Discovering Spatial Co-location Patterns

Yan Huang Department of Computer Science University of Minnesota huangyan@cs.umn.edu

Advisor: Dr. Shashi Shekhar Co-advisor: Dr. Dingzhu Du

Biography

- \star Education
 - * Ph.D. Candidate, C.S., UMN, Fall 98 May 03 (expected)
 - \star B.S., C.S., Beijing University, Fall 93 Fall 97
- * Research Interests
 - \star Database, Spatial Database, Data Mining, Geographic Information Systems
- * Publications
 - $_{\star}$ Spatial Co-location Patterns
 - S. Shekhar and Y. Huang, Discovering Spatial Co-location Patterns : A Summary of Results, In *Proc. of 7th Intl Symposium on Spatial and Temporal Databases (SSTD)*, Springer-Verlag, Lecture Notes in Computer Science, LNCS 2121, p.236 ff, July 2001
 - S. Shekhar and Y. Huang, Multi-resolution Co-location Miner: a New Algorithm to Find Co-location Patterns from Spatial Datasets, *SIAM SDM02 Workshop on Mining Scientific Datasets*, April 2002
 - Y. Huang, H. Xiong, S. Shekhar, and J. Pei, Mining Confident Co-location Rules without A Support Threshold, in *Proc. of 18th ACM Symposium on Applied Computing* (ACM SAC), March 2003
 - Y. Huang, S. Shekhar, and H. Xiong, Discovering Colocation Patterns from Spatial Datasets: A General Approach, submitted to *IEEE Transactions on Knowledge* and Data Engineering (TKDE)

Biography

$_{\star}$ Vector Map Compression

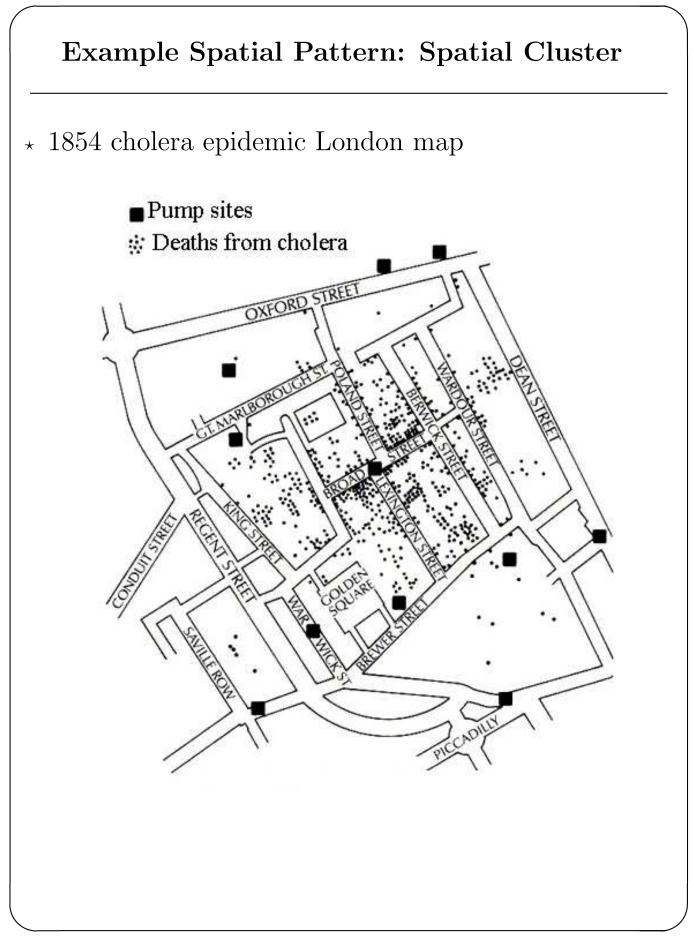
- S. Shekhar, Y. Huang, J. Djugash, and C. Zhou, Vector Map Compression: A Clustering Approach, in *Proc. of* 10th ACM Intl. Symposium. on Advances in Geographic Information Systems (ACM-GIS), November 2002
- S. Shekhar, Y. Huang, and J. Djugash, Dictionary Design Algorithms for Vector Map Compression, In *Proc.* of *IEEE Data Compression Conference (DCC)*, April 2002
- * Spatial Time-series Correlation Join
 - P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, Efficient Algorithms for Correlation Join over Spatial Time-series Datasets, to appear in *Prof. of 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)*, 2003
- * Misc Spatial Data Mining
 - S. Shekhar, Y. Huang, W. Wu, C.T. Lu, and S. Chawla, What's Spatial about Spatial Data Mining: Three Case Studies, book chapter: *Data Mining for Scientific and Engineering Applications*, R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu (eds.), ISBN1-4020-0033-2, Kluwer Academic Publishers, 2001

Overview

- \Rightarrow Introduction
- $\star\,$ Related Work
- \star Event Centric Approach
- \star Co-location Miner Algorithm
- \star Evaluation
- $\star\,$ Conclusions and Future Work

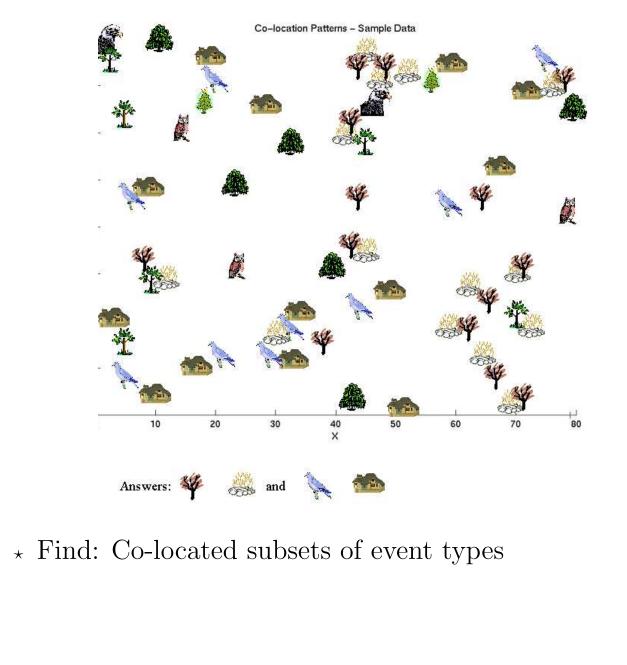
Spatial data mining (SDM)

