Spatial Big Data Challenges

ARO/NSF Workshop on Big Data at Large: Applications and Algorithms (Durham, NC) June 14th, 2012.

Congratulations Army on 237th Anniversary!

Shashi Shekhar

McKnight Distinguished University Professor Department of Computer Science and Engineering University of Minnesota www.cs.umn.edu/~shekhar

Spatial Big Data (SBD) - Summary

- SBD are important to society
 - Ex. Eco-routing, Public Safety & Security, Understanding Climate Change
- SBD exceed capacity of current computing systems
- DBMS Challenges
 - Eco-Routing: Lagrangian frame, Non-Stationary Ranking
 - Privacy vs. Utility Trade-offs
- Data Analytics Opportunities
 - Post Markov Assumption Estimate Neighbor Relationship from SBD
 - Place based Ensemble Models to address spatial heterogeneity
 - Bigger the spatial data, simpler may be the spatial models
 - Online Spatial Data Analytics
- Platform Challenges
 - Map-reduce expensive reduce not suitable for iterative computations
 - Load balancing is harder for maps with polygons and line-strings
 - Spatial Hadoop ?

Relational to Spatial DBMS to SBD Management

- 1980s: Relational DBMS
 - Relational Algebra, B+Tree index
 - Query Processing, e.g. sort-merge equi-join algorithms, ...
- Spatial customer (e.g. NASA, USPS) faced challenges
 - Semantic Gap
 - Verbose description for distance, direction, overlap
 - Shortest path is Transitive closure
 - Performance challenge due to linearity assumption
 - Are Sorting & B+ tree appropriate for geographic data?
- New ideas emerged in 1990s
 - Spatial data types and operations (e.g. OGIS Simple Features)
 - R-tree, Spatial-Join-Index, space partitioning, ...
- SBD may require new thinking for
 - Temporally detailed roadmaps
 - Eco-routing queries
 - Privacy vs. Utility Trade-off

Spatial Databases

Шаци Шекхар, Сөнжем Чаула

Основы пространственных баз данных

Геринформационные системы + САПР + Мультимериа

Data Mining to Spatial Data Mining to SBD Analytics

November 14, 2004 The New York Times What Wal-Mart Knows About Customers' Habits

- 1990s: Data Mining
 - Scale up traditional models (e.g., Regression) to large relational databases (460 Tbytes)
 - New pattern families: Associations : Which items are bought together? (Ex. Diaper, beer)
- Spatial customers
 - Walmart: Which items are bought just before/after events, e.g. hurricanes?
 - Where is a pattern (e.g., (diaper-beer) prevalent?
 - Global climate change: tele-connections
- But faced challenges
 - Independent Identical Distribution assumption not reasonable for spatial data
 - Transactions, i.e. disjoint partitioning of data, not natural for continuous space
- This led to Spatial Data Mining (last decade)
- SBD raise new questions
 - May SBD address open questions, e.g. estimate spatial neighborhood (e.g., W matrix)?
 - Does SBD facilitate better spatial models, e.g., place based ensembles beyond GWR?
 - (When) Does bigger spatial data lead to simpler models, e.g. database as a model ?
 - On-line Spatio-temporal Data Analytics

Parallelizing Spatial Big Data on Cloud Computing

- Case 1: Compute Spatial-Autocorrelation Simpler to Parallelize
 - Map-reduce is okay
 - Should it provide spatial de-clustering services?
 - Can query-compiler generate map-reduce parallel code?
- Case 2: Harder : Parallelize Range Query on Polygon Maps
 - Need dynamic load balancing beyond map-reduce
 - MPI or OpenMP is better!
- Case 3: Estimate Spatial Auto-Regression Parameters, Routing
 - Map-reduce is inefficient for iterative computations due to expensive "reduce"!
 - Ex. Golden section search, Determinant of large matrix
 - Ex. Eco-routing algorithms, Evacuation route planning
 - Option 1: Develop non-iterative formulations of spatial problems
 - Option 2: Alternative Platform: MPI, OpenMP, Pregel or Spatial Hadoop

