
Chapter 3

Spatial Data Mining

Shashi Shekhar∗, Pusheng Zhang∗, Yan Huang∗, Ranga

Raju Vatsavai∗
∗
Department of Computer Science and Engineering, University of Minnesota

4-192, 200 Union ST SE, Minneapolis, MN 55455

Abstract:
Spatial data mining is the process of discovering interesting and previously un-
known, but potentially useful patterns from large spatial datasets. Extracting
interesting and useful patterns from spatial datasets is more difficult than ex-
tracting the corresponding patterns from traditional numeric and categorical
data due to the complexity of spatial data types, spatial relationships, and spa-
tial autocorrelation. This chapter will discuss some of the accomplishments and
research needs of spatial data mining in the following categories: location pre-
diction, spatial outlier detection, co-location mining, and clustering.
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3.1 Introduction

The explosive growth of spatial data and widespread use of spatial databases
have heightened the need for the automated discovery of spatial knowledge.
Spatial data mining [Stolorz et al.1995, Shekhar & Chawla2002] is the process
of discovering interesting and previously unknown, but potentially useful pat-
terns from spatial databases. The complexity of spatial data and intrinsic
spatial relationships limits the usefulness of conventional data mining tech-
niques for extracting spatial patterns. Efficient tools for extracting informa-
tion from geo-spatial data are crucial to organizations which make decisions
based on large spatial datasets, including NASA, the National Imagery and
Mapping Agency (NIMA), the National Cancer Institute (NCI), and the United
States Department of Transportation (USDOT). These organizations are spread
across many application domains including ecology and environmental manage-
ment, public safety, transportation, Earth science, epidemiology, and climatol-
ogy [Roddick & Spiliopoulou1999].

General purpose data mining tools like Clementine, See5/C5.0, and Enter-
prise Miner are designed for the purpose of analyzing large commercial databases.
Although these tools were primarily designed to identify customer-buying pat-
terns in market basket data, they have also been used in analyzing scientific
and engineering data, astronomical data, multi-media data, genomic data, and
web data. Extracting interesting and useful patterns from spatial datasets is
more difficult than extracting corresponding patterns from traditional numeric
and categorical data due to the complexity of spatial data types, spatial rela-
tionships, and spatial autocorrelation.

Specific features of geographical data that preclude the use of general pur-
pose data mining algorithms are: i) the spatial relationships among the vari-
ables, ii) the spatial structure of errors, iii) mixed distributions as opposed
to commonly assumed normal distributions, iv) observations that are not in-
dependent, v) spatial autocorrelation among the features, and vi) non-linear
interaction in feature space. Of course, one can apply conventional data mining
algorithms, but it is often observed that these algorithms perform more poorly
on spatial data. Many supportive examples can be found in the literature; for
instance, parametric classifiers like maximum likelihood classifier(MLC) per-
form more poorly than non-parametric classifiers when the assumptions about
the parameters (e.g., normal distribution) are violated, and the per-pixel based
classifiers perform worse than Markov Random Fields (MRFs) when the features
are auto-correlated.

Now the question arises whether we really need to invent new algorithms
or extend the existing approaches to explicitly model spatial properties and
relationships. Although it is difficult to tell the direction of future research,
for now it seems both approaches are gaining momentum. In this chapter we
present major accomplishments in the emerging field of spatial data mining
and applications, especially in the areas of outlier detection, spatial co-location
rules, classification/prediction, and clustering techniques. The research needs
for spatial data mining are also identified.



This chapter is organized as follows. In Section 3.2, we review major ac-
complishments in spatial data mining in the following four categories: location
prediction, spatial outlier detection, spatial co-location rules, and spatial cluster-
ing. Section 3.2.1 presents extensions of classification and prediction techniques
that model spatial context. Section 3.2.2 introduces spatial outlier detection
techniques. In Section 3.2.3, we present a new approach, called co-location
mining, which finds the subsets of features frequently-located together in spa-
tial databases. Spatial clustering techniques are introduced in Section 3.2.4.
Section 3.3 concludes the chapter with a discussion of research needs in spatial
data mining.

3.2 Accomplishments

3.2.1 Location Prediction

The prediction of events occurring at particular geographic locations is very
important in several application domains. Crime analysis, cellular networks,
and natural disasters such as fires, floods, droughts, vegetation diseases, and
earthquakes are all examples of problems which require location prediction. In
this section we provide two spatial data mining techniques, namely the Spatial
Autoregressive Model (SAR) and Markov Random Fields (MRF).
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Figure 3.1: (a) Learning data set: The geometry of the wetland and the loca-
tions of the nests, (b) The spatial distribution of vegetation durability over the
marshland.

