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Abstract This paper addresses the problem of localization
and map construction by a mobile robot in an indoor en-
vironment. Instead of trying to build high-fidelity geomet-
ric maps, we focus on constructing topological maps as
they are less sensitive to poor odometry estimates and po-
sition errors. We propose a modification to the standard
SLAM algorithm in which the assumption that the robots
can obtain metric distance/bearing information to landmarks
is relaxed. Instead, the robot registers a distinctive sensor
“signature”, based on its current location, which is used
to match robot positions. In our formulation of this non-
linear estimation problem, we infer implicit position mea-
surements from an image recognition algorithm. We pro-
pose a method for incrementally building topological maps
for a robot which uses a panoramic camera to obtain im-
ages at various locations along its path and uses the features
it tracks in the images to update the topological map. The
method is very general and does not require the environment
to have uniquely distinctive features. Two algorithms are im-
plemented to address this problem. The Iterated form of the
Extended Kalman Filter (IEKF) and a batch-processed lin-
earized ML estimator are compared under various odometric
noise models.
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1 Introduction

Solving the Simultaneous Localization and Mapping
(SLAM) problem for small, resource-limited robots means
doing so without the aid of good odometric estimates and
accurate metric range sensors. This causes a problem for
traditional solutions to the SLAM problem which typically
require one or both of the above. The motivating factor for
this research is the necessity of doing SLAM on custom
miniature robots, called Scouts (Rybski et al. 2002) (Fig. 1),
that our research group has developed.

We propose a modification to the standard SLAM algo-
rithm in which we relax the assumption that the robots can
obtain metric distance and/or bearing information to land-
marks. In this approach, we obtain purely qualitative mea-
surements of landmarks where a location “signature” is used
to match robot pose locations. Landmarks correspond to
sensor readings taken at various (x, y) positions along the
path of the robot. This is a divergence from most SLAM
approaches where landmarks represent specific objects of a
known type in the environment such as edges, corners, and
doors.

In this paper, we describe two methods to solve this par-
ticular variation of the SLAM problem. The first is an on-
line method by which the Iterated form of the Extended
Kalman Filter (IEKF) processes all measurements, includ-
ing both actual odometric and inferred relative positions
(cf. Sect. 3.2), and estimates the coordinates of the locations
where images were recorded along the trajectory of the ro-
bot. In this method, landmarks correspond to images taken at
various (x, y) positions of the robot. The second method is
a batch-processed linearized ML algorithm which addresses
some of the shortcomings of the IEKF method. The IEKF
method has the advantage of being able to run in real-time
and produce an estimate as the robot navigates around the
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Fig. 1 Scouts, due to their small size (11 cm long and 4 cm diameter),
are limited to a monocular camera as their only exteroceptive sensor.
Their limited on-board computing capabilities also make them totally
dependent on a wireless proxy-processing scheme in which off-board
run the software necessary to handle behavior control as well as the
processing of the robot’s video data. The Scout used in this work is
fitted with an upward-facing Omnitech 190◦ fisheye lens. The lens
provides 360◦ horizontal field of view around the robot, effectively
functioning as an omnicamera. The robot is 11 cm long and 4 cm in
diameter

environment. The ML algorithm has the advantage of hav-
ing all of the data to process at once. This tends to produce
robust estimates as it is capable of handling the nonlinear-
ities in the system in an iterative and more robust fashion
(i.e. all Jacobians are computed at each iteration using the
new improved state estimate).

This remainder of this paper is organized as follows: Re-
lated work is described next in Sect. 2. Sections 3 and 4
describes the Extended Kalman Filter estimator and Batch
Maximum Likelihood estimators, respectively. Experimen-
tal results are shown in Sect. 5 and the paper is summarized
in Sect. 6.

2 Related work

The Extended Kalman Filter has been used for localiz-
ing (Leonard and Durrant-Whyte 1991) and performing
SLAM (Smith et al. 1990) on mobile robots for at least a
decade. Our approach differs from traditional EKF estima-
tors in that we do not have the ability of resolving specific
geometric information about the landmarks we observe in
our environment. Instead, the landmark positions are explic-
itly coupled to the position of the robot.

In previous implementations of SLAM algorithms, it is
frequently assumed that the robot is able to measure its
relative position with respect to features/landmarks (Dis-
sanayake et al. 2001; Neira and Tardós 2001) or obsta-
cles (Thrun et al. 1998) in the area that it navigates. This

implies that the robot carries a distance measuring sensor
such as a sonar or a laser scanner. The algorithms described
in this work are designed for robots that have no such sensor
modality.

Bayesian methods have also been used for mobile ro-
bot localization (such as Markov Localization) and map-
ping (Thrun et al. 1998) where the modes of arbitrary ro-
bot pose distributions are represented in a discretized grid.
Statistical methods such as Monte Carlo localization (Thrun
et al. 2000) use sampling techniques to more quickly esti-
mate the distribution of possible robot poses. Most recently,
a method of factoring complex joint probability distribu-
tions, known as Rao-Blackwellization (Murphy and Rus-
sell 2001), has been employed for stochastic robot mapping
and localization in an algorithm called FastSLAM (Mon-
temerlo et al. 2003). Distributed and hierarchical factoriza-
tions for the particles in a map have also been proposed (Eli-
azar and Ronald 2006). In general, all of these methods typ-
ically use very accurate sensors and/or robots with very ac-
curate odometry that allow them to resolve accurate maps
over large distances.