- * The process of discovering
 - * interesting, useful, non-trivial patterns
 - $_{\star}$ from large spatial datasets
- * Spatial patterns
 - $_{\star}$ Spatial outlier, discontinuities
 - bad traffic sensors on highways (DOT)
 - $_{\star}$ Location prediction models
 - model to identify habitat of endangered species
 - $_{\star}$ Spatial clusters
 - crime hot-spots (NIJ), cancer clusters (CDC)
 - \star Co-location patterns
 - predator-prey species, symbiosis
 - Dental health and fluoride
 - Chromium 6 used by PG&E, health problems in Hinkley CA



Example Spatial Pattern: Co-locations

- * Given:
 - $_{\star}$ A collection of different types of spatial events
- * Illustration



Overview

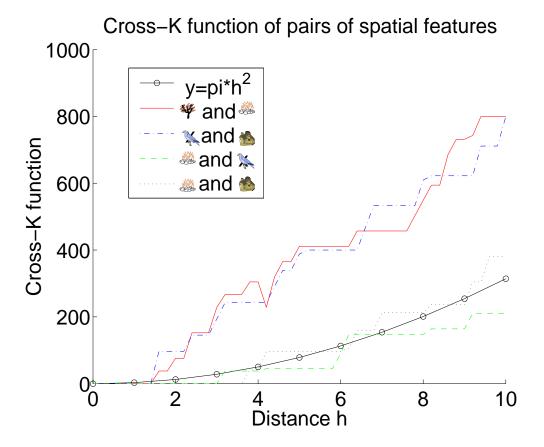
- \star Introduction
- \Rightarrow Related Work
- \star Event Centric Approach
- \star Co-location Miner Algorithm
- \star Evaluation
- $\star\,$ Conclusions and Future Work

Related Work

- $\star\,$ Spatial statistical approach
- $\star\,$ Classical data mining association rule approach
 - $_{\star}$ Reference feature approach
 - $_{\star}$ Partitioning approach

Related Work: Statistical Approach

- * Ripley's K-function:
 - * $K_{ij}(h) = \lambda_j^{-1} E$ [number of type j event within distance h of a randomly chosen type i event]
 - * Ripley's K-function of some pair of spatial feature types



* Properties:

- $_{\star}$ Not well defined for size \geq 3
- $_{\star}$ Expensive Monte Carlo simulation for confidence band

Association Rules - An Analogy

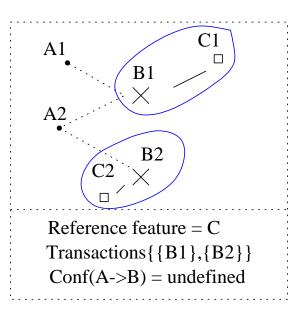
* Association rule e.g. (Diaper in $T \Rightarrow Beer in T$)

rans.	Items Bought			
	{socks, 🔤 milk, 📋, beef, egg, }			
	{ pillow, 📋 , toothbrush, ice-cream, muffin, }			
	{ 📑 , 👩 , pacifier, formula, blanket, }			
:	•(•(•)			
	{battery, juice, beef, egg, chicken, }			

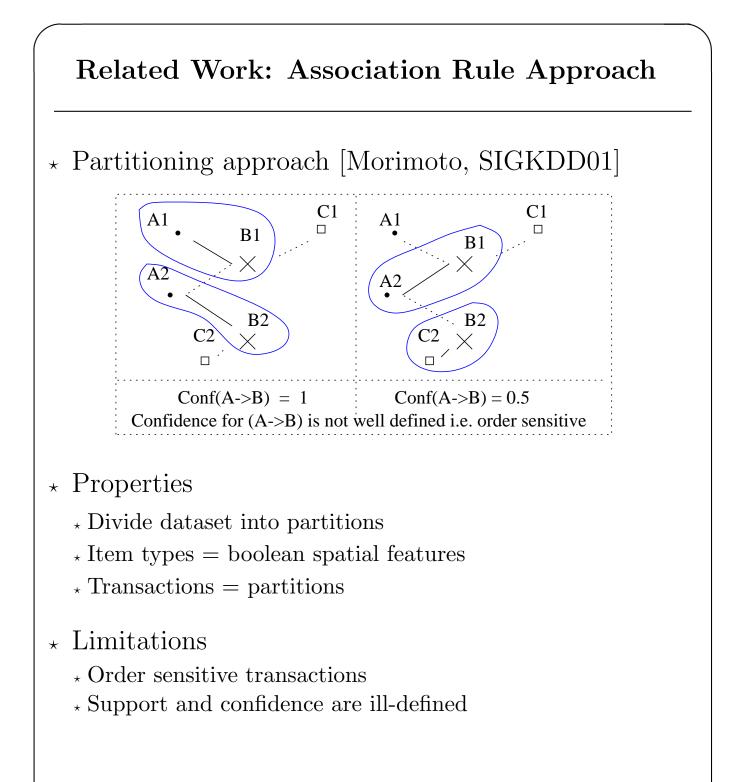
- $_{\star}$ Support: probability (Diaper and Beer in T) = 2/5
- $_{\star}$ Confidence: probability (Beer in T|Diaper in T)= 2/2
- * Algorithm Apriori [Agrawal, Srikant, VLDB94]
 * Support based pruning using monotonicity
- ***** Note: Transaction is a core concept!

Related Work: Association Rule Approach

* Reference feature centric model [Koperski, Han, SSD95]



- * Properties
 - $_{\star}$ All relevant co-locations reference to one feature
 - \star Item types = boolean spatial features
 - $_{\star}$ Transactions = defined around instances of reference feature
 - $_{\star}$ Force-fit notion of transaction
- * Limitations
 - $_{\star}$ May under-count support for a pattern, e.g (A,B)
 - $_{\star}$ May over-counter support
 - $_{\star}$ Results not comparable with spatial statistical approach



Limitation of Related Work and Our Contributions

- * Limitation of Related Work
 - $_{\star}$ Expensive computation
 - $_{\star}$ Force-fit transaction on spatial dataset
- * Our Contributions
 - $_{\star}$ Event centric co-location model
 - Robust in face of overlapping neighborhoods
 - \star Co-location Miner algorithm
 - Computational efficiency
 - $_{\star}$ High confidence low prevalence co-location patterns
 - $_{\star}$ Validity of inferences