An Illustrative Application Domain

We now introduce an example to illustrate the different concepts in spatial data
mining. We are given data about two wetlands, named Darr and Stubble, on
the shores of Lake Erie in Ohio USA in order to predict the spatial distribution



of a marsh-breeding bird, the red-winged blackbird (Agelaius phoeniceus). The
data was collected from April to June in two successive years, 1995 and 1996.

A uniform grid was imposed on the two wetlands and different types of
measurements were recorded at each cell or pixel. In total, values of seven
attributes were recorded at each cell. Domain knowledge is crucial in deciding
which attributes are important and which are not. For example, Vegetation
Durability was chosen over Vegetation Species because specialized knowledge
about the bird-nesting habits of the red-winged blackbird suggested that the
choice of nest location is more dependent on plant structure, plant resistance to
wind, and wave action than on the plant species.

Our goal is to build a model for predicting the location of bird nests in the
wetlands. Typically the model is built using a portion of the data, called the
Learning or Training data, and then tested on the remainder of the data,
called the Testing data. In the learning data, all the attributes are used to
build the model and in the testing data, one value is hidden, in our case the
location of the nests.
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Figure 3.2: (a)The actual locations of nests, (b)Pixels with actual nests,
(c)Location predicted by a model, (d)Location predicted by another model.
Prediction(d) is spatially more accurate than (c).

The fact that classical data mining techniques ignore spatial autocorrelation
and spatial heterogeneity in the model-building process is one reason why these
techniques do a poor job. A second, more subtle but equally important reason is
related to the choice of the objective function to measure classification accuracy.
For a two-class problem, the standard way to measure classification accuracy is
to calculate the percentage of correctly classified objects. However, this measure
may not be the most suitable in a spatial context. Spatial accuracy−how far
the predictions are from the actuals−is as important in this application domain
due to the effects of the discretizations of a continuous wetland into discrete
pixels, as shown in Figure 3.2. Figure 3.2(a) shows the actual locations of nests
and 3.2(b) shows the pixels with actual nests. Note the loss of information
during the discretization of continuous space into pixels. Many nest locations
barely fall within the pixels labeled ‘A’ and are quite close to other blank pixels,
which represent ’no-nest’. Now consider two predictions shown in Figure 3.2(c)
and 3.2(d). Domain scientists prefer prediction 3.2(d) over 3.2(c), since the
predicted nest locations are closer on average to some actual nest locations. The
classification accuracy measure cannot distinguish between 3.2(c) and 3.2(d),
and a measure of spatial accuracy is needed to capture this preference.
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Figure 3.3: A spatial framework and its four-neighborhood contiguity matrix.

Modeling Spatial Dependencies Using the SAR and MRF Models

Several previous studies [Jhung & Swain1996], [Solberg, Taxt, & Jain1996] have
shown that the modeling of spatial dependency (often called context) during
the classification process improves overall classification accuracy. Spatial con-
text can be defined by the relationships between spatially adjacent pixels in
a small neighborhood. The spatial relationship among locations in a spatial
framework is often modeled via a contiguity matrix. A simple contiguity matrix
may represent a neighborhood relationship defined using adjacency, Euclidean
distance, etc. Example definitions of neighborhood using adjacency include a
four-neighborhood and an eight-neighborhood. Given a gridded spatial frame-
work, a four-neighborhood assumes that a pair of locations influence each other
if they share an edge. An eight-neighborhood assumes that a pair of locations
influence each other if they share either an edge or a vertex.

Figure 3.3(a) shows a gridded spatial framework with four locations, A, B,
C, and D. A binary matrix representation of a four-neighborhood relationship
is shown in Figure 3.3(b). The row-normalized representation of this matrix
is called a contiguity matrix, as shown in Figure 3.3(c). Other contiguity ma-
trices can be designed to model neighborhood relationship based on distance.
The essential idea is to specify the pairs of locations that influence each other
along with the relative intensity of interaction. More general models of spa-
tial relationships using cliques and hypergraphs are available in the literature
[Warrender & Augusteijn1999].