In contrast to explicit metric-based methods, more quali-
tative methods such as topological maps of nodes have been
used as well (Shatkay and Kaelbling 1997; Choset and Na-
gatani 2001). Of special note is the research into cognitive
spatial representations suggested by Ben Kuipers (1978) in
the Semantic Spatial Hierarchy (SSH) (Kuipers and Byun
1991; Remolina and Kuipers 2004). Locations are explicitly
designated by distinctive (but not necessarily unique) sensor
signatures. Our work is inspired by the SSH philosophy and
attempts to wrap it into a more formal and robust represen-
tation using the maximum likelihood techniques. Another
closely related area of research is the use of sensor “fin-
gerprints” of places for robot navigation (Tapus and Sieg-
wart 2006). This approach illustrates an elegant technique
by which a robot can build a map and disambiguate similar
locations through the use of a POMDP. In contrast, the ap-
proach described in this paper uses a maximum likelihood
algorithm and a very rich location sensor signature repre-
sentation to help disambiguate similar locations.

Stochastic sampling techniques for searching through the
space of stochastic maps have recently been proposed us-
ing MCMC (Ranganathan and Dellaert 2005) as well as a
Rao-Blackwellized (factored) Particle Filter (RBPF) (Ran-
ganathan and Dellaert 2006) techniques. The SSH and other
approaches, such as reported in Jefferies et al. (2003), merge
metric with topological approaches in order to take the best
aspects of both worlds.

Physics-based models that involve spring dynamics have
been used quite effectively to find minimum energy states
in topological map structures (Duckett et al. 2000; Howard
et al. 2002). In previous work (Rybski et al. 2005), we de-
scribe an ad-hoc physics-based method that uses spring and
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mass dynamics to minimize the energy of the topological
map. We have had some success with these methods but
have found that the parameter choices for the models tend
to be very important and that numerically solving for the set
of non-linear equations can be unstable. Recently, a method
using stochastic gradient descent has been proposed for loop
closure in very high-dimensional datasets that appears very
promising in both numerical accuracy as well as computa-
tional speed (Olson et al. 2006).

Spatial reasoning algorithms that make use of visual in-
formation for landmarks typically fall into two major cat-
egories in terms of the features that are extracted. In the
first of these two categories, specific features are extracted
from each image and are used as a “signature” of the lo-
cation where that image was taken. In the second category,
the entire image is treated as a single high-dimensional fea-
ture.

Examples of the first category include (Sim and Dudek
2001; Košecká and Li 2004; Briggs et al. 2006) where the
SIFT (Lowe 1999) feature detector is used to identify “land-
marks” in the images that are used as the input to a proba-
bilistic representation of the robot’s position. In Ulrich and
Nourbakhsh (2000), image signatures captured from an om-
nidirectional camera are used to construct a topological map
of an environment by generating histograms of the RGB and
HSV (Hue, Saturation, and Value) components. In Tapus
et al. (2004), visual landmark information is extracted and
used as a signature in a formalism called Bayesian Pro-
gramming (a generalization of Bayesian Networks, Murphy
2002) for localization of the robot. In Newman et al. (2006),
visual recognition of landmarks that are used for the iden-
tification of loop closure is used to augment a laser-based
SLAM approach. Structure From Motion (SFM) algorithms,
such as described in Dellaert and Stroupe (2002), compute
the correspondences between features extracted from multi-
ple images to estimate the geometric shape of landmarks as
well as to estimate the robot’s pose. However the applica-
bility of this algorithm is conditioned on the existence of
a sufficient number of uniquely identifiable individual fea-
tures along the trajectory of the robot.

Examples of the second category include (Porta and
Kröse 2005) where subspace methods are used to map the
images to a much lower-dimensional manifold. In Grudic
and Mulligan (2005), a spectral-clustering-like algorithm
is proposed which clusters the images to appropriately de-
scribe the topology of the map. In practice, our vision sys-
tem could be replaced by any other kind of sensor modality.
The sensor models that we use abstract the specifics of the
sensor and create instead a boolean sensor abstraction layer
which can report whether the robot has re-visited a loca-
tion.

In contrast to these previous approaches, our approach is
especially suited for use on small mobile robots where the

computational power and/or the communications bandwidth
between sensor and processors is very low. In our particu-
lar implementation, we make use of a feature detection and
tracking algorithm (KLT, Lucas and Kanade 1981; Tomasi
and Kanade 1991) to visually identify a set of sparse distin-
guishing features in an omnidirectional image captured from
the robot’s camera. This feature set becomes a “signature”
that is used to determine whether the robot has completed a
cycle in its path. These intersections become “landmarks” in
the robot’s map and serve as constraints that help to correct
for accumulated odometric error in the robot’s estimated tra-
jectory.

