Spatio-temporal Data Mining for Environmental Sciences

Shashi Shekhar
McKnight Distinguished University Professor
Faculty of Computer Sc. and Eng., Univ. of Minnesota
www.cs.umn.edu/~shekhar
Acknowledgements

- **Spatial Database and Data Mining Group**
 - Dr. James Kang – Flow Anomaly
 - M. Celik, S. Chawla, C. T. Lu (Spatial Outliers), V. R. Raju, W. Wu, H. Yan (Colocation), J. S. Yoo, P. Zhang, etc.

- **Collaborators (Env. Scientists):**
 - Prof. Paige Novak, Prof. William Arnold,
 Prof. Miki Hondzo, Christine Wennen,
 Mike Henjum

- **Sponsors:**
 - NSF, USDOD, U of M OVPR
Spatio-Temporal Data Analysis

Recently having attention in Industry and Academia
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
• Gaps, Open Problems
Spatial and Spatio-temporal Data Mining

1. What is it?
 ① Identifying interesting, useful, non-trivial patterns
 ② in large spatial or spatio-temporal datasets

2. Why is it important?
 ① Potential of insights to improve human lives
 □ Environment: How is Earth system changing? Consequences for humans?
 □ Public health: Where are cancer clusters? Environmental reasons?
 □ Public safety: Where are hotspots of (env.) crime? Why?
 ② However, (d/dt) (Spatial Data Volume) >> (d/dt) (Number of Human Analysts)
 □ Need automated methods to mine patterns from spatial data
 □ Need tools to amplify human capabilities to analyze spatial data
1. The process of discovering
 ① interesting, useful, non-trivial patterns
 □ patterns: non-specialist
 □ exception to patterns: specialist
 ② from large spatial datasets

2. Spatial pattern families
 ① Hotspots, Spatial clusters
 ② Spatial outlier, discontinuities
 ③ Co-locations, co-occurrences
 ④ Location prediction models
 ⑤ …
Pattern Family: Hotspots, Spatial Cluster

The 1854 Asiatic Cholera in London

Near Broad St. water pump except a brewery
Pattern Family: Predictive Models

Location & Direction Prediction:
Predict Bird Habitat Prediction
Using environmental variables
Pattern Family : Co-locations/Co-occurrence

Given: A collection of different types of spatial events

Find: Co-located subsets of event types

Answers: 🌳🔥 and 🐦🏠
Pattern Family: Spatial Anomalies

Spatial Anomalies
① Traffic Data in Twin Cities
② Abnormal Sensor Detections
③ Spatial and Temporal Outliers
Life Cycle of Data Mining

1. Application/Business Understanding
2. Data Understanding
3. Data Preparation
4. Modeling
5. Evaluation
6. Deployment

Is CRISP-DM adequate for Spatial Data Mining?

Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
- Gaps, Open Problems
Environment, Environmental Science

Environment

1. surroundings; milieu
2. aggregate of surrounding things, conditions, or influences;
3. Ecology: the air, water, minerals, organisms, and all other external factors surrounding and affecting a given organism at any time.
4. Social and cultural forces that shape the life of a person or a population.

Q? What is the relationship to spatial / spatio-temporal analysis?

It allow inclusion of context, i.e. surrounding.

Environmental Science

1. study of the interactions among the physical, chemical and biological components of the environment
2. branch of science concerned with the physical, chemical, and biological conditions of the environment and their effect on organisms.
Examples of Environmental Sciences

Environmental chemistry:
- Soil, water, air pollution; multi-phase transport, fate; impact on species, geology
- Study of chemical alterations in the environment.

Atmospheric sciences:
- Meteorology, greenhouse gas phenomena, airborne contaminant dispersion, ...
- Global warming: atmospheric circulation, air-borne chemicals and their reactions, carbon dioxide fluxes from life-forms, atmospheric dynamics, etc.

Geosciences, hydrology, oceanography:
- Environmental geology, environmental soil science, volcanic phenomena, surface runoff, sediment transport, water turbidity, ...

Ecology:
- Study of organisms and their interactions with each other and their environment

Env. Health, Env. Physiology, ...