Logistic Spatial Autoregressive Model(SAR)

Logistic SAR decomposes a classifier f̂C into two parts, namely spatial autore-
gression and logistic transformation. We first show how spatial dependencies
are modeled using the framework of logistic regression analysis. In the spatial
autoregression model, the spatial dependencies of the error term, or, the depen-
dent variable, are directly modeled in the regression equation[Anselin1988]. If
the dependent values yi are related to each other, then the regression equation
can be modified as

y = ρWy + Xβ + ε. (3.1)



Here W is the neighborhood relationship contiguity matrix and ρ is a param-
eter that reflects the strength of the spatial dependencies between the elements
of the dependent variable. After the correction term ρWy is introduced, the
components of the residual error vector ε are then assumed to be generated
from independent and identical standard normal distributions. As in the case
of classical regression, the SAR equation has to be transformed via the logistic
function for binary dependent variables.

We refer to this equation as the Spatial Autoregressive Model (SAR). Notice
that when ρ = 0, this equation collapses to the classical regression model. The
benefits of modeling spatial autocorrelation are many: First, the residual error
will have much lower spatial autocorrelation (i.e., systematic variation). With
the proper choice of W , the residual error should, at least theoretically, have
no systematic variation. In addition, if the spatial autocorrelation coefficient is
statistically significant, then SAR will quantify the presence of spatial autocor-
relation. It will indicate the extent to which variations in the dependent variable
(y) are explained by the average of neighboring observation values. Finally, the
model will have a better fit, (i.e., a higher R-squared statistic).

Markov Random Field-based Bayesian Classifiers

Markov Random Field (MRF) based Bayesian classifiers estimate classification

model f̂C using MRF and Bayes’ rule. A set of random variables whose interde-
pendency relationship is represented by an undirected graph (i.e., a symmetric
neighborhood matrix) is called a Markov Random Field [Li1995]. The Markov
property specifies that a variable depends only on its neighbors and is indepen-
dent of all other variables. The location prediction problem can be modeled in
this framework by assuming that the class label, li = fC(si), of different loca-
tions, si, constitutes an MRF. In other words, random variable li is independent
of lj if W (si, sj) = 0.

The Bayesian rule can be used to predict li from feature value vector X and
neighborhood class label vector Li as follows:

Pr(li|X,Li) =
Pr(X|li, Li)Pr(li|Li)

Pr(X)
(3.2)

The solution procedure can estimate Pr(li|Li) from the training data, where
Li denotes a set of labels in the neighborhood of si excluding the label at si,
by examining the ratios of the frequencies of class labels to the total number of
locations in the spatial framework. Pr(X|li, Li) can be estimated using kernel
functions from the observed values in the training data set. For reliable esti-
mates, even larger training datasets are needed relative to those needed for the
Bayesian classifiers without spatial context, since we are estimating a more com-
plex distribution. An assumption on Pr(X|li, Li) may be useful if the training
dataset available is not large enough. A common assumption is the uniformity
of influence from all neighbors of a location. For computational efficiency it can
be assumed that only local explanatory data X(si) and neighborhood label Li

are relevant in predicting class label li = fC(si). It is common to assume that



all interaction between neighbors is captured via the interaction in the class
label variable. Many domains also use specific parametric probability distribu-
tion forms, leading to simpler solution procedures. In addition, it is frequently
easier to work with a Gibbs distribution specialized by the locally defined MRF
through the Hammersley-Clifford theorem [Besag1974].

A more detailed theoretical and experimental comparison of these methods
can be found in [Shekhar et al.2002]. Although MRF and SAR classification
have different formulations, they share a common goal, estimating the posterior
probability distribution: p(li|X). However, the posterior for the two models
is computed differently with different assumptions. For MRF the posterior is
computed using Bayes’ rule. In logistic regression, the posterior distribution is
directly fit to the data. One important difference between logistic regression and
MRF is that logistic regression assumes no dependence on neighboring classes.
Logistic regression and logistic SAR models belong to a more general exponential

family. The exponential family is given by Pr(u|v) = eA(θv)+B(u,π)+θT
v u where

u, v are location and label respectively. This exponential family includes many of
the common distributions such as Gaussian, Binomial, Bernoulli, and Poisson as
special cases. Experiments were carried out on the Darr and Stubble wetlands to
compare the classical regression, SAR, and the MRF-based Bayesian classifiers.
The results showed that the MRF models yield better spatial and classification
accuracies over SAR in the prediction of the locations of bird nests. We also
observed that SAR predications are extremely localized, missing actual nests
over a large part of the marsh lands.

3.2.2 Spatial Outlier Detection

Outliers have been informally defined as observations in a data set which appear
to be inconsistent with the remainder of that set of data [Barnett & Lewis1994],
or which deviate so much from other observations as to arouse suspicions that
they were generated by a different mechanism [Hawkins1980]. The identification
of global outliers can lead to the discovery of unexpected knowledge and has
a number of practical applications in areas such as detection of credit card
fraud and voting irregularities, athlete performance analysis, and severe weather
prediction. This section focuses on spatial outliers, i.e., observations which
appear to be inconsistent with their neighborhoods. Detecting spatial outliers
is useful in many applications of geographic information systems and spatial
databases. These application domains include transportation, ecology, public
safety, public health, climatology, and location-based services.