Overview

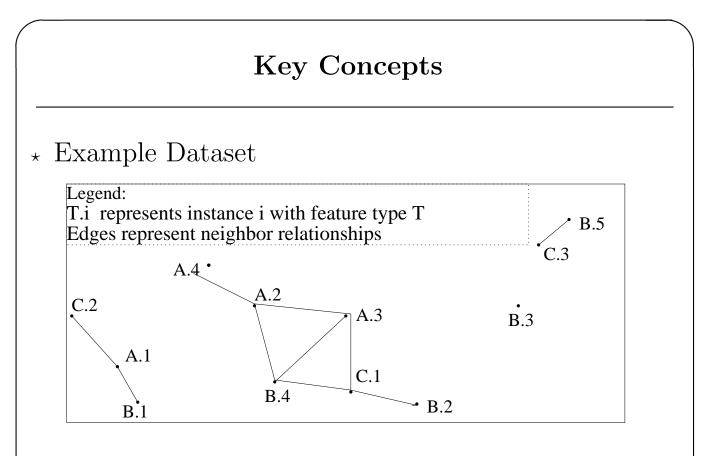
- \star Introduction
- $\star\,$ Related Work
- \Rightarrow Event Centric Approach
- \star Co-location Miner Algorithm
- \star Evaluation
- $\star\,$ Conclusions and Future Work

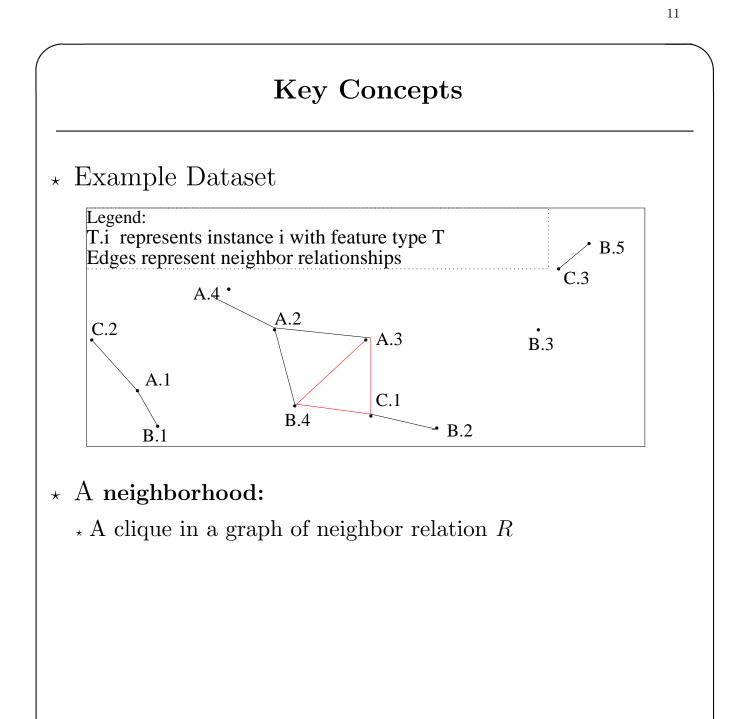
Our Approach: Event Centric Model

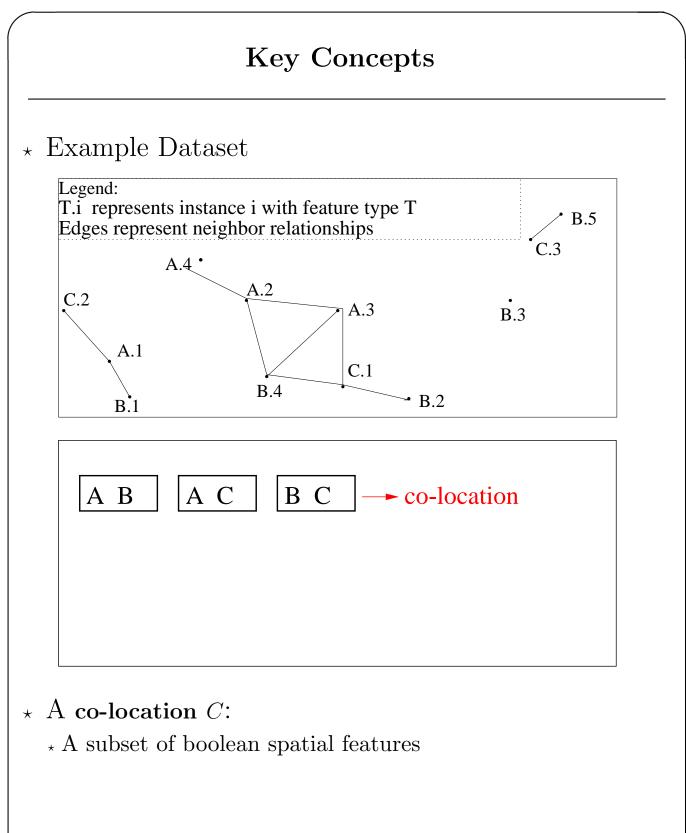
\star Association Rules Vs. Co-location Rules

Criteria	Association Rule	Co-location Rule	
Underlying Space	Discrete Sets	Continuous Space	
Item Types	Product types	Spatial Fea-	
		tures(Boolean)	
Item Collections	Transactions $\{T_i\}$	Neighborhoods	
Prevalence $(A \rightarrow$	Support: $p(A \cup B \in T_i)$	Participation Index	
B)			
Conditional Proba-	$p(B \in T_i A \in T_i)$	$p(B \in \operatorname{Nbr}(L) A \operatorname{at} L)$	
bility $(A \to B)$			

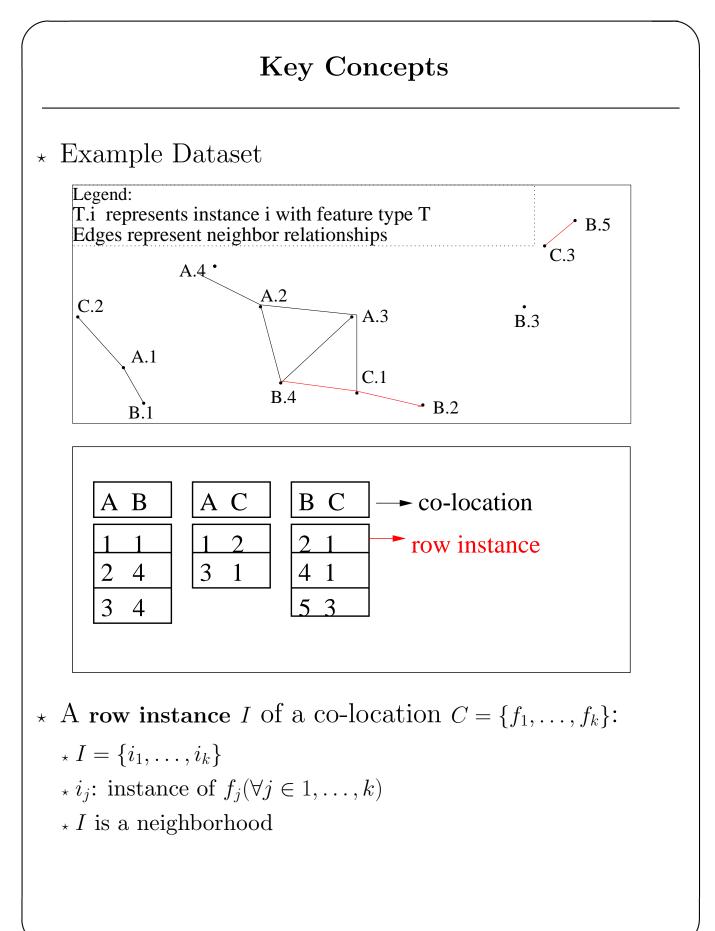
 \star An example: A happens \to B happens in A's neighborhood with 100% conditional probability

