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Abstract. Given a collection of boolean spatial features, the co-location
pattern discovery process finds the subsets of features frequently located
together. For example, the analysis of an ecology dataset may reveal
the frequent co-location of a fire ignition source feature with a needle
vegetation type feature and a drought feature. The spatial co-location
rule problem is different from the association rule problem. Even though
boolean spatial feature types (also called spatial events) may correspond
to items in association rules over market-basket datasets, there is no
natural notion of transactions. This creates difficulty in using traditional
measures (e.g. support, confidence) and applying association rule min-
ing algorithms which use support based pruning. We propose a notion of
user-specified neighborhoods in place of transactions to specify groups
of items. New interest measures for spatial co-location patterns are pro-
posed which are robust in the face of potentially infinite overlapping
neighborhoods. We also propose an algorithm to mine frequent spatial
co-location patterns and analyze its correctness, and completeness. We
plan to carry out experimental evaluations and performance tuning in
the near future.

1 Introduction

Widespread use of spatial databases [8,21,22,28] is leading to an increasing in-
terest in mining interesting and useful but implicit spatial patterns [7,13,17, 20,
26). Efficient tools for extracting information from geo-spatial data, the focus
of this work, are crucial to organizations which make decisions based on large
spatial datasets. These organizations are spread across many domains including
ecology and environmental management, public safety, transportation, public
health, business, travel and tourism [3,12,15,9, 23, 26,29]. We will focus on the
application domain of ecology where scientists are interested in finding frequent
co-occurrence among boolean spatial features, e.g. drought, El Nino, substantial
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increase in vegetation, substantial drop in vegetation, extremely high precipita-
tion. etc.

Association rule finding [11]is an important data mining technique which has
helped retailers interested in finding items frequently bought together to make
store arrangements, plan catalogs, and promote products together. Spatial asso-
ciation rules [14] are spatial cases of general association rules where at least one
of the predicates is spatial. Association rule mining algorithms [1,2,10] assume
that a finite set of disjoint transactions are given as input to the algorithms. In
market basket data, a transaction consist of a collection of item types purchased
together by a customer. Algorithms like apriori [2] can efficiently find the fre-
quent itemsets from all the transactions and association rules can be found from
these frequent itemsets.

Many spatial datasets consist of instances of a collection of boolean spatial
features (e.g., drought, needle leaf vegetation). While boolean spatial features
can be thought of as item types, there may not be an explicit finite set of trans-
actions due to the continuity of the underlying space. If spatial association rule
discovery is restricted to a reference feature (e.g., city) [14] then transactions
can be defined around the instances of this reference feature. Generalizing this
paradigm to the case where no reference feature is specified is non-trivial. Defin-
ing transactions around locations of instances of all features may yield duplicate
counts for many candidate associations. Defining transactions by partitioning
space independent of data distribution is an alternative. However, imposing ar-
tificial transactions via space partitioning often undercounts instances of tuples
intersecting the boundaries of artificial transactions or double-counts instances
of tuples co-located together.

In this paper, we give different interpretation models for the spatial co-
location rules accompanied by representative application domains. We define
the spatial co-location rule as well as interest measures, and propose an algo-
rithm to find co-location rules. We provide a detailed analysis of the proposed
algorithm for correctness, completeness, and computational efficiency. We are
working on an experimental evaluation in the context of an ecological applica-
tion with datasets from NASA.

1.1 An Illustrative Application Domain

Many ecological datasets [16, 18] consist of raster maps of the Earth at different
times. Measurement values for a number of variables (e.g., temperature, pressure,
and precipitation) are collected for different locations on Earth. Maps of these
variables are available for different time periods ranging from twenty years to
one hundred years. Some variables are measured using sensors while others are
computed using model predictions.

A set of events, i.e., boolean spatial features, are defined on these spatial vari-
ables. Example events include drought, flood, fire, and smoke. Ecologists are in-
terested in a variety of spatio-temporal patterns including co-location rules. Co-
location patterns represent frequent co-occurrences of a subset of boolean spatial



features. Examples of interesting co-location patterns in ecology are shown in
Table 1.

Table 1. Examples of interesting spatio-temporal ecological patterns. Net Primary
Production (NPP) is a key variable for understanding the global carbon cycle and the
ecological dynamics of the Earth

Pattern # |Variable A variable B Examples of interesting patterns

P1 Cropland Area |Vegetation Higher cropland area alters NPP

P2 Precipitation Vegetation Low rainfall events lead to lower NPP
Drought Index

P3 Smoke  Aerosol|Precipitation Smoke aerosols alter the likelihood of
Index rainfall in a nearby region

P4 Sea Surface|Land Surface Cli-|Surface ocean heating affects regional
Temperature mate and NPP |terrestrial climate and NPP

The spatial patterns of ecosystem datasets include:

a. Local co-location patterns represent relationships among events at a
common location, ignoring the temporal aspects of the data. Examples from the
ecosystem domain include patterns P1 and P2 of Table 1. These patterns can
be discovered using algorithms [2] for mining classical association rules.

b. Spatial co-location patterns represent relationships among events hap-
pening in different and possibly nearby locations. Examples from the ecosystem
domain include patterns P3 and P4 of Table 1.