We model a spatial data set to be a collection of spatially referenced objects,
such as houses, roads, and traffic sensors. Spatial objects have two distinct cat-
egories of dimensions along which attributes may be measured. Categories of
dimensions of interest are spatial and non-spatial. Spatial attributes of a spa-
tially referenced object include location, shape, and other geometric or topolog-
ical properties. Non-spatial attributes of a spatially referenced object include
traffic-sensor identifiers, manufacturer, owner, age, and measurement readings.
A spatial neighborhood of a spatially referenced object is a subset of the spatial
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Figure 3.4: A Data Set for Outlier Detection.

data based on a spatial dimension, e.g., location. Spatial neighborhoods may
be defined based on spatial attributes, e.g., location, using spatial relationships
such as distance or adjacency. Comparisons between spatially referenced objects
are based on non-spatial attributes.

A spatial outlier [Shekhar, Lu, & Zhang2001] is a spatially referenced ob-
ject whose non-spatial attribute values differ significantly from those of other
spatially referenced objects in its spatial neighborhood. Informally, a spatial
outlier is a local instability (in values of non-spatial attributes) or a spatially
referenced object whose non-spatial attributes are extreme relative to its neigh-
bors, even though the attributes may not be significantly different from the
entire population. For example, a new house in an old neighborhood of a grow-
ing metropolitan area is a spatial outlier based on the non-spatial attribute
house age.

Illustrative Examples and Application Domains

We use an example to illustrate the differences among global and spatial outlier
detection methods. In Figure 3.4(a), the X-axis is the location of data points
in one-dimensional space; the Y-axis is the attribute value for each data point.
Global outlier detection methods ignore the spatial location of each data point
and fit the distribution model to the values of the non-spatial attribute. The
outlier detected using this approach is the data point G, which has an extremely
high attribute value 7.9, exceeding the threshold of µ + 2σ = 4.49 + 2 ∗ 1.61 =
7.71, as shown in Figure 3.4(b). This test assumes a normal distribution for
attribute values. On the other hand, S is a spatial outlier whose observed value
is significantly different than its neighbors P and Q.

As another example, we use a spatial database consisting of measurements



from the Minneapolis-St. Paul freeway traffic sensor network. The sensor net-
work includes about nine hundred stations, each of which contains one to four
loop detectors, depending on the number of lanes. Sensors embedded in the
freeways and interstate monitor the occupancy and volume of traffic on the
road. At regular intervals, this information is sent to the Traffic Management
Center for operational purposes, e.g., ramp meter control, as well as for experi-
ments and research on traffic modeling. In this application, we are interested in
discovering the location of stations whose measurements are inconsistent with
those of their spatial neighbors and the time periods when those abnormalities
arise.

Tests for Detecting Spatial Outliers

Tests to detect spatial outliers separate spatial attributes from non-spatial at-
tributes. Spatial attributes are used to characterize location, neighborhood, and
distance. Non-spatial attribute dimensions are used to compare a spatially ref-
erenced object to its neighbors. Spatial statistics literature provides two kinds of
bi-partite multidimensional tests, namely graphical tests and quantitative tests.
Graphical tests, which are based on the visualization of spatial data, highlight
spatial outliers. Example methods include variogram clouds and Moran scat-
terplots. Quantitative methods provide a precise test to distinguish spatial
outliers from the remainder of data. Scatterplots [Luc1994] are a representative
technique from the quantitative family.

A variogram cloud displays data points related by neighborhood relation-
ships. For each pair of locations, the square-root of the absolute difference
between attribute values at the locations versus the Euclidean distance between
the locations are plotted. In data sets exhibiting strong spatial dependence,
the variance in the attribute differences will increase with increasing distance
between locations. Locations that are near to one another, but with large at-
tribute differences, might indicate a spatial outlier, even though the values at
both locations may appear to be reasonable when examining the data set non-
spatially. Figure 3.5(a) shows a variogram cloud for the example data set shown
in Figure 3.4(a). This plot shows that two pairs (P, S) and (Q,S) on the left
hand side lie above the main group of pairs and are possibly related to spatial
outliers. The point S may be identified as a spatial outlier since it occurs in
both pairs (Q,S) and (P, S). However, graphical tests of spatial outlier detec-
tion are limited by the lack of precise criteria to distinguish spatial outliers. In
addition, a variogram cloud requires non-trivial post-processing of highlighted
pairs to separate spatial outliers from their neighbors, particularly when multi-
ple outliers are present, or density varies greatly.