Spatial Databases: Representative Projects

Spatial Data Mining : Representative Projects

Motivation for Spatial Big Data (SBD)

- Societal:
 - Google Earth, Google Maps, Navigation, location-based service
 - Global Challenges facing humanity many are geo-spatial!
 - Many may benefit from Big Spatial Data

SBD Motivation

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity

The study estimates that the use of personal location data could save consumers worldwide more than \$600 billion annually by 2020. Computers determine users' whereabouts by tracking their mobile devices, like cellphones. The study cites smartphone location services including Foursquare and Loopt, for locating friends, and ones for finding nearby stores and restaurants.

But the biggest single consumer benefit, the study says, is going to come from time and fuel savings from location-based services — tapping into real-time traffic and weather data — that help drivers avoid congestion and suggest alternative routes. The location tracking, McKinsey says, will work either from drivers' mobile phones or GPS systems in cars.

The New Hork Times

Published: May 13, 2011

New Ways to Exploit Raw Data May Bring Surge of Innovation, a Study Says

Outline

- Motivation
- What is Spatial Big Data (SBD)?
 - Definitions
 - Examples & Use Cases
- SBD Infrastructure
- SBD Analytics
- Conclusions

Spatial Big Data Definitions

- Spatial datasets exceeding capacity of current computing systems
 - To manage, process, or analyze the data with reasonable effort
 - Due to Volume, Velocity, Variety, ...

•SBD History

- Data-intensive Computing: Cloud Computing, Map-Reduce, Pregel
- Middleware
- Big-Data including data mining, machine learning, ...

Traditional Spatial Data

- Spatial attribute:
 - Neighborhood and extent
 - Geo-Reference: longitude, latitude, elevation
- Spatial data genre
 - Raster: geo-images e.g., Google Earth
 - Vector: point, line, polygons
 - Graph, e.g., roadmap: node, edge, path

Raster Data for UMN Campus Courtesy: UMN

Vector Data for UMN Campus 13 Courtesy: MapQuest

Raster SBD

The New Hork Times : January 10, 2010 Military Is Awash in Data From Drones

adding 2,500 analysts to help handle the growing volume of data. With a new \$500 million computer system

- Data Sets >> Google Earth
 - Geo-videos from UAVs, security cameras
 - Satellite Imagery (periodic scan), LiDAR, ...
 - Climate simulation outputs for next century
- Example use cases
 - Patterns of Life
 - Change detection, Feature extraction, Urban terrain

Feature Extraction

Change Detection

LiDAR & Urban Terrain

Jan

Average Monthly Temperature (Courtsey: Prof. V. Kumar)

Use Case: Patterns of Life

- Weekday GPS track for 3 months
 - Patterns of life
 - Usual places and visits
 - Rare places, Rare visits

	Morning 7am – 12am	Afternoon 12noon – 5pm	Evening 5pm – 12pm	Midnight 12midnight – 7pm	Total
Home	10	2	15	29	54
Work	19	20	10	1	50
Club	4	5	4		15
Farm			1		1
Total	30	30	30	30	120

Vector SBD from Geo-Social Media

- Vector data sub-genre
 - Point: location of a tweet, Ushahidi report, checkin, ...
 - Line-strings, Polygons: roads in openStreetMap
- Use cases: Persistent Surveillance
 - Outbreaks of disease, Disaster, Unrest, Crime, ...
 - Hot-spots, emerging hot-spots
 - Spatial Correlations: co-location, teleconnection

Persistent Surveillance at American Red Cross

• Even before cable news outlets began reporting the tornadoes that ripped through Texas on Tuesday, a **map** of the state began blinking red on a screen in the Red Cross' new social media monitoring center, alerting weather watchers that something was happening in the hard-hit area. (AP, April 16th, 2012)