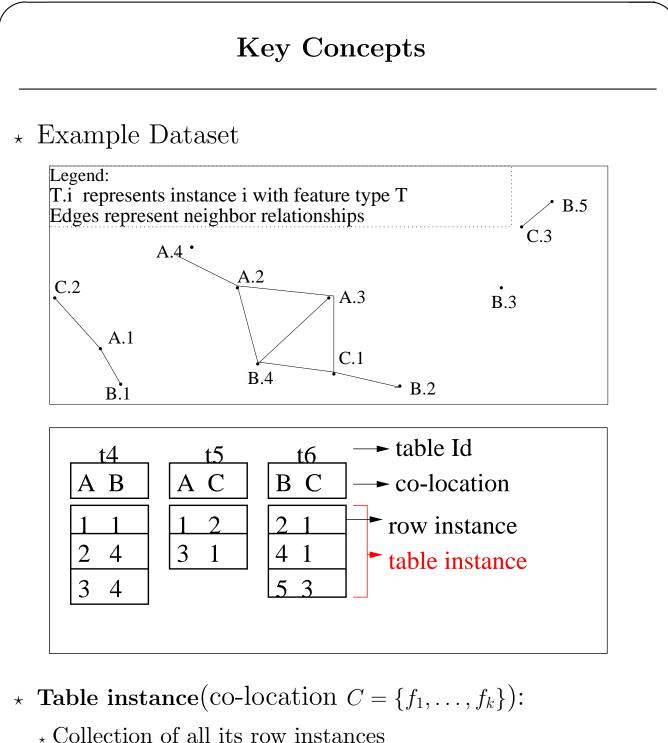




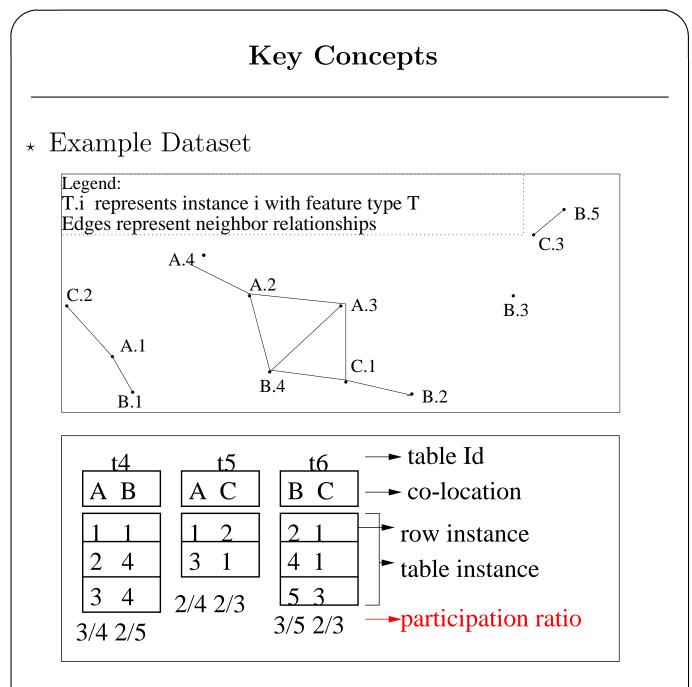


12



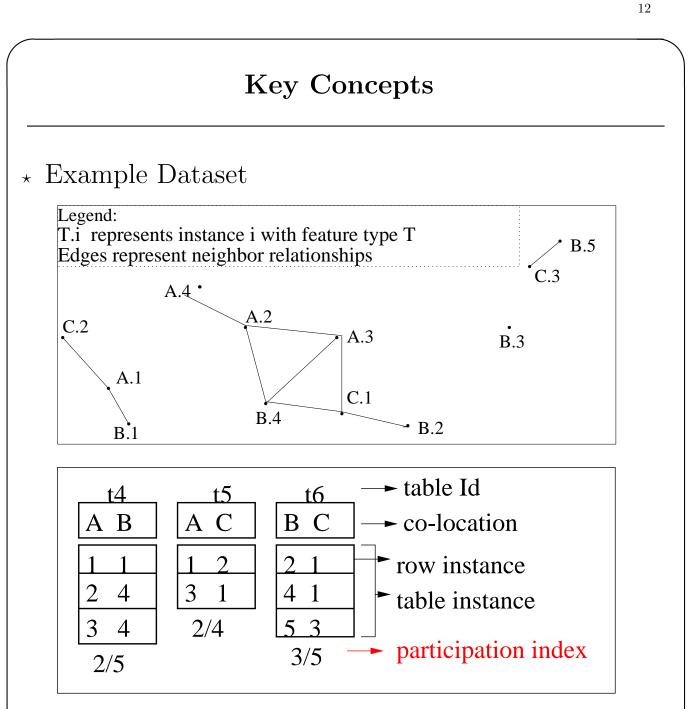


- Spatial join interpretation
- $_{\star}$ Spatial join interpretation



- \star Participation ratio
 - * $pr(C, f_i) = |\pi_{f_i} table instance(C)| / |instances(f_i)|$
 - $\star C = \{f_1, f_2, \dots, f_k\}$

 $_{\star}$ Co-location strength of a spatial feature in a pattern



 $\star\,$ The participation index

*
$$pi(C) = min_{i=1}^k pr(C, f_i)$$

 $_{\star}$ Co-location strength of a pattern

Key Concepts

* A neighborhood:
* A clique in a graph of neighbor relation R
* A co-location C:
* A subset of boolean spatial features
* A row instance I of a co-location C = {f₁,..., f_k}:
* I = {i₁,..., i_k}
* i_j: instance of f_j(∀j ∈ 1,..., k)
* I is a neighborhood
* Table instance(co-location C = {f₁,..., f_k}):
* Collection of all its row instances