A Moran scatterplot [Luc1995] is a plot of normalized attribute value (Z[f(i)]

=
f(i)−µf

σf
) against the neighborhood average of normalized attribute values

(W · Z), where W is the row-normalized (i.e.,
∑

j Wij = 1) neighborhood ma-
trix, (i.e., Wij > 0 iff neighbor(i, j)). The upper left and lower right quadrants
of Figure 3.5(b) indicate a spatial association of dissimilar values: low values
surrounded by high value neighbors(e.g., points P and Q), and high values sur-
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Figure 3.5: Variogram Cloud and Moran Scatterplot to Detect Spatial Outliers.

rounded by low values (e.g,. point S). Thus we can identify points(nodes) that
are surrounded by unusually high or low value neighbors. These points can be
treated as spatial outliers.

A scatterplot [Luc1994] shows attribute values on the X-axis and the aver-
age of the attribute values in the neighborhood on the Y -axis. A least square
regression line is used to identify spatial outliers. A scatter sloping upward to
the right indicates a positive spatial autocorrelation (adjacent values tend to be
similar); a scatter sloping upward to the left indicates a negative spatial auto-
correlation. The residual is defined as the vertical distance (Y -axis) between a
point P with location (Xp, Yp) to the regression line Y = mX + b, that is, resid-
ual ε = Yp − (mXp + b). Cases with standardized residuals, εstandard = ε−µε

σε
,

greater than 3.0 or less than -3.0 are flagged as possible spatial outliers, where
µε and σε are the mean and standard deviation of the distribution of the er-
ror term ε. In Figure 3.6(a), a scatter plot shows the attribute values plotted
against the average of the attribute values in neighboring areas for the data set
in Figure 3.4(a). The point S turns out to be the farthest from the regression
line and may be identified as a spatial outlier.

A location (sensor) is compared to its neighborhood using the function
S(x) = [f(x) − Ey∈N(x)(f(y))], where f(x) is the attribute value for a location
x, N(x) is the set of neighbors of x, and Ey∈N(x)(f(y)) is the average attribute
value for the neighbors of x. The statistic function S(x) denotes the difference
of the attribute value of a sensor located at x and the average attribute value
of x′s neighbors.

Spatial Statistic S(x) is normally distributed if the attribute value f(x)
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is normally distributed. A popular test for detecting spatial outliers for nor-
mally distributed f(x) can be described as follows: Spatial statistic Zs(x) =

|S(x)−µs

σs
| > θ. For each location x with an attribute value f(x), the S(x) is the

difference between the attribute value at location x and the average attribute
value of x′s neighbors, µs is the mean value of S(x), and σs is the value of
the standard deviation of S(x) over all stations. The choice of θ depends on
a specified confidence level. For example, a confidence level of 95 percent will
lead to θ ≈ 2.

Figure 3.6(b) shows the visualization of the spatial statistic method de-
scribed above. The X-axis is the location of data points in one-dimensional
space; the Y -axis is the value of spatial statistic Zs(x) for each data point. We
can easily observe that point S has a Zs(x) value exceeding 3, and will be de-
tected as a spatial outlier. Note that the two neighboring points P and Q of
S have Zs(x) values close to -2 due to the presence of spatial outliers in their
neighborhoods.

3.2.3 Co-location Rules

Co-location patterns represent subsets of boolean spatial features whose in-
stances are often located in close geographic proximity. Examples include sym-
biotic species, e.g. the Nile Crocodile and Egyptian Plover in ecology and
frontage-roads and highways in metropolitan road maps. Boolean spatial fea-
tures describe the presence or absence of geographic object types at different



locations in a two-dimensional or three-dimensional metric space, e.g., the sur-
face of the Earth. Examples of boolean spatial features include plant species,
animal species, road types, cancers, crime, and business types.
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Figure 3.7: a) Illustration of Point Spatial Co-location Patterns. Shapes rep-
resent different spatial feature types. Spatial features in sets {‘+’, ‘×’} and
{‘o’, ‘*’} tend to be located together. b) Illustration of Line String Co-location
Patterns. Highways, e.g. Hwy100, and frontage roads, e.g. Normandale Road,
are co-located.

