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Abstract

Explosive growth in geospatial data and the emergence of new spatial technologies emphasize
the need for the automated discovery of spatial knowledge. Spatial data mining is the process
of discovering interesting and previously unknown, but potentially useful patterns from spatial
databases. The complexity of spatial data and intrinsic spatial relationships limits the usefulness
of conventional data mining techniques for extracting spatial patterns. In this paper we describe
the ongoing spatial data mining research by the Spatial Database Research Group, University
of Minnesota. We discuss several computationally efficient and scalable techniques for analyzing
large geospatial data sets and their applications in location prediction, spatial outliers detection
and co-location association rules mining.
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1 Introduction

Researchers in the Spatial Database Research Group [22], University of Minnesota, have recently
focussed their reserach in the field of spatial data mining, a field whose importance is growing with
the increasing incidence and importance of large geo-spatial datasets such as maps, repositories
of remote-sensing images, and the decennial census. Applications of spatial data mining can be
found in location-based services in the M(mobile)-commerce industry, in the military (inferring
enemy tactics such as Flank attack), at NASA (studying the climatological effects of El Nino, land-
use classification and global change using satellite imagery), at the National Institure of Health
(predicting the spread of disease), at the National Imagery and Mapping Agency (creating high
resolution three-dimensional maps from satellite imagery), at the National Institute of Justice
(finding crime hot spots), and in transportation agencies (detecting local instability in traffic).

The differences between classical and spatial data mining are similar to the differences between
classical and spatial statistics. First, spatial data is embedded in a continuous space, whereas
classical datasets are often discrete. Second, spatial patterns are often local whereas classical data
mining techniques often focus on global patterns. Finally, one of the common assumptions in clas-
sical statistical analysis is that data samples are independently generated. When it comes to the
analysis of spatial data, however, the assumption about the independence of samples is generally
false because spatial data tends to be highly self correlated. For example, people with similar
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Figure 1: (a) Learning dataset: The geometry of the wetland and the locations of the nests, (b)
The spatial distribution of vegetation durability over the marshland

characteristics, occupation, and background tend to cluster together in the same neighborhoods.
In spatial statistics this tendency is called spatial autocorrelation. Ignoring spatial autocorrela-
tion when analyzing data with spatial characteristics may produce hypotheses or models that are
inaccurate or inconsistent with the dataset. Thus classical data mining algorithms often perform
poorly when applied to spatial datasets. Thus new methods are needed to analyze spatial data to
detect spatial patterns.

The roots of spatial data mining lie in spatial statistics, spatial analysis, geographic informa-
tion systems, machine learning, image analysis, and data mining. The main contributions made by
computer science researchers to this area include algorithms and data-structures that can scale up
to massive (terabytes to petabytes) datasets as well as the formalization of newer spatio-temporal
patterns (e.g. colocations) which were not explored by other research communities due to compu-
tational complexity. Spatial data mining projects in our group at the Department of Computer
Science include location prediction, detection of spatial outliers, and discovery of spatial co-location
patterns.

Location prediction is concerned with the discovery of a model to infer locations of a spatial
phenomenon from the maps of other spatial features. For example, ecologists build models to
predict habitats for endangered species using maps of vegetation, water bodies, climate, and other
related species. Figure 1 shows maps of nest location and vegetation durability to build a location
prediction model for red-winged blackbirds in the Darr and Stubble wetlands on the shores of Lake
Eries in Ohio. Classical data mining techniques yield weak prediction models as they do not capture
the auto-correlation in spatial datasets. We provided a formal comparison of diverse techniques
from spatial statistics (e.g. spatial autoregression) as well as image classification (e.g. Markov
Random Field-based Bayesian classifiers) and developed scalable algorithms for these techniques
[28].