3 Extended Kalman filter estimator

This section describes how an Extended Kalman filter (EKF)
estimator for an appearance-based mapping system can be
derived. As described previously, such a system uses an en-
vironmental sensor that neither relies on any specific type
of features, nor takes distance measurements to landmarks.
Such a sensor determines a signature for distinct locations
along the robot’s path, stores the signature and the estimated
pose of the robot at that time instant, and finally retrieves
that information once the robot revisits the same area. Deter-
mining whether the robot is at a certain location for a second
time is the key element for providing positioning updates.
By correlating two scenes, a relative position measurement
can be inferred and be used to update both the current and
previous (at locations visited in the past) pose estimates for
the robot.

3.1 Propagation equations

The Extended Kalman filter uses a model of the robot kine-
matics to compute an estimate of the robot’s position at dis-
crete timesteps. Associated with this state estimate is a co-
variance matrix which represents the uncertainty in the ro-
bot’s position estimates over time. Our model of robot mo-
tion consists of a 3D pose vector (x, y,φ) (2D pose and ori-
entation). Our derivation of the EKF is based on an indirect
model where which uses error-state propagation (Maybeck
1982). The relevant details of the propagation equations are
provided here for completeness. For further details of the
derivation, please refer to Rybski (2003).

The measured linear (Vm) and angular velocity (ωm) are
used to recursively update the robot’s pose at discrete time
steps as shown in the following equation:

x̂r (k + 1) = x̂r (k) + Vm(k)δt cos φ̂r (k), (1)

ŷr (k + 1) = ŷr (k) + Vm(k)δt sin φ̂r (k), (2)

φ̂r (k + 1) = φ̂r (k) + ωm(k)δt. (3)
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The linearized discrete-time error-state propagation
equation in global coordinates is the difference between the
estimated state and the (unknown) true state:
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With each motion, the state vector is propagated accord-
ing to these equations. Odometric errors will continuously
decrease the quality of the robot’s estimate which will in-
crease the robot’s position uncertainty. The covariance prop-
agation takes place at time k + 1 but at this point, the robot
has not made a new observation with its sensors since time k.
This dual time index is represented by the notation k + 1|k.
The equation for the propagation of the robot’s position er-
ror covariance matrix at time k + 1|k is:

PR(k + 1|k) = E[X̃(k + 1)X̃T (k + 1)]
= ΦR(k)PR(k|k)ΦT

R (k) + GR(k)QRGT
R(k).

(7)

The QR matrix from the state error covariance propa-
gation in (7) represents the noise covariance of the robot’s
translational and rotational velocity. For a differentially-
driven robotic platform such as the Scout, where linear and
rotational velocities are a function of the left vl and right vr

wheel speeds, i.e. Vm = (vl+vr )
2 , ωm = (vl−vr )

α
, this matrix is
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where σvl
and σvr are the standard deviations of the wheel

speed noises and α is the length of the wheelbase. As can
be seen, the linear and rotational velocities are correlated as
long as the standard deviations of the linear and rotational
velocity are non-zero and not equal.

The 2D pose (x, y) of the landmarks must also be es-
timated when mapping and so these quantities must also
be integrated into the state vector. Unlike the robot, the
coordinates of the landmark locations XLi

do not change
over time. Thus the full state vector X contains all of the
poses to be estimated of the robot XR along with all the
landmarks XLi

. The error-state propagation and covariance
equations are the same form as (5) and (7), respectively, but
where the state vector and covariance matrix are of dimen-
sion N + 1 where N is the number of landmarks.

3.2 Update equations

If the robot were to only propagate its state estimates and
corresponding covariance using the above equations, the co-
variance would increase without bounds. To correct for odo-
metric errors and to reduce the uncertainty, the robot must
take sensor readings and compare those with the expected
ones given the current state estimates.

For appearance-based mapping, a sensor modality is pre-
ferred that neither relies on any specific type of features, nor
requires distance measurements. Using the robot’s sensor, a
unique visual signature for distinct locations along the ro-
bot’s path can be obtained. These signatures are associated
with the estimated pose of the robot at that time instant, and
can be retrieved once the robot revisits the same area. Deter-
mining whether the robot is at a certain location for a second
time is the key element for providing positioning updates.
By correlating any two scenes, we can infer a relative posi-
tion measurement and use it to update both the current and
previous pose estimates (at locations visited in the past) for
the robot. This in effect will produce an accurate map of dis-
tinct locations within the area that the robot has explored. In
effect, the landmarks that the robot detects explicitly repre-
sent the specific locations that the robot has visited.