Co-location rules are models to infer the presence of boolean spatial features
in the neighborhood of instances of other boolean spatial features. For example,
“Nile Crocodiles → Egyptian Plover” predicts the presence of Egyptian Plover
birds in areas with Nile Crocodiles. Figure 3.7(a) shows a dataset consisting
of instances of several boolean spatial features, each represented by a distinct
shape. A careful review reveals two co-location patterns, i.e. (‘+’,’×’) and
(‘o’,‘*’).

Co-location rule discovery is a process to identify co-location patterns from
large spatial datasets with a large number of boolean features. The spatial co-
location rule discovery problem looks similar to, but, in fact, is very different
from the association rule mining problem [Agrawal & Srikant1994] because of
the lack of transactions. In market basket data sets, transactions represent sets
of item types bought together by customers. The support of an association is
defined to be the fraction of transactions containing the association. Associa-
tion rules are derived from all the associations with support values larger than
a user given threshold. The purpose of mining association rules is to identify
frequent item sets for planning store layouts or marketing campaigns. In the
spatial co-location rule mining problem, transactions are often not explicit. The
transactions in market basket analysis are independent of each other. Transac-



tions are disjoint in the sense of not sharing instances of item types. In contrast,
the instances of Boolean spatial features are embedded in a continuous space
and share a variety of spatial relationships (e.g. neighbor) with each other.

Co-location Rule Approaches

Approaches to discovering co-location rules can be divided into three categories:
those based on spatial statistics, those based on association rules, and those
based on the event centric model. Spatial statistics-based approaches use mea-
sures of spatial correlation to characterize the relationship between different
types of spatial features using the cross K function with Monte Carlo simula-
tion and quadrat count analysis [Cressie1993]. Computing spatial correlation
measures for all possible co-location patterns can be computationally expensive
due to the exponential number of candidate subsets given a large collection of
spatial boolean features.
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Association rule-based approaches focus on the creation of transactions over
space so that an apriori like algorithm [Agrawal & Srikant1994] can be used.
Transactions in space can use a reference-feature centric [Koperski & Han1995]
approach or a data-partition [Morimoto2001] approach. The reference fea-
ture centric model is based on the choice of a reference spatial feature
[Koperski & Han1995] and is relevant to application domains focusing on a spe-
cific boolean spatial feature, e.g. cancer. Domain scientists are interested in
finding the co-locations of other task relevant features (e.g. asbestos) to the
reference feature. A specific example is provided by the spatial association rule
[Koperski & Han1995]. Transactions are created around instances of one user-
specified reference spatial feature. The association rules are derived using the
apriori algorithm. The rules found are all related to the reference feature. For
example, consider the spatial dataset in Figure 3.8(a) with three feature types,
A,B and C. Each feature type has two instances. The neighbor relationships
between instances are shown as edges. Co-locations (A,B) and (B,C) may be
considered to be frequent in this example. Figure 3.8(b) shows transactions
created by choosing C as the reference feature. Co-location (A,B) will not be
found since it does not involve the reference feature.



Defining transactions by a data-partition approach [Morimoto2001] defines
transactions by dividing spatial datasets into disjoint partitions. There may
be many distinct ways of partitioning the data, each yielding a distinct set
of transactions, which in turn yields different values of support of a given co-
location. Figure 3.8 c) shows two possible partitions for the dataset of Figure
3.8 a), along with the supports for co-location (A,B).

Table 3.1: Interest Measures for Different Models

Model Items Transactions
defined by

Interest measures for C1 → C2

Prevalence Conditional proba-
bility

reference
feature
centric

predicates
on refer-
ence and
relevant
features

instances of
reference fea-
ture C1 and
C2 involved
with

fraction of
instance of
reference
feature with
C1 ∪ C2

Pr(C2 is true for
an instance of refer-
ence features given
C1 is true for that
instance of refer-
ence feature)

data par-
titioning

boolean
feature
types

a partition-
ing of spatial
dataset

fraction of
partitions
with C1∪C2

Pr(C2 in a parti-
tion given C1 in
that partition)

event
centric

boolean
feature
types

neighborhoods
of instances
of feature
types

participation
index of
C1 ∪ C2

Pr(C2 in a neigh-
borhood of C1)

The event centric model finds subsets of spatial features likely to occur in
a neighborhood around instances of given subsets of event types. For example,
let us determine the probability of finding at least one instance of feature type
B in the neighborhood of an instance of feature type A in Figure 3.8 a). There
are two instances of type A and both have some instance(s) of type B in their
neighborhoods. The conditional probability for the co-location rule is: spatial
feature A at location l → spatial feature type B in neighborhood is 100%. This
yields a well-defined prevalence measure(i.e. support) without the need for
transactions. Figure 3.8 d) illustrates that our approach will identify both (A,B)
and (B,C) as frequent patterns.