* Spatial join interpretation

- * Participation ratio (PR) * $pr(C, f_i) = |\pi_{f_i} table instance(C)|/|instances(f_i)|$ * $C = \{f_1, f_2, \dots, f_k\}$
- \star Participation index (PI)

$$\star pi(C) = min_{i=1}^k pr(C, f_i)$$

- **Lemma 1** [Monotonicity] Participation ratio and participation index are monotonically decreasing with respect to co-location size
 - * Proof:
 - An instance of $_A$ participates in $_{\{A, B, ...\}}$, it must participate in $_{\{A, B\}}$
 - PR is monotonic
 - PI is the minimal of PR, monotonic too
- * A co-location rule $C_1 \rightarrow C_2(p, cp)$:
 - $\star C_1$ and C_2 are co-locations
 - $_{\star}\,p$ = prevalence measure, e.g. participation index
 - * $cp = \Pr[C_2 \in \mathcal{N}(\mathcal{L}) \mid C_1 @ \mathcal{L}] = \frac{|(\pi_{C_1}(table instance of (C_1 \cup C_2))|}{|instance of C_1|}$
 - π is a projection operation

Overview

- \star Introduction
- $\star\,$ Related Work
- \star Event Centric Approach
- \Rightarrow Co-location Miner Algorithm
- \star Evaluation
- $\star\,$ Conclusions and Future Work

Problem Formulation

* Given:

- $_{\star}$ K Boolean spatial feature types
- $_{\star}$ Instances <id, feature type t , location l>
- $_{\star}$ A neighbor relation R over locations
- \star Prev_threshold and cp_threshold
- * Find:
 - \star Co-location rules with prevalence $> \rm prev_threshold$ and conditional probability $> \rm cp_threshold$
- * Objectives:
 - $_{\star}$ Efficiency
- * Constraints:
 - * Correctness
 - Every co-location found has prevalence $> \rm prev_threshold$ and conditional probability $> \rm cp_threshold$
 - $_{\star}$ Completeness
 - Find all the co-locations with prevalence $> \rm prev_threshold$ and conditional probability $> \rm cp_threshold$
 - $_{\star}$ Monotonic prevalence measure
 - $_{\star}$ Event centric model

Revisit related work in light of problem formulation

	Correct	Complete	Efficient
K function	Y	Y	Ν
Reference feature centric	N	Ν	Y
Partitioning	N	Ν	Y
Event centric	Y	Y	Y

Co-location Miner Algorithm: Basic Idea

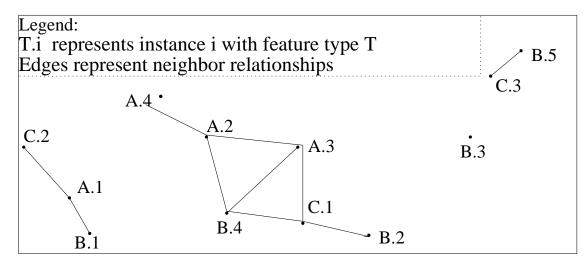
\star Initialization

- * for k in (2, 3, ..., K-1) and prev. co-location found do
 - $_{\star}$ 1. Generate size k candidate co-locations
 - $_{\star}$ 2. Multi-resolution or other filtering methods
 - \star 3. Generate table instances
 - \star 4. Calculate prevalence and select prevalent co-locations
 - \star 5. Generate co-location rules of size k

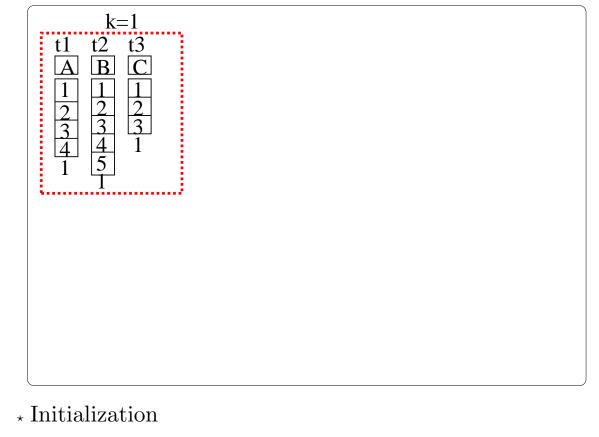
\star end

Note: Step 3 not needed in mining association rules
 because item collections (i.e. transactions) are given