Every time the robot takes an image of its surround-
ings, it employs an algorithm to determine whether the sen-
sor reading corresponds to a previously seen locations XLi

,
or to a novel location XLj

. We use the above notion of
an appearance-based sensor model (more thoroughly de-
scribed in Rybski et al. 2005) and define the sensor reading
to be:

Zi(k + 1) = 02×1 + Nzi
(k + 1)

= RXLi
+ Nzi

(9)

where RXLi
is the landmark’s state vector in the robot’s co-

ordinate system R, and Nzi
(k + 1) is Gaussian measure-

ment noise. The 02×1 value is an inferred sensor reading
which reflects the robot’s assertion that its physical location
directly corresponds to the sensor reading. That is, the only
way the robot could receive this sensor reading is if RXR

is the same location as RXLi
. The robot is assumed not to
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have any other way to measure distances to landmarks and
so any erroneous displacement in this reading is captured by
the noise term Nzi

(k + 1).
The inferred and estimated sensor readings are:

Zi = G
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− pR) + Nzi
, (10)
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]
(12)

is the rotation matrix that relates the orientation of the frame
of reference R on the robot with the global coordinate frame
G. By subtracting the true sensor reading from the estimated
sensor reading, the linearized measurement error is com-
puted as:

Z̃i = Zi − Ẑi
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Adding entries for all of the variables, the full equation is
expressed as:
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The Hi matrix is used to update the state estimate for
the pose of the robot XR and the positions of the landmarks
XLi

every time an image is recorded. The remaining update
equations are:

r(k + 1) = Z(k + 1) − Ẑ(k + 1), (15)

S(k + 1) = H(k + 1)P (k + 1|k)HT (k + 1)

+ R(k + 1), (16)

K(k + 1) = P(k + 1|k)HT (k + 1)S−1(k + 1), (17)

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)r(k + 1), (18)

P(k + 1|k + 1) = P(k + 1|k)

− K(k + 1)S(k + 1)KT (k + 1). (19)

The difference between the measured and estimated sen-
sor reading in (15) is called the residual. The covariance ma-
trix of the residual is shown in (16). These two values are
used to compute the Kalman gain (which affects how much
to change the state vector based on the correction required)
in (17) which is used to update the state vector and state
covariance in (18) and (19), respectively.

3.2.1 Iterative extended Kalman filter

Since the accuracy of this update depends on the accuracy
of the linearization, we employ the Iterated form of the Ex-
tended Kalman Filter (IEKF) (Gelb 1994; Maybeck 1982).
First, the IEKF linearizes the measurement equation (13)
around the current estimate X(k + 1|k) of the state and cal-
culates the updated state estimate X̂(k +1|k +1) using (15),
(16), (17), (18). Then, the filter resets X(k + 1|k) to this
updated value and the same process is repeated until it con-
verges (the rate of change in the state estimate drops below a
preset threshold). The state covariance P(k + 1|k) is not up-
dated with (19) until after the state estimate has converged.

3.3 Simulation experiment

This method was tested on a simulated Scout robot. The
standard deviation of the estimated wheel encoder error was
1.4 cm/s. The true path of the simulated robot is shown in
Fig. 2(a) as a square that is traversed twice. Sensor snapshots
are taken roughly every 0.5 m as the robot traverses the path.
The first time around the loop, the robot is essentially in an
exploration mode. Each landmark that it observes is unique
and thus, it adds the estimated positions of those landmarks
(i.e. robot positions where the images were taken) directly
to the state vector. Since the robot has no other information
on those landmarks, the first sighting is the best informa-
tion available. The second time around the loop, the robot
re-discovers the landmarks that it saw on its first pass. If the
Kalman update procedure is used, the odometric error in the
robot’s position will be reduced. In addition to correcting
the current position estimate, each of the previous landmark
positions will also be corrected. If no update step is done,
as shown in Fig. 2(b), the robot’s path estimate will be very
poor and multiple positions will exist for the same landmark.

As the robot moves through the environment without any
sensor updates, the certainty in its odometric estimate be-
comes increasingly worse. The covariance of the robot’s po-
sition with no landmark corrections is shown in Fig. 3.
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Fig. 2 True and estimated (corrupted by odometric error) paths for
the simulation experiments. The path starts from the lower left, moves
counter-clockwise, and is traversed twice. Sensor readings are taken at

the corners of the square and at the midpoints of each path leg. The
scale is in meters

In contrast, Fig. 4 shows the landmark positions and po-
sition uncertainty of each location after correction by corre-
lating the robot’s position with the sensor readings. After the
initial path around the cycle, the first subfigure (timestep 71)
shows the large uncertainty accumulated in the robot’s po-
sition. At timestep 72, the first update step is done and the
uncertainty is greatly diminished. This is mostly due to the
small covariance of the sensor reading vs. the large covari-
ance of the robot’s odometric propagation. After propagat-
ing to timestep 86, the error covariance of the robot’s path
estimate (shown as a dashed line) has generated a some-
what substantial error. This error is once again diminished in
timestep 87 when another previously-seen landmark is ob-
served.

Figure 5 illustrates how the estimated landmark positions
are improved by using the IEKF and how the sensor resid-
ual (the error between estimated and true sensor reading)
improves with respect to the 3σ upper and lower bounds of
the residual covariance estimates.