Emerging SBD: Geo-Sensor Networks

- Geo-Sensor Network Examples
 - Urban roads: Loop detetors, Cameras
 - Electricity distribution grids, ...
 - Environmental sensors for air quality, ...
 - Robot with sensors, ...
- Sensor Network sub-genre
 - Fixed reasonable resource: traffic sensors
 - Ad-hoc, resource poor: wireless sensor networks
- Use cases:
 - Monitor events, anomalies, e.g., accidents, Congestion, hotspots
 - Feed-back control, Predictive planning
 - Environmental Health

Graphs SBDs: Temporally Detailed

- Spatial Graphs, e.g., Roadmaps, Electric grid, Supply Chains, ...
 - Temporally detailed roadmaps [Navteq]
- Use cases: Best start time, Best route at different start-times

Nodes	Edges				
NID	EID	From	То	Speed	Distance
N1	E1	N1	N2	35mph	0.075mi
N2	E2	N1	N4	30mph	0.075mi
N3	E3	N2	N3	35mph	0.078mi
N4	E4	N2	N5	30mph	0.078mi
N5	E5	N3	N6	30mph	0.077mi
N6	E6	N4	N1	30mph	0.075mi
N7	E7	N4	N7	30mph	0.078mi
N8	E8	N5	N2	30mph	0.078mi
N9	••••				

Emerging SBD: Mobile Device2Device

- Mobile Device •
 - Cell-phones, cars, trucks, airplanes, ...
 - RFID-tags, bar-codes, GPS-collars, ...
- Trajectory & Measurements sub-genre ٠
 - Receiver: GPS tracks, ...
 - System: Cameras, RFID readers, ...
- Use cases:
 - Tracking, Tracing,
 - Geo-fencing, Identify nearby friends
 - Pattersns of Life
 - **Eco-routing**

100

120

20

Fuel Consumption (I)

20

Emergin Use-Case: Eco-Routing

- Minimize fuel consumption and GPG emission
 - rather than proxies, e.g. distance, travel-time
 - avoid congestion, idling at red-lights, turns and elevation changes, etc.

The New York Times

U.P.S. Embraces High-Tech Delivery Methods (July 12, 2007) By "The research at U.P.S. is paying off.— saving roughly three million gallons of fuel in good part by mapping routes that minimize left turns."

Eco-Routing Questions

- What are expected fuel saving from use of GPS devices with static roadmaps?
- What is the value-added by historical traffic and congestion information?
- How much additional value is added by real-time traffic information?
- What are the impacts of following on fuel savings and green house emissions?
 - traffic management systems (e.g. traffic light timing policies),
 - vehicles (e.g. weight, engine size, energy-source),
 - driver behavior (e.g. gentle acceleration/braking), environment (e.g. weather)
- What is computational structure of the Eco-Routing problem?

UNIVERSITY OF MINNESOTA

Time Dependence of Shortest Path

INPUT:

Source: University of Minnesota
Destination: MSP Airport
Time Interval 7:00am ---12:00noon

OUTPUT:

Time	Preferred Routes
7:30am	Via Hiawatha
8:30am	Via Hiawatha
9:30am	via 35W
10:30am	via 35W

Routing Algorithm Challenges

Non Stationarity ranking of paths

Non FIFO Behavior

Time	Preferred Routes
7:30am	Via Hiawatha
8:30am	Via Hiawatha
9:30am	via 35W
10:30am	via 35W

Time	Route	Flight Time
8:30am	via Detroit	6 hrs 31 mins
9:10am	direct flight	2 hrs 51 mins
11:00am	via Memphis	4 hrs 38mins
11:30am	via Atlanta	6 hrs 28 mins
2:30pm	direct flight	2 hrs 51 mins

*Flight schedule between Minneapolis and Austin (TX)

 Violation of stationary assumption dynamic programming

Violates the no wait assumption of Dijkstra/A*

Routing Challenges: Lagrangian Frame of Reference

Challenges: New Routing Questions

D New Routing Questions

- □ Best start time to minimize time spend on network
- □ Account for delays at signals, rush hour, etc.