Spatial outliers are significantly different from their neighborhood even though they may not
be significantly different from the entire population. For example, a brand new house in an old
neighborhood of a growing metropolitan area is a spatial outlier. Figure 7 shows another use of
spatial outliers in traffic measurements for sensors on I-35W (north bound) for a 24 hour time
period. Sensor 9 seems to be a spatial outlier and may be a bad sensor. Note that the figure
also shows three clusters of sensor behaviors namely, morning rush hour, evening rush hour, and
busy day-time. Spatial statistics tests for detecting spatial outliers do not scale up to massive
datasets, such as the Twin Cities traffic dataset measured at thousands of locations in 30-second



intervals and archived for years. We generalized spatial statistics tests to spatio-temporal datasets
and developed scalable algorithms [29] for detecting spatial ouliers in massive traffic datasets.

The co-location pattern discovery process finds frequently co-located subsets of spatial event
types given a map (see Figure 2) of their locations. For example, the analysis of the habitats of
animals and plants may identify the co-locations of predator-prey species, symbiotic species, and
fire events with fuel, ignition sources etc. Readers may find it interesting to analyze the map in
Figure 2 to find the co-location patterns. (There are two co-location patters of size 2 in this map.)
Our group has provided one of the most natural formulations as well as the first algorithms [26]

for discovering co-location patterns from large spatial datasets and applying them to climatology
data from NASA.
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We describe each of these techniques in the following sections. In Section 2, we present SAR
and MRF techniques for predicting bird nest location using wetland datasets. In Section 3, we
introduce spatial outlier detection techniques and their use in finding spatio-temporal outliers in
traffic data. Section 4 presents a new approach called co-location mining, which finds the subsets
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Figure 3: A spatial framework and its four-neighborhood contiguity matrix

of features frequently-located together in spatial databases. Finally, we conclude with a summary
of techniques and results.

2 Location Prediction

The prediction of events occurring at particular geographic locations is very important in several
application domains. Crime analysis, cellular networks, and natural disasters such as fires, floods,
droughts, vegetation diseases, earthquakes are all examples of problems which require location
prediction. In this section we provide two spatial data mining techniques, namely the Spatial
Autoregressive Model (SAR) and Markov Random Fields (MRF) and analyze their performance in
an example case, the prediction of the location of bird nests in the Darr and Stubble wetlands.

2.1 Modeling Spatial Dependencies Using the SAR and MRF Models

Several previous studies [13], [30] have shown that the modeling of spatial dependency (often called
context) during the classification process improves overall classification accuracy. Spatial context
can be defined by the relationships between spatially adjacent pixels in a small neighborhood. The
spatial relationship among locations in a spatial framework is often modeled via a contiguity matrix.
A simple contiguity matrix may represent a neighborhood relationship defined using adjacency,
Euclidean distance, etc. Example definitions of neighborhood using adjacency include a four-
neighborhood and an eight-neighborhood. Given a gridded spatial framework, a four-neighborhood
assumes that a pair of locations influence each other if they share an edge. An eight-neighborhood
assumes that a pair of locations influence each other if they share either an edge or a vertex.

Figure 3(a) shows a gridded spatial framework with four locations, A, B, C, and D. A binary
matrix representation of a four-neighborhood relationship is shown in Figure 3(b). The row-
normalized representation of this matrix is called a contiguity matrix, as shown in Figure 3(c).
Other contiguity matrices can be designed to model neighborhood relationship based on distance.
The essential idea is to specify the pairs of locations that influence each other along with the relative
intensity of interaction. More general models of spatial relationships using cliques and hypergraphs
are available in the literature [31].



2.2 Logistic Spatial Autoregression Model(SAR)

Logistic SAR decomposes a classifier f(; into two parts, namely Spatial autoregression and logistic
transformation. We first show how spatial dependencies are modeled using the framework of logistic
regression analysis. In the spatial autoregression model, the spatial dependencies of the error term,
or, the dependent variable, are directly modeled in the regression equation[2]. If the dependent
values y; are related to each other, then the regression equation can be modified as

y=pWy+Xp+e (1)

Here W is the neighborhood relationship contiguity matrix and p is a parameter that reflects
the strength of the spatial dependencies between the elements of the dependent variable. After the
correction term pWy is introduced, the components of the residual error vector € are then assumed
to be generated from independent and identical standard normal distributions. As in the case of
classical regression, the SAR equation has to be transformed via the logistic function for binary
dependent variables.