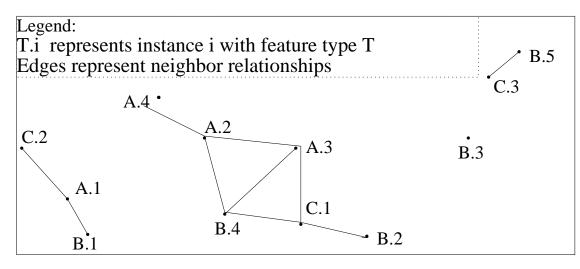
* Running Example



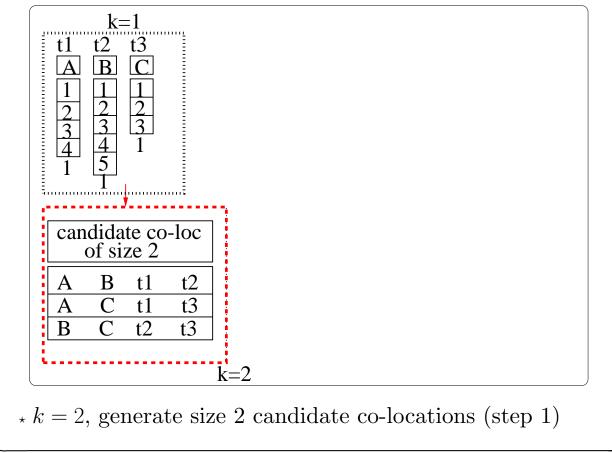
 \star Running Example



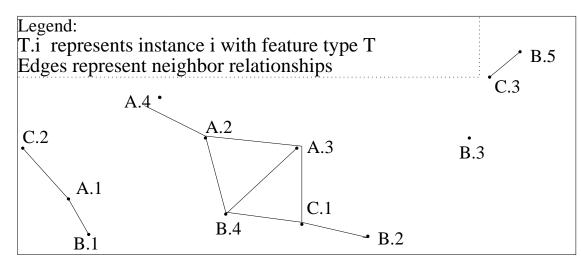
* Running Example



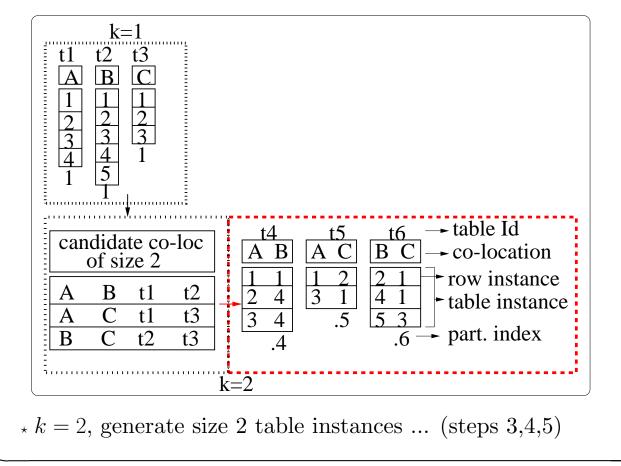
* Running Example



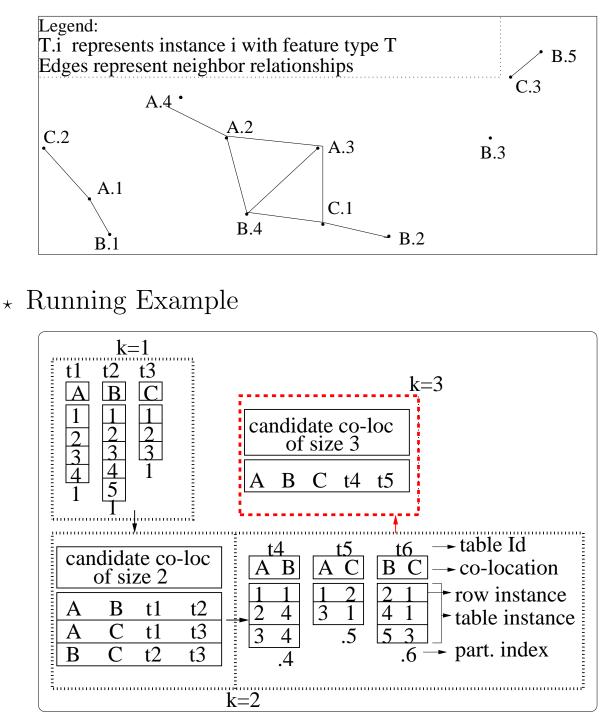
* Running Example



* Running Example

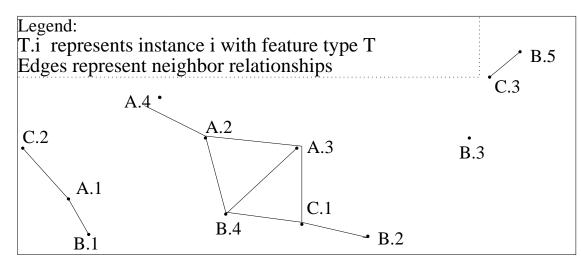


* Running Example

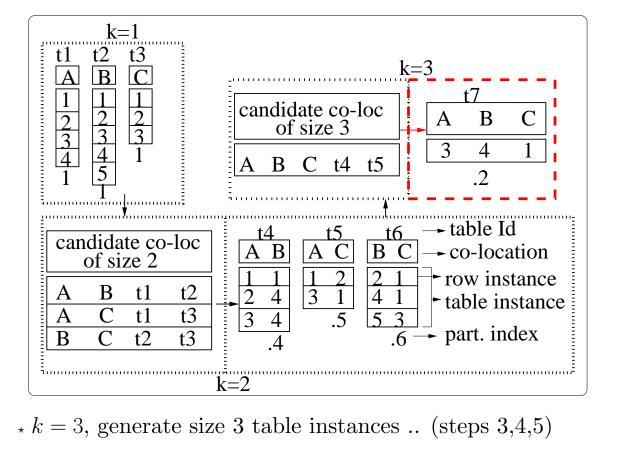


 \star k=3, generate size 3 candidate co-locations (step 1)

* Running Example



* Running Example



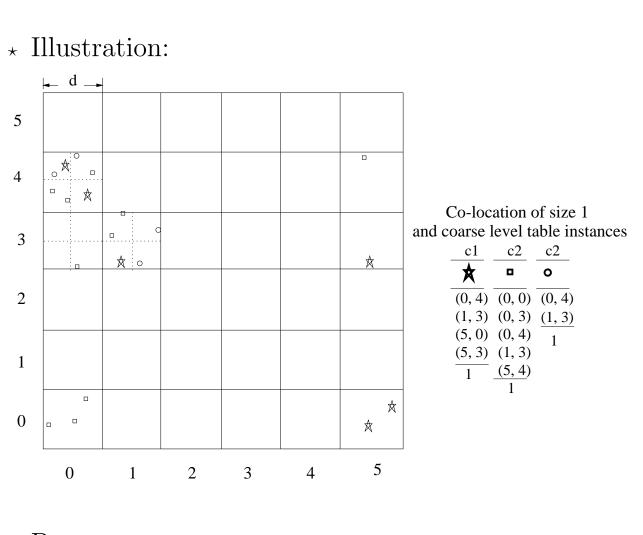
Some Details of Co-location Miner

- Generate candidate co-locations
 Similar to that in association rule mining
- * Participation indexes calculation
 - $_{\star}$ Bitmap index based
 - $_{\star}$ One scan of table instances in current iteration
- \star Co-location rule generation
 - * Conditional probability of co-location rule $C_1 \to C_2$ - $\frac{|(\pi_{C_1}(table instance of (C_1 \cup C_2))|}{|instance of C_1|}$
 - * Bitmaps or other data structures
 - $_{\star}$ Similar strategies for prevalence based pruning

Performance Tuning

- $\star\,$ An optional filter
 - $_{\star}$ Multi-resolution filter
 - $_{\star}$ Hierarchical structure, e.g. grid files and R-tree
 - $_{\star}$ Reuse bit maps in the previous iteration
- \star Join strategies for generating table instances
 - \star Geometric: plane sweep, space partition, and tree matching
 - $_{\star}$ Combinatorial
 - $_{\star}$ Hybrid

A Multi-resolution Filter



* Process

- $_{\star}$ Summarize data at a coarse resolution
- $_{\star}$ Generate coarse level table instances
- $_{\star}$ Calculate over-estimated participation index
- \star Eliminates a co-location if its over-estimated index falls below user give threshold