□ Example Time-Variant Network Questions

Static	Time-Variant
	Which is the shortest travel time path from downtown Minneapolis to airport at different times of a work day?
	What is the capacity of Twin- Cities freeway network to evacuate downtown Minneapolis at different times in a work day?

SBD Challenge: Privacy vs. Utility Trade-off

- Checkin Risks: Stalking, GeoSlavery, ...
- Ex: Girls Around me App (3/2012), Lacy Peterson [2008]
- Others know that you are not home!

The Girls of Girls Around Me. It's doubtful any of these girls even know they are being tracked. Their names and locations have been obscured for privacy reasons. (Source: <u>Cult of Mac, March 30, 2012</u>)

Relational to Spatial DBMS to SBD Management

- 1980s: Relational DBMS
 - Relational Algebra, B+Tree index
 - Query Processing, e.g. sort-merge equi-join algorithms, ...
- Spatial customer (e.g. NASA, USPS) faced challenges
 - Semantic Gap
 - Verbose description for distance, direction, overlap
 - Shortest path is Transitive closure
 - Performance challenge due to linearity assumption
 - Are Sorting & B+ tree appropriate for geographic data?
- New ideas emerged in 1990s
 - Spatial data types and operations (e.g. OGIS Simple Features)
 - R-tree, Spatial-Join-Index, space partitioning, ...
- SBD may require new thinking for
 - Temporally detailed roadmaps
 - Eco-routing queries
 - Privacy vs. Utility Trade-off

Spatial Databases

Шации Шекхар, Сөнжөм Маула

Основы пространственных баз данных

Геринформационные системы + САПР + Мультимерие

Outline

- Motivation
- SBD Definitions & Examples
- SBD Analytics
 - Spatial Data Mining
 - SDM Limitations & SBD Opportunities
- SBD Infrastructure
- Conclusions

Data Mining to Spatial Data Mining to SBD Analytics

November 14, 2004 The New York Times What Wal-Mart Knows About Customers' Habits

- 1990s: Data Mining
 - Scale up traditional models (e.g., Regression) to large relational databases (460 Tbytes)
 - New pattern families: Associations : Which items are bought together? (Ex. Diaper, beer)
- Spatial customers
 - Walmart: Which items are bought just before/after events, e.g. hurricanes?
 - Where is a pattern (e.g., (diaper-beer) prevalent?
 - Global climate change: tele-connections
- But faced challenges
 - Independent Identical Distribution assumption not reasonable for spatial data
 - Transactions, i.e. disjoint partitioning of data, not natural for continuous space
- This led to Spatial Data Mining (last decade)
- SBD raise new questions
 - May SBD address open questions, e.g. estimate spatial neighborhood (e.g., W matrix)?
 - Does SBD facilitate better spatial models, e.g., place based ensembles beyond GWR?
 - (When) Does bigger spatial data lead to simpler models, e.g. database as a model ?
 - On-line Spatio-temporal Data Analytics

Spatial Data Mining Example 1: Spatial Prediction

0

Nest locations

Vegetation distribution across the marshland

Vegetation durability

Water depth variation across marshland

Water depth

Spatial Autocorrelation (SA)

- First Law of Geography
 - "All things are related, but nearby things are more related than distant things. [Tobler, 1970]"

Pixel property with independent identical Distribution (i.i.d)

Vegetation Durability with SA

- Autocorrelation
 - Traditional i.i.d. assumption is not valid
 - Measures: K-function, Moran's I, Variogram, ...