Additional varieties of co-location patterns may exist. Furthermore, the tem-
poral nature of general ecosystem data gives rise to many other time related
patterns. We focus on the above co-location patterns in this paper.

1.2 Related Work and Our Contributions

Approaches to discover co-location rules in the literature can be categorized into
two classes, namely spatial statistics and association rules. Spatial statistics-
based [5,6] approaches use measures of spatial correlation to characterize the
relationship between different types of spatial features. Measures of spatial cor-
relation include chi-square tests, correlation coefficients, and regression models
as well as their generalizations using spatial neighborhood relationships. Com-
puting spatial correlation measures for all possible co-location patterns can be
computationally expensive due to the exponential number of candidates given a
large collection of spatial boolean features.

Association rule-based approaches [14] focus on the creation of transactions
over space so that an apriori like algorithm [2] can be used. Some practition-
ers use ad-hoc windowing to create transactions, leading to problems of under
counting or over counting in determination of prevalence measures, e.g., support.



Another approach is based on the choice of a reference spatial feature [14] to
mine all association rules of the following form:

is_.a(X, big_city) A adjacent_to(X, sea) = close_to(X, us_boundary)(80%)

where at least one of the predicates is a spatial predicate. Users are asked to
specify the spatial features which they are interested in first in a form that spec-
ifies the main spatial feature of interest set and the relevant spatial features.
An example is finding within the map of British Columbia the strong spatial
association relationships between large towns and other ”near_by” spatial fea-
tures including mines, country boundary, water and major highways. The set of
large towns is the main spatial feature set of interest while the mines, country
boundary, etc. are the relevant spatial features. The algorithm [14] uses two-
step computation: first, association rules are generated at a coarse level, e.g. ,
g-close_to, which is efficient by using R-tree or fast MBR (Minimum Bounding
Rectangle) techniques, and then only the spatial features with support higher
than minimum support are passed to fine level(e.g. adjacent_to) rule generation.
The association rules are derived using the apriori [2] algorithm. This approach
does not find more general co-location patterns involving no reference spatial
feature on the left-hand side of the association rules. For example, consider the
co-location pattern of (drought, pine-needle-vegetation) being in a neighborhood
implying high probability of a fire-ignition event.

Contributions: This paper makes following contributions. First, it defines
event centric spatial co-location patterns using neighborhoods in place of trans-
actions for spatial application domains with no single reference spatial feature.
Second, it defines a new spatial measure of conditional probability as well as a
new monotonic measure of prevalence to allow iterative pruning. Third, it pro-
poses the Co-location Miner algorithm, a correct and complete algorithm to
mine prevalent co-location rules. The proposed algorithm has innovative ideas
such as generalized apriori_gen to efficiently enumerate the neighborhoods of
interest. It is also space efficient in that it discards intermediate results at the
earliest opportunity. Fourth, the paper provides proofs of correctness and com-
pleteness of the Co-location Miner algorithm in the presence of various perfor-
mance optimizations. Finally, the paper provides a detailed complexity analysis
of the proposed algorithm.

1.3 Outline and Scope

Section 2 formulates the problem of mining co-location rules. Section 3 describes
approaches of modeling co-location problems and their associated prevalence and
conditional probability measures. Section 4 describes the challenges in designing
an efficient algorithm to mine event centric co-location patterns and proposes
the algorithm Co-location Miner. Section 5 provides analysis of the proposed
algorithm in the areas of correctness, completeness, and computational efficiency.
Finally, Section 6 presents the conclusion and future work.

The scope of this paper is limited to co-location rules in two dimensional
Euclidean space. Issues beyond the scope of the paper include other spatial



patterns, spatio-temporal co-locations as well as system implementation issues
such as selection of index, buffering policy etc.

2 Problem Formulation and Basic Concepts

In a market basket data mining scenario, association rule mining is an important
and successful technique. We recall a typical definition from the literature. Let
I ={i1,i2,...,im} be aset of literals, called items. Let D be a set of transactions,
where each transaction T is a set of items such that T' C I. An association rule is
of the form X = Y, where X CI,Y C I, and XNY = ¢. Pr(X) is the fraction
of transactions containing X. Pr(X UY")/Pr(X) is called confidence of the rule
and Pr(X UY) is called support of the rule [1]. An association is a subset of
items whose support is above the user specified minimum support. A popular
example of an association rule is Diapers = Beer which means “People buying
diapers tend to buy beer.” Substantial literature is available on techniques for
mining association rules [1,2,11,19,24, 25, 27].

