Spatial Big Data Challenges

ACM SIG-SPATIAL Workshop on Analytics for Big Geospatial Data

Shashi Shekhar
McKnight Distinguished University Professor
Department of Computer Science and Engineering
University of Minnesota
www.cs.umn.edu/~shekhar
From GPS and Virtual Globes to Spatial Computing-2020

About the workshop

This workshop outlines an effort to develop and promote a unified agenda for Spatial Computing research and development across US agencies, industries, and universities. See the original workshop proposal [here](http://cra.org/ccc/spatial_computing.php).

Spatial Computing

Spatial Computing is a set of ideas and technologies that will transform our lives by understanding the physical world, knowing and communicating our relation to places in that world, and navigating through those places.

The transformational potential of Spatial Computing is already evident. From Virtual Globes such as Google Maps and Microsoft Bing Maps to consumer GPS devices, our society has benefitted immensely from spatial technology. We’ve reached the point where a hiker in Yellowstone, a schoolgirl in DC, a biker in Minneapolis, and a taxi driver in Manhattan know precisely where they are, nearby points of interest, and how to reach their destinations. Large

Logistics

Date: Sept. 10th-11th, 2012
Location: Keck Center
Hotel: Liaison Hotel

Steering Committee

Erwin Gianchandani
Hank Korth

Organizing Committee

Peggy Agouris, George Mason University
Walid Aref, Purdue University
Michael F. Goodchild, University of California - Santa Barbara
Spatial Computing Has Already Transformed Our Lives!
Spatial Computing

• Spatial
 – Space and Time
 – Physical Spaces:
 • Geo, Astronomy, Indoors, Human Body, …
 – Virtual Spaces
 • Localize video, image, document, IP address, …

• Computing
 – Theory, AI, Analytics, …
 – Hardware, Networks, Software, Databases, …
 – Visualization, Augmented Reality
 – Collaboration, CHI,
 – Location Based Services
 – Mobile Computing,
 – Privacy, Data Quality, Uncertainty,
 – …
It is widely used by Government

Geospatial Information and Geographic Information Systems (GIS): An Overview for Congress

Table 1. Members of the Federal Geographic Data Committee (FGDC)

<table>
<thead>
<tr>
<th>Dept. of Agriculture</th>
<th>Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dept. of Commerce</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>Dept. of Defense</td>
<td>General Services Administration</td>
</tr>
<tr>
<td>Dept. of Energy</td>
<td>Library of Congress</td>
</tr>
<tr>
<td>Dept. of Health and Human Services</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>Dept. of Housing and Urban Development</td>
<td>National Archives and Records Administration</td>
</tr>
<tr>
<td>Dept. of the Interior (Chair)</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>Dept. of Justice</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>Dept. of State</td>
<td>Office of Management and Budget (Co-Chair)</td>
</tr>
<tr>
<td>Dept. of Transportation</td>
<td></td>
</tr>
</tbody>
</table>
It is only a start! Bigger Opportunities ahead!

The study estimates that the use of personal location data could save consumers worldwide more than $600 billion annually by 2020. Computers determine users’ whereabouts by tracking their mobile devices, like cellphones. The study cites smartphone location services including Foursquare and Loopt, for locating friends, and ones for finding nearby stores and restaurants.

But the biggest single consumer benefit, the study says, is going to come from time and fuel savings from location-based services — tapping into real-time traffic and weather data — that help drivers avoid congestion and suggest alternative routes. The location tracking, McKinsey says, will work either from drivers’ mobile phones or GPS systems in cars.