4 Batch maximum likelihood estimator

The EKF is a recursive “real-time” estimator which process-
es each sensor reading as it arrives. An alternative approach
is to wait until all of the sensor readings have arrived and
then process all of the data at once. This section describes

how to formulate such a batch maximum likelihood (ML)
estimator as a summation of cost functions that must be min-
imized.

Two separate cost functions must be defined. The first
cost function represents the odometric estimate of the ro-
bot’s pose and is described as:

(yi − hyi
(X))T P −1

i (yi − hyi
(X)) (20)

where yi is a vector that describes the measured displace-
ment between the previous position measured at time i − 1
and the current position measured at time i. The function
hyi

(X) computes the predicted displacement of the robot
given the current state vector from time i − 1 to time i. The
covariance of this measurement is Pi .

As described in the previous section, the state vector of a
maximum likelihood estimator consists of all of the neces-
sary parameters to solve for. For the case of a mobile robot
moving on a 2D surface, the variables represent individual
locations to which the robot has traveled. In the previous
section, this was the set of sensor readings S. It was also
assumed that the robot only traveled to D distinct locations
and that |D| < |S|. This assumption is not quite true since
while the robot may have traveled near the same location
several times, those exact positions of the robot were not
completely identical. That means that simply merging the
nodes as was done previously will not provide the most ac-
curate estimate. Thus, S and D will have the same number
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Fig. 3 Propagation of uncertainty as the robot traverses its environ-
ment. No Kalman update step is done and so multiple positions ex-
ist for each landmark measurement and the position estimate becomes

progressively worse with each step. Each subfigure represents the lo-
cation where the robot has taken a sensor reading. The 3σ region of
uncertainty is shown surrounding the robot’s estimated position
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Fig. 4 Propagation of uncertainty as the robot traverses its environ-
ment with Kalman update correction. Each pair of images shows the
estimated position of the robot with uncertainty the timestep before
and after the sensor reading was taken and the landmark positions

were correlated. The estimated path of the robot just before the update
is drawn with a dashed ellipse. The 3σ region of uncertainty is shown
surrounding the robot’s estimated position as a solid ellipse
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Fig. 5 The effect of different numbers of iterations in the update step
of the IEKF. The plots show the sensor residual r = z − ẑ and the 3σ

upper and lower bounds of the residual covariance S. The plots are

of the x position of the robot. The y position (not shown) has similar
characteristics. These residuals are all for landmark positions that have
been visited a second time

of elements and the cost function associated with the sensor
readings is:

(zi − hzi
(X))T R−1

i (zi − hzi
(X)). (21)

In the sensor cost function, zi is a vector that describes
the measured displacement between a position measured
previously at time j (not limited to time i − 1) and the cur-
rent position at time i. Using the notion of the appearance-
based sensor, the value of zi will always be 0 since the land-
marks correspond directly to the positions of the robot. The
function hzi

(X) computes the predicted displacement of the
robot given the current state vector from the previously-seen
location at time j to the current time i. The covariance of
this measurement is Ri .

As the robot discovers new landmarks, it adds their po-
sitions to the state vector and marks those variables as
the locations of the original sightings. When the robot re-
discovers a landmark, it also adds this position to its state
vector, but flags it as previously-seen. The sensor cost func-
tion in (21) always compares the current measured position
of a landmark against the first discovered position of that
landmark.

Combining the motion and sensor cost functions ((20)
and (21)), the complete cost function is:

∑
i

(yi − hyi
(X))T P −1

i (yi − hyi
(X))

+
∑
j

(zj − hzj
(X))T R−1

j (zj − hzj
(X)).

The number of motion cost function terms is the number
of sensor readings minus one, |S| − 1. The number of sen-
sor cost function terms corresponds to the number of non-
unique landmarks the robot has identified.

4.1 Linearized estimator

The non-linear nature of this problem, introduced by the
need to handle the rotational component of the robot, means
that finding the best solution can be analytically and compu-
tationally challenging. The method that we use for finding
the minimum solution is to linearize the system with a first-
order linear approximation such as a Taylor series expan-
sion. Thus, the sensor and motion measurement functions
take the form:

h(X) � h(X̂) + ∇Xh(X)|
X=X̂

(X − X̂)

� h(X̂) + H(X − X̂) (22)

where X is the true (unknown) state vector, X̂ is the robot’s
estimate of the state vector, and H is the Jacobian of the
cost function h. Expanding this equation for each of the cost
functions and taking the first derivative to solve for its mini-
mum, a recursive formulation of the estimator can be found
which is quadratic in X. To minimize the function with re-
spect to X, the first derivative is taken and the equations are
set to 0. This results in the following equation:

X = X̂ +
n−1∑
i=1

HT
yi

P −1
i Hyi

+
(

n∑
i=1

HT
zi

R−1
i Hzi

)−1 n−1∑
i=1

Hyi
P −1

i (yi − hyi
(X̂))

+
(

n∑
i=1

Hzi
R−1

i (zi − hzi
(X̂))

)
(23)

where the X̂ on the right-hand side of the equation is the ini-
tial estimate of the system (see Rybski 2003 for more details
about the derivation).
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The first value of this estimate can be obtained from the
robot’s raw odometry, if no other estimate is available. This
is a recursive form where the result from the left-hand side of
the equation is plugged back into the equation on the right-
hand side. This first-order linear approximation of the mea-
surement function is only valid for small errors in the esti-
mate of X. As the equations are iterated, the state estimate
will continue updating until it converges to a stable solution.