Join Strategies

- \star Geometric
 - $_{\star}$ In practice use filter and refine
 - $_{\star}$ Minimum bounding rectangle
 - $_{\star}$ then exact geometry and predicates are considered

\star Combinatorial

- $_{\star}$ Sort-merge join strategy
 - Match the first k-1 instances
 - Efficient since instances of co-locations are sorted already
- $_{\star}$ then check if the last two instances are neighbors

* Hybrid

- $_{\star}$ Choose the more promising of the
 - spatial and combinatorial approaches
 - in each iteration

Overview

- \star Introduction
- $\star\,$ Related Work
- \star Event Centric Approach
- \star Co-location Miner Algorithm
- \Rightarrow Evaluation
- $\star\,$ Conclusions and Future Work

Analytical Evaluation: Correctness and Completeness

- * Definition:
 - * Completeness:

Find all rules with prevalence > prev_threshold and conditional probability > cp_threshold

- \star Correctness: Any rules found have prevalence > prev_threshold and conditional probability > cp_threshold
- * Lemma
 - $_{\star}$ Co-location Miner is complete and correct
- \star Proof Sketch
 - $_{\star}$ Participation index is monotonic in size of co-location
 - $_{\star}$ Any subset of a prevalent co-location is prevalent
 - $_{\star}$ Table join will not miss any row instance

Analytical Evaluation: Ascertaining the Quality of the Inferences

- * pi(A, B) is an upper bound on $\frac{\hat{K_{AB}(h)}}{W}$
 - $\star \stackrel{\scriptstyle }{K_{AB}}(h)$ is the estimation of the K(A,B)
 - $_{\star} W$ is the total area defined by distance $\leq h$
- $\star\,$ Table instance t(A,B) of a binary co-location (A,B)
 - * has enough information to compute $\hat{K_{AB}(h)}$

$$\star$$
 for $h = d$

$$\star \frac{\hat{K}_{AB}(h)}{W} = \frac{1}{|A|} \cdot \frac{|t(A,B)|}{|B|}$$

Analytical Evaluation: Choice of Join Strategies

- \star Geometric
 - $_{\star}$ keep information of nearby regions
 - * Lack spatial feature type level pruning
- \star Combinatorial
 - $_{\star}$ benefits from spatial feature type level pruning
 - $_{\star}$ do not keep spatial proximity information
- \star Hybrid: integrate the best features of the two join strategies

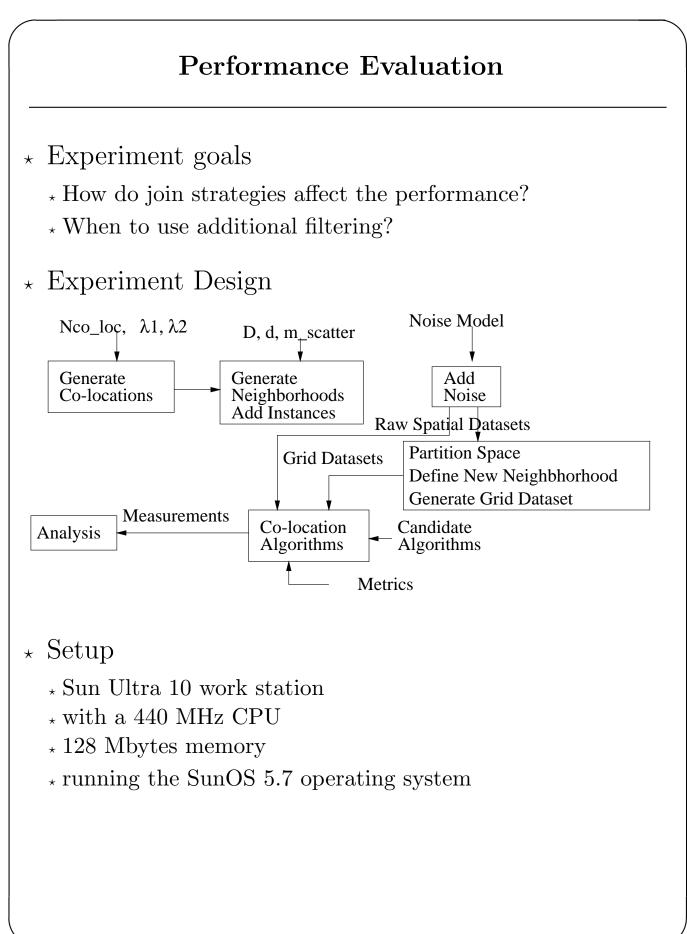
Analytical Evaluation: When to Use Additional Filtering

 $\star\,$ Running time ratio without/with filtering:

$$\frac{t_{filter}(k)}{t(k)} \approx \frac{|C_{k+1}| \times T_{grid}(k) + |C'_{k+1}| \times T_{orig}(k)}{|C_{k+1}| \times T_{orig}(k)} = \frac{T_{grid}(k)}{T_{orig}(k)} + \frac{|C'_{k+1}|}{|C_{k+1}|}$$
(1)

* C_{k+1} : number of size k+1 candidates before filtering

- * C'_{k+1} : number of size k+1 candidates after filtering
- $_{\star} T_{grid}(k)$: average time for a coarse level table instance
- * $T_{orig}(k)$: average time for a fine level table instance
- \star Choice of filtering is affected by
 - $_{\star}$ Filtering ratio
 - $_{\star}$ Dataset clustering level



Performance Evaluation

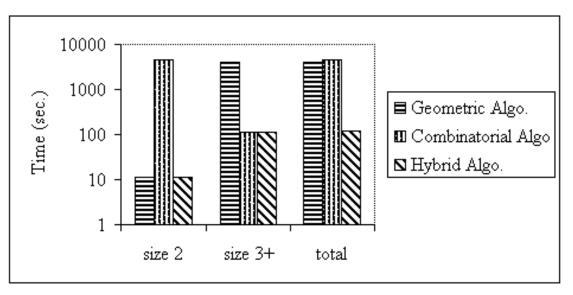
* Parameters

Parameter	Definition	С
N _{co_loc}	The number of core co-locations	5
λ_1	The parameter of the Poisson distribution to	5
	define the size of the core co-locations	
λ_2	The parameter of the Poisson distribution to	50
	define the size of the table instance of each co-	
	location when $m_{clump} = 1$	
$D_1 \times D_2$	The size of the spatial framework	$10^6 \times 10^6$
d	The size of the square to define a co-location	10
$r_{noise_{-}f}$	The ratio the of number of noise features over	.5
	the number of features involved in generating	
	the maximal co-location s	
r_{noise_n}	The number of noise instances	50,000
$m_{overlap}$	The number of co-location generated by ap-	1
	pending one more spatial feature for each core	
	co-location	
m _{clump}	The number of instances generated for each	1
	spatial feature in a neighborhood for a co-	
	location	