The New York Times

New Ways to Exploit Raw Data May Bring Surge of Innovation, a Study Says

Published: May 13, 2011
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Day 1 - Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>830- 9</td>
<td>Opening Remarks, Current Initiatives</td>
</tr>
<tr>
<td>9 - 11</td>
<td>Push Panel: SC Platform Trends, Disruptive Technologies</td>
</tr>
<tr>
<td></td>
<td>Breakouts on new SC research opportunities from platform trends</td>
</tr>
<tr>
<td>1330</td>
<td>Breakout Report Back</td>
</tr>
<tr>
<td>1400</td>
<td>Pull Panel: National Priorities, Societal Applications</td>
</tr>
<tr>
<td>1600</td>
<td>Identify Cross-cutting Characteristics</td>
</tr>
<tr>
<td>1600</td>
<td>Breakout: on new SC research opportunities from application trends</td>
</tr>
<tr>
<td>1700</td>
<td>Report back</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Day 2 - Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9am</td>
<td>Present 1st Draft</td>
</tr>
<tr>
<td>11am- 12noon</td>
<td>Breakout: Refine draft based on peer review</td>
</tr>
<tr>
<td>12noon</td>
<td>Present Revised Draft</td>
</tr>
<tr>
<td>145pm</td>
<td>Wrap Up, Assignments</td>
</tr>
</tbody>
</table>

Chair: OSTP: Dr. Henry Kelley
- **US-DoD**: Patterns of Life: Eric Vessey
- **US-DoD**: GEOINT: Todd Johanesen
- **NIH/NIEHS**: Exposomics: Michelle Heacock
- **NASA**: Climate Change: John L Schnase
- **DHS**: Disaster Resilience: Nabil Adam
- **NSF**: EarthCube: Clifford Jacobs
- **DOT**: Intellidrive, NextGen : Walton Fehr
- **DOE**: Eco-routing, Bio-fuels: Alicia Lindauer

Graphics & Vision: John Keyser, TAMU
- **Interaction Devices**: Steven Feiner, Columbia U
- **LiDAR**: Avidheh Zakhor, UCB
- **GPS Modernization**: Mark Abrams, NRO
- **Cell Phones**: Ramon Caceres, AT&T
- **Indoor Localization**: Greg Welch, UNC
- **Internet Localization**: Rajesh Gupta, UCSD
- **Cloud Computing**: Divyakant Agarwal, UCSB
Trends to Challenge - Themes

<table>
<thead>
<tr>
<th>Indoor Localization</th>
<th>We long for Location-based services everywhere (e.g., indoors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Localization</td>
<td>Every platform is location-aware</td>
</tr>
<tr>
<td>Cloud Computing: Cell Phones</td>
<td>Everyone is a Map-maker</td>
</tr>
<tr>
<td>Graphics & Vision</td>
<td>Everyone uses location-based service</td>
</tr>
<tr>
<td>Interaction Devices</td>
<td>ST Map layers are diversifying fast & old analytics techniques are too weak</td>
</tr>
<tr>
<td>LiDAR, sensors</td>
<td>We are worried about GPS-spoofing, stalking, and loss of privacy!</td>
</tr>
<tr>
<td>GPS Modernization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NIH/NIEHS: Exposomics</th>
<th>Phone sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS: Disaster Resilience</td>
<td>Geo-targetting</td>
</tr>
<tr>
<td>DoD/NGA: GEOINT</td>
<td>ST pattern mining</td>
</tr>
<tr>
<td>NASA: Climate Change</td>
<td>Secure smart cars, Private eco-routing</td>
</tr>
<tr>
<td>DOE: Eco-routing, Bio-fuels</td>
<td></td>
</tr>
<tr>
<td>DOT: Intellidrive, NextGen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-cutting</th>
<th>From Sensors to Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Fusion to Synergetics</td>
<td>Spatial Cognition First</td>
</tr>
<tr>
<td>From Fusion to Synergetics</td>
<td>Cross-Cutting</td>
</tr>
</tbody>
</table>

We long for Location-based services everywhere (e.g., indoors, outdoors, …)
Every platform is location-aware
Everyone is a (collaborative ST) Map-maker
Everyone uses location-based service
ST Map layers are diversifying fast & old analytics techniques are too weak
We are worried about GPS-spoofing, stalking, and loss of privacy!
Four Breakout Groups

• SC Sciences: From Fusion to Synergetics
 – Theory, AI, G.I. Science, Analytics, …
• SC Systems: From Sensors to Clouds
 – Hardware, Networks, Software, Database, …
• SC Services: Spatial Cognition First
 – Visualization, Augmented Reality
 – Collaboration
 – Location Based Services …
• Cross-Cutting
 – Mobile Computing,
 – Privacy, Security, Trust
 – Data Quality, Uncertainty, …
Science Breakout Group (206)
- **Benjamin Kuipers**
 University of Michigan
- **Jie Gao**
 Stony Brook University
- **Jim Shine**
 Army Research
- **Mike Worboys**
 University of Maine
- **Norman Sadeh**
 CMU
- **Sara Graves**
 UA Huntsville
- **Stephen Hirtle**
 University of Pittsburgh
- **Vipin Kumar**
 University of Minnesota
- **Craig A. Knoblock**
 Information Sciences Institute
- **Raju Vatsavai**
 ORNL