The derivations of the cost functions for the odometry
propagation and place sensor measurements are described
below:

4.1.1 Odometry propagation measurement

The measurement function for the displacement estimates
between subsequent nodes based on their odometry is de-
fined as:

hyi
(X) =

[G
RCT (φr) 02x1

01x2 1

]
(XLi

− XLi−1) (24)

where XLi
= [xi yi φi]T and XLi−1 = [xi−1 yi−1 φi−1]T are

the positions of the robot at time i and i − 1, respectively,
and G

RC(φr) is the same as (12).
The first-order Taylor approximations of the odometry

measurement function is defined as:

ỹi = [
−CT (φ̂Li−1) −CT (φ̂Li−1)J (X̂Li

− X̂Li−1)
...

CT (φ̂Li−1) 02x1
][

X̃Li−1

X̃Li

]

=
[
HLi−1

... HLi

][
X̃Li−1

X̃Li

]

= Hyi

[
X̃Li−1

X̃Li

]
. (25)

X̃ is the error in the state estimate X̂. These expressions for
the error terms are only important for calculating the Jaco-
bian and are not used for any other part of the estimator.

4.1.2 Place sensor measurement

The measurement function for the estimated distance be-
tween two nodes based on the virtual place sensor’s reading
that are on the same location is defined as:

hzi
(X) = (Xpi

− Xpj
) (26)

where Xpi
= [xi yi]T and Xpj

= [xj yj ]T are the global 2D
poses of the robot’s position (orientation is not considered).
Orientations of these landmarks are not tracked as some sen-
sor modalities may not have an orientation associated with
their readings.

Likewise, the first-order Taylor approximations of the
place sensor is defined as:

z̃i =
⎡
⎣−1 0

... 1 0

0 −1
... 0 1

⎤
⎦

[
X̃pj

X̃pi

]

=
[
Hpj

... Hpi

][
X̃pj

X̃pi

]
(27)

= Hzi

[
X̃pj

X̃pi

]
. (28)

4.2 Simulation results

This estimator was run on the simulated data shown in
Fig. 6(b). Figure 7 shows plots of the covariance matrices
associated with each of the individual odometry readings
at each of the locations where sensor readings were taken.
Each odometric reading is considered to be independent of
each other and thus, the covariance matrices are only de-
fined between a single pair of sensor readings. Because of
the nonlinearities in the system, this ML algorithm must be
iterated several times until convergence. The convergence of
this algorithm also depends greatly upon the initial positions
of the nodes.

Figure 8 illustrates the multi-step process of how the lin-
earized ML estimator converges to a solution. The uncor-
rected odometric readings are used as the initial estimate
for the state vector. The iterative process was stopped when
the average landmark update per iteration dropped below
0.001 m. In this experiment, only four iterations of the al-
gorithm were necessary before the stopping condition was
reached. Because the algorithm is a closed-form solution,
the computational complexity is based on the time required
to invert the covariance matrix. This is order O(n3) where
n is the number of places the robot has traveled and taken a
sensor reading.

5 Experimental results

The miniature Scout robots were used as the experimental
platform for this work. Scouts, such as the one shown in
Fig. 1, are differentially-driven robots 11 cm long and 4 cm
in diameter. Because of the small size of the Scout, a camera
is the only extereoceptive sensor that is used. Video data is
transmitted from the robot to an off-board workstation for
processing as the robot’s on-board computers are insuffi-
cient to process its own video stream. All of the algorithms
described in this paper are executed on the off-board com-
puters and operate on the video data stream transmitted from
the robot.

For these experiments, a Scout robot was teleoperated
around an environment (in order to collect ground truth) and
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Fig. 6 True and estimated (corrupted by odometric error) paths for
the simulation experiments. The path starts from the lower left, moves
counter-clockwise, and is traversed twice. Sensor readings are taken at

the corners of the square and at the midpoints of each path leg. The
scale is in meters

Fig. 7 Uncertainty ellipses for each of the independent odometric
readings used by the linearized maximum likelihood estimator

image data was captured from its camera. In their original
design, the Scouts were equipped with forward-facing cam-
eras with a 65◦ field of view. For this work the Scout has
been equipped with an upward-facing 190◦ vertical/360◦

horizontal field of view lens from Omnitech Robotics (Om-
nitech Robotics 2002). An example image taken from this
camera and the corresponding de-warped image is shown in
Fig. 9.

In order to compute a signature for each location visited,
a set of features must be identified and extracted from the
image. However, in the most general case, the robot will
be required to explore a completely unknown environment
and as such, a specific feature detection algorithm chosen
ahead of time could fail to find a distinctive set of fea-
tures.