Prevalence measures and conditional probability measures, called interest
measures, are defined differently in different models, as summarized in Table
3.1. The reference feature centric and data partitioning models “materialize”
transactions and thus can use traditional support and confidence measures. The
event centric model-based approach defined new transaction free measures, such
as the participation index (please refer [Shekhar & Huang2001] for details).



3.2.4 Spatial Clustering

Spatial clustering is a process of grouping a set of spatial objects into clusters so
that objects within a cluster have high similarity in comparison to one another,
but are dissimilar to objects in other clusters. For example, clustering is used
to determine the “hot spots” in crime analysis and disease tracking. Hotspot
analysis is the process of finding unusually dense event clusters across time and
space. Many criminal justice agencies are exploring the benefits provided by
computer technologies to identify crime hotspots in order to take preventive
strategies such as deploying saturation patrols in hotspot areas.

3.2.5 Complete Spatial Randomness and Clustering

Spatial clustering can be applied to group similar spatial objects together, and
its implicit assumption is that patterns tend to be grouped in space rather
than in a random pattern. The statistical significance of spatial clustering can
be measured by testing the assumption in the data. The test is critical for
proceeding any serious clustering analyses.

In spatial statistics, the standard against which spatial point patterns are
often compared is a completely spatially point process, and departures indicate
that the pattern is not completely spatially random. Complete spatial random-
ness (CSR) [Cressie1993] is synonymous with a homogeneous Poisson process.
The patterns of the process are independently and uniformly distributed over
space, i.e., the patterns are equally likely to occur anywhere and do not interact
with each other. In contrast, a clustered pattern is distributed dependently and
attractively in space.

An illustration of complete spatial random patterns and clustered patterns is
given in Figure 3.9, which shows realizations from a completely spatially random
process and from a spatial cluster process respectively (each conditioned to have
85 points in a unit square).

(a) CSR Pattern (b) Clustered Pattern

Figure 3.9: Complete Spatial Random (CSR) and Spatially Clustered Patterns



Notice from Figure 3.9 (a) that the complete spatial randomness pattern
seems to exhibit some clustering. This is not an unrepresentive realization, but
illustrates a well known property of homogeneous Poisson processes: event-to-
nearest-event distances are proportional to χ2

2 random variables, whose densities
have a substantial amount of probability near zero [Cressie1993]. True clustering
is shown in Figure 3.9 (b), which should be compared with Figure 3.9 (a).

Several statistical methods [Cressie1993] can be applied to quantify devia-
tions of patterns from complete spatial randomness point pattern. One type
of descriptive statistics is based on quadrats (i.e., well defined area, often rect-
angle in shape). Usually quadrats of random locations and orientations in the
quadrats are counted, and statistics derived from the counters are computed.
Another type of statistics is based on distances between patterns. One such
type is Ripley’s K function.

3.2.6 Categories of Clustering Algorithms

After verification of the statistical significance of spatial clustering, clustering
algorithms are used to discover interesting clusters. Because of the multitude of
clustering algorithms that have been developed, it is useful to categorize them
into groups. Based on the technique adopted to define clusters, the clustering
algorithms can be divided into four broad categories:

1. Hierarchical clustering methods, which start with all patterns as a single
cluster and successively perform splitting or merging until a stopping cri-
terion is met. This results in a tree of clusters, called dendograms. The
dendogram can be cut at different levels to yield desired clusters. Hier-
archical algorithms can further be divided into agglomerative and divisive
methods. The hierarchical clustering algorithms include balanced iterative
reducing and clustering using hierarchies (BIRCH), clustering using inter-
connectivity (CHAMELEON), clustering using representatives (CURE),
and robust clustering using links (ROCK).

2. Partitional clustering algorithms, which start with each pattern as a sin-
gle cluster and iteratively reallocate data points to each cluster until a
stopping criterion is met. These methods tend to find clusters of spher-
ical shape. K-Means and K-Medoids are commonly used partitional al-
gorithms. Squared error is the most frequently used criterion function in
partitional clustering. The recent algorithms in this category include par-
titioning around medoids (PAM), clustering large applications (CLARA),
clustering large applications based on randomized search (CLARANS),
and expectation-maximization (EM).

3. Density-based clustering algorithms, which try to find clusters based on the
density of data points in a region. These algorithms treat clusters as dense
regions of objects in the data space. The density-based clustering algo-
rithms include density-based spatial clustering of applications with noise



(DBSCAN), ordering points to identify clustering structure (OPTICS),
and density based clustering (DENCLUE).