Systems Breakout Group (C700)
- **Avideh Zakhor**
 UC Berkeley
- **Chang-Tien Lu**
 Virginia Tech
- **Divyakant Agrawal**
 UC Santa Barbara
- **Edward M. Mikhail**
 Purdue
- **Jagan Sankaranarayanan**
 NEC Labs
- **Mohamed Ali**
 Microsoft
- **Rajesh Gupta**
 UC San Diego
- **Siva Ravada**
 Oracle
- **Vijay Atluri**
 NSF
- **Walid G. Aref**
 Purdue
- **Michael R. Evans**
 UMN

Services Breakout Group (208)
- **Cecilia Aragon**
 University of Washington
- **Chuck Hansen**
 University of Utah
- **Dinesh Manocha**
 University of North Carolina
- **Greg Welch**
 University of North Carolina
- **John Keyser**
 Texas A&M University
- **Lee Allison Arizona Geological Survey**
 Arizona Geological Survey
- **Steven Feiner**
 Columbia University
- **Tom Erickson**
 IBM
- **Peggy Agouris**
 George Mason University
- **Dan Keefe**
 University of Minnesota

Cross-Cutting Breakout Group (C1000)
- **Budhendra Bhaduri**
 ORNL
- **Daniel Z. Sui**
 Ohio State University
- **Lea Shanley**
 Wilson Center
- **Michael Goodchild**
 UC Santa Barbara
- **Ouri E. Wolfson**
 Univ. of Illinois at Chicago
- **Paul Torrens**
 University of Maryland
- **Ramon Caceres**
 AT&T Research
- **Shaowen Wang**
 University of Illinois at UC
- **Xuan Liu**
 IBM
- **May Yuan**
 University of Oklahoma
- **Dev Oliver**
 University of Minnesota
Day 1 AM – Questions to address:
 1. What role will Spatial Computing play in our lives in 2020?
 2. What are most compelling transformative opportunities ?

Day 1 PM - Quadcharts (1 per questions)
 Example on next slide.

Day 2 AM - Paragraphs
Sample Quad-Chart: Eco-Routing Using Spatial Big Data

OBJECTIVES
- Next-generation Routing services to minimize fuel or GHG emissions instead of distance or travel-time
- Exploit Spatial Big Data, e.g., gps-traces and temporally detailed roadmaps, to identify fuel-saving opportunities
- Novel representation, algorithms, and architecture for SBD and problems violating Dynamic Programming assumption

SPATIAL COMPUTING CHALLENGES
- Change in frame of reference from a snapshot perspective to the perspective of the individual traveling through a transportation network
- Diversity of SBD significantly increases computational cost because it magnifies the impact of the partial nature and ambiguity of traditional routing query speciation
- Route ranking changes over time violating dynamic programming assumptions underlying routing algorithms.
- Spatial Big Data volume, velocity and variety exceed capacity of current spatial computing systems

TRANSFORMATIVE POTENTIAL
- Significantly reduce US consumption of petroleum, the dominant source of energy for transportation
- Reduce the gap between domestic petroleum consumption and production
- Reduce greenhouse gas (GHG) emissions
- A 2011 McKinsey Global Institute report estimates savings of “about $600 billion annually by 2020 via vehicles avoiding congestion and reducing idling”
Recent Grand Challenges Discussions
- 2003 NRC report (Geospatial Future)
- 2009 NSF Workshop (P. Agouris)
- 2010 AAG Panel

Proposal
1. Introduction
2. ...