Env. Justice, Env. Criminology

Env. Engineering

Env. Psychology, Env. Sociology

...
Water Quality

- **By 2025**, 1.8 billion people could be living in water scarce areas.
- **Today**, 750 million people live below the water-stress threshold of 1.7 K cubic meters per person.

Source: WFUNA, 15 Global Challenges

What’s in our Water?

Recent studies found presence of pharmaceutical drugs in drinking water of many U.S. Cities.

Environmental Questions

1. **General Public**
 ① Is water safe for drinking, swimming?
 ② Where are air quality warning?

2. **Drinking Water Manager**
 ① Is incoming water safe for water plant (reverse osmosis filters)?
 ② Is there a change in contaminants today (compared with recent days)?

3. **Environmental Scientist**
 ① Transport: Where will a contaminant go?
 ② Fate: What is the fate of a contaminant?
 ③ Are there any new processes occurring in the water bodies?

4. **Environmental Forensics**
 ① Where did contaminant come from?
 ② What are hotspots and hot moments?

5. **Policy**
 ① Compare policy options on environmental impact and social good.
 ② How to communicate environmental decision to all stakeholders?

6. **Environment Protection Agency**
 ① What will be the impact on environment of a proposed change?
ES Domain Questions:
• Where do various contaminants go?
• Where did the contamination come from?

Path of Pollutant within the Environment
(Source: Schnoor, Environmental Modeling, 1996)
Datasets

Data Sources:

- Hydrology Information Systems, CUAHSI
- United States Geological Survey

Data Characteristics (HIS/USGS)

- > 1.75 Million Locations
- > 342 Million Time Instants
- > 15K Measured Variables
 - Turbidity
 - Dissolved Oxygen
 - Nitrate
 - Etc.

Hydrology Measurement Sites in US
(Source: HIS/USGS)
Environmental Science: Data Analysis

Recorded View

1. **Data Bases, Queries**
 - CUAHSI
 - USGS
 - Captures observations and information needs

2. **Situational Awareness**
 - Where are the hot-spots? When are Hot-moments?
 - How does water quality this year compares with historic data?

Predictive View

3. **Predictive Analysis**
 - From known classes (e.g. red-tide, algal bloom, …), which class of event does this represent?
 - Predict water quality given other environmental (e.g. upstream) and socio-economic variables.

4. **Knowledge Discovery**
 - What other events could occur with this pattern?
 - e.g. Rain-event | snow-melt | mining => Water quality events nearby a little later
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies

 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation

• Gaps, Open Problems
Two Use Cases:

• At the water treatment plant, when should it turn off the water supply from the river?
• Where is the source of the contaminant?
Domain Example of a Flow Anomaly

Notice that a contaminant event may **not** flow as a single contiguous unit.

Other Applications:
- Atmospheric Monitoring
- Pipeline Systems
- Transportation Networks

(Source: http://www.sfgate.com/cgi-bin/news/oilspill/busan)
Concept: Transient Flow Anomaly

- **Transient Flow Anomaly** (tFA) is where the difference between the neighboring observations across each sensor is larger than the given error threshold, Θ_e

- Ex. Suppose $\Theta_e = 10$

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT $[t]$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| tFA $[t]$ | 1 | 0 | 1 | - |

- $f(st_1) = \begin{bmatrix} 10 & 20 & 30 & 40 \end{bmatrix}$
- $f(st_2) = \begin{bmatrix} 0 & 90 & 25 & 85 \end{bmatrix}$

A tFA may represent a single time unit of a blob in an oil spill.
Concept: Persistent Flow Anomaly

- **Persistent Flow Anomaly (pFA)**, is when the first and last are tFAs and the fraction of tFAs and time slots within a period satisfies the persistent threshold, Θ_p

- *Ex.* Suppose $\Theta_e = 10$ and $\Theta_p = 0.5$

For a pFA of $s = 1$ and $e = 3$,

Thus, a pFA pattern is 1-3

A pFA may represent a single blob or chunk in an oil spill.

Note: A pFA is an *algebraic aggregate function*
1. A dominant persistent Flow Anomaly, dpFA, is a pFA that has the largest possible number of IPs and is not a subset of any other dpFA.

