak =
νkI5×5 +

∑M
i=1

∑k
l=1 HT

ilHil +
∑j−1

i=1 HT
i(k+1)Hi(k+1),

where νk is a small positive number, constant at each
step and is computed based on the previous location,
jxi,

jyi and time instant ti where the jth robot recorded
measurements, jZi, i = 1 · · · k. The term νkI5×5 is used
in order to guarantee invertibility of Ak. Furthermore,
the second term of Ak, i.e.,

∑M
i=1

∑k
l=1 HT

ilHil

corresponds to the information due to the previous
collected measurements by the robots, while the third
term

∑j−1
i=1 HT

i(k+1)Hi(k+1) represents the expected
information that will be contributed by the j − 1 future
measurements scheduled to be collected by the j − 1
robots that have already determined the optimal locations
for them to go to.

The solution to this optimization problem provides the
next best sensing position jxk+1,

jyk+1 of the jth robot
for minimizing the uncertainty of the estimate θk+1.

The same procedure is followed by all teammates in
order to select their new positions. Once the robots make a
decision about their new positions, they move there, record
measurements and the procedure starts from the beginning.
The same process is repeated until a sufficient number of
measurements have been captured in order to reduce the
uncertainty of the estimated parameter vector θ below a
specific threshold. This method has linear computational
cost in terms of the number of measurements and can
be implemented on a multi robot system with limited
processing capabilities.

In [20], we have proven that the cost function in Eq. (12)
is equivalent to:

juk = arg max
φk

[
Hk+1A−2

k HT
k+1

1 + Hk+1A−1
k HT

k+1

]
(13)

This form of the cost function can be approximated by:

ju∗
k � arg max

ω

g2ω
2 + g1ω + g0

(s2 + 2)ω2 + s1ω + (s0 + 1)
(14)

where ω = tan
(

γk−φk

2

)
and γk is the bearing angle

towards the estimated peak of the gas concentration. The
scalars gi and si, i = 0, 1, 2, are functions of the problem
parameters and are given in [20].
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Fig. 7. Trajectories of the Multi-Robot System for three different values of wind velocity.

V. SIMULATION RESULTS

In many real-world scenarios sufficient prior knowledge
about some of the parameters of the advection-diffusion
equation is unavailable or potentially inaccurate. However,
it is likely to have good initial information for some of
the estimated parameters. Specifically, for the location of
the source x0, y0 and the time of explosion t0, satisfactory
initial information can be available based on witness reports
of the event. In addition, the eddy diffusivity Kx = Ky

depends on the atmospheric conditions and the type of the
chemical agent. Therefore, an initial approximation about
its value can be obtained using precomputed tables. On the
other hand, it is almost impossible to have reliable initial
information about the value of the mass of the released
gas Q. To reflect this, the initial approximation of this
parameter has been intentionally selected far from its actual
value.

We now present a test case of five mobile robots,
which move on an flat, obstacle-free terrain without climate
variations, having maximum velocity Vmax = 1 m/sec.
The initial locations, the starting and sampling time and the
known (constant) parameters are shown in Table I, whereas
the initial information about the values of the estimated
parameters are presented in Table II. Furthermore, the
trajectories of the robots for collecting the measurements

are presented in Fig. 7. Observing Fig. 6, the elements of
the estimated parameter vector θ̂k converge to their real
values even though the initial information θ̂0 is inaccu-
rate. Convergence is achieved when the team of robots
processes the 5th group of recorded measurements of the
gas concentration. Regarding the trajectories of the robots,
the LOT approach dictates that robots move along the
direction of the wind following the highest point of the
gas concentration.

This scenario has been addressed using three of the
most popular approaches to the odor localization, namely,
Chemotaxis, Anemotaxis and Random walk. In Fig. 5, the
trace of the covariance matrix for each method, is presented
after the second group of measurements was recorded.
Observing this figure, the trace of the covariance matrix
for the LOT approach converges faster and to a lower value
than any of the three aforementioned methods.

The same scenario has been implemented for different
values of wind velocity. In one case, the wind velocity is
u = −0.5 m/sec, whereas in the other case the wind moves
faster than robots, i.e., u = 1.1 m/sec. The results for
these two cases are shown in Fig. 7. In the first case, three
robots move along the direction of the wind, whereas the
rest of the team moves in the upwind direction. Considering
this, it can be mentioned that some of the robots behave



differently from their teammates, even though they operate
in the same environmental conditions. Thus, predefining
the trajectories of the robots using as the exclusive criteria
the characteristics of the wind (i.e., direction, velocity) may
not be reliable. In the second case, where the wind velocity
is higher than that of the robots, all of them move in
the upwind direction for collecting the gas concentration
measurements.

VI. CONCLUSIONS

This paper presents a new approach for estimating in
real-time the parameters associated with an instantaneous
gas release in a time crucial situation. Using the advection-
diffusion equation model for the propagation of the gas
release, this new approach is a combination of a nonlinear
least-squares estimation and a Locally Optimal Trajectory
(LOT) generation technique. A team of mobile robots,
equipped with sensitive gas sensors and anemometric vanes
is used for collecting the chemical agent concentration
measurements. Each of the robots communicates and ex-
changes information about the gas concentration mea-
surements with its teammates. The estimated parameter
vector θ̂ converges to its real value even though the initial
information θ̂0 is inaccurate.
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TABLE I

CONSTANT PARAMETERS.

Parameter Units Values
Mean Wind Velocity u m/sec 0.5

Sampling time ∆T sec 4
Initial Position of the robot 1 x1(t), y1(t) m (20,20)
Initial Position of the robot 2 x2(t), y2(t) m (25,25)
Initial Position of the robot 3 x3(t), y3(t) m (10,10)
Initial Position of the robot 4 x4(t), y4(t) m (10,-10)
Initial Position of the robot 5 x5(t), y5(t) m (20,-20)

Initial time t sec 100
Eddy Diffusivity in Z axis Kz m2/sec 0.2113

Signal to Noise Ratio (SNR) α2 103

TABLE II

REAL, INITIAL, AND ESTIMATED VALUES OF THE PARAMETERS.

Parameter Units θ θ̂0 θ̂k

Gas Release Mass Q Kg 1000 600 1001.50
Eddy Diffusivity Kx m2/sec 12 20 12.006

Location of Explosion x0 m 2 60 1.9649
Location of Explosion y0 m 5 40 5.0707

Time of Exposion t0 sec 2 60 1.9594
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