Discovering Spatial Co-location Patterns

Yan Huang
Department of Computer Science University of Minnesota huangyan@cs.umn.edu

Advisor: Dr. Shashi Shekhar

Co-advisor: Dr. Dingzhu Du

Biography

* Education

* Ph.D. Candidate, C.S., UMN, Fall 98 - May 03 (expected)
* B.S., C.S., Beijing University, Fall 93 - Fall 97
* Research Interests
* Database, Spatial Database, Data Mining, Geographic Information Systems
* Publications
* Spatial Co-location Patterns
- S. Shekhar and Y. Huang, Discovering Spatial Co-location Patterns: A Summary of Results, In Proc. of 7th Intl Symposium on Spatial and Temporal Databases (SSTD), Springer-Verlag, Lecture Notes in Computer Science, LNCS 2121, p. 236 ff, July 2001
- S. Shekhar and Y. Huang, Multi-resolution Co-location Miner: a New Algorithm to Find Co-location Patterns from Spatial Datasets, SIAM SDMO2 Workshop on Mining Scientific Datasets, April 2002
- Y. Huang, H. Xiong, S. Shekhar, and J. Pei, Mining Confident Co-location Rules without A Support Threshold, in Proc. of 18th ACM Symposium on Applied Computing ($\boldsymbol{A C M} \operatorname{SAC}$), March 2003
- Y. Huang, S. Shekhar, and H. Xiong, Discovering Colocation Patterns from Spatial Datasets: A General Approach, submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE)

Biography

* Vector Map Compression
- S. Shekhar, Y. Huang, J. Djugash, and C. Zhou, Vector Map Compression: A Clustering Approach, in Proc. of 10th ACM Intl. Symposium. on Advances in Geographic Information Systems (ACM-GIS), November 2002
- S. Shekhar, Y. Huang, and J. Djugash, Dictionary Design Algorithms for Vector Map Compression, In Proc. of IEEE Data Compression Conference (DCC), April 2002
* Spatial Time-series Correlation Join
- P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, Efficient Algorithms for Correlation Join over Spatial Time-series Datasets, to appear in Prof. of 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2003
* Misc - Spatial Data Mining
- S. Shekhar, Y. Huang, W. Wu, C.T. Lu, and S. Chawla, What's Spatial about Spatial Data Mining: Three Case Studies, book chapter: Data Mining for Scientific and Engineering Applications, R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu (eds.), ISBN1-4020-0033-2, Kluwer Academic Publishers, 2001

Overview

\Rightarrow Introduction

* Related Work
* Event Centric Approach
* Co-location Miner Algorithm
* Evaluation
* Conclusions and Future Work

Spatial data mining (SDM)

\star The process of discovering

* interesting, useful, non-trivial patterns
* from large spatial datasets
* Spatial patterns
* Spatial outlier, discontinuities
- bad traffic sensors on highways (DOT)
* Location prediction models
- model to identify habitat of endangered species
* Spatial clusters
- crime hot-spots (NIJ), cancer clusters (CDC)
* Co-location patterns
- predator-prey species, symbiosis
- Dental health and fluoride
- Chromium 6 used by PG\&E, health problems in Hinkley CA

Example Spatial Pattern: Spatial Cluster

* 1854 cholera epidemic London map

Example Spatial Pattern: Co-locations

* Given:
* A collection of different types of spatial events
* Illustration

* Find: Co-located subsets of event types

Overview

* Introduction
\Rightarrow Related Work
* Event Centric Approach
* Co-location Miner Algorithm
* Evaluation
* Conclusions and Future Work

Related Work

* Spatial statistical approach
* Classical data mining association rule approach * Reference feature approach
* Partitioning approach

Related Work: Statistical Approach

* Ripley's K-function:
* $K_{i j}(h)=\lambda_{j}^{-1} E$ [number of type j event within distance h of a randomly chosen type i event]
* Ripley's K-function of some pair of spatial feature types

* Properties:
* Not well defined for size ≥ 3
* Expensive Monte Carlo simulation for confidence band

