Detecting Outliers in Topological Datasets: Algorithms and Applications

Presented by: Chang-tien Lu
Department of Computer Science
University of Minnesota
Overview

- Background
- Outliers Detection: An Introduction
- Application Domain: Twin-Cities Traffic Data
- Related Work
 - Geometry Approach: Global Approach
 - Geometry Approach: Local Approach
- Topological Approach
- Experimental Observations and Results
- Discussion & Future Direction
Background

• Huge amounts of Spatial data
 • NASA EOS: generate 50GB of data per hour

• Data mining
 • Discover interesting, implicit, and previous unknown knowledge from large databases
 • Discover knowledge rules, constraints, regularities

• Spatial Data Mining
 • Discover interesting spatial patterns and features
 • Capture intrinsic relationships between spatial and non-spatial data
 • Present data regularity concisely and at higher conceptual levels

• Applications of spatial data mining
 • GIS systems
 • Remote Sensing
 • Image Database Exploration
 • Medical Images
Outliers Detection

- Four Categories of Knowledge Discovery
 - Dependency Detection, e.g., Association Rules
 - Class Identification, e.g., Classification, Clustering
 - Class Description, e.g., Concept Generalization
 - Exception/Outlier Detection

- Informal Definitions of Outliers
 - An observation which appears to be inconsistent with the remainder of that set of data
 - An observation which deviates so much from other observations
 - To arouse suspicious that is was generated by a different mechanism

- Application of Outlier Detection
 - Discovery of truly unexpected knowledge
 - Electronic commence exceptions, credit card fraud
 - Detect abnormal events in the past
 - Predict potential trends in the future
 - New direction for future invest, marketing
Application Domain: Twin-Cities Traffic Data

- Map and Tables

![Detector map in station level](image)

Figure 1: Detector map in station level

![Detector-station Relationship and Basic Tables](image)

(a) Relationship between detectors and stations
(b) Three basic tables

Figure 2: Detector-station Relationship and Basic Tables

- Traffic Outlier Related Questions
 - What forms the abnormalities manifest themselves?
 - When those abnormalities arise, and how long does it last?
 - Where those abnormalities happen?
 - How would it affect its neighborhood traffic stations?
Our Topological Approach

- Comparison

<table>
<thead>
<tr>
<th></th>
<th>Geometric (Multi-dimension)</th>
<th>Topological</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global</td>
<td>Local</td>
</tr>
<tr>
<td>Distance</td>
<td>Ng</td>
<td>Ramaswamy</td>
</tr>
<tr>
<td>Density</td>
<td>Yu(FindOut)</td>
<td>Breunig(OPTICS – OF)</td>
</tr>
<tr>
<td>Statistical (Dist)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical (Dep)</td>
<td>Ruts</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of related work
Geometric: Global: Distance Based

- Definition
 - For a k dimensional dataset T with N objects
 - An object o in T is a $DB(p,D)$-outlier
 - At least fraction p of the objects in T lies greater than D from o
 - Execute a range search with radius D for each object o
 - Complexity $O(kN^2)$

- Cell-based algorithm
 - Divide each dimension i into m_i partitions
 - Assign objects to the cells
 - Complexity, linear to N, exponential to K
 - Efficient when $K \leq 4$

- Key weakness
 - Require the existence of an appropriate distance function
 - Hard to find distance function for categorical attributes
 - In a high-dimensional space, almost all pairs of points are about as far away as average
 - Require user to specify a distance d which could be difficult to determine
 - Does not provide a ranking for the outliers
Geometric: Global: Wavelet Transform, Cell Based (Find-Out)

- Remove the clusters from the original data and identify outliers

Algorithm
- Quantize feature space
- Apply wavelet transform
- Find the connected components (clusters)
- Map data to the clusters
- Outliers = feature space - clusters - boundaries

Time Complexity
- \(\max(O(N), O(K)) \), \(N \): no of objects, \(K = m^d \), \(m \): no of cells, \(d \): no of dimensions

Key weakness
- Unfit for high dimension, unless dimensionality reduction (e.g., PCA) can be done
- The definition of significant cell is a global parameter

Example
Geometric: Statistical (Distribution threshold)

- main idea
 - *Fit the dataset to a known standard distribution, determine outliers using this distribution*
 - *Discordancy tests: distribution-based definitions of outliers*

- Different Discordancy Tests
 - *The data distribution*
 - *Whether the distribution parameters are known*
 - *No. of expected outliers*
 - *Types of expected outliers*

- Key weakness
 - *For many applications, distribution of attribute values is unknown*
 - *Apply distribution fitting*
 - Given distribution may not fit any standard distributions
 - Take long time to conduct such fitting
 - *Almost all of these tests are univariate, unsuitable for multidimensional datasets*
Geometric: Statistical (Depth threshold)