Workshop Activities
Opening Remarks, Current Initiatives
Push Panel: SC Platform Trends, Disruptive Technologies
Breakouts on new SC research opportunities from platform trends
Lunch, Breakout Report Back
Pull Panel: National Priorities, Societal Applications of Spatial Computing (SC)
Break
Identify cross-cutting SC application characteristics
Breakout: on new SC research opportunities from application trends
Report back
Synthesis,
Report Outline, Writing Assignments

Report Outline
1. Introduction
1.0 Why Spatial Computing?
1.1 Challenges
1.2 Opportunities
2. Research Directions
2.1 SC Sciences: From Fusion to Synergetics
2.2 SC Systems: From Sensors to Cloud
2.3 SC Services: Spatial Cognition First
2.4 Cross-Cutting
3. Geo-Privacy Policy Opportunities
4. Closing
5. About This Document
A. List of Contributors
B. Emerging Application Attributes
B.1 Example Applications
B.2 Attributes of Applications
C. Emerging Platform Trends
Report – Sample Research Directions

<table>
<thead>
<tr>
<th>Report Outline</th>
<th>2.1.1 Manipulating Qualitative Spatio-Temporal Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2.1.2 (Spatio-temporal) Prediction</td>
</tr>
<tr>
<td>1.0 Why Spatial Computing?</td>
<td>2.1.3 Synthesizing Multiple Projects of Past & Future</td>
</tr>
<tr>
<td>1.1 Challenges</td>
<td>2.1.4 Collection, Fusion, Curation of Sensed Data</td>
</tr>
<tr>
<td>1.2 Opportunities</td>
<td>2.1.5 Spatial Computing Standards</td>
</tr>
<tr>
<td>2. Research Directions</td>
<td>2.2.1 Computational Issues in Spatial Big Data</td>
</tr>
<tr>
<td>2.1 SC Sciences: From Fusion to Synergetics</td>
<td>2.2.2 Spatial Computing Infrastructure</td>
</tr>
<tr>
<td>2.2 SC Systems: From Sensors to Cloud</td>
<td>2.2.3 Augmented Reality</td>
</tr>
<tr>
<td>2.3 SC Services: Spatial Cognition First</td>
<td>2.2.4 Device to Device Spatial Computing</td>
</tr>
<tr>
<td>2.4 Cross-Cutting</td>
<td>2.3.1 Human Spatial-Computing Interaction</td>
</tr>
<tr>
<td>3. Geo-Privacy Policy Opportunities</td>
<td>2.3.2 Spatial Cognitive Assistance</td>
</tr>
<tr>
<td>4. Closing</td>
<td>2.3.3 Context-aware Spatial Computing</td>
</tr>
<tr>
<td>5. About This Document</td>
<td>2.3.4 SC Assisted Human-Human Interactions</td>
</tr>
<tr>
<td>A. List of Contributors</td>
<td>2.3.5 Spatial Cognition and Spatial Abilities</td>
</tr>
<tr>
<td>B: Emerging Application Attributes</td>
<td>2.4.1 Ubiquitous Computing</td>
</tr>
<tr>
<td>B.1 Example Applications</td>
<td>2.4.2 Persistent Sensing & Monitoring</td>
</tr>
<tr>
<td>B.2 Attributes of Applications</td>
<td>2.4.3 Trustworthy SC Systems, e.g., Transportation</td>
</tr>
<tr>
<td>C. Emerging Platform Trends</td>
<td>2.4.4 Geo-Privacy</td>
</tr>
</tbody>
</table>
CCC Council: Review Nov. 2nd, 2012. – Nov. 16th, 2012.

Next: Choose message for policy makers (Need your help!)

• Ex.: spatial economy: location-based-commerce, mobile commerce

Report Outline
1. Introduction
1.0 Why Spatial Computing?
1.1 Challenges
1.2 Opportunities
2. Research Directions
2.1 SC Sciences: From Fusion to Synergetics
2.2 SC Systems: From Sensors to Cloud
2.3 SC Services: Spatial Cognition First
2.4 Cross-Cutting
3. Geo-Privacy Policy Opportunities
4. Closing
5. About This Document
 A. List of Contributors
 B: Emerging Application Attributes
 B.1 Example Applications
 B.2 Attributes of Applications
 C. Emerging Platform Trends

1. Emergencies are different! E911
2. Differential Privacy: E911 \Rightarrow PLAN, CMAS
3. Send Apps to Data, not vice versa (e.g., Eco-routing)
4. (Transparent) Transactions for location traces
5. Responsible Entities for location traces
 1. Credit-bureau/Census
 2. HIPPA++ for responsible parties

