Transportation Data Mining: Vision & Challenges

Shashi Shekhar
McKnight Distinguished University Professor
University of Minnesota
www.cs.umn.edu/~shekhar

Pervasive Data for Transportation:
Innovations in Distributed and Mobile Information Discovery in ITS & LBS
Transportation Research Board Meeting 182
January 23rd, 2011.
Spatial Databases: Representative Projects

Parallelize Range Queries

Evacuation Route Planning

- only in old plan
- Only in new plan
- In both plans

Shortest Paths

Storing graphs in disk blocks
Spatial Data Mining: Representative Projects

Location prediction: nesting sites
- Nest locations
- Distance to open water
- Vegetation durability
- Water depth

Spatial outliers: sensor (#9) on I-35

Co-location Patterns

Tele connections
Outline

• Motivation
 – Transportation Questions
 – Transportation Theories
 – Limitations of theories

• Data mining

• Conclusions
Questions in Transportation Domain

• Traveler, Commuter
 – What will be the travel time on a route?
 – Will I make to destination in time for a meeting?
 – Where are the incident and events?

• Transportation Manager
 – How the freeway system performed yesterday?
 – Which locations are worst performers?

• Traffic Engineering
 – Which loop detection are not working properly?
 – Where are the congestion (in time and space)?
 – How congestion start and spread?

• Planner and Researchers
 – What will be travel demand in future?
 – What will be the effect of hybrid cars?
 – What are future bottlenecks? Where should capacity be added?

• Policy
 – What is an appropriate congestion-pricing function?
 – Road user charges: How much more should trucks pay relative to cars?
Theories in Transportation Domain

• Physics
 • Traffic: Fluid flow models (e.g. reduce turbulence), control theory
 • How to reduce icing on pavements?
• Chemistry
 • Environmental impact (e.g. salt, incomplete combustion)
• Biology
 • How to reduce crash-injury severity?
 • Effect of age, sleep deprivation, toxins, ...
• Psychology
 • Human factors: design of highway signage, vehicle dashboard
 • Activity and agent based models
• Sociology
 • Household decisions, Homophily and social networks
 • Lack of trust => aggressive driving
• Economics, Game Theory
 • Incentive mechanisms
 • Wardrop equilibrium among commuters
 • Ex. All comparable paths have same travel time!
Limitations of Theories

• Multi-disciplinary questions:
 • Will hybrid cars reduce environmental impact of transportation?
 • Extreme events – evacuation, conventions, …
 • Impact of context – weather, climate, economy, politics, crime, police cars, …

• Mono-disciplinary questions
 • Non-equilibrium phenomena, e.g. location, time and path
 • Critical places & moments: Accident hotspots (hot-moments)? Why?
 • Normality & anomalies: e.g. traffic flow discontinuities – location, cause
 • Regional difference: effectiveness of Ramp meters across places & time-periods

• What are the **options** to complement theory based approaches?
Data-Intensive Scientific Discovery

• Classical Approach
 • Travel diaries, NHTS survey (OD matrix), Lab. (mpg rating)
 • Hypothesis driven data collection, Statistical hypothesis testing

• Emerging Data-Intensive Approach
 • Secondary Data: Engine computer, gps, cell-phones, face-book,VGI,
 • Exploratory data analysis for hypothesis generation
 • Ex. Data Mining and Knowledge Discovery
Outline

• Motivation
• Data mining
 – Case Studies
 – Definition
• Pattern Families
• Conclusions
Adoption of Data Mining

- Example: IBM Smarter Planet Initiative, SAS, …
 - Large Organizations: Walmart, USDOD, …

- 1990s: Data Mining
 - Scale up to traditional models to large relational databases
 - Linear regression, Decision Trees, …
 - New pattern families: Association rules
 - Which items are bought together? E.g. (Diaper, beer)

- Spatial customers
 - Walmart
 - Which items are bought just before/after events, e.g. hurricanes?
 - How to send these items to appropriate stores?
 - Where is (diaper-beer) pattern prevalent?
 - Center for Disease Control: cancer clusters
 - Police: crime hotspots
 - USDOD, intelligence: anomaly detection, link analysis
Serious Scientists are also using Data Mining!

Example: NASA IVMS Data Mining Laboratory
The lab enables the dissemination of Integrated Vehicle Health Management data, algorithms, and results to the public. It will serve as a national asset for research and development of discovery algorithms for detection, diagnosis, prognosis, and prediction for NASA missions.
Data Mining

• What is it?
 – Identifying interesting, useful, non-trivial patterns
 • Hot-spots, anomalies, associations, precursors
 – in large datasets
 • Infrastructure:
 – Aerial surveillance (e.g. ARGUS-IS)
 – Geo-sensor network (loop detector, cameras), …
 • Volunteered: cell-phone, gps, social network

• Importance
 – Potential of discoveries and insights to improve lives
 • Traffic Management: Where and when are traffic flow anomalies? Why?
 • Safety: Where are accident hotspots? Why?
 • (Tele)-connection: traffic-congestion & events (e.g. weather, conventions)
 • Transportation Planning: How is demand changing? Consequences?