We refer to this equation as the Spatial Autoregressive Model (SAR). Notice that when
p = 0, this equation collapses to the classical regression model. The benefits of modeling spatial
autocorrelation are many: The residual error will have much lower spatial autocorrelation (i.e.,
systematic variation). With the proper choice of W, the residual error should, at least theoretically,
have no systematic variation. If the spatial autocorrelation coefficient is statistically significant,
then SAR will quantify the presence of spatial autocorrelation. It will indicate the extent to which
variations in the dependent variable (y) are explained by the average of neighboring observation
values. Finally, the model will have a better fit, (i.e., a higher R-squared statistic). We compare
SAR with linear regression for predicting nest location in Section 4.

Solution Procedures

The estimates of p and 8 can be derived using maximum likelihood theory or Bayesian statis-
tics. We have carried out preliminary experiments using the spatial econometrics matlab package',
which implements a Bayesian approach using sampling-based Markov Chain Monte Carlo (MCMC)
methods[21]. Without any optimization, likelihood-based estimation would require O(n®) opera-
tions. Recently [24], [25], and [15] have proposed several efficient techniques to solve SAR.
The techniques studied include divide and conquer, and sparse matrix algorithms. Improved per-
formance is obtained by using LU decompositions to compute the log-determinant over a grid of
values for the parameter p by restricting it to [0, 1].

2.3 Markov Random Field based Bayesian Classifiers

Markov Random Field-based Bayesian classifiers estimate the classification model f¢ using MRF
and Bayes’ rule. A set of random variables whose interdependency relationship is represented by an
undirected graph (i.e., a symmetric neighborhood matrix) is called a Markov Random Field [16].
The Markov property specifies that a variable depends only on its neighbors and is independent of
all other variables. The location prediction problem can be modeled in this framework by assuming
that the class label, [; = fc(s;), of different locations, s;, constitute an MRF. In other words,
random variable /; is independent of I; if W(s;,s;) = 0.

'We would like to thank James Lesage (http://www.spatial-econometrics.com/) for making the matlab toolbox
available on the web.



The Bayesian rule can be used to predict /; from feature value vector X and neighborhood class
label vector L; as follows:

Pr(X|l;, L;)Pr(l;| L;)

Pr(l;| X, L) = Pr(X) (2)

The solution procedure can estimate Pr(l;|L;) from the training data, where L; denotes a set
of labels in the neighborhood of s; excluding the label at s;, by examining the ratios of the fre-
quencies of class labels to the total number of locations in the spatial framework. Pr(X|l;, L;) can
be estimated using kernel functions from the observed values in the training dataset. For reliable
estimates, even larger training datasets are needed relative to those needed for the Bayesian classi-
fiers without spatial context, since we are estimating a more complex distribution. An assumption
on Pr(Xl|l;, L;) may be useful if the training dataset available is not large enough. A common
assumption is the uniformity of influence from all neighbors of a location. For computational ef-
ficiency it can be assumed that only local explanatory data X (s;) and neighborhood label L; are
relevant in predicting class label [; = fc(s;). It is common to assume that all interaction between
neighbors is captured via the interaction in the class label variable. Many domains also use specific
parametric probability distribution forms, leading to simpler solution procedures. In addition, it is
frequently easier to work with a Gibbs distribution specialized by the locally defined MRF through
the Hammersley-Clifford theorem [5].

Solution Procedures

Solution procedures for the MRF Bayesian classifier include stochastic relaxation [9], iterated
conditional modes [4], dynamic programming [8], highest confidence first [7] and graph cut [6].
We followed the approach suggested in[6], where it is shown that the maximum a posteriori estimate
of a particular configuration of an MRF can be obtained by solving a suitable min-cut multiway
graph partitioning problem. Here we briefly provide theoretical and experimental comparisions;
more details can be found in [28].