3.1 What can policy makers do?
3.2 Urgency
3.3 Benefits and Costs

3.2 Urgency: Tech Giants scramble to get upto speed (NYTimes, Oct. 22, 2012)

3.3 Cusp of an economic revolution leveraging
Emerging spatial data. Additional benefits in
Energy independence, disaster resiliency, env. health
Outline

• Motivation
• What is Spatial Big Data (SBD)?
 • Definitions
 • Examples & Use Cases
• SBD Infrastructure
• SBD Analytics
• Conclusions
Spatial Big Data Definitions

• Spatial datasets exceeding capacity of current computing systems
 • To manage, process, or analyze the data with reasonable effort
 • Due to Volume, Velocity, Variety, …

• SBD History
 • Data-intensive Computing: Cloud Computing, Map-Reduce, Pregel
 • Middleware
 • Big-Data including data mining, machine learning, …
Traditional Spatial Data

- Spatial attribute:
 - Neighborhood and extent
 - Geo-Reference: longitude, latitude, elevation
- Spatial data genre
 - **Raster**: geo-images e.g., Google Earth
 - **Vector**: point, line, polygons
 - **Graph**, e.g., roadmap: node, edge, path

Raster Data for UMN Campus
Courtesy: UMN

Vector Data for UMN Campus
Courtesy: MapQuest

Graph Data for UMN Campus
Courtesy: Bing
Military Is Awash in Data From Drones

ing 2,500 analysts to help handle the growing volume of data.
With a new $500 million computer system

• Data Sets >> Google Earth
 – Geo-videos from UAVs, security cameras
 – Satellite Imagery (periodic scan), LiDAR, …
 – Climate simulation outputs for next century

• Example use cases
 – Patterns of Life
 – Change detection, Feature extraction, Urban terrain

(Courtesy: Prof. V. Kumar)
Use Case: Patterns of Life

- Weekday GPS track for 3 months
 - Patterns of life
 - Usual places and visits
 - Rare places, Rare visits

<table>
<thead>
<tr>
<th></th>
<th>Morning 7am – 12am</th>
<th>Afternoon 12noon – 5pm</th>
<th>Evening 5pm – 12pm</th>
<th>Midnight 12midnight – 7pm</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>10</td>
<td>2</td>
<td>15</td>
<td>29</td>
<td>54</td>
</tr>
<tr>
<td>Work</td>
<td>19</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Club</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Farm</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>
Vector SBD from Geo-Social Media

- Vector data sub-genre
 - Point: location of a tweet, Ushahidi report, checkin, …
 - Line-strings, Polygons: roads in openStreetMap
- Use cases: **Persistent Surveillance**
 - Outbreaks of disease, Disaster, Unrest, Crime, …
 - Hot-spots, emerging hot-spots
 - Spatial Correlations: co-location, teleconnection
Persistent Surveillance at American Red Cross

- Even before cable news outlets began reporting the tornadoes that ripped through Texas on Tuesday, a map of the state began blinking red on a screen in the Red Cross' new social media monitoring center, alerting weather watchers that something was happening in the hard-hit area. (AP, April 16th, 2012)
Graphs SBDs: Temporally Detailed

- Spatial Graphs, e.g., Roadmaps, Electric grid, Supply Chains, …
 - Temporally detailed roadmaps [Navteq]
- Use cases: Best start time, Best route at different start-times
Emerging SBD: Mobile Device2Device

- **Mobile Device**
 - Cell-phones, cars, trucks, airplanes, …
 - RFID-tags, bar-codes, GPS-collars, …
- **Trajectory & Measurements sub-genre**
 - Receiver: GPS tracks, …
 - System: Cameras, RFID readers, …
- **Use cases:**
 - Tracking, Tracing,
 - Improve service, deter theft …
 - Geo-fencing, Identify nearby friends
 - Patterns of Life
 - Eco-routing
Emerging Use-Case: Eco-Routing

- Minimize fuel consumption and GPG emission
 - rather than proxies, e.g. distance, travel-time
 - avoid congestion, idling at red-lights, turns and elevation changes, etc.