For this work, the Lucas-Kanade-Tomasi (KLT) feature
tracking algorithm is used to compare images to determine
the degree of match. The KLT algorithm consists of a reg-
istration algorithm that makes it possible to find the best
match between two images (Lucas and Kanade 1981) as
well as a feature selection rule which is optimal for the as-
sociated tracker under pure translation between subsequent
images (Tomasi and Kanade 1991). An implementation of
the KLT algorithm1 is used to identify and track features be-
tween successive images as a method for determining the
match between two images. KLT features are selected from
each of the images and are tracked from one image to the
next taking into account a small amount of translation for

1Originally developed by Stan Birchfield at Stanford University (KLT
1998).
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Fig. 8 Four steps in the convergence of the linearized maximum likelihood estimator. By the fourth step, the estimate has almost converged

each of the features. The degree of match is the number of
features successfully tracked from one image to the next.
A total of 100 features are selected from each image and
used for comparison. To take into account the possibility

that two panoramic images might correspond to the same
location but differ only in the orientation of the robot, the
test image is rotated through discrete angles (typically 16)
the best match is found. The 16 rotated images are gener-



Auton Robot (2008) 24: 229–246 241

Fig. 9 A raw and de-warped
image taken from the Omnitech
190◦ lens

Fig. 10 The 100 best features
selected by the KLT algorithm
in the top image are shown as
black squares. The bottom
image shows how many features
were tracked from the top image
to the bottom image
(corresponding to a robot
translation of approximately
0.6 m)

ated and cached when each new image is found. This oper-
ation only takes a few seconds per image on a 2.3 GHz Intel
Pentium-M processor. Figure 10 shows the 100 best features
identified in an image and shows how many of those features
are successfully tracked to the lower image.

This approach is similar in flavor to Lowe (1999) in that
the image is reduced in resolution for the sake of rapid
matching. In that work, a pyramid structure involving sev-
eral levels of dimensionality reduction is created from each
image and different images are matched from the lowest res-
olution to the highest. In our case, the KLT features serve as
a single level of “dimensionality reduction” that is used for
matching one image with the next.

It is important to note that no attempt is made to track the
features over multiple frames of video. This technique does
not attempt to compute structure from motion on this data
primarily because the algorithms described in this research
will ultimately be run on robots that do not have real-time
video processing capability.

While mapping, the mobile robot travels around an un-
known area and stores images from its camera. KLT is used
to compare images recorded at different locations along the

trajectory of the robot. When the received image does not
match a previously recorded one, it is assumed that this lo-
cation is novel and is added to the state vector of landmarks.
This constitutes an exploration phase where the robot cre-
ates its world model. The rate at which images are collected
can either be uniform based on the robot’s odometry, or it
can be data-driven. In general, sensor readings are only nec-
essary at points where a noticeable change in the number of
matched features is detected. When the robot encounters an
image which matches one that was previously seen, it con-
siders these features to be the same and corrects its estimate
of the landmark position.

The KLT algorithm and omnicamera setup are treated as
a “virtual sensor” that returns true or false as to whether the
robot has returned to a location that it has visited before.
This information is given to the estimators and a relative
position measurement Z = 02×1 + Nz between the current
position of the robot and that of the same location visited
in the past is inferred. The accuracy of this measurement is
inferred by the locus of points (forming an ellipsoid) around
a location, with the characteristic that the images recorded
at each of them are considered identical by the KLT. The
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parameters of the ellipse are computed empirically by how
far the robot has to move from a particular location before
the signature match fails.

Once a set of sensor readings are found to match, the
physical (x, y) location of the robot is stored as a landmark
in the state vector. This is different from other mapping ap-
proaches whereby specific objects in the environment are
stored as landmarks. In our approach, the features identi-
fied in the image are only used for finding the correlation
between images rather than being used to identify the po-
sitions of structure in the environment. The visual informa-
tion is abstracted away to a boolean function which returns
whether the robot has returned to the same location. Thus,
only the robot’s position where those sensor signatures line
up is used as a landmark in the state vector.

The image matching algorithm is the most computation-
ally expensive part of the mapping process. Finding the
100 best KLT features in an 1507 × 240 pixel image on
a 2.3 GHz Intel Pentium-M processor takes approximately
0.7 seconds. Tracking these features between one image
and the next takes approximately 0.8 seconds. Because this
process is repeated for each of the 16 different rotated im-
ages for a given location each new image must be compared
against the history. As such, this algorithm will not run in
real time for large numbers of stored images. However, due
to the proxy-processing nature of the Scout robot, the im-
age processing algorithm can be offloaded to any number of
available off-board computers to help speed up the process
through parallel processing of the image data.

5.1 Office environment experiment

The robot was moved around an environment in a path that
intersected itself five times and an image was taken from the
camera roughly every 0.3 m. The robot’s path is shown in
Fig. 11.