Parameter Estimation for Spatial Auto-regression

 ρ : the spatial auto - regression (auto - correlation) parameter W: *n* - by - *n* neighborhood matrix over spatial framework

Name	Model	
Classical Linear Regression	$\mathbf{y} = \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	

<u>Maximum Likelihood Estimation</u>

- Determinant of a large matrix
- Iterative Computation
 - Golden Section Search for $^{
 ho}$

$$\ln(L) = \ln\left|\mathbf{I} - \rho \mathbf{W}\right| - \frac{n\ln(2\pi)}{2} - \frac{n\ln(\sigma^2)}{2} - SSE$$

Spatial Data Mining Example 2: Clustering

- Clustering: Find groups of tuples
- Statistical Significance
 - Complete spatial randomness, cluster, and de-cluster

Spatial Data Mining Example 3: Spatial Outliers

Average Traffic Volume(Time v.s. Station) **Spatial Outliers** Locations different than neighbors Ex. Sensor 9 135W Station ID(South Bound) Source: Traffic Data Cities **Spatial Join Based Tests** Time

Association Patterns

• Association rule e.g. (Diaper in T => Beer in T)

Transaction	Items Bought
1	{socks, 🔤 , milk, 👸 beef, egg,}
2	{pillow, [] toothbrush, ice-cream, muffin,}
3	{ 🔤 , 👸 , pacifier, formula, blanket, …}
n	{battery, juice, beef, egg, chicken,}

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2
- Algorithm Apriori [Agarwal, Srikant, VLDB94]
 - Support based pruning using monotonicity
- Note: Transaction is a core concept!

Spatial Data Mining Example 4: Co-locations/Co-occurrence

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types
- Challenge:
 No Transactions
- New Approaches
 - Spatial Join Based
 - One join per candidate is Computationally expensive!

Outline

- Motivation
- SBD Definitions & Examples
- SBD Analytics
 - Spatial Data Mining
 - SDM Limitations & SBD Opportunities
- SBD Infrastructure
- Conclusions

SBD Opportunities 1: Estimate Spatial Neighbor Relationship

- SDM Limitation 1: Neighbor relationship is End-users' burden !
 - Colocation mining, hotspot detection, spatial outlier detection, ...
 - Example: W matrix in spatial auto-regression
 - Reason: W quadratic in number of location
 - Reliable estimation of W needs very large number data samples
- SBD Opportunity 1: Post-Markov Assumption
 - SBD may be large enough to provide reliable estimate of W
 - This will relieve user burden and may improve model accuracy
 - One may not have assume
 - Limited interaction length, e.g. Markov assumption
 - Spatially invariant neighbor relationships, e.g., 8-neighbor
 - Tele-connections are derived from short-distance relationships

Name	Model	
Classical Linear Regression	$\mathbf{y} = \mathbf{x}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$	
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	

SBD Opportunity 2: Place Based Ensemble of Models

- SDM Limitation 2: Modeling of Spatial Heterogeneity is rare
 - Spatial Heterogeneity: No two places on Earth are identical
 - Yet, Astro-Physics tradition focused on place-independent models
 - Was it due to paucity of data ?
 - Exception: Geographically Weighted Regression or GWR [Fortheringham et al.]
 - GWR provides an ensemble of linear regression models, one per place of interest
- Opportunity 2: SBD may support Place based ensemble of models beyond GWR
 - Example: Place based ensemble of Decision Trees for Land-cover Classification
 - Example: Place based ensemble of Spatial Auto-Regression Models
 - Computational Challenge:
 - Naïve approach may run a learning algorithm for each place.
 - Is it possible to reduce computation cost by exploiting spatial auto-correlation ?