The New York Times

U.P.S. Embraces High-Tech Delivery Methods (July 12, 2007)

By “The research at U.P.S. is paying off.— saving roughly three million gallons of fuel in good part by mapping routes that minimize left turns.”
Eco-Routing Questions

- What are expected fuel saving from use of GPS devices with static roadmaps?
- What is the value-added by historical traffic and congestion information?
- How much additional value is added by real-time traffic information?
- What are the impacts of following on fuel savings and green house emissions?
 - traffic management systems (e.g. traffic light timing policies),
 - vehicles (e.g. weight, engine size, energy-source),
 - driver behavior (e.g. gentle acceleration/braking), environment (e.g. weather)
- What is computational structure of the Eco-Routing problem?
Relational to Spatial DBMS to SBD Management

• 1980s: Relational DBMS
 • Relational Algebra, B+Tree index
 • Query Processing, e.g. sort-merge equi-join algorithms, …
• Spatial customer (e.g. NASA, USPS) faced challenges
 • Semantic Gap
 • Verbose description for distance, direction, overlap
 • Shortest path is Transitive closure
 • Performance challenge due to linearity assumption
 • Are Sorting & B+ tree appropriate for geographic data?
• New ideas emerged in 1990s
 • Spatial data types and operations (e.g. OGIS Simple Features)
 • R-tree, Spatial-Join-Index, space partitioning, …

• SBD may require new thinking for
 • Temporally detailed roadmaps
 • Eco-routing queries
 • Privacy vs. Utility Trade-off
Outline

• Motivation
• SBD Definitions & Examples
• SBD Analytics
 • Spatial Data Mining
 • SDM Limitations & SBD Opportunities
• SBD Infrastructure
• Conclusions
Data Mining to Spatial Data Mining to SBD Analytics

• 1990s: Data Mining
 • Scale up traditional models (e.g., Regression) to large relational databases (460 Tbytes)
 • New pattern families: Associations: Which items are bought together? (Ex. Diaper, beer)

• Spatial customers
 • Walmart: Which items are bought just before/after events, e.g. hurricanes?
 • Where is a pattern (e.g., (diaper-beer) prevalent?
 • Global climate change: tele-connections

• But faced challenges
 • Independent Identical Distribution assumption not reasonable for spatial data
 • Transactions, i.e. disjoint partitioning of data, not natural for continuous space

• This led to Spatial Data Mining (last decade)
• SBD raise new questions
 • May SBD address open questions, e.g. estimate spatial neighborhood (e.g., W matrix)?
 • Does SBD facilitate better spatial models, e.g., place based ensembles beyond GWR?
 • (When) Does bigger spatial data lead to simpler models, e.g. database as a model?
 • On-line Spatio-temporal Data Analytics
Spatial Data Mining Example 1: Spatial Prediction

Nest locations

Vegetation durability

Distance to open water

Water depth
Spatial Autocorrelation (SA)

• First Law of Geography
 – “All things are related, but nearby things are more related than distant things. [Tobler, 1970]”

Pixel property with independent identical Distribution (i.i.d)

Vegetation Durability with SA

• Autocorrelation
 – Traditional i.i.d. assumption is not valid
 – Measures: K-function, Moran’s I, Variogram, …
Parameter Estimation for Spatial Auto-regression

\(\rho \): the spatial auto-regression (auto-correlation) parameter

\(W \): \(n \)-by-\(n \) neighborhood matrix over spatial framework

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Linear Regression</td>
<td>(y = x\beta + \varepsilon)</td>
</tr>
<tr>
<td>Spatial Auto-Regression</td>
<td>(y = \rho Wy + x\beta + \varepsilon)</td>
</tr>
</tbody>
</table>

- **Maximum Likelihood Estimation**
- Computationally Expensive
 - Determinant of a large matrix
- Iterative Computation
 - Golden Section Search for \(\rho \)

\[
\ln(L) = \ln|I - \rho W| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE
\]
SBD Opportunity 1: Estimate Spatial Neighbor Relationship

- SDM Limitation 1: Neighbor relationship is End-users’ burden!
 - Colocation mining, hotspot detection, spatial outlier detection, …
 - Example: \(W \) matrix in spatial auto-regression
 - Reason: \(W \) quadratic in number of location
 - Reliable estimation of \(W \) needs very large number data samples