2. Ex, Suppose \(\Theta_e = 10 \) and \(\Theta_p = 0.5 \)

Period 1-5 is a dpFA because it has the largest number of IPs and not a subset of any other dpFA.

Periods 1-3 and 3-5 are not dpFAs because they are subsets of the dpFA of 1-5.

A dpFA may represent an entire oil event.

Note: A dpFA is a *holistic aggregate function*
Outline

- Spatial and Spatio-temporal Data Mining
- Environmental Science
- Flow Anomalies
 - Key Concepts
 - Problem Statement
 - Contributions
 - Analytical Evaluation
 - Experimental Evaluation
- Gaps, Open Problems
Problem Statement

- **Given**
 - Two stations, st₁ and st₂
 - Direction of flow between the st₁ and st₂ stations
 - An upstream of contiguous set of Instant Pairs, IP, at time intervals $t = 1 \ldots n$ where n is the length of the time series for the $s₁$ sensor
 - The travel time, $TT[t]$, between the $st₁$ and N($st₁$) stations at every t
 - An error threshold $Θ_e$ and a persistent threshold $Θ_p$

- **Find**
 - All dominant persistent Flow Anomalies (dpFAs)

- **Objective**
 - Minimize computation time

- **Constraints**
 - A single directional flow between sensors
 - Correct and complete
Problem Statement: Example

Input:

\[t = \begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array} \]

\[TT[t] = \begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[f(st_1) = \begin{array}{cccccccccccc}
20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 \\
\end{array} \]

\[f(st_2) = \begin{array}{cccccccccccc}
20 & 40 & 20 & 40 & 20 & 20 & 40 & 20 & 20 & 40 & 40 \\
\end{array} \]

Output: dpFAs of 1-3 and 6-10

Note: period 1-10 is NOT a dpFA because it does not satisfy the persistence threshold

Key:
- Red Font – tFA
- Black Box – dpFA

\(\oplus_p = .60 \)

\(\oplus_e = 0 \)
Challenges and Related Work

- A single dpFA pattern may consist of subsets that may not be anomalies
 - Violates Dynamic Programming Principle of having optimal substructure
 - Time Series [Keogh, KDD, ’99]
 - Due to the fact that a pFA is an algebraic aggregate function that must satisfy a persistent threshold, Θ_p

- The size of the dpFAs may not be known in advance
 - Fixed Window Methods [Bulut, ICDE, ‘05],[Chen, ASIAN, ‘05], [Sakurai, SIGMOD, ‘05],[Sayal, HP, ‘04]
Challenges and Related Work – Contd.

- **Outlier Detection may not find Transient FA** [Knorr & Ng, KDD ’97] [Shekhar et al., KDD ‘01]
 - Ex. Suppose $\Theta_e = 10$

 But, upstream saw the same observation moments ago

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT $[t]$ =</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$f(st_1)$ =</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

 It may appear that there is an anomaly here.

 | tFA does exist when flow is considered |
 | No anomaly on its spatial neighbor |

 $f(st_2)$ = 20 50 25 85
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
• Gaps, Open Problems
Our Contributions

- Define Flow Anomalies (FA) and the FA Mining Problem
- New interest measures to discover and mine FAs

Methods

- Naïve Approach
- A Smart Window Enumeration and Evaluation of persistent Thresholds (SWEET) Approach
 - A Smart Counter Design Decision
 - A Pruning Strategy
- An Expanded Ranges Index (SWEET-ER)

Analytical Evaluation

Experimental Evaluation

- Synthetic and Real Datasets
In general, need to check every time period size to determine if it is anomalous or not.

- Utilize the travel time to identify the anomalous time periods
- Exhaustive search for all possible time period sizes
 - Evaluate each period for number of tFAs and if it satisfies the persistent threshold
- Example next slide
Naïve Approach

Example

Input

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>TT [t]</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
f(\text{st}_1) = \begin{bmatrix} 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 \end{bmatrix}
\]

\[
f(\text{st}_2) = \begin{bmatrix} 20 & 40 & 20 & 40 & 20 & 20 & 40 & 20 & 40 & 40 \end{bmatrix}
\]