Association Rules－An Analogy

＊Association rule e．g．（Diaper in $\mathrm{T} \Rightarrow$ Beer in T ）

rans．	Items Bought
	$\{$ socks，milk，蘭，beef，egg，．．．\}
	\｛ pillow，盛，toothbrush，ice－cream，muffin，．．．\}
	$\{$ ，閶，pacifier，formula，blanket，．．．$\}$
．	\ldots
	\｛battery，juice，beef，egg，chicken，．．．\}

＊Support：probability（Diaper and Beer in T）$=2 / 5$
＊Confidence：probability（Beer in T｜Diaper in T）$=2 / 2$
＊Algorithm Apriori［Agrawal，Srikant，VLDB94］
＊Support based pruning using monotonicity
＊Note：Transaction is a core concept！

Related Work: Association Rule Approach

* Reference feature centric model [Koperski, Han, SSD95]

* Properties
* All relevant co-locations reference to one feature
\star Item types $=$ boolean spatial features
\star Transactions $=$ defined around instances of reference feature
* Force-fit notion of transaction
* Limitations
* May under-count support for a pattern, e.g (A,B)
* May over-counter support
* Results not comparable with spatial statistical approach

Related Work: Association Rule Approach

* Partitioning approach [Morimoto, SIGKDD01]

$$
\operatorname{Conf}(\mathrm{A}->\mathrm{B})=1
$$

$$
\operatorname{Conf}(\mathrm{A}->\mathrm{B})=0.5
$$

Confidence for (A->B) is not well defined i.e. order sensitive

* Properties
* Divide dataset into partitions
* Item types $=$ boolean spatial features
* Transactions $=$ partitions
* Limitations
* Order sensitive transactions
* Support and confidence are ill-defined

Limitation of Related Work and Our Contributions

* Limitation of Related Work
* Expensive computation
* Force-fit transaction on spatial dataset
* Our Contributions
* Event centric co-location model
- Robust in face of overlapping neighborhoods
* Co-location Miner algorithm
- Computational efficiency
* High confidence low prevalence co-location patterns
* Validity of inferences

Overview

* Introduction
* Related Work
\Rightarrow Event Centric Approach
* Co-location Miner Algorithm
* Evaluation
* Conclusions and Future Work

Our Approach: Event Centric Model

* Association Rules Vs. Co-location Rules

Criteria	Association Rule	Co-location Rule
Underlying Space	Discrete Sets	Continuous Space
Item Types	Product types	Spatial Fea- tures (Boolean)
Item Collections	Transactions $\left\{T_{i}\right\}$	Neighborhoods
Prevalence $(A \rightarrow$ $B)$	Support: $p\left(A \cup B \in T_{i}\right)$	Participation Index
Conditional Proba- bility $(A \rightarrow B)$	$p\left(B \in T_{i} \mid A \in T_{i}\right)$	$p(B \in \operatorname{Nbr}(L) \mid$ Aat $L)$

* An example: A happens $\rightarrow B$ happens in A 's neighborhood with 100% conditional probability

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T Edges represent neighbor relationships

* A neighborhood:
* A clique in a graph of neighbor relation R

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T Edges represent neighbor relationships

* A co-location C :
* A subset of boolean spatial features

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships
B. 5
C. 3
B. 3

A. 4^{-}

| A B
 1 1
 2 4
 3 4 |
| :--- | :--- |

B C \rightarrow co-location

\star A row instance I of a co-location $C=\left\{f_{1}, \ldots, f_{k}\right\}$:

* $I=\left\{i_{1}, \ldots, i_{k}\right\}$
$\star i_{j}$: instance of $f_{j}(\forall j \in 1, \ldots, k)$
$\star I$ is a neighborhood

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

* Table instance(co-location $\left.C=\left\{f_{1}, \ldots, f_{k}\right\}\right)$:
* Collection of all its row instances
* Spatial join interpretation

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

* Participation ratio
* $\operatorname{pr}\left(C, f_{i}\right)=\mid \pi_{f_{i}}$ table instance $(C)\left|/\left|\operatorname{instances}\left(f_{i}\right)\right|\right.$
${ }_{\star} C=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$
* Co-location strength of a spatial feature in a pattern

Key Concepts

* Example Dataset

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

* The participation index
* $p i(C)=\min _{i=1}^{k} p r\left(C, f_{i}\right)$
* Co-location strength of a pattern