2.4 Comparison of SAR and MRF Using a Probabilistic Framework

We use a simple probabilistic framework to compare SAR and MRF in this section. We will assume
that classes I; € (c1,c¢g,...,car) are discrete and that the class label estimate fo(s;) for location
s; is a random variable. We also assume that feature values (X) are constant since there is no
specified generative model. Model parameters for SAR are assumed to be constant, (i.e., 8 is a
constant vector and p is a constant number). Finally, we assume that the spatial framework is a
regular grid.

We first note that the basic SAR model can be rewritten as follows:
y=XB+pWy+e

(I—-pW)y=XB+e

y=I—pW) ' XB+ (I —pW) 'e=(QX)B+ Qe (3)

where Q = (I — pW) ! and 3, p are constants (because we are modeling a particular problem).
The effect of transforming feature vector X to QX can be viewed as a spatial smoothing operation.
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Figure 4: Spatial datasets with salt and pepper spatial patterns

The SAR model is similar to the linear logistic model in terms of the transformed feature space.

In other words, the SAR model assumes the linear separability of classes in transformed feature
space.

Figure 4 shows two datasets with a salt and pepper spatial distribution of the feature values.
There are two classes, ¢; and ¢, defined on this feature. Feature values close to 2 map to class
¢ and feature values close to 1 or 3 will map to ¢;. These classes are not linearly separable
in the original feature space. Local spatial smoothing can eliminate the salt and pepper spatial
pattern in the feature values to transform the distribution of the feature values. In the top part
of Figure 4, there are few values of 3 and smoothing revises them close to 1 since most neighbors
have values of 1. SAR can perform well with this dataset since classes are linearly separable in the
transformed space. However, the bottom part of Figure 4 shows a different spatial dataset where
local smoothing does not make the classes linearly separable. Linear classifiers cannot separate
these classes even in the transformed feature space, assuming that Q = (I — pW)~! does not make
the classes linearly separable.

Although MRF and SAR classification have different formulations, they share a common goal,
estimating the posterior probability distribution: p(l;|X). However, the posterior for the two
models is computed differently with different assumptions. For MRF the posterior is computed
using Bayes’ rule. On the other hand, in logistic regression, the posterior distribution is directly fit
to the data. For logistic regression, the probability of the set of labels L is given by:

N

Pr(L|X) = [ [ p(i1X) (4)

=1



One important difference between logistic regression and MRF is that logistic regression assumes
no dependence on neighboring classes. Given the logistic model, the probability that the binary
label takes its first value ¢; at a location s; is:

1
1+ exp(—QiXp)
where the dependence on the neighboring labels exerts itself through the W matrix, and subscript

i (in Q;) denotes the i*" row of the matrix Q. Here we have used the fact that y can be rewritten
as in equation 3.

PT(11|X) =

()

To find the local relationship between the MRF formulation and the logistic regression formu-
lation (for the two class case ¢; = 1 and ¢z = 0), at point s;

Pr(X|l; =1,L;)Pr(l; = 1, L;)
Pr((l; =1)|X,L;) =
r((l =1IX, Li) Pr(X|l; =1,L;)Pr(l; = 1, L;) + Pr(X|l; =0, L;)Pr(l; = 0, L;) (6)

1
1+ exp(—QiXp)

which implies
Pr(X|l; =1,L;))Pr(l; = 1, L;)

This last equation shows that the spatial dependence is introduced by the W term through @);.
More importantly, it also shows that in fitting 8 we are trying to simultaneously fit the relative

importance of the features and the relative frequency (%) of the labels. In contrast, in

the MRF formulation, we explicitly model the relative frequencies in the class prior term. Finally,
the relationship shows that we are making distributional assumptions about the class conditional
distributions in logistic regression. Logistic regression and logistic SAR models belong to a more

general exponential family. The exponential family is given by
P’l"(u|’l)) = eA(av)'i'B(’U/;ﬂ')'i'aZ”u, (8)