- **Main idea**
 - Organize the data objects in layers in the data space
 - Outliers are more likely to occur in shallow layers

- **Simple definition of depth**
 - Convex hull peeling depth
 - Repeatedly find the convex hull of the set of points
 - Assign depth
 - Remove the points on the convex hull

- **Key weakness**
 - *Not applicable for high dimensional datasets*
 - Best case convex hull computation: $\Omega(N^{[k/2]})$
 - N: no. of objects, k: dimensionality
 - Restricted to be extreme values
 - Not capture distance and distribution
 - Possibility: High depth, but far away from most of the points
 - Example: Bi-modal distribution
Geometric: Local: Distance

- **Main idea**
 - Based on the distance of a point from its k-th nearest neighbor
 - Rank each point on its distance to its k-th nearest neighbor
 - Top n points in the rank \Rightarrow outliers

- **Key weakness**
 - User specify: parameter k

- **Algorithm**
 - Generate partitions
 - Use a clustering algorithm, e.g. CF-Tree in BIRCH
 - Compute bounds on d^k for points in each partition
 - Lower bound and upper bound
 - Identify candidate partitions containing outliers
 - Prune entire partitions that cannot contain outliers
 - Compute outliers from points in candidate partitions
Geometric: Local: Density-based

- Main idea
 - Outlier degree: determined by clustering structure in a bounded neighborhood of the object
 - Objects are outliers relative to their local, surrounding object distribution

- Key idea
 - Eps-neighborhood: within a radius Eps of a given object
 - Core object: Eps-neighborhood of an object contains at least a minimum number, MinPts
 - Density-reachable: p is within the Eps-neighborhood of q, and q is a core object

- Define outlier factor
 - Based on the same theoretical foundation as density based cluster analysis
 - Capture this relative degree of isolation or outlierness

- Key weakness
 - $O(n^2)$, n: no of objects, depends on k-nearest-neighbor query, with spatial index: $O(n \log(n))$
 - User specify: Eps, and MinPts

- Examples
Local Topological Approach

- Given
 - v is the attribute data set in s
 - Topological Graph $G = (V, E)$

- Output
 - $\text{Outlier} _\text{Set}$

- Steps
 - For each data object
 - Find its topological neighbors
 - Calculate the average distance to its neighbors in s
 - Construct the distribution model
 - Detect outliers via the distribution model

![Diagram](image)

Figure 3: Topological Space and Attribute Space
Topological Algorithm for Outlier Detection

Input:
- \(S \) is the multidimensional attribute space;
- \(D \) is the attribute data set in \(S \);
- \(F \) is the distance function in \(S \);
- \(ND \) is the depth of neighbor;
- \(G = (D, E) \) is the topological graph;
- \(CI \) is the confidential interval;

Output: Outlier Set

\[
\text{for}(i=1; i \leq |D|; i++)\{
 O_i = \text{Get_One_Object}(i, D); /* Select each object from } D */
 \text{NNS} = \text{Find_Neighbor_Nodes_Set}(O_i, ND, G);
 /* Find neighbor nodes of } O_i \text{ from } G */
 \text{Accum_Dist} = 0;
 \text{for}(j=1; j \leq |\text{NNS}; j++)\{
 O_k = \text{Get_One_Object}(j, \text{NNS}); /* Select each object from } \text{NNS} */
 \text{Accum_Dist} += F(O_i, O_k, S)
 \}
 \text{Avg_Dist} = \frac{\text{Accum_Dist}}{|\text{NNS}|};
 \text{Add_Element}(\text{Avg_Dist_Set}, i); /* Add the element to } \text{Avg_Dist_Set} */
\}
\text{\mu} = \text{Get_Mean}(\text{Avg_Dist_Set}); /* Compute Mean */
\text{\delta} = \text{Get_Standard_Dev}(\text{Avg_Dist_Set}); /* Compute Standard Deviation */
\text{Normalize}(\text{Avg_Dist_Set}, \mu, \delta); /* Normalize } \text{Avg_Dist_Set} */
\text{Outlier_Set} = \text{Check_Table}(\text{Avg_Dist_Set}, CI); /* Derive the } \text{Outlier_Set} */
\text{return } \text{Outlier_Set};
Experiment Design

- **Experiment Data Set**
 - *Twin-Cities Traffic Data*
 - *Point: Each station*
 - *Edge: each station and its neighbor stations*
 - *Each data point*
 - Attribute Values
 - Successor List
 - Predecessor List
 - Size: 256 bytes