The spatial co-location problem looks similar but in fact is very different
from the association rule mining problem because of the lack of transactions.
In market basket data sets, transactions represent sets of item types bought
together by customers. The purpose of mining association rules is to identify
frequent item sets for planning store layouts or marketing campaigns. In the
spatial co-location rule mining problem, transactions are often not explicit. The
transactions in market basket analysis are independent of each other. Transac-
tions are disjoint in the sense of not sharing instances of item types. In contrast,
the instances of Boolean spatial features are embedded in a space and share a
variety of spatial relationships (e.g. neighbor) with each other. We formalize the
event centric co-location rule mining problem as follows:

Given:

1) a set T of K Boolean spatial feature types T={f1, fo,..., fx}

2) a set of N instances P={p;...pn}, each p; € P is a vector <instance-id,
spatial feature type, location> where spatial feature type € T and location €
spatial framework S

3) A neighbor relation R over locations in S 4) Min prevalence threshold
value, min conditional probability threshold
Objectives:

1) Completeness: We say an algorithm is complete if it finds all spatial co-
location rules which have prevalences and conditional probabilities greater than
user specified thresholds.

2) Correctness:We say an algorithm is correct if any spatial co-location rules
it finds has prevalence and conditional probabilities greater than user specified
thresholds.

3) Computational efficiency: I0 cost and CPU cost to generate the co-
location rules should be acceptable
Find:

Co-location rules with high prevalence and high conditional probability



Constraints:
1) R is symmetric and reflexive
2) Monotonic prevalence measure
3) Conditional probability measures are specified by the event centric model
4) Sparse data set, i.e., the number of instance of any spatial features is <<
cardinality (P)

3 Approaches of Modeling the Co-location Rules
Problem

Given the difficulty in creating explicit disjoint transactions from continuous
spatial data, this section defines approaches to model co-location rules. We will
use Fig 1 as an example spatial dataset to illustrate different models. In Fig 1, a
uniform grid is imposed on the underlying spatial framework. For each grid I, its
neighbors are defined to be the nine adjacent grids (including [). Spatial feature
types are labeled beside their instances. We define the following basic concepts
to facilitate the description of the different models.

Definition 1 A co-location is a subset of boolean spatial features.

Definition 2 A co-location rule is of the form: Ciy — Ca(p, cp) where Cy and
Cy are co-locations, p is a number representing the prevalence measure and cp
is a number measuring conditional probability.

The prevalence measure and the conditional probability measure, called interest
measures, are defined differently in different models. They will be described
shortly.

The reference feature centric model is relevant to application domains
focusing on a specific boolean spatial feature, e.g. cancer. Domain scientists are
interested in finding the co-locations of other task relevant features (e.g. asbestos,
other substances) to the reference feature. This model enumerates neighborhoods
to “materialize” a set of transactions around instances of the reference spatial
feature. A specific example is provided by the spatial association rule [14].

For example, in Fig 1 a), let the reference feature be A, the set of task
relevant features be B and C, and the set of spatial predicates include one
predicate named “close_to”. Let us define close_to(a,b) to be true if and only if
b is a’s neighbor. Then for each instance of spatial feature A, a transaction which
is a subset of relevant features {B,C} is defined. For example, for the instance
of A at (2,3), transaction {B,C} is defined because the instance of B at (1,4)
(and at (3,4)) and instance of C' at (1,2) (and at (3,3)) are close_to (2,3). The
transactions defined around instances of feature A are summarized in Table 2.

With “materialized” transactions, the support and confidence of the tradi-
tional association rule problem [2] may be used as prevalence and conditional
probability measures as summarized in Table 3. Since one out of two non-
empty transactions contains instances of both B and C and one out of two
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Fig. 1. Spatial dataset to illustrate different co-location models. Spatial feature types
are labeled beside their instances. The 9 adjacent cells of a cell I (including [) are
defined to be I’s neighbors. a) Reference feature centric model. The instances of A are
connected with their neighboring instances of B and C by edges. b) Window centric
model. Each 3 X 3 window corresponds to a transaction. c) Event centric model.
Neighboring instances are joined by edges.

Table 2. Reference feature centric model: transactions are defined around instances of
feature A relevant to B and C in Fig 1 a)

Instance of A Transaction
(0,0) @

(2,3) {B,C}
(3,1) {C}

(5,5) @

non-empty transactions contain C' in Table 2, an association rule example is:
is_type(i, A) A 37 is_type(j, B) A close_to(j, i) — Fkis_type(k, C) A close_to(k,1)
with 1 %100% = 100% probability.

The window centric model is relevant to applications like mining, survey-
ing and geology, which focus on land-parcels. A goal is to predict sets of spatial
features likely to be discovered in a land parcel given that some other features
have been found there. The window centric model enumerates all possible win-
dows as transactions. In a space discretized by a uniform grid, windows of size
kXk can be enumerated and materialized, ignoring the boundary effect. Each
transaction contains a subset of spatial features of which at least one instance
occurs in the corresponding window. The support and confidence of the tradi-
tional association rule problem may again be used as prevalence and conditional
probability measures as summarized in Table 3. There are 16 3X3 windows cor-
responding to 16 transactions in Fig 1 b). All of them contain A and 15 of
them contain both A and B. An example of an association rule of this model is:
aninstance of type Ain awindow — aninstance of type Bin this window with
% = 93.75% probability. A special case of the window centric model relates to
the case when windows are spatially disjoint and form a partition of space. This



case is relevant when analyzing spatial datasets related to the units of political
or administrative boundaries (e.g. country, state, zip-code). In some sense this
is a local model since we treat each arbitrary partition as a transaction to derive
co-location patterns without considering any patterns across partition bound-
aries. The window centric model “materializes” transactions in a different way
from the reference feature centric model.