where u,v are location and label respectively. This exponential family includes many of the
common distributions such as Gaussian, Binomial, Bernoulli, and Poisson as special cases. The
parameters 6, and 7 control the form of the distribution. Equation 7 implies that the class condi-
tional distributions are from the exponential family. Moreover, the distributions Pr(X|l; = 1, L;)
and Pr(X|l; = 0,L;) are matched in all moments higher than the mean (e.g., covariance, skew,
kurtosis, etc.), such that in the difference in(Pr(X|l; = 1,L;)) — In(Pr(X|l; = 0, L;)), the higher
order terms cancel out, leaving the linear term (BUT u) in equation 8 on the left hand-side of equation
7.

Experimental Results: Experiments were carried out on the Darr and Stubble wetlands to
compare the classical regression, SAR, and the MRF-based Bayesian classifiers. The results showed
that MRF models yield better spatial and classification accuracies over SAR in the prediction of
the locations of bird nets. We also observed that SAR predications are extremely localized, missing
actual nests over a large part of the marsh lands.



3 Spatial Outlier Detection Techniques

Global outliers have been informally defined as observations in a data set which appear to be
inconsistent with the remainder of that set of data [3], or which deviate so much from other
observations so as to arouse suspicions that they were generated by a different mechanism [11].
The identification of global outliers can lead to the discovery of unexpected knowledge and has a
number of practical applications in areas such as credit card fraud, athlete performance analysis,
voting irregularity, and severe weather prediction. This section focuses on spatial outliers, i.e.,
observations which appear to be inconsistent with their neighborhoods. Detecting spatial outliers
is useful in many applications of geographic information systems and spatial databases. These
application domains include transportation, ecology, public safety, public health, climatology, and
location based services.

We use an example to illustrate the differences among global and spatial outlier detection
methods. In Figure 5(a), the X-axis is the location of data points in one dimensional space; the
Y-axis is the attribute value for each data point. Global outlier detection methods ignore the
spatial location of each data point, and fit the distribution model to the values of the non-spatial
attribute. The outlier detected using a this approach is the data point G. On the other hand, § is
a spatial outlier whose observed value is significantly different than its neighbors P and Q.
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8 n 9
G*;\
’ [\ m-s o
g |l
p 8 A
6 “S,M I
g | 5
! Sel
S Ul s
g Pﬂ%\ gsf u-20 - Cp+20
w4t a = aed
g A \‘ m/ D1 Bl
=S | / 5}
< Q- h /ﬂ 'ga—
/ { =]
o/ R z
\J 2
B B
i/ 1r /
S N R % o 2 n s b
Location Attribute Values

(a) An Example Data Set (b) Histogram

Figure 5: A Data Set for Outlier Detection

3.1 Tests for Detecting Spatial Outliers

Tests to detect spatial outliers separate spatial attributes from non-spatial attributes. Spatial
attributes are used to characterize location, neighborhood, and distance. Non-spatial attribute
dimensions are used to compare a spatially referenced object to its neighbors. Spatial statistics
literature provides two kinds of bi-partite multidimensional tests, namely graphical tests and quan-
titative tests. Graphical tests are based on the visualization of spatial data which highlights spatial
outliers. Example methods include variogram clouds and Moran scatterplots. Quantitative meth-
ods provide a precise test to distinguish spatial outliers from the remainder of data. Scatterplots [18]
are a representative technique from the quantitative family. Figure 6(a) shows a variogram cloud
for the example data set shown in Figure 5(a). This plot shows that two pairs (P, S) and (Q, S)



on the left hand side lie above the main group of pairs, and are possibly related to spatial outliers.
The point S may be identified as a spatial outlier since it occurs in both pairs (Q, S) and (P, S).
However, graphical tests of spatial outlier detection are limited by the lack of precise criteria to
distinguish spatial outliers. In addition, a variogram cloud requires non-trivial post-processing
of highlighted pairs to separate spatial outliers from their neighbors, particularly when multiple
outliers are present or density varies greatly.
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Figure 6: Variogram Cloud and Moran Scatterplot to Detect Spatial Outliers