Persistent Flow Anomalies

Size 1: 1-1, 3-3, 6-6, 9-9, 10-10

Size 2: 9-10

Size 3: 1-3

Size 4: None

Size 5: 6-10

Size 6: None

Size 7: None

Size 8: None

Size 9: None

Size 10: None

Dominant Persistent Flow Anomalies:

1-3, 6-10

\[\Theta_p = 0.60\]

\[\Theta_e = 0\]
Analytical Evaluation

Computational Costs

Complexity: (Phase 1 costs + Phase 2 costs)

<table>
<thead>
<tr>
<th>Naïve</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n^3 + p^2$</td>
</tr>
</tbody>
</table>

- n is the total number of time slots in the dataset
- t is the number of tFAs found in the dataset and $t \leq n$
- p is the number of pFAs found in the dataset and $t \leq p \leq t^2$
Search Space

Examine all possible periods in this example in a Matrix and a Graph

Observed THREE key insights to improve overall efficiency
Search Space: Matrix

Illustration of All Candidate Time Intervals

A Partial-Order Occurs!
Ex. \(<3-3>\) is a subset of \(<2-3>\) and \(<3-4>\)
Search Space: Partial-Order Graph

Search space can also be represented as a Partial-Order Graph
Partial-Order Graph

Label nodes that are transient Flow Anomalies
Lemma 1: Prune Ancestors of non-tfa

\[\Theta_p = 0.60 \]
\[\Theta_e = 0 \]

Lemma 1: Ancestors of non-tfa singletons cannot be pfa.

Key:
- tFA
- pFA
- Evaluated
- pruned
Lemma 3: Smart Counter

Keep a count on the number of tFAs found so far. This allows evaluation of a pfa in constant time. (Lemma 3)

Ex. \(Q_p(6-10) = \frac{5-3+1}{10-6+1} = 0.6 \)

Key:
- Red: tFA
- Blue: pFA
- Gray: Evaluated
- Black: pruned
Lemma 2: Prune Descents of pfas

Lemma 2: Descendents of pfa can not be dpfas.

Key:
- tFA
- pFA
- Evaluated
- pruned

$t_{p} = 0.60$
$t_{e} = 0$
Key Insights to Reduce Computational Cost

<table>
<thead>
<tr>
<th>Lemma 1:</th>
<th>If a singleton is not a tFA, then periods starting or ending with this instant is not a dpFA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemma 2:</td>
<td>If a period is a pFA, then its descendants cannot be a dpFA.</td>
</tr>
<tr>
<td>Lemma 3:</td>
<td>Number of tFAs in a period is an algebraic function.</td>
</tr>
</tbody>
</table>

Using the Starting and Ending time instants (6-9), determine number of tFAs as: $5 - 3 + 1 = 3$
SWEET Approach

- SWEET Approach
 - Phase 1: Identify the pFAs
 - Enumerate and evaluate periods that start and end with a tFA (Lemma 1)
 - Phase 2: Identify the dpFAs

- Design Decisions
 - Smart Counter (Lemma 3)
 - Pruning Strategy (Lemma 2)

- Detail Execution Trace next slide

- Computation Cost reduces
 - Naïve: $O(N)$
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
• Gaps, Open Problems
SWEET-ER Approach

Key Ideas

- **Disadvantage in both Naïve and SWEET**
 - Exhaustive search of persistent FAs in second phase to find dominant pFAs

- **Expanded Regions**
 - In Phase 1, maintain an index of dominant pFAs as persistent FAs are discovered (Lemma 2)
 - In Phase 2, single scan of ER to identify dominant pFAs
Analytical Evaluation: Computational Costs

Complexity: (Phase 1 costs + Phase 2 costs)

<table>
<thead>
<tr>
<th></th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>(n^3 + p^2)</td>
</tr>
<tr>
<td>SWEET</td>
<td>(t^3 + p^2)</td>
</tr>
<tr>
<td>SWEET [p]</td>
<td>(t^3 + p^2)</td>
</tr>
<tr>
<td>SWEET [s]</td>
<td>(t^2 + p^2)</td>
</tr>
<tr>
<td>SWEET [s+p]</td>
<td>(t^2 + p^2)</td>
</tr>
<tr>
<td>SWEET-ER [s+p]</td>
<td>(t^2 + n)</td>
</tr>
</tbody>
</table>

- \(n\) is the total number of time slots in the dataset
- \(t\) is the number of tFAs found in the dataset and \(t \leq n\)
- \(p\) is the number of pFAs found in the dataset and \(t \leq p \leq t^2\)
Proof of Correctness and Completeness

• **Theorem 1 and 3:** SWEET and SWEET-ER are correct, i.e., all discovered patterns satisfy the dpFA definition.