4. Grid-based clustering algorithms, which first quantize the clustering space
into a finite number of cells and then perform the required operations
on the quantized space. Cells that contain more than a certain number
of points are treated as dense. The dense cells are connected to form
the clusters. Grid-based clustering algorithms are primarily developed for
analyzing large spatial data sets. The grid-based clustering algorithms in-
clude the statistical information grid-based method (STING), WaveClus-
ter, BANG-clustering, and clustering-in-quest (CLIQUE).

Sometimes the distinction among these categories diminishes, and some algo-
rithms can even be classified into more than one group. For example, clustering-
in-quest (CLIQUE) can be considered as both a density-based and grid-based
clustering method. More details on various clustering methods can be found in
a recent survey paper [Han, Kamber, & Tung2001].

3.3 Research Needs

In this chapter we have presented the major research achievements and tech-
niques which have emerged from spatial data mining, especially for finding lo-
cation prediction, spatial outliers, co-location rules, and spatial clusters. We
conclude by identifying areas of research in spatial data mining that require
further investigation.

3.3.1 Location Prediction

Further exploration of measures of location predictive accuracy is needed. In tra-
ditional data mining, precision and recall are two major measures for predictive
accuracy. However, predictive models in spatial data mining do not incorporate
measures of spatial accuracy. There is a research need to investigate proper
measures for location prediction.

The determination of contiguity matrix is an expensive task for large spatial
datasets. Parallel processing of predictive models such as SAR and MRF could
be explored to further improve performance.

3.3.2 Spatial Outlier Detection

Most spatial outlier detection algorithms are designed to detect spatial outliers
using a single non-spatial attribute from a data set. Spatial outlier detection
with multiple non-spatial attributes are still under investigation. For multi-
ple attributes, the definition of spatial neighborhood will be the same, but the
neighborhood aggregate function, comparison function, and statistic test func-
tion need to be redefined. The key challenge is to define a general distance
function in a multi-attribute data space.



Many visual representations have been proposed for spatial outliers. How-
ever, there is a research need for effective representations to facilitate the visual-
ization of spatial relationships while highlighting spatial outliers. For instance,
in variogram cloud and scatterplot visualizations, the spatial relationship be-
tween a single spatial outlier and its neighbors is not obvious. It is necessary
to transfer the information back to the original map to check the neighbor re-
lationships. Since a single spatial outlier tends to flag not only the spatial
location of local instability but also its neighboring locations, it is important to
group flagged locations and identify real spatial outliers from the group in the
post-processing step.

3.3.3 Co-location

Preliminary results show that the co-location pattern mining problem can be
formulated using neighborhoods instead of transactions. Interest measures,
e.g., participation index, and the conditional probability of a co-location can
be defined using neighborhoods. The participation index is a monotonically
non-decreasing interest measure and can be used to reduce computation cost
by filtering out co-location patterns based on user-defined thresholds. The co-
location miner algorithm can exploit the participation index-based filter to mine
co-location patterns in small spatial datasets, e.g. a metropolitan road map.
However, to enable wider use, co-location mining techniques need to address
the following two significant issues.

First, there is a need for an independent measure of the quality of co-location
patterns due to the unsupervised learning. In order to achieve this, we need to
compare co-location modelx with dedicated spatial statistical measures, such
as Ripley’s K function; characterize the distribution of the participation index
interest measure under spatial complete randomness using Monte Carlo simu-
lation; and develop a classical statistical interpretation of co-location rules to
compare the rules with other patterns in unsupervised learning. Second, the co-
location miner may not be able to discover high-confidence, low-prevalence rules
due to its reliance on prevalence-based pruning. High-confidence, low-prevalence
(HCLP ) co-locations are useful in many applications where the numbers of oc-
currences of various boolean spatial features vary by orders of magnitude. The
prevalence based pruning used in the co-location miner makes it hard to mine
HCLP co-location rules. Models and efficient mining algorithms are needed to
retain and mine HCLP co-location rules.

3.3.4 Other Research Needs

Other research needs include detecting the shapes of spatial phenomena and
performance tuning. Shape detection identifies changes in shapes of a spatial
phenomenon, e.g., variations in the shape and extent of the hot water area in
the eastern tropical region of the Pacific during El Nino years. Algorithms are
needed to explore shape detection for spatial phenomena. Due to the large-
scale and spatial autocorrelation nature of spatial data, efficient and scalable



algorithms are needed to improve performance of spatial data mining processes.
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