A Moran scatterplot [19] is a plot of normalized attribute value (Z[f(i)] = f(z)i;“f) against the

g
neighborhood average of normalized attribute values (W - Z), where W is the row-normalized (i.e.,

>~ Wij = 1) neighborhood matrix, (i.e., W;; > 0 iff neighbor(¢, j)). The upper left and lower right
quadrants of Figure 6(b) indicate a spatial association of dissimilar values: low values surrounded
by high value neighbors(e.g., points P and @), and high values surrounded by low values (e.g,.
point S). Thus we can identify points(nodes) that are surrounded by unusually high or low value
neighbors. These points can be treated as spatial outliers.

3.2 Definition of S-Outliers

Consider a spatial framework SF' =< S, NB >, where S is a set of locations {s1, s2,...,s,} and
NB : S xS — {True, False} is a neighbor relation over S. We define a neighborhood N(z) of a
location z in S using N B, specifically N(z) ={y |y € S, NB(z,y) = True}.

Definition: An object O is an S-outlier(f, 2 ., Fuirs, ST) if ST{Faiss[f (), f2 e (f (), N(2))]}
is true, where f : § — R is an attribute function, é}]]gr : RV — R is an aggregation function for the
values of f over neighborhood, R is a set of real numbers, Fy;¢r : R x R — R is a difference function,

and ST : R — {True, False} is a statistic test procedure for determining statistical significance.
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3.3 Solution Procedures

Given the components of the S-outlier definition, the objective is to design a computationally effi-
cient algorithm to detect S-outliers. We presented scalable algorithms for spatial outlier detetection
in [29], where we showed that almost all statistical tests are “algebraic” aggregate functions over
a neighborhood join. The spatial outlier detection algorithm has two distinct tasks: the first task
deals with model building and the second task involves a comparison (test statistic) with spatial
neighbors. During model building, algrebraic aggregate functions (e.g., mean and standard devia-
tion) are computed in a single scan of a spatial-join using a neighbor relationship. In the second
step, a neighborhood aggregate function is computed by retrieving the neighboring nodes and then
a difference function is applied over the neighborhood aggregates and algebraic aggregates. This
study showed that the computational cost of outlier detection algorithms are dominated by the
disk page access time (i.e., the time spent on accessing neighbors of each point). In this study we
utilized three different data page clustering schemes: the Connectivity-Clustered Access Method
(CCAM) [27], Z-ordering [23], and Cell-tree [10] and found that CCAM produced the lowest number
of data page accesses for outlier detection.

The effectiveness of the Zy,;) method on a Minneapolis-St. Paul traffic data set is illustrated
in the following example. Figure 7 shows one example of traffic flow outliers. Figures 7(a) and (b)
are the traffic volume maps for I-35W north bound and south bound, respectively, on January 21,
1997. The X-axis is a 5-minute time slot for the whole day and the Y-axis is the label of the stations
installed on the highway, starting from 1 on the north end to 61 on the south end. The abnormal
white line at 2:45PM and the white rectangle from 8:20AM to 10:00AM on the X-axis and between
stations 29 to 34 on the Y-axis can be easily observed from both (a) and (b). The white line at
2:45PM is an instance of temporal outliers, where the white rectangle is a spatial-temporal outlier.
Both represent missing data. Moreover, station 9 in Figure 7(a) exhibits inconsistent traffic flow
compared with its neighboring stations, and was detected as a spatial outlier. Station 9 may be a
malfunctioning sensor.
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Figure 7: Spatial outliers in traffic volume data
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4 Spatial Co-location Rules

Association rule finding [12] is an important data mining technique which has helped retailers
interested in finding items frequently bought together to make store arrangements, plan catalogs,
and promote products together. In market basket data, a transaction consists of a collection of
item types purchased together by a customer. Association rule mining algorithms [1] assume that
a finite set of disjoint transactions are given as input to the algorithms. Algorithms like apriori
[1] can efficiently find the frequent itemsets from all the transactions and association rules can
be found from these frequent itemsets. Many spatial datasets consist of instances of a collection
of boolean spatial features (e.g. drought, needle leaf vegetation). While boolean spatial features
can be thought of as item types, there may not be an explicit finite set of transactions due to
the continuity of underlying spaces. In this section we define co-location rules, a generalization of
association rules to spatial datasets.