• Challenge:
 • \((d/dt)\) (Data Volume) \(\gg\) \((d/dt)\) (Number of Human Analysts)
 • Need automated methods to mine patterns from data
 • Need tools to amplify human capabilities to analyze data
Outline

• Motivation
• Data mining
• Pattern Families
 – Spatial outliers
 – Hotspots
 – Co-occurrences
 – Prediction
• Conclusions
Example 1: Anomalies

- Example – Sensor 9
 - Will sensor 9 be detected by traditional outlier detection?
 - Is it a global outlier?
Example 2: HotSpots

- What is it?
 - Unusually high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis

- Solved
 - Spatial statistics based ellipsoids

- Almost solved
 - Transportation network based hotspots

- Next
 - Emerging hot-spots
Example 3: Associations, Co-locations, Co-occurrences

• Road user-charges:
 – Is technology available for road-type based policy?
 – Which road segments are vulnerable for mis-classification?
• Issue: accuracy or GPS & digital roadmaps
Example 3b: Associations

- Which following transportation networks co-occur? Where? Why?
 - e.g. roads, river, railroads, air, etc.. in North Korea

Road-River/Stream Colocation
Example 4: Prediction

• Impact
 – Deforestation – Brazil lost 150,000 sq. km. of forest between 2000 and 2006
 – Urban Sprawl

• Environmental Aspects
 – Deforestation
 – Habitat loss, endangered species
 – Water and air quality
 – Climate change (?)
 – …

• Urgent issues => Policy changes
 – Brazil: real-time monitoring of forests
 – USA: from VMT to access
 – …
Example 4: Prediction

• Transportation Planning
 – What will be the impact of a new office building?
 – What will be travel demand? future bottlenecks?
 – What will be the effect of hybrid cars on traffic?
 – How will better bicycle facility impact vehicle traffic?

• Q? Are classical techniques (e.g. Decision trees, SVM, …) adequate?

• Challenges
 – Spatio-temporal auto-correlation – violates independence assumption
 – Network : routes, edge capacities, …
 – Individual behavior: urban sprawl?
 – Group dynamics: game theory, Wardrop equilibrium, …
Outline

• Motivation
• Data mining
• Conclusions
 – Summary
 – Research Challenges
Summary

• It’s time for transportation community to give serious consideration to data mining and knowledge discovery!

• Transportation is facing new challenges
 – Climate change driven policy changes

• Classical approaches are limited
 – Multi-disciplinary problems, non-equilibrium scenarios,
 – Extreme events

• Data-Intensive Scientific Discovery
 – Complements classical approaches: Hypothesis generation
 – Secondary datasets are growing
 – Data mining technology is maturing
Datasets in Transportation Domain

• Datasets
 – Reports on accidents, traffic law violation
 – Travel diaries and surveys
 – Traffic simulator (e.g. DYNASMART) outputs
 – Loop-detector: traffic volume, density, occupancy, …
 – Traffic camera - videos
 – Automatic vehicle location and identification
 • from GPS, cell-phone, automatic tolling transponder, etc.
 – Other sensors: bridge strain, visibility (in fog), ice, …
 – Yellow Pages, street addresses

• Characteristics
 – Spatio-temporal networks
New Datasets: Speed Profiles

- Transportation
 - Road networks: Nodes = road intersections, Edge = road segments
 - Edge attribute: travel time; Navteq reports it a function of time!
- Operations:
 - Hot moments (i.e. rush hours), Hotspots (i.e. congestion)
 - Fastest Path, Evacuation capacities of routes
Transportation Data Mining: Computational Challenges

• Violates assumptions of classical data mining
 – Lack of independence among samples - ? Decision trees, …
 – No natural transactions -? Association rule, …

• Two kinds of spaces
 – Embedding space, e.g. Geography, Network, Time
 – Feature space, e.g. Traffic volume, accidents, …

• Lessons from Spatial thinking
 – 1st Law: Auto-correlation: Nearby things are related
 – Heterogeneity
 – Edge effect
 – …
Spatial/Spatio-temporal Outliers Challenges

- **What is it?**
 - Location different from their neighbors
 - Discontinuities, flow anomalies

- **Solved**
 - Transient spatial outliers

- **Almost solved**
 - Anomalous trajectories

- **Failed**

- **Missing**
 - Persistent anomalies
 - Multiple object types, Scale

- **Next**
 - Dominant Persistent Anomalies
HotSpots

What is it?
- Unusually high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis

Solved
- Spatial statistics based ellipsoids

Almost solved
- Transportation network based hotspots

Failed
- Classical clustering methods, e.g. K-means

Missing
- Spatio-temporal

Next
- Emerging hot-spots
Colocation, Co-occurrence, Interaction

- **What is it?**
 - Subset of event types, whose instances occur together
 - Ex. Symbiosis, (bar, misdemeanors), …

- **Solved**
 - Colocation of point event-types

- **Almost solved**
 - Co-location of extended (e.g. linear) objects
 - Object-types that move together

- **Failed**
 - Neighbor-unaware Transaction based approaches

- **Missing**
 - Consideration of flow, richer interactions

- **Next**
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections
Space/Time Prediction

What is it?
- Models to predict location, time, path, …
 - Nest sites, minerals, earthquakes, tornadoes, …

Solved
- Interpolation, e.g. Krigging
- Heterogeneity, e.g. geo. weighted regression

Almost solved
- Auto-correlation, e.g. spatial auto-regression

Failed: Independence assumption
- Models, e.g. Decision trees, linear regression, …
- Measures, e.g. total square error, precision, recall

Missing
- Spatio-temporal vector fields (e.g. flows, motion), physics

Next
- Scalable algorithms for parameter estimation
- Distance based errors

\[y = \rho Wy + x\beta + \varepsilon \]
Implication of Auto-correlation

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Linear Regression</td>
<td>$y = x\beta + \epsilon$</td>
<td>Low</td>
</tr>
<tr>
<td>Spatial Auto-Regression</td>
<td>$y = \rho Wy + x\beta + \epsilon$</td>
<td>High</td>
</tr>
</tbody>
</table>

ρ: the spatial auto-regression (auto-correlation) parameter
W: n - by - n neighbor-od matrix over spatial framework

Computational Challenge:
Computing determinant of a very large matrix in the Maximum Likelihood Function:

$$\ln(L) = \ln|I - \rho W| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE$$