Key Concepts

* A neighborhood:
* A clique in a graph of neighbor relation R
\star A co-location C :
* A subset of boolean spatial features
\star A row instance I of a co-location $C=\left\{f_{1}, \ldots, f_{k}\right\}$:
* $I=\left\{i_{1}, \ldots, i_{k}\right\}$
${ }_{\star} i_{j}$: instance of $f_{j}(\forall j \in 1, \ldots, k)$
${ }_{\star} I$ is a neighborhood
* Table instance(co-location $\left.C=\left\{f_{1}, \ldots, f_{k}\right\}\right)$:
* Collection of all its row instances
* Spatial join interpretation

Key Concepts

* Participation ratio (PR)
* $\operatorname{pr}\left(C, f_{i}\right)=\mid \pi_{f_{i}}$ table instance $(C)\left|/\left|\operatorname{instances}\left(f_{i}\right)\right|\right.$
${ }_{\star} C=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$
* Participation index (PI)
* $p i(C)=\min _{i=1}^{k} \operatorname{pr}\left(C, f_{i}\right)$
* Lemma 1 [Monotonicity] Participation ratio and participation index are monotonically decreasing with respect to co-location size * Proof:
- An instance of A participates in $\{A, B, \ldots\}$, it must participate in $\{A, B\}$
-PR is monotonic
- PI is the minimal of PR , monotonic too
\star A co-location rule $C_{1} \rightarrow C_{2}(p, c p)$:
${ }_{\star} C_{1}$ and C_{2} are co-locations
${ }_{\star} p=$ prevalence measure, e.g. participation index
$\star c p=\operatorname{Pr}\left[C_{2} \in \mathrm{~N}(\mathrm{~L}) \mid C_{1} @ \mathrm{~L}\right]=\frac{\mid\left(\pi_{C_{1}} \text { (table instance of }\left(C_{1} \cup C_{2}\right)\right) \mid}{\mid \text { instanceof } C_{1} \mid}$
$-\pi$ is a projection operation

Overview

* Introduction
* Related Work
* Event Centric Approach
\Rightarrow Co-location Miner Algorithm
* Evaluation
* Conclusions and Future Work

Problem Formulation

* Given:
* K Boolean spatial feature types
\star Instances $<$ id, feature type t, location $l>$
* A neighbor relation R over locations
* Prev_threshold and cp_threshold
* Find:
* Co-location rules with prevalence > prev_threshold and conditional probability > cp_threshold
* Objectives:
* Efficiency
* Constraints:
* Correctness
- Every co-location found has prevalence > prev_threshold and conditional probability $>$ cp_threshold
* Completeness
- Find all the co-locations with prevalence > prev_threshold and conditional probability > cp_threshold
* Monotonic prevalence measure
* Event centric model

Revisit related work in light of problem formulation

	Correct	Complete	Efficient
K function	Y	Y	N
Reference feature centric	N	N	Y
Partitioning	N	N	Y
Event centric	Y	Y	Y

Co-location Miner Algorithm: Basic Idea

* Initialization
\star for k in $(2,3, \ldots, K-1)$ and prev. co-location found do
* 1.Generate size k candidate co-locations
\star 2.Multi-resolution or other filtering methods
* 3.Generate table instances
* 4.Calculate prevalence and select prevalent co-locations
$\star 5$.Generate co-location rules of size k
* end
* Note: Step 3 not needed in mining association rules * because item collections (i.e. transactions) are given

Algorithm Trace

* Running Example

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

* Running Example
\square
* Initialization

Algorithm Trace

* Running Example

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships

* Running Example
\square
* $k=2$, generate size 2 candidate co-locations (step 1)

Algorithm Trace

* Running Example

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships
C.

* Running Example

${ }_{\star} k=2$, generate size 2 table instances $\ldots($ steps $3,4,5)$

Algorithm Trace

* Running Example

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships
C.

* Running Example

* $k=3$, generate size 3 candidate co-locations (step 1)

Algorithm Trace

* Running Example

Legend:
T.i represents instance i with feature type T

Edges represent neighbor relationships
C.