4.1 Tllustrative Application Domains

Many ecological datasets [17, 20] consist of raster maps of the Earth at different times. Measure-
ment values for a number of variables (e.g., temperature, pressure, and precipitation) are collected
for different locations on Earth. A set of events, i.e., boolean spatial features, are defined on these
spatial variables. Example events include drought, flood, fire, and smoke. Ecologists are interested
in a variety of spatio-temporal patterns including co-location rules. Co-location patterns represent
frequent co-occurrences of a subset of boolean spatial features.

4.2 Co-location Rule Approaches

Given the difficulty in creating explicit disjoint transactions from continuous spatial data, this
section defines several approaches to model co-location rules. We use Figure 8 as an example
spatial dataset to illustrate the different models. In this figure, a uniform grid is imposed on the
underlying spatial framework. For each grid [, its neighbors are defined to be the nine adjacent
grids (including /). Spatial feature types are labeled beside their instances. We define the following
basic concepts to facilitate the description of different models.

Definition 1 A co-location is a subset of boolean spatial features or spatial events.

Definition 2 A co-location rule is of the form C1 — Ca(p, cp) where Cy and Co are co-locations,
p is a number representing the prevalence measure, and cp is a number measuring conditional
probability.

The prevalence measure and the conditional probability measure are called interest measures and
are defined differently in different models which will be described shortly.

The reference feature centric model is relevant to application domains focusing on a specific
boolean spatial feature, e.g. cancer. Domain scientists are interested in finding the co-locations of
other task relevant features (e.g. asbestos, other substances) to the reference feature. This model
enumerates neighborhoods to “materialize” a set of transactions around instances of the reference
spatial feature. A specific example is provided by the spatial association rule [14].

For example, in Figure 8 (a), let the reference feature be A, the set of task relevant features be
B and C, and the set of spatial predicates include one predicate named “close_to”. Let us define

12
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Figure 8: Spatial dataset to illustrate different co-location models. Spatial feature types are labeled
besides their instances. The 9 adjacent grids of a grid ! (including ) are defined to be I’s neigh-
bors. a) Reference feature-centric model. The instances of A are connected with their neighboring
instances of B and C by edges. b) Window-centric model. Each 3 X 3 window corresponds to a
transaction. c) Event-centric model. Neighboring instances are joined by edges.

close_to(a,b) to be true if and only if b is a’s neighbor. Then for each instance of spatial feature A,
a transaction which is a subset of relevant features {B, C} is defined. For example, for the instance
of A at (2,3), transaction {B,C} is defined because the instance of B at (1,4) (and at (3,4)) and
instance of C at (1,2) (and at (3,3)) are close_to (2,3). The transactions defined around instances
of feature A are summarized in Table 1.

Table 1: Reference feature centric view: transactions are defined around instances of feature A
relevant to B and C in figure 8(a)

Instance of A Transaction
(0,0) o

) {B,C}
) {C}
) 8

With “materialized” transactions, the support and confidence of the traditional association rule
problem [1] may be used as prevalence and conditional probability measures as summarized in
Table 2. Since 1 out of 2 non-empty transactions contains instances of both B and C' and 1 out
of 2 non-empty transactions contain C' in Table 1, an association rule example is: is_type(i, A) A
3j is_type(j, B) Aclose_to(j,i) — Ik is_type(k, C) Aclose_to(k, ) with 1 x100% = 100% probability.