Figure 4: Experimental Layout
Parameters of Interest

- Parameters
 - Physical Page Clustering Methods
 - CCAM
 * Cluster the node of the network via graph partitioning
 * Each partition corresponds to one disk page
 - Cell Tree
 * Each cell-tree node corresponds to a convex polyhedron
 * Each cell-tree node corresponds to one disk page
 * Viewed as a combination of Binary Space Partitioning (BSP) and r^+-tree
 - Z-order
 * Interleaving the bits in binary representation of the two values
 - Buffer Management Strategies
 - LRU: Least Recently Used Algorithm
 - MRU: Most Recently Used Algorithm
 - FIFO: First In First Out
 - Page Size
 - Buffer Size
 - Number of Neighbors
 - Neighborhood Depth

- Measures
 - I/O cost (number of page access)
 - CRR value = $(\text{Total number of unsplit edges})/(\text{Total number of edges})$
Experimental Observation and Results

- **Step 1: Model Construction**
 - *Compute global distribution*
 - *Nest Loop index join*

- **Step 2: Outlier Detection**
 - *Random Point Test*
 - *Detect Outliers along a Route*
 - *Detect Outliers within a Region*
Model Construction

- **Fixed Parameters**
 - Page size: 2K
 - Buffering strategy: LRU
 - CRR value: CCAM = 0.81 Cell = 0.69 Z-order = 0.51

- **Variable Parameters**
 - Number of buffers: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
 - Clustering strategy: CCAM, Cell Tree, Z-order

![Graph](image)

Figure 5: Effect of buffering on data page accesses (Block Size = 2K)

- Increase Buffer size => reduce number of page accesses
- CCAM has the best performance
Model Construction

- **Fixed Parameters**
 - *Page size*: 2k
 - *Page clustering strategy*: CCAM (CRR:0.81)
 - *Neighborhood depth*: 1

- **Variable Parameters**
 - *Number of buffers*: 4, 6, 8, 10, 12, 14, 16, 18, 20
 - *Buffering strategy*: MRU, LRU, FIFO

![Figure 6: Effect of buffering strategy (Block Size = 2K)](image)

- *LRU* has the best performance with small buffer size
- *FIFO* and *LRU* perform better with large buffer size
Model Construction

- Fixed Parameters
 - Buffer Size: 64k

- Variable Parameters
 - page size: 1K, 2K, 4K, 8K
 - Clustering strategy: CCAM, Cell Tree, Z-order

- Measure
 - Number of page accesses

![Graph showing effect of page size on data page accesses](image)

Figure 7: Effect of page size on data page accesses (Buffer Size = 64K)

- CCAM has the best performance
- Increase page size => reduce number of page accesses
Model Construction

- Fixed Parameters
 - Buffer Size: 64k

- Variable Parameters
 - page size: 1K, 2K, 4K, 8K
 - Clustering strategy: CCAM, Cell Tree, Z-order

- Measure
 - CRR value

![Figure 8: CRR value for different page size](image)

- CCAM has the highest CRR value
- High CRR => Low I/O cost
Model Construction

- **Fixed Parameters**
 - *Page Size*: 1k
 - *Buffer size*: 4K
 - *Buffering Strategy*: LRU

- **Variable Parameters**
 - *No of Neighbors*: 2, ..., 10
 - *Clustering strategy*: CCAM, Cell Tree, Z-order

![Graph](image)

Figure 9: Effect of neighborhood number on data page accesses

- *Increase No of neighbors* => *High I/O cost*
- *CCAM has the best performance*
Model Construction

- **Fixed Parameters**
 - *Page Size*: 2k
 - *Buffer size*: 16K
 - *Buffering Strategy*: LRU

- **Variable Parameters**
 - *Neighborhood Depth*: 1, 2, 3, 4, 5
 - *Clustering strategy*: CCAM, Cell Tree, Z-order

![Figure 10: Effect of neighborhood depth on data page accesses](image)

- *Increase neighborhood depth* => *High I/O cost*
- *CCAM has the best performance*
Random Point Test

- **Fixed Parameters**
 - Random Point Size: 150 points
 - Data point size: 256 bytes
 - Page size: 1 K bytes

- **Variable Parameters**
 - Buffer Size: 2, 4, 6, 8 Kbytes
 - Clustering strategy: CCAM, Cell Tree, Z-order

![Graph](image.png)

Figure 11: Effect of buffer size on the number of page accesses

- Increase buffer size => No effect
- CCAM has the best performance
Random Point Test

- Fixed Parameters
 - Sample Point Size: 150 points
 - Data point size: 256 bytes
 - Page size: 1 K bytes
 - Buffer size: 4K

- Variable Parameters
 - Page size: 0.5, 1, 2 Kbytes
 - Clustering strategy: CCAM, Cell Tree, Z-order

![Graph showing the effect of page size on the number of page accesses.](image)