The event centric model is relevant to applications like ecology where there
are many types of boolean spatial features. Ecologists are interested in finding
subsets of spatial features likely to occur in a neighborhood around instances
of given subsets of event types. For example, let us determine the probability
of finding at least one instance of feature type B in the neighborhood of an
instance of feature type A in Fig 1 c). There are four instances of type A and
only one of them have some instance(s) of type B in their 9-neighbor adjacent
neighborhoods. The conditional probability for the co-location rule is: spatial
feature A at location | — spatial feature type B in 9-neighbor neighborhood is
25%.

Neighborhood is an important concept in the event centric model. Given a
reflexive and symmetric neighbor relation R, we can define neighborhoods of a
location [ as follows:

Definition 3 A neighborhood of | is a set of locations L = {l4,...,l;} such
that l; is a neighbor of | i.e. (I,1;) € R(Vi € 1...k).

This definition satisfies the following two conditions from Topology [28]:

T1. Every location is in some neighborhood because of the reflective neighbor
relationship.

T2. The intersection of any two neighborhoods of any location [ contains a
neighborhood of I.

We generalize the neighborhood definition to a collection of locations.

Definition 4 For a subset of locations L’ if L’ is a neighborhood of every loca-
tion in L = {l,...,ly} then L’ is a neighborhood of L.

In other words, if every Iy in L' is a neighbor of every Iy in L, then L' is a
neighborhood of L.

The definition of neighbor relation R is an input and is based on the semantics
of application domains. It may be defined using topological relationships (e.g.
connected, adjacent), metric relationships (e.g. Euclidean distance) or a com-
bination (e.g. shortest-path distance in a graph such as road-map). In general
there are infinite neighborhoods over continuous space and it may not be possi-
ble to materialize all of them. But we are only interested in the locations where
instances of spatial feature types (events) occurs. Even confined to these loca-
tions, enumerating all the neighborhoods incurs substantial computational cost
because support-based pruning cannot be carried out before the enumeration of
all the neighborhoods is completed and the total number of neighborhoods is
obtained. Thus the participation index is proposed to be a prevalence measure
as defined.



Definition 5 I = {i1,...,ix} is a row instance of a co-location C = {f1,..., fr}
if i; is an instance of feature f;(Vj € 1,...,k) and I is a neighborhood of I itself.

In other words, if elements of I are neighbors to each other, then I is an instance
of C. For example, {(3,1),(4,1)} is an instance of co-location {A, C'} in Fig 1 ¢)
using a 9-neighbor relationship over cells of a grid.

Definition 6 The table instance of a co-locatin C = fy,..., f is the collec-
tion of all its row instances.

Definition 7 The participation ratio pr(C, f;) for feature type f; of a co-
location C = {f1, fa,--., fr} s the fraction of instances of f; which participate

in any row instance of co-location C. It can be formally defined as
|distinct(ny, (all Tow instances of C))|
|instances of {fi}|

where 1w is a relational projection operation.

For example, in Fig 1 ¢), instances of co-location {A, B} are {(2,3), (1,4)}
and {(2,3)), (3,4)}. Only one instance (2,3) of spatial feature A out of four
participates in co-location {A, B}. So pr({4, B}, A) = 1 = .25.

Definition 8 The participation index of a co-location C = {f1, f2,..., fr}
Tk
&) Hizl pr(C, fi).

In Fig 1 ¢), participation ratio pr({A4, B}, A) of feature A in co-location
{4, B} is .25 as calculated above. Similarly pr({4, B}, B) is 1.0. The participa-
tion index for co-location {4, B} is .25 X 1.0 = .25.

Note that participation index is monotonically non-increasing with the size of
the co-location increasing since any spatial feature participates in a row instance
of a co-location C of size k+ 1 will participates in a row instance of a co-location
C" where C' C C.

The conditional probability of a co-location rule C; — C in the event centric
model is the probability of finding C in a neighborhood of C; or it can be
formally defined as:

Definition 9 The conditional probability of a co-location rule C; — Cy is
|distinct(wc, (all row instances of C1UC2))|
|instances of C1|

where m is a projection operation.