- SBD Opportunity 1: Post-Markov Assumption
 - SBD may be large enough to provide reliable estimate of \(W \)
 - This will relieve user burden and may improve model accuracy
 - One may not have assume
 - Limited interaction length, e.g. Markov assumption
 - Spatially invariant neighbor relationships, e.g., 8-neighbor
 - Tele-connections are derived from short-distance relationships

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Linear Regression</td>
<td>(\mathbf{y} = \mathbf{x}\mathbf{\beta} + \mathbf{\varepsilon})</td>
</tr>
<tr>
<td>Spatial Auto-Regression</td>
<td>(\mathbf{y} = \rho \mathbf{W}\mathbf{y} + \mathbf{x}\mathbf{\beta} + \mathbf{\varepsilon})</td>
</tr>
</tbody>
</table>
SBD Opportunity 2: Place Based Ensemble of Models

- SDM Limitation 2: Modeling of Spatial Heterogeneity is rare
 - Spatial Heterogeneity: No two places on Earth are identical
 - Yet, Astro-Physics tradition focused on place-independent models
 - Was it due to paucity of data?
 - Exception: Geographically Weighted Regression or GWR [Fortheringham et al.]
 - GWR provides an ensemble of linear regression models, one per place of interest

- Opportunity 2: SBD may support Place based ensemble of models beyond GWR
 - Example: Place based ensemble of Decision Trees for Land-cover Classification
 - Example: Place based ensemble of Spatial Auto-Regression Models
 - Computational Challenge:
 - Naïve approach may run a learning algorithm for each place.
 - Is it possible to reduce computation cost by exploiting spatial auto-correlation?
Outline

• Motivation
• SBD Definition and Examples
• SBD Analytics
• **SBD Infrastructure**
 • Parallelizing Spatial Computations
 • Implications for Cloud Platforms
• Conclusions
Case 1: Compute Spatial-Autocorrelation Simpler to Parallelize
- Map-reduce is okay
- Should it provide spatial de-clustering services?
- Can query-compiler generate map-reduce parallel code?

Case 2: Harder: Parallelize Range Query on Polygon Maps
- Need dynamic load balancing beyond map-reduce
- MPI or OpenMP is better!

Case 3: Estimate Spatial Auto-Regression Parameters, Routing
- Map-reduce is inefficient for iterative computations due to expensive “reduce”!
- MPI, OpenMP, Pregel or Spatial Hadoop is essential!
- Ex. Golden section search, Determinant of large matrix
- Ex. Eco-routing algorithms, Evacuation route planning
Ex. 3: Hardest to Parallelize

\(\rho \): the spatial auto-regression (auto-correlation) parameter

\(W \): \(n \)-by-\(n \) neighborhood matrix over spatial framework

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Linear Regression</td>
<td>(y = x \beta + \varepsilon)</td>
</tr>
<tr>
<td>Spatial Auto-Regression</td>
<td>(y = \rho W y + x \beta + \varepsilon)</td>
</tr>
</tbody>
</table>

- **Maximum Likelihood Estimation**

\[
\ln(L) = \ln |I - \rho W| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE
\]

- Need cloud computing to scale up to large spatial dataset.
- However,
 - Map reduce is too slow for iterative computations!
 - computing determinant of large matrix is an open problem!
Spatial Big Data (SBD)

• SBD Definitions
• SBD Applications
• SBD Analytics
• SBD Infrastructure
• Conclusions
Summary

- SBD are important to society
 - Ex. Eco-routing, Public Safety & Security, Understanding Climate Change
- SBD exceed capacity of current computing systems
- DBMS Opportunities
 - Eco-Routing: Lagrangian frame, Non-Stationary Ranking
 - Privacy vs. Utility Trade-offs
- Data Analytics Opportunities
 - Post Markov Assumption – Estimate Neighbor Relationship from SBD
 - Place based Ensemble Models to address spatial heterogeneity
 - Bigger the spatial data, simpler may be the spatial models
 - Online Spatial Data Analytics
- Platform Opportunities
 - Map-reduce – expensive reduce not suitable for iterative computations
 - Load balancing is harder for maps with polygons and line-strings
 - Spatial Hadoop?