• **Theorem 2 and 4:** SWEET and SWEET-ER are complete, i.e., all dominant pFA patterns are found.
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
 Key Concepts
 Problem Statement
 Contributions
 Analytical Evaluation
 Experimental Evaluation
• Gaps, Open Problems
Experimental Evaluation: Setup

- Experimental Question: What is the effect in the size of the time series?
- Measured in terms of: Execution (CPU) Time
- Methods: Naïve, SWEET, SWEET (s), SWEET (s+p), SWEET-ER (s+p)
- Hardware: P4 2.0 GHz, 1.2 GB RAM
Synthetic: What is the effect on the size of the time series?

<table>
<thead>
<tr>
<th>Synthetic Generator Parameters</th>
<th>Experimental Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Time = 10</td>
<td>Travel Time = 10</td>
</tr>
<tr>
<td>$\Theta_e = 10$</td>
<td>$\Theta_e = 10$</td>
</tr>
<tr>
<td>% # of Anomalies: 30%</td>
<td>$\Theta_p = 0.80$</td>
</tr>
</tbody>
</table>

At 5K, Naïve takes a little more than **3 hours** to complete, whereas SWEET(s+p) takes a half a second.
Synthetic: What is the effect on the size of the time series?

Execution Time (CPU)

<table>
<thead>
<tr>
<th>Synthetic Generator Parameters</th>
<th>Experimental Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Time = 10</td>
<td>Travel Time = 10</td>
</tr>
<tr>
<td>$\Theta_e = 10$</td>
<td>$\Theta_e = 10$</td>
</tr>
<tr>
<td>% # of Anomalies: 10%</td>
<td>$\Theta_p = 0.80$</td>
</tr>
</tbody>
</table>

As expected, SWEET-ER performs far better than SWEET due to the ER index.
Real Data Sets

1. Shingle Creek
 ① Stations 5 to 1
 □ Dataset 1: Turbidity: 3K-15K time intervals
 □ Dataset 2: DO: 5K time intervals

(Source: Shingle Creek, MN Study Site)
Wireless Sensor Network

Station #1

Station #2

Station #3

Station #4

Station #5

Remote Server
CUAHSI-HIS

Base Station:
Wireless Cellular
Modem

Data Transfer

Inter-Station
Communication:
Radio
Real Dataset: What is the effect on the size of the time series?

<table>
<thead>
<tr>
<th>Experimental Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Time = Variable (From Input)</td>
</tr>
<tr>
<td>$\Theta_e = 10$</td>
</tr>
<tr>
<td>$\Theta_a = 0.80$</td>
</tr>
</tbody>
</table>

At 3K, Naïve takes a little more than 1 hour to complete, whereas SWEET(s+p) takes a half a second.
Real Dataset: What is the effect on the size of the time series?

Experimental Parameters

Travel Time = Variable (From Input)

$\Theta_e = 10$

$\Theta_a = 0.80$

Performance gain of SWEET-ER between 12K to 15K due to an increase in number of candidates creating more time needed in SWEET
1. What are Flow Anomalies really?

2. Based on the data available, can we determine why a flow anomaly occurred?
Longest Flow Anomaly Result (Error: +/- 5, Persistent: 80%)
Domain-based Validation: Rain Fall

High Rain Fall around June 4-5, 2008 time frame
1. It was observed that the retention pond near sensor 4 has very low DO.

2. So when a rain event occurs, the water from the pond flushes into the stream between sensors 5 and 1.

3. Resulting in a Flow Anomaly for DO.
Discovering Flow Anomalies

Summary

- Introduced the FA mining problem and Flow-based Patterns
 - New concepts and interest measures
 - Proposed Naïve, SWEET and SWEET-ER approaches
- Analytical Evaluation
- Experimental Evaluation
 - Synthetic and Real Datasets
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
• Gaps, Open Problems

 Domain Modeling
 Spatio-temporal Data Mining
A Teleconnected Flow Anomaly

- A pair of FAs based on its velocity field.