4 Event Centric Approach and Algorithms

There are numerous challenges in mining spatial co-location patterns in the
event centric model. These include efficient enumeration of row instances of co-
locations, efficient computation of prevalence for pruning, efficient computation
of conditional probability, and generation of co-location rules. We briefly discuss
these in Section 4.1 before describing the Co-location Miner algorithm in
Section 4.2.
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Table 3. Interest measures for different models

Model Items transactions Interest measures for C; — C>
defined by
Prevalence Conditional
probability
local boolean |partitions of|fraction of|[Pr(C2 in a parti-
feature space partitions with|tion given C; in the
types CiUC, partition)
reference |predicates |instances of ref-|fraction of in-|Pr(C: is true for an in-
feature on refer-|erence feature Ci|stance of ref-|stance of reference fea-
centric ence and|and C: involved|erence feature|tures given C; is true
relevant |with with C1 U C> |for that instance of ref-
features erence feature)
window  |boolean |possibly infinite|fraction of|Pr(C2 in a window
centric feature set of distinct|windows with|given Ci1 in that
types overlapping CiUC, window)
windows
event boolean |neighborhoods of|participation |Pr(C> in a neighbor-
centric feature instances of fea-|index of|hood of C4)
types ture types Ci1UC:
4.1 Challenges and Solutions

Neighborhood (i.e. co-location row instance) enumeration is a major challenge
and a key part of any co-location mining algorithm. It can be addressed via a
combinatorial method like apriori [2] or a geometric approach e.g. spatial-self-
join. A combinatorial method formularizes the problem as a smart clique enu-
meration problem from a graph based on the definition of neighbors. A geometric
spatial join approach using a plane sweep method scans the underlying space and
stops at anchor points to collect neighborhood information. Both methods may
use optimizations at system level via spatial database techniques such as spatial
indexes. We propose a combinatorial approach in the next section and a plane
sweeping method is under exploration.

Co-location row instances are enumerated before measures of prevalence and
conditional probability are computed at co-location level. Computing prevalences
and conditional probabilities from instances of co-locations is non-trivial, espe-
cially when the number of spatial features is large as well. Computation of these
measures may require efficient strategies for projection and duplicate elimina-
tion. We use bitmaps to eliminate duplicates and calculate the participation
index in our Co-location Miner algorithm, which will be introduced shortly.

A spatial co-location rule’s conditional probability measure may not be cal-
culated directly from its prevalence measures (e.g. participation index). For a
candidate co-location C = {f1, fa,..., fr} we need to calculate the conditional
probabilities for each possible co-location rule ¢! — C' — C! where C' is an arbi-
trary subset of C'. An important finding is that we only need the table instance
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for co-location C and cardinalities of co-locations of size < |C| to calculate the
conditional probabilities. We generate prevalent co-locations in order of increas-
ing sizes. We then generate all co-location rules C' — C — C' for each prevalent
co-location C in the current iteration and each non-trivial subset C’ of C. By
generating prevalent co-location rules in increasing sizes , we always have the
cardinalities of the table instance of co-location C' available to calculate the
conditional probability of the candidate co-location rule C' — C — C".

4.2 Co-location Miner Algorithm

Co-location Miner is an algorithm to generate all the co-location rules with
prevalences and conditional probabilities above a use defined min_prevalence and
min_cond_prob.

Co-location Miner
Input:

1) K boolean spatial instance types and their instances:

P={< fo,{I}y>\fi € {f1,[2,...,fx},I C S where S is the set of all
interested locations}

2) A symmetric and reflexive neighbor relation R

3) A user specified minimum threshold prevalence measure (min_prevalence)

4) A user specified minimum conditional probability (min_cond_prob)
Output:

co-location rule sets with partition index > min_prevalence and

conditional probability > min_cond_prob
Method:

1) prevalent size 1 co-location set along with their table instances= P

2) Generate size 2 co-location rules

3) for size of co-locations in (2,3, ..., K —1) do

4) Generate candidate prevalent co-locations using the generalized apri-
ori_gen algorithm

5) Generate table instances and prune based on neighborhood

6) Prune based on prevalence of co-locations

7)  Generate co-location rules

8) end;

Explanation of the detailed steps of the algorithm

Step 1 initializes the prevalent size 1 co-location set with the input P of
the algorithm. The participation indexes of singleton co-locations are 1 and all
singleton co-locations are prevalent.

Example: Fig 2 a) shows the size 1 co-locations, i.e. A, B, and C, and their
table instances for example dataset in Fig 3.

Step 2 generates prevalent co-location rules of size 2. Due to lack of pruning
for singleton co-locations, it is more efficient to use spatial join using neighbor
relationship in place of generalized apriori_gen and then neighbor-based prun-
ing like in generation of co-location rules of size 3 or more. The spatial inner
join of the instances of all spatial features will produce pairs of instances with
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neighbor relation R. A minor modification of a sweeping-based spatial join [4],
which eliminates pairs of instances in a neighborhood with the same spatial
feature type will produce all table instances of size 2 co-locations. We order
the row instances in the table instance of each co-location in increasing lexico-
graphic order. Finally, we compute the participation index of each co-location,
do prevalence-based pruning if necessary, calculate and maintain the cardinality
of each prevalent co-location, and generates co-locations as described in the fol-
lowing steps in the loop.

Example: Fig 2 b) may be produced by sweeping-based spatial join implemen-
tation of the query:

select p', p"

from {pi,...,p12} ', {P1,-.., P12} D"
where p' feature # p' feature, p' <p", (p',p") € R

Step 3 to Step 8 loops through 2 to K —1 to generate prevalent co-locations
of size 3 or more, iterating on increasing values of sizes of co-locations. It breaks
whenever an empty co-location set of some size is generated.