- $\star\,$ Report results on a representative dataset C
 - \star Variable parameters of dataset C are reported for each experiment

Performance Evaluation

- * Relative performance of geometric, combinatorial, and hybrid join strategies
 - $_{\star}$ Prevalence threshold set to 0.9
- \star Result

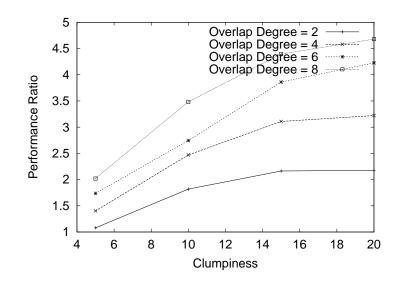


- $_{\star}$ Geometric: faster to generate co-locations of size 2
- \star Combinatorial: faster (magnitude of 2) to generate co-locations of size 3+
- $_{\star}$ Hybrid: combine geometric and combinatorial

Performance Evaluation Effect of multi-resolution filtering \star Variable parameter: $m_{overlap}$ from 2 to 8 * Result: \star 5 Clumpiness Degree = 5 Clumpiness Degree = 10 Clumpiness Degree = 15 Clumpiness Degree = 20 4.5 4 Performance Ratio 3.5 3 2.5 2 1.5 1 3 5 6 7 8 2 4 **Overlap Degree** * Multi-resolution filtering is effective especially when overlapping degree is high * Algebraic explanation: $\frac{t_{filter}(k)}{t(k)} \approx \frac{T_{grid}(k)}{T_{orig}(k)} + \frac{|\mathbf{C}'_{\mathbf{k}+1}|}{|\mathbf{C}_{\mathbf{k}+1}|}$ (2)

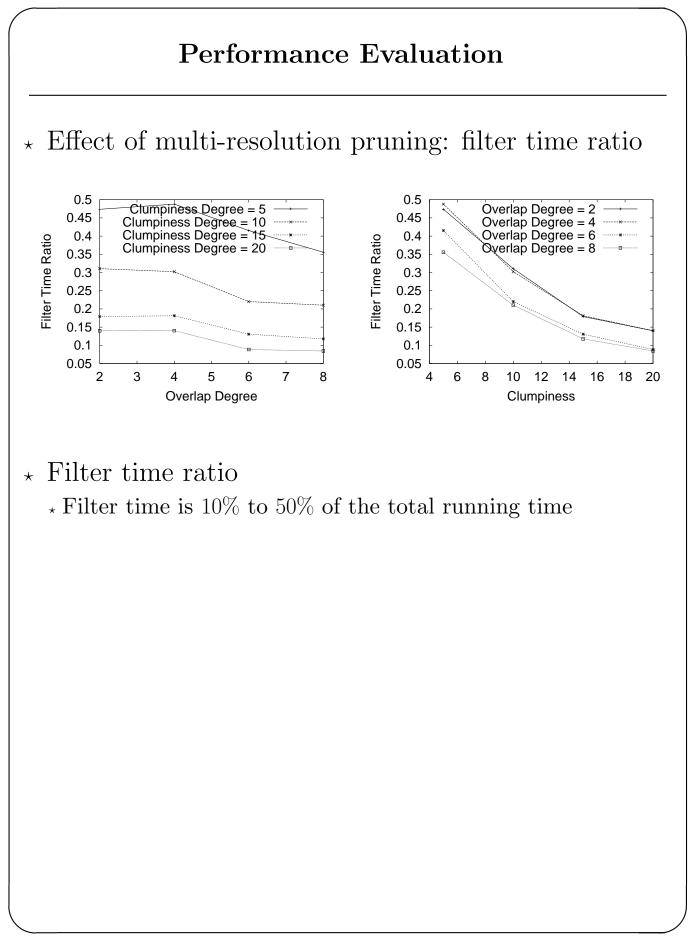
Performance Evaluation

- * Effect of multi-resolution filtering
- * Variable parameter: m_{clump} from 5 to 20
- \star Result:



- $_{\star}$ Multi-resolution filtering is effective especially when dataset is clustered
- $_{\star}$ Algebraic explanation:

$$\frac{t_{filter}(k)}{t(k)} \approx \frac{\mathbf{T}_{grid}(\mathbf{k})}{\mathbf{T}_{orig}(\mathbf{k})} + \frac{|C'_{k+1}|}{|C_{k+1}|}$$
(3)



Overview

- \star Introduction
- $\star\,$ Related Work
- \star Event Centric Approach
- \star Co-location Miner Algorithm
- \star Evaluation
- \Rightarrow Conclusions and Future Work

Conclusions and Future Work

- * Our contributions described today
 - $_{\star}$ Event centric co-location model
 - Robust in face of overlapping neighborhoods
 - $_{\star}$ Co-location Miner algorithm
 - Computational efficiency
 - Correctness and completeness with various performance tuning
 - * Validity of inferences
- $\star\,$ Other contributions in my thesis
 - $_{\star}$ High-confidence Low-prevalence (HCLP) Patterns
 - Prevalence base pruning: hard to retain HCLP patterns
 - Proposed a measure to retain such patterns
 - Proved a week monotonicity of the proposed measure
 - Designed an algorithm using the week monotonicity
 - $_{\star}$ May find pattern
 - chromium 6 \rightarrow lung disease, breast cancer in spatial proximity

Future Work

- \star Co-location patterns involving lines and polygons
- * Temporal co-incidence mining
 - $_{\star}$ No natural concept of transactions over temporal datasets
 - $_{\star}$ Arbitrary windowing may not be desirable
- $\star\,$ Spatio-temporal dataset

Future Work in a Longer Term

- * Environmental Biology
 * Jane Goodall's Chimpanzee behavior dataset analysis
- * Emergency Evacuation Planing
 * Heuristic approaches
- * Scientific Data Management
 - * EOS by NASA collecting terabyte of information each day
 - $_{\star}$ Spatial and temporal in nature
- * Moving Object Databases/Location Based Services
 - $_{\star}$ Data mining: location based recommendation
 - \star Database systems
 - support millions of triggers
 - answer proximity queries
 - keep trajectories of moving objects