* Running Example

${ }_{\star} k=3$, generate size 3 table instances .. (steps $3,4,5$)

Some Details of Co-location Miner

* Generate candidate co-locations
* Similar to that in association rule mining
* Participation indexes calculation
* Bitmap index based
* One scan of table instances in current iteration
* Co-location rule generation
* Conditional probability of co-location rule $C_{1} \rightarrow C_{2}$

$$
-\frac{\mid\left(\pi_{C_{1}}\left(\text { table instance of }\left(C_{1} \cup C_{2}\right)\right) \mid\right.}{\mid \text { instance of } C_{1} \mid}
$$

* Bitmaps or other data structures
* Similar strategies for prevalence based pruning

Performance Tuning

* An optional filter
* Multi-resolution filter
* Hierarchical structure, e.g. grid files and R-tree
* Reuse bitmaps in the previous iteration
* Join strategies for generating table instances
* Geometric: plane sweep, space partition, and tree matching
* Combinatorial
* Hybrid

A Multi-resolution Filter

* Illustration:

* Process
* Summarize data at a coarse resolution
* Generate coarse level table instances
* Calculate over-estimated participation index
* Eliminates a co-location if its over-estimated index falls below user give threshold

Join Strategies

* Geometric
* In practice use filter and refine
* Minimum bounding rectangle
* then exact geometry and predicates are considered
* Combinatorial
* Sort-merge join strategy
- Match the first k-1 instances
- Efficient since instances of co-locations are sorted already
* then check if the last two instances are neighbors
* Hybrid
* Choose the more promising of the
- spatial and combinatorial approaches
- in each iteration

Overview

* Introduction
* Related Work
* Event Centric Approach
* Co-location Miner Algorithm
\Rightarrow Evaluation
* Conclusions and Future Work

Analytical Evaluation: Correctness and Completeness

* Definition:
* Completeness:

Find all rules with prevalence > prev_threshold and conditional probability > cp_threshold

* Correctness:

Any rules found have prevalence > prev_threshold and conditional probability > cp_threshold

* Lemma
* Co-location Miner is complete and correct
* Proof Sketch
* Participation index is monotonic in size of co-location
* Any subset of a prevalent co-location is prevalent
* Table join will not miss any row instance

Analytical Evaluation: Ascertaining the Quality of the Inferences

$\star p i(A, B)$ is an upper bound on $\frac{K_{A B}^{\hat{A} B}(h)}{W}$
${ }_{\star} \hat{K_{A B}}(h)$ is the estimation of the $K(A, B)$
$\star W$ is the total area defined by distance $\leq h$
\star Table instance $t(A, B)$ of a binary co-location (A, B)

* has enough information to compute $K_{A B}(h)$
* for $h=d$
$\star \frac{\hat{K}_{A B}(h)}{W}=\frac{1}{|A|} \cdot \frac{|t(A, B)|}{|B|}$

Analytical Evaluation: Choice of Join Strategies

* Geometric
* keep information of nearby regions
* Lack spatial feature type level pruning
* Combinatorial
* benefits from spatial feature type level pruning
* do not keep spatial proximity information
* Hybrid: integrate the best features of the two join strategies

Analytical Evaluation: When to Use Additional Filtering

* Running time ratio without/with filtering:

$$
\begin{align*}
\frac{t_{\text {filter }}(k)}{t(k)} & \approx \frac{\left|C_{k+1}\right| \times T_{\text {grid }}(k)+\left|C_{k+1}^{\prime}\right| \times T_{\text {orig }}(k)}{\left|C_{k+1}\right| \times T_{\text {orig }}(k)} \\
& =\frac{T_{\text {grid }}(k)}{T_{\text {orig }}(k)}+\frac{\left|C_{k+1}^{\prime}\right|}{\left|C_{k+1}\right|} \tag{1}
\end{align*}
$$

${ }_{\star} C_{k+1}$: number of size $\mathrm{k}+1$ candidates before filtering
${ }_{\star} C_{k+1}^{\prime}$: number of size $\mathrm{k}+1$ candidates after filtering
${ }^{\star} T_{\text {grid }}(k)$: average time for a coarse level table instance

* $T_{\text {orig }}(k)$: average time for a fine level table instance
* Choice of filtering is affected by
* Filtering ratio
* Dataset clustering level

Performance Evaluation

* Experiment goals
* How do join strategies affect the performance?
* When to use additional filtering?
* Experiment Design

* Setup
* Sun Ultra 10 work station
* with a 440 MHz CPU
* 128 Mbytes memory
* running the SunOS 5.7 operating system