Step 4 use generalized apriori_gen to generate candidate prevalent co-locations
of size k+1 from prevalent co-locations of size k along with their table instances.
The generalized apriori_gen function is an adoption of the apriori_gen algorithm
(see Appendix) function of the apriori [2]. The generalized apriori_gen function
takes as argument C, the set of all prevalent size k co-locations. The function
works as follows. First, in the join step, we join Cj with C:

insert into Cj41
select p.featurey, . . .,p.featurey, q.featurey, p.table_instance_id, g.table_instance_id
from Cy, p, Cy, q
where p.feature; = g.featurey, ..., p.featurey_; =q.featureg_,
p.feature, < g.featureg;

The last two columns (id; and ids) of table Cri1 keep track of the table in-
stances of any pair of co-locations of size k whose join produce a co-location of
size k + 1.

Next, in the prune step, we delete all co-locations ¢ € Cy41 such that some
k-subset of ¢ is not in Cy(Recall that it is also done in apriori_gen [2] because of
the monotonicity property of prevalence measure):

forall co-locations ¢ € C41 do

forall size k co-location s of ¢ do
if (s ¢ Ct) then
delete ¢ from Cjy1;

Example: If the size 2 co-location set is {{4, B}, {4, C}}, the join step will
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produce {{A, B,C}}. The prune step will delete {A, B,C} from {{A,B,C}}
because {B,C} is not a prevalent co-location of size 2.

Step 5 generates all the table instances of candidate co-locations of size k+1
which passed the filter of step 4. Co-locations with empty table instances will
be eliminated from the candidate prevalent co-location set of size k + 1. It takes
size k + 1 candidate co-location set Cky1 as an argument and works as follows.

forall co-location ¢ € Cy1
insert into T, // T is a table instance of co-location ¢

select p.instance; ,p.instance,, ..., p.instancey,q.instancey,
from c.id; p, c.ids ¢
where p.instance; =q.instancey, ..., p.instancej_; =q.instanceg_1,

(p-instancey, g.instancey) € R;
end;

Then all co-locations with empty table instance will be eliminated from Cp1.
Example: In Fig 2, table 4 of co-location {4, B} and table 5 of co-location
{A, C} are joined to produce table instance of co-location {A, B, C'} because co-
location {4, B} and co-location {4, C'} were joined in generalized apriori_gen to
produce co-location {4, B, C'} in the previous step. In the example, row instance
{Py0, Ps} of table 4 and row instance {Pyq, P} of table 5 are joined to generate
row instance {Pig, P5, P} of co-location {4, B,C} (Table 7).

Step 6 calculates the participation indexes for all candidate co-locations in
Cr+1 and it prunes co-locations using prevalence threshold. Computation of the
participation index for a co-location C' requires scanning of its table instance
to compute participation ratios for each feature in the co-location. This com-
putation can be modeled as project-unique operation on columns of the table
instance of C. This can be accomplished by keeping a bitmap of size |instance of
fi| for each feature f; of co-location C. One scan of the table instance of C' will
be enough to put 1s in corresponding bits in each bitmap. By summarizing total
number of 1s (py;) in each bitmap, we get the participation ratio of each feature
fi (divide py, by |instance of f;|. In Fig 2 c), to calculate the participation index
for co-location {A, B}, we need to calculate the participation ratios for A and B
in co-location {A, B}. Bitmap bg= (0,0,0,0) of size four for A and bitmap bp =
(0,0,0,0,0) of size 5 for B are initialized to zeros. Scanning of table 4 will result
in by= (1,0,1,1) and b = (1,1,0,0,0). Three unique instances P, Py, and Pig of
instance A out of 4 participate in co-location {4, B}. So the participation ratio
for A is .75. Similarly, the participation ratio for B is .4. The participation index
is .75x.4 = .3. After we get the participation indexes, prevalence-based pruning is
carried out and non-prevalent co-locations and their table instances are deleted
from the candidate prevalent co-location sets. For each left prevalent co-location
C after prevalence-based pruning, we keep a counter to specify the cardinality
of the table instance of C. All the table instances of the prevalent co-locations
in this iteration will be kept for generation of the prevalent co-locations of size
k + 2 and discarded after the next iteration.
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Step 7 generates all the co-location rules with user defined min_prev and
man_cond_prob.
For each prevalent co-location C, we enumerate every subset C' of C' and cal-
culate the conditional probability measure for the spatial co-location rule: C' —
C — C'". 1) We project the table instance of C on C' to get CC. 2) Calculate the
cardinality of CC after duplicate elimination to get the N,. 3) Divide N, by the
cardinality of C' (which has already been calculated and kept in the previous
iterations) to get the conditional probability. 4) Produce:C’ — C — C" if the
conditional probability is above user specified threshold.