Figure 12: Effect of page size on the number of page accesses

- Increase page size => reduce no of page accesses
- CCAM has the best performance
Detect Outlier (Route)

- Fixed Parameters
 - Highway - 35W N
 - Data point size: 256 bytes
 - Page Size: 1k
 - Clustering strategy: CCAM
 - CRR value: CCAM = 0.68 Cell = 0.53 Z = 0.31

- Variable Parameters
 - Buffer number: 2,4,6,8,10
 - Buffering Strategy: LRU, MRU, FIFO

Figure 13: Effect of buffering on data page accesses (Block Size = 2K)

- Increase buffer size => reduce no of page accesses
- CCAM has the best performance
Detect Outlier (Route)

- Fixed Parameters
 - Highway - 35W N(62 stations)
 - Page Size: 1k
 - Buffer size: 3K
 - Buffering Strategy: LRU

- Variable Parameters
 - Neighborhood Depth: 1, 2, 3, 4, 5
 - Clustering strategy: CCAM, Cell Tree, Z-order

![Graph showing effect of neighborhood depth on data page accesses](image)

Figure 14: Effect of neighborhood depth on data page accesses

- Increase neighborhood depth => increase no of page accesses
- CCAM has the best performance
Detect Outlier (Route)

- **Fixed Parameters**
 - *Data point size*: 256 bytes
 - *Buffering Strategy*: LRU
 - *Buffer Size*: 4 Kbytes
 - *Highway*: 35W S (64 stations)

- **Variable Parameters**
 - *Page size*: 0.5K, 1K, 2K
 - *Clustering strategy*: CCAM, Cell Tree, Z-order

![Graph showing the effect of block size on data page accesses](image)

Figure 15: Effect of block size on data page accesses

- *Increase page size* => *reduce no of page accesses*
- *CCAM has the best performance*
Detect Outlier (Route)

- Fixed Parameters
 - Data point size: 256 bytes
 - Buffering Strategy: LRU
 - Buffer Size: 4 Kbytes
 - Highway - 35W S (64 stations)

- Variable Parameters
 - Page size: 0.5K, 1K, 2K
 - Clustering strategy: CCAM, Cell Tree, Z-order

- Measure
 - CRR value

![Graph](image)

Figure 16: CRR value for different page size

- Cell Tree has zero CRR value when Bfr=2
- CCAM has the highest CRR value
Detect Outlier (Area)

- Fixed Parameters
 - Area - 64 Stations
 - Data point size: 256 bytes
 - Page Size: 1.5K

- Variable Parameters
 - Buffer number: 2, 4, 6, 8
 - Clustering strategy: CCAM, Cell, Z-ord

![Graph showing the effect of buffering on data page accesses](image)

Figure 17: Effect of buffering on data page accesses (Block Size = 1.5K)

- Increase buffer size => reduce no of page accesses
- Cell tree has the best performance
Detect Outlier (Area)

- **Fixed Parameters**
 - Area - 64 Stations
 - Data point size: 256 bytes
 - Page Size: 1.5K
 - Buffer number: 3

- **Variable Parameters**
 - No of stations
 - Clustering strategy: CCAM, Cell, Z-ord

![Graph showing effect of area size on data page accesses](image)

Figure 18: Effect of area size on data page accesses

- No of stations
- Clustering strategy: CCAM, Cell, Z-ord
- Increase query area size => increase no of page accesses
- Cell tree has the best performance
Model Construction (An example)

- *Distribution of highway traffic volume and normal distribution curve*

- *Distribution of difference for each station and its neighbors*
Local Topological Approach: Temporal Outlier Example

Figure 19: Outlier station 291 and its neighbor stations on 1/15 1997

Figure 20: Outlier station 410 and its neighbor stations on 1/15 1997
Local Topological Approach: Temporal Outlier Example

![Traffic Volume v.s. Time for Station 152 on 1/12 1997](image)

Figure 21: Temporal Outlier station 152 on 1/12 1997
Local Topological Approach: Spatial Outlier Example

Figure 22: Station 138 on 1/12 1997

Figure 23: Station 139 on 1/12 1997

Figure 24: Station 140 on 1/12 1997
Summary

- Our approach
 - Consider distances in both topological space and attribute space
 - Apply distribution to detect outliers

- Our contribution
 - Propose neighborhood-based outlier detection approach
 - Develop an efficient algorithm
 - Analyze performance for different queries
 - Model Construction
 - Random point test
 - Detect outliers along a route
 - Detect outliers within a region
 - Analyze performance for different parameters
 - Physical data record clustering
 - Buffering Strategies
 - Page size
 - Buffer size
 - No. of neighbors
 - Neighborhood depth

- Other suggestion?