Performance Evaluation

* Parameters

Parameter	Definition	C
$N_{\text {co_loc }}$	The number of core co-locations	5
λ_{1}	The parameter of the Poisson distribution to define the size of the core co-locations	5
λ_{2}	The parameter of the Poisson distribution to define the size of the table instance of each co- location when $m_{\text {clump }}=1$	50
$D_{1} \times D_{2}$	The size of the spatial framework	$10^{6} \times 10^{6}$
d	The size of the square to define a co-location	10
$r_{\text {noise_f }}$	The ratio the of number of noise features over the number of features involved in generating the maximal co-location s	.5
$r_{\text {noise_n }}$	The number of noise instances	50,000
$m_{\text {overlap }}$	The number of co-location generated by ap- pending one more spatial feature for each core co-location	1
$m_{\text {clump }}$	The number of instances generated for each spatial feature in a neighborhood for a co- location	1

* Report results on a representative dataset C
* Variable parameters of dataset C are reported for each experiment

Performance Evaluation

* Relative performance of geometric, combinatorial, and hybrid join strategies
* Prevalence threshold set to 0.9
* Result

* Geometric: faster to generate co-locations of size 2
* Combinatorial: faster (magnitude of 2) to generate co-locations of size 3+
* Hybrid: combine geometric and combinatorial

Performance Evaluation

* Effect of multi-resolution filtering
* Variable parameter: $m_{\text {overlap }}$ from 2 to 8
* Result:

* Multi-resolution filtering is effective especially when overlapping degree is high
* Algebraic explanation:

$$
\begin{equation*}
\frac{t_{\text {filter }}(k)}{t(k)} \approx \frac{T_{\text {grid }}(k)}{T_{\text {orig }}(k)}+\frac{\left|\mathbf{C}_{\mathbf{k}+\mathbf{1}}^{\prime}\right|}{\left|\mathbf{C}_{\mathbf{k}+\mathbf{1}}\right|} \tag{2}
\end{equation*}
$$

Performance Evaluation

* Effect of multi-resolution filtering
* Variable parameter: $m_{\text {clump }}$ from 5 to 20
* Result:

* Multi-resolution filtering is effective especially when dataset is clustered
* Algebraic explanation:

$$
\begin{equation*}
\frac{t_{\text {filter }}(k)}{t(k)} \approx \frac{\mathbf{T}_{\text {grid }}(\mathbf{k})}{\mathbf{T}_{\text {orig }}(\mathbf{k})}+\frac{\left|C_{k+1}^{\prime}\right|}{\left|C_{k+1}\right|} \tag{3}
\end{equation*}
$$

Performance Evaluation

* Effect of multi-resolution pruning: filter time ratio

* Filter time ratio
* Filter time is 10% to 50% of the total running time

Overview

* Introduction
* Related Work
* Event Centric Approach
* Co-location Miner Algorithm
* Evaluation
\Rightarrow Conclusions and Future Work

Conclusions and Future Work

* Our contributions described today
* Event centric co-location model
- Robust in face of overlapping neighborhoods
* Co-location Miner algorithm
- Computational efficiency
- Correctness and completeness with various performance tuning
* Validity of inferences
* Other contributions in my thesis
* High-confidence Low-prevalence (HCLP) Patterns
- Prevalence base pruning: hard to retain HCLP patterns
- Proposed a measure to retain such patterns
- Proved a week monotonicity of the proposed measure
- Designed an algorithm using the week monotonicity
* May find pattern
- chromium $6 \rightarrow$ lung disease, breast cancer in spatial proximity

Future Work

* Co-location patterns involving lines and polygons
* Temporal co-incidence mining
* No natural concept of transactions over temporal datasets
* Arbitrary windowing may not be desirable
* Spatio-temporal dataset

Future Work in a Longer Term

* Environmental Biology
* Jane Goodall's Chimpanzee behavior dataset analysis
* Emergency Evacuation Planing
* Heuristic approaches
* Scientific Data Management
* EOS by NASA collecting terabyte of information each day
* Spatial and temporal in nature
* Moving Object Databases/Location Based Services
* Data mining: location based recommendation
* Database systems
- support millions of triggers
- answer proximity queries
- keep trajectories of moving objects

Thanks!