3 b) c) co-location
k128 k=2 4 U5 6
A B C candidate co-locations of size 2 A B A. C B C
P2 PL P P2 PL P2 Pl2 P7  peT__lowindance
B P R — AB L 2 s pps  pops pu py) - leindane
pa— PT P12 A C 13 PIOPS g5 - 4/15 =— participation index
PIO P8 B C 2 3
1 P11 3 1 \\,\
1 ) d) will be pruned if
) ) k=3 7 min_prevalence
Row instances need not be ordered if R S, T EEEEEE——— Ll .
spatial join instead of A B c candidate co-locationsof size3  set to .2 and agorithm stops
jenalized apriori-gen isused -
g @ 9 P10 P5 P6 A B C 4 5
1/60

Fig. 2. Co-location Miner Algorithm Illustration on Example Database

P12.C

P2.A

Legend:
Pi.T representsinstance Pi with featuretype T
Lines between instances represents neighbor relationships

Fig. 3. Example Database
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5 Analysis

This section presents an analysis of the proposed algorithm for correctness, com-
pleteness and computational efficiency.

5.1 Completeness

Lemma 1: algorithm Co-location Miner is complete:
Proof:

Step 1 initializes the size 1 co-locations to be all the feature types and the
table instance of a co-location to include all its instances. It is complete.

The spatial join of Step 2 will produce all pairs (p’,p"') of instances where
p' feature # p".feature and p’ and p” are neighbors. Any row instance of any
size 2 co-location satisfying those two conditions in the join predicate will be
generated. The proof of completeness under pruning in subsequent steps of size
2 co-location rules is the same as the proof of completeness of step 3 to step 7
which will be shown shortly.

The loop from Step 3 to Step 8 iterates through all the co-locations of size
2 to k—1 to produce co-locations of size 3 or more. It only breaks when an empty
co-location set is produced. We prove the completeness of the substeps inside the
loop of iteration k as follows. Generalized apriori_gen algorithm in Step 4 will
not miss any prevalent co-locations for the following reasons. According to the
monotonicity of the participation index measure, every subset of a prevalent co-
location C = {f1,..., fr4+1} is a prevalent co-location in the previous iteration
and in particular, C1y = {f1,..., fr} and Cy = {f1,..., fe—1, fe+1} are prevalent
co-locations. The join step of step 4 will produce C'. The prune step only deletes
candidate prevalent co-locations whose one or more subset is not prevalent. It
is not possible for the pruned candidate prevalent co-locations to be prevalent
due to the monotonicity of the participation index. So, the prune step will not
destroy the completeness of the algorithm. Step 5 joins the table instances of
C1 and Cs to produce the table instance of C' where C1, Cs, and C are as defined
above. According to the neighborhood definition, any subset of a neighborhood is
a neighborhood too. For any instance I = {i1,...,ir41} of co-location C, subsets
L ={i1,...,ix}and Iy = {i1,...,9k—1,%k+1 } are neighborhoods, iy and ix41 are
neighbors, and I; and I are row instances of C1 and Cs respectively. Joining I;
and I, will produce I. So, step 5 is complete. Step 6 guarantees the completeness
by the correct calculation of the participation index and use of monotonicity of
participation index measure, which says any superset of a non-prevalent co-
location is non-prevalent and can be pruned. In Step 7, enumeration of the
subsets of each of the prevalent co-locations ensures no spatial co-location rules
with both high prevalence and high conditional probabilities is missed.

5.2 Correctness

Lemma 2: Co-location Miner algorithm is correct:
Proof:
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Step 1 is correct because the participation indexes of singleton co-locations
are 1 and all singleton co-local ions are prevalent.

The correctness of step 2 with respect to size 2 prevalent co-locations is
based on the fact that neighborhood-based spatial join correctly computes the
union of table instances of all size 2 co-locations.

In Step 4 and Step 5 every candidate prevalent co-location along with it
table instance generalized by the generalized apriori_gen algorithm and spatial
join is correct because of the following reasons. We compute the table instance of
a co-location C' = {f1,..., fk+1} by joining the table instance of the co-location
Cy ={f1,..., fr} and the table instance of C2 = {f1,..., fk—1, fe+1}- For each
instance Iy = {i1,1,--.,%1,5} of C1 and each instance Iy = {is1,...,42,5} of Co
we generate an instance Iney = {i1,1,--.,%1,k, 92,5} Of C if:

1). all elements of I; and I, are the same except 41, and is

2). i1 and 2 are neighbors
The schema of I,,.,, is apparently C' and elements in I,,¢,, are in a neighborhood
because I; is a neighborhood and s j is a neighbor of every element of I;.

Step 6 is correct because the participation index calculation method based
on bitmaps correctly computes each participation ratio.

In Step 7, calculation of the conditional probability of each rule C' — C—C"'
for each prevalent co-location C' is correct due to the relationship of this measure
to the table instance of co-location C' and the cardinality of co-location C'. We
compute the number of row instances of C’ which appear in some row instances
of C' by using relationalproject on the table instance of C' onto C' and then
calculate the unique number of results.

5.3 Computational Complexity

The bulk of the execution time of the Co-location Miner algorithm is used to com-
pare pairs of spatial feature types for equality, check the neighbor relationship of
pairs of instances, and put 1s to corresponding bits of bitmaps to calculate the
participation ratios. We characterize computational complexity of Co-location
Miner using the notation in Table 4.