The window centric model is relevant to applications like mining, surveying and geology,
which focus on land-parcels. A goal is to predict sets of spatial features likely to be discov-
ered in a land parcel given that some other features have been found there. The window cen-
tric model enumerates all possible windows as transactions. In a space discretized by a uniform
grid, windows of size KXk can be enumerated and materialized, ignoring the boundary effect.
Each transaction contains a subset of spatial features of which at least one instance occurs in the
corresponding window. The support and confidence of the traditional association rule problem
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Table 2: Interest measures for different models

Model Items transactions Interest measures for C; — Cs
defined by
Prevalence Conditional proba-
bility
local boolean  partitions of fraction of Pr(C, in a parti-
feature space partitions tion given C in the
types with C;UCy  partition)
reference predicates instances  of fraction of Pr(Cy is true for
feature on refer- reference fea- instance of an instance of
centric ence and ture C; and reference reference features
relevant  Cs involved feature with given Cy is true
features  with CLu(Cy for that instance of
reference feature)
window  boolean  possibly  in- fraction of Pr(Csina window
centric feature finite set windows given C7 in that
types of distinct with C;UCy window)
overlapping
windows
event boolean  neighborhoods participation Pr(Cy in a neigh-
centric feature of instances of index of borhood of C)
types feature types C1UCy

may again be used as prevalence and conditional probability measures as summarized in Table 2.
There are 16 3X3 windows corresponding to 16 transactions in Figure 8 b). All of them contain
A and 15 of them contain both A and B. An example of an association rule of this model is:
aninstance of type Ain awindow — aninstanceof type B in this window with % = 93.75% prob-
ability. A special case of the window centric model relates to the case when windows are spatially
disjoint and form a partition of space. This case is relevant when analyzing spatial datasets related
to the units of political or administrative boundaries (e.g. country, state, zip-code). In some sense
this is a local model since we treat each arbitrary partition as a transaction to derive co-location
patterns without considering any patterns cross partition boundaries. The window centric model
“materializes” transactions in a different way from the reference feature centric model.

The event centric model is relevant to applications like ecology, where there are many
types of boolean spatial features. FEcologists are interested in finding subsets of spatial features
likely to occur in a neighborhood around instances of given subsets of event types. For exam-
ple, let us determine the probability of finding at least one instance of feature type B in the
neighborhood of an instance of feature type A in Figure 8 ¢). There are four instances of type
A and only one of them has some instance(s) of type B in its 9-neighbor adjacent neighbor-
hoods. The conditional probability for the co-location rule is: spatial feature A atlocationl —
spatial featuretype Bin9 — neighbor neighborhoodis 25%.
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4.3 Solution Procedures

Co-location mining is a complex task. It consits of two tasks, schema level purning and instance level
purning. At schema level purning, apriori [1] can be used. However instance level purning involves
neighborhood (i.e., co-location row instance) enumeration, which is a compute intense task. Shekhar
et al [26] developed pure geometric, pure combinatorial, hybrid, and multi-resolution algorithms
for instance level purning. Experimental analysis shows that the pure geometric algrothm performs
much better than pure combinatorial approach. Hybrid algorithm, which is a combination of
geometric and combinatorial methods, performed better than both of these approaches. On the
other hand, multi-resolution algorithm out performs all these methods when the data is “clumped”.
It is also shown that co-lcation miner algorithm is complete and correct.

5 Conclusions and Future Work

In this paper we have provided techniques that are specifically designed to analyze large volumes of
spatial data to predict bird nests, to find spatial outliers, and to find co-location association rules.
We compared the SAR and MRF models using a common probabilistic framework. Our study
shows that the SAR model makes more restrictive assumptions about the distribution of features
and class shapes (or decision boundaries) than MRF. We also observed an interesting relationship
between classical models that do not consider spatial dependence and modern approaches that
explicitly model spatial context. The relationship between SAR and MRF is analogous to the
relationship between logistic regression and Bayesian Classifiers. The analysis of spatial outlier
detection algorithms showed the need for good clustering of data pages. The CCAM method
yielded the best overall performance. We showed that the co-location miner algorithm is complete
and correct and performs better than the well know apriori algorithm.
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