Challenge

- Increase in Combinatorics

Contributions

- ST Dynamic Neighborhood Model
- RAD Approach

1. Understanding of a physical phenomenon
 ① Though, final model may not involve location
 □ Cause-effect e.g. Cholera caused by germs
 ② Discovery of model may be aided by spatial patterns
 □ Many phenomenon are embedded in space and time
 □ Ex. 1854 London – Cholera deaths clustered around a water pump
 □ Spatio-temporal process of disease spread => narrow down potential causes
 □ Ex. Recent analysis of SARS

2. Location helps bring rich contexts
 ① Physical: e.g., rainfall, temperature, and wind
 ② Demographical: e.g., age group, gender, and income type
 ③ Problem-specific, e.g. distance to highway or water
Future Work cont’d

Domain-based Computational Challenges

- Multi-paths and complex networks
 - Exponential growth in paths
- Handling mixing for water bodies
 - 1:1 and M:N relationships
- Uncertainty in Travel Time
 - All path and All time search for patterns
Outline

• Spatial and Spatio-temporal Data Mining
• Environmental Science
• Flow Anomalies
• Gaps, Open Problems

 Domain Modeling

 Spatio-temporal Data Mining
Future Work

<table>
<thead>
<tr>
<th>Traditional</th>
<th>Spatial</th>
<th>Spatio-Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering</td>
<td>Hotspot</td>
<td>Spreading Hotspots</td>
</tr>
<tr>
<td>Outlier</td>
<td>Spatial Outlier</td>
<td>Flow Anomaly</td>
</tr>
<tr>
<td>Association Rules</td>
<td>Co-Locations</td>
<td>Teleconnections</td>
</tr>
<tr>
<td>Prediction</td>
<td>Location Prediction</td>
<td>Path Prediction</td>
</tr>
</tbody>
</table>

- **Real-Time Flow Anomalies**
 - Discover FA based on a time-constraint
 - **Apply Transient, Persistent, Dominant concepts to other spatial pattern families**
 - Ex. Hotspot Analysis, Co-locations, etc.
HotSpots

What is it?
- Unusually high spatial concentration of a phenomena
 - Cancer clusters, crime hotspots

Solved
- Spatial statistics based ellipsoids

Almost solved
- Transportation network based hotspots

Failed
- Classical clustering methods, e.g. K-means

Missing
- Spatio-temporal

Next
- Emerging / Spreading hot-spots
Colocation, Co-occurrence, Interaction

- **What is it?**
 - Subset of event types, whose instances occur together
 - Ex. Symbiosis, (bar, misdemeanors), …

- **Solved**
 - Colocation of point event-types

- **Almost solved**
 - Co-location of extended (e.g. linear) objects
 - Object-types that move together

- **Failed**
 - Neighbor-unaware Transaction based approaches

- **Missing**
 - Consideration of flow, richer interactions

- **Next**
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections
Space/Time Prediction

- **What is it?**
 - Models to predict location, time, path, …
 - Nest sites, minerals, earthquakes, tornadoes, …

- **Solved**
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression

- **Almost solved**
 - Auto-correlation, e.g. spatial auto-regression

- **Failed: Independence assumption**
 - Models, e.g. Decision trees, linear regression, …
 - Measures, e.g. total square error, precision, recall

- **Missing**
 - Spatio-temporal vector fields (e.g. flows, motion), physics

- **Next**
 - Scalable algorithms for parameter estimation
 - Distance based errors

\[
y = \rho Wy + x\beta + \varepsilon
\]

\[
\ln(L) = \ln|I - \rho W| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - SSE
\]
Spatial/Spatio-temporal Anomalies

- **What is it?**
 - Location different from their neighbors
 - Discontinuities, flow anomalies

- **Solved**
 - Transient spatial outliers

- **Almost solved**
 - Anomalous trajectories

- **Failed**
 - Persistent anomalies
 - Multiple object types, Scale

- **Missing**

- **Next**
 - Multi-criteria Anomalies
(Geo) Informatics across Disciplines!