SBD Opportunity 3: Bigger the SBD, Simpler the Model

- SDM Limitation 3: Complexity of Spatial Models
 - Spatial models are usually computationally more expensive than traditional models
 - Example: Spatial Auto-regression vs. Linear Regression
 - Example: Geographically Weighted Regression vs. Regression
 - Example: Colocation Pattern Mining vs. Association Rule Mining
 - Confidence Estimation adds more costs, e.g. M.C.M.C. simulations
- SBD Opportunity 3: Bigger the SBD, Simpler the spatial models
 - Sometime the complexity is due to paucity of data at individual places
 - It forces one to leverage data at nearby places via spatial auto-correlation and spatial join!
 - SBD may provide plenty of data at each place!
 - This may allow place-based divide and conquer
 - Build one model per place using local data and simpler model
 - Challenges:
 - Compare place-based ensembles of simpler models with current spatial models
 - When does bigger data lead to simpler models?
 - What is SBD from analytics perspective ?
 - e.g., ratio of samples to number of parameters

SBD Opportunity 4:On-line Spatio-temporal Data Analytics

- SDM Limitation 4: Off-line Batch Processing
 - Spatial models are usually learned in off-line batch manner
 - Example: Spatial Auto-regression, Colocation Pattern Mining, Hotspot Detection
 - However, SBD include streaming data such as event reports, sensor measurements
 - SBD use cases include monitoring and surveillance requiring On-Line algorithms
 - Example: Timely Detection of Outbreak of disease, crime, unrest, adverse events
 - Example: Displacement or spread of a hotspot to neighboring geographies
 - Example: Abrupt or rapid change detection in land-cover, forest-fire, etc. for quick response
- SBD Opportunity 4: On-line Spatio-temporal Data Analytics
 - Purely local models may leverage time-series data analytics models
 - Regional and global models are harder
 - Spatial interactions (e.g., colocation, tele-connections) with time-lags
 - Q? Can these be computed exactly in on-line manner?
 - Q? If not, what are on-line approximations ?

Outline

- Motivation
- SBD Definition and Examples
- SBD Analytics
- SBD Infrastructure
 - Parallelizing Spatial Computations
 - Implications for Cloud Platforms
- Conclusions

Parallelizing Spatial Big Data on Cloud Computing

- Case 1: Compute Spatial-Autocorrelation Simpler to Parallelize
 - Map-reduce is okay
 - Should it provide spatial de-clustering services?
 - Can query-compiler generate map-reduce parallel code?
- Case 2: Harder : Parallelize Range Query on Polygon Maps
 - Need dynamic load balancing beyond map-reduce
 - MPI or OpenMP is better!
- Case 3: Estimate Spatial Auto-Regression Parameters, Routing
 - Map-reduce is inefficient for iterative computations due to expensive "reduce"!
 - MPI, OpenMP, Pregel or Spatial Hadoop is essential!
 - Ex. Golden section search, Determinant of large matrix
 - Ex. Eco-routing algorithms, Evacuation route planning

Simpler: Land-cover Classification

• Multiscale Multigranular Image Classification into land-cover categories

$$\hat{M}odel \equiv \arg \max_{Model} \{ quality(Model) \}, where$$

quality(M) = likelihood (observation | M) - 2 penalty(M)

Parallelization Choice

- 1. Initialize parameters and memory
- 2. for each Spatial Scale
- 3. for each Quad
- 4. **for** each Class
- 5. Calculate Quality Measure
- 6 end **for** Class
- 7. end for Quad
- 8. end for Spatial Scale
- 9. Post-processing

Input	• 64 x 64 image (Plymouth County, MA)		
	• 4 classes (All, Woodland, Vegetated,		
	Suburban)		
Language	UPC		
Platform	Cray X1, 1-8 processors)		

Harder: Parallelizing Vector GIS

- $\bullet(1/30)$ second Response time constraint on Range Query
- Parallel processing necessary since best sequential computer cannot meet requirement
- Blue rectangle = a range query, Polygon colors shows processor assignment

Data-Partitioning Approach

- Initial Static Partitioning
- Run-Time dynamic load-balancing (DLB)
- Platforms: Cray T3D (Distributed), SGI Challenge (Shared Memory)

DLB Pool-Size Choice is Challenging!