The KLT algorithm was used to track features between
each pair of images in order to find locations where the ro-
bot’s path crossed itself. Figure 12(b) shows the true path

of the robot and the locations where the path crossed itself
and landmarks were thus observed. Figure 12(a) shows the
estimated path of the robot as computed by the robot’s noisy
odometry readings. The estimated landmark positions ob-
served during the run are shown as well. This figure does
not assume that any sensor updates were made.

The different estimators were run on this dataset in order
to compare their relative performances. The average Euclid-
ean error between the estimated positions and ground truth
is shown in Table 1.

5.2 Comparison of estimators with varying noise models

A series of synthetic paths were generated from the above
data set and used to test the performance of each of the es-
timators using different odometric noise models. The simu-
lated odometric noise ranged from a standard deviation of
10 deg/s to 120 deg/s in encoder error (in 10 deg incre-
ments). A set of 100 robot paths were created for each noise
variance setting. For each path, both of the robot’s wheel
encoders was corrupted by noise drawn from a distribution
with the same variance.

Figure 13 shows the results of the different estimators
on paths affected by increasing levels of odometric error.
The linearized ML estimator had the least amount of error in
the placement of the landmarks. The performance of IEKF
estimator was equivalent to linearized ML up to an error of
around 50 deg/s but rapidly diminished in accuracy as the
odometric errors increased.

Table 1 Average Euclidean error for the five landmarks generated in
for the experiments using images and odometry captured from a real
robot

Estimator algorithm IEKF Batch ML

Average Euclidean error 0.171 m 0.092 m

Fig. 11 The path of the robot
through the office environment
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Fig. 12 Real world experiments in an indoor environment (scale is in meters). Landmarks in the true path occur wherever there is an intersection
in the path. Positions in the path are labeled chronologically

Fig. 13 Comparison of the means and standard deviations of the two estimators on datasets with varying degrees of encoder error. Standard
deviation of errors ranged from 10 deg/s to 120 deg/s

5.3 Data association

In the previous experiments, the office was cluttered enough
such that 100 KLT features were sufficient to disambiguate
all of the locations where the robot visited. A set of 320
images was taken at 0.3 m intervals in the office environ-
ment used for these experiments. Figure 14 shows a plot of
the Euclidean distance estimate between each pair of loca-
tions as a function of the number of features that the KLT
algorithm can track between the respective images. As can
be seen, until the number of features tracked drops between
40–50, the likelihood that the two images are within 0.5 m

of each other is extremely high. With fewer features, it be-
comes extremely hard to tell whether a location is the same
or not. In this graph, there were no values of matched fea-
tures of 60 and higher. A match of 100 features would indi-
cate that the robot was in exactly the same location.

In a feature and texture-rich environment such as an of-
fice or a home, we have found that perceptual aliasing is
not that much of a problem. Finding and tracking such a
large collections of KLT features ensures that each location
is unique. However, in environments that do not have unique
sets of features, such as in sparse corridors, locations will
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Fig. 14 Comparison of the number of features tracked vs. the Euclid-
ean distance between locations where the features were obtained

become more ambiguous and a mechanism for handling im-
properly matched images will be needed.

6 Summary

Localization and mapping is a challenge for all mobile ro-
bots. Existing methods which work well on large robots
do not necessarily scale well as the size of the robot de-
creases. Sensors typically used in mapping algorithms, such
as sonars, laser, and stereo camera pairs, are not appropri-
ate for many miniature robots. Additionally, odometric esti-
mates tend to get worse as the robot becomes smaller since
its wheels are likely to slip more as well as being severely
affected by distortions in the surface that it travels over.

A method for performing localization and map construc-
tion with sensor-poor robots has been proposed in which
several maximum likelihood-based estimators, such as batch
methods and the recursive Kalman filter, have been formu-
lated to relax the assumption that our sensors return met-
ric distance information to landmarks. To accomplish this,
a conventional sensor modality is converted into a “virtual
sensor” which is used to determine whether the robot has
returned to a location that it has visited before. Using this
methodology, landmarks are designated by their sensor sig-
natures and indicate locations the robot has visited. The vir-
tual sensor is both the strength and the weakness of the
method as it allows correlations to be found between lo-
cations that the robot has visited, but global metric infor-
mation, such as orientation, can be difficult to capture. As
shown in the experimental results, the local structure of the
landmarks can be recreated, but there can be global mis-
alignments in rotation that can be corrected by incorporating
additional information such as the known global position of

one of the landmarks. The effectiveness of this algorithm has
been illustrated on simulated and real world data.

Experimental results are presented throughout this paper
both in simulation and using a miniature mobile robot with
an omnicamera in an indoor office environment. As it tra-
verses the environment, the robot’s path is reconstructed us-
ing the estimators developed in this work and the results are
compared. The results demonstrate that both these estima-
tors are capable of reducing the error in the robot estimates
of its path even when the odometry is very poor and the
only sensory information available is in the form of loca-
tion signatures. Furthermore, our studies show that the lin-
earized maximum likelihood estimator produces the best re-
sults. The Kalman filter is fairly close in estimate quality un-
til the robot’s odometric error exceeds a threshold at which
point the estimation quality of the Kalman filter decreases
significantly.
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