Approximate Filtering of the Pool	Process S _{1a}	Dynamic Load-Balancing	Idle
Process S 2a			
	_		
Process S Pa	-	namic Balancing	Idle

Approxima Filtering of th		Process S 1a	Dynamic Load-Balancing
Process S 2a	Idle	Dynamic Load-Balancing	
Process S Pa	Idle	Dynamic Load-Balancing	

Hardest – Location Prediction

Distance to open water nz = 5372

Nest locations

Vegetation durability

Water depth variation across marshland

Water depth

Ex. 3: Hardest to Parallelize

 ρ : the spatial auto - regression (auto - correlation) parameter W: *n* - by - *n* neighborhood matrix over spatial framework

Name	Model	
Classical Linear Regression	$\mathbf{y} = \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\epsilon}$	
Spatial Auto-Regression	$\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	

Maximum Likelihood Estimation

$$\ln(L) = \ln \left| \mathbf{I} - \rho \mathbf{W} \right| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE$$

- Need cloud computing to scale up to large spatial dataset.
- However,
 - Map reduce is too slow for iterative computations!
 - computing determinant of large matrix is an open problem!

Parallelizing Spatial Big Data on Cloud Computing

- Case 1: Compute Spatial-Autocorrelation Simpler to Parallelize
 - Map-reduce is okay
 - Should it provide spatial de-clustering services?
 - Can query-compiler generate map-reduce parallel code?
- Case 2: Harder : Parallelize Range Query on Polygon Maps
 - Need dynamic load balancing beyond map-reduce
 - MPI or OpenMP is better!
- Case 3: Estimate Spatial Auto-Regression Parameters, Routing
 - Map-reduce is inefficient for iterative computations due to expensive "reduce"!
 - Ex. Golden section search, Determinant of large matrix
 - Ex. Eco-routing algorithms, Evacuation route planning
 - Option 1: Develop non-iterative formulations of spatial problems
 - Option 2: Alternative Platform: MPI, OpenMP, Pregel or Spatial Hadoop

Spatial Big Data (SBD)

- SBD Definitions
- SBD Applications
- SBD Analytics
- SBD Infrastructure
- Conclusions

Summary

- SBD are important to society
 - Ex. Eco-routing, Public Safety & Security, Understanding Climate Change
- SBD exceed capacity of current computing systems
- DBMS Challenges
 - Eco-Routing: Lagrangian frame, Non-Stationary Ranking
 - Privacy vs. Utility Trade-offs
- Data Analytics Opportunities
 - Post Markov Assumption Estimate Neighbor Relationship from SBD
 - Place based Ensemble Models to address spatial heterogeneity
 - Bigger the spatial data, simpler may be the spatial models
 - Online Spatial Data Analytics
- Platform Challenges
 - Map-reduce expensive reduce not suitable for iterative computations
 - Load balancing is harder for maps with polygons and line-strings
 - Spatial Hadoop ?

CCC Workshop: Spatial Computing Visioning (9/10-11/2012) http://cra.org/ccc/spatial_computing.php

From GPS and Virtual Globes to Spatial Computing-2020

About the workshop

This workshop outlines an effort to develop and promote a unified agenda for Spatial Computing research and development across US agencies, industries, and universities. See the original workshop proposal **here**.

Spatial Computing

Spatial Computing is a set of ideas and technologies that will transform our lives by understanding the physical world, knowing and communicating our relation to places in that world, and navigating through those places.

The transformational potential of Spatial Computing is already evident. From Virtual Globes such as Google Maps and Microsoft Bing Maps to consumer GPS devices, our society has benefitted immensely from spatial technology. We've reached the point where a hiker in Yellowstone, a schoolgirl in DC, a biker in Minneapolis, and a taxi driver in Manhattan know precisely where they are, nearby points of interest, and how to reach their destinations. Large

Logistics

Date: Sept. 10th-11th, 2012 Location: Keck Center Hotel: Liaison Hotel

Steering Committee

Erwin Gianchandani

Hank Korth

Organizing Committee

Peggy Agouris, George Mason University

Walid Aref, Purdue University

Michael F. Goodchild, University of California -Santa Barbara