We summarize the computational complexity of the generation of prevalent
co-locations (excluding step 7 which we are searching more efficient algorithms)
in terms of CPU cost assuming the total number of instances is N and the total
number of spatial feature types is K. The cost is just a approximation since
taking the average size of each table instance of a co-location of size 7 simplifies
the analysis.

h; () h. () |Combinatorial |f (i)f ()| Geometric g g0 Prevalence | h (i+1) h . (i+1)

Filter Filter Filter T

Fig. 4. Algorithm Co-location Miner Illustration
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Table 4. Notations for Cost Analysis

h; (i) average number of row instances in the table instance of a prevalent
co-locations of size ¢

hc(?) total number of prevalent co-locations of size ¢

fi(7) average number of row instances in the table instance of a candidate
prevalent co-location of size 7 + 1 in iteration ¢ after gemeralized apri-
ori_gen algorithm in step 4 (combinatorial filter)

fe(i) total number of candidate prevalent co-locations of size +1 in iteration
i after generalized apriori_gen algorithm in step 4 (combinatorial filter)

gi(#) average number of row instances in the table instance of a candidate
prevalent co-location of size ¢ +1 in iteration ¢ after generation of table
instances and neighborhood-based pruning in step 5 (Geometric filter)

gct(?) total number of candidate prevalent co-locations of size ¢+1 in iteration
i after generation of table instances and neighborhood-based pruning
in step 5 (Geometric filter)

Step 1 is the initialization step; we do not need to order instances of each
co-location since step 2 will use spatial join to produce candidate prevalent co-
locations of size 2:

coststep1 = O(N);

Step 2 uses an efficient spatial join algorithm such as a sweeping-based al-
gorithm [4] to produce candidate prevalent co-locations of size 2, summarize row
instances to their corresponding co-location table, order co-locations and table
instances of each co-location in lexicographic order, and then perform prevalence
based pruning. Let the average size of the table instances before prevalence-based
pruning be hf(2) and the total number of candidate prevalent co-locations be
h.(2). The last term is the cost of calculating the participation indexes which
will be discussed in the cost of step 6.

C0Ststeps = O(COStspatiatjoin +hi(2) log hL(2)+ h.(2)R;(2) log h}(2) +2R.(2)R}(2))

The analysis of costs inside the loop from Step 3 to Step 8 involve several
substeps. We analyze them in iteration ¢ as follows.

Step 4 does a sel f—join of the ordered prevalent co-locations of size i. This is
accomplished by starting from the smallest co-location and continously joining it
with subsequent co-locations until a failure occurs. Continuing this process with
all the co-locations in increasing order will produce all the candidate prevalent
co-locations of size ¢ + 1 . Successful joins will produce candidate prevalent co-
locations of size i + 1 whose cost is O(if;(i + 1) f(i + 1)). The number of failing
joins is bounded by O(h;(i)h.(i)) and the cost of failing joins is h;(%)h.(%)-

coststepa = O(ifi(i + 1) fe(i + 1) + ih;i(i)he (i) + costprune)

Step 5 joins pairs of table instances which passed the pruning of step 4 and
produces table instances of candidate prevalent co-locations of size i+ 1. Row in-
stances in each table instance are ordered. We join the row instances in two table
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instances in increasing order. Successful joins produce row instances of candidate
prevalent co-locations of size i+ 1 whose cost is O((i + coStreighbor checking)9i (i +
1)g.(i+1)). Failing joins can be categorized into two cases: those that fail before
neighbor checking step and those failed in the neighbor checking step The number
of the first case is bounded by O(2f;(i+1)f.(i+1)(f.(i+1)—1)/2) and the num-
ber of the second case is bounded by O((i + costneighbor checking)9i (i +1)g.(i+1))
assuming the it is proportional to the number of table instances after neighbor-
hood pruning.

COStstep5 = O((Z + COStneighbor checking)gi(i + ]-)gc(l + ]-) + fz(l + ]-)fc(l + 1)2)

Step 6 scans all the table instances of the candidate prevalent co-locations,
calculates the participation ratio for each feature, and prunes the non-prevalent
co-locations. We keep one bitmap of size |f;| for each feature |f;| of each candi-
date prevalent co-location. One scan of all the table instances of the candidate
prevalent co-location being scanned will be enough to put corresponding bits in
corresponding bitmaps to 1. By counting number of 1s in each bitmap, we can
easily calculate the participation ratios ( and participation index).

costsepe = O(gc(i 4+ 1)gi(i + 1) + i x maz_number_of Zinstance_of _all_features)

The total cost inside loop is:

maz(K,max co—location size)

COStigop = E COStstepa + COStsteps + COStstepe + COStstep
i=3

So the total cost is:
COStiota1 = COStgtep1 + COStgpepa + COSt10p

From the formulas, it is clear that the cost is very sensitive to the ratios of
pruning in each pruning step. If the dataset is sparse and neighbor relation is
well chosen the pruning will be well done and the algorithm is efficient.

6 Conclusion and Future Work

In this paper, we formalized the co-location problem and have shown the simi-
larities and differences between the co-location rules problem and the classical
association rules problem as well as the difficulties in using the traditional mea-
sures(e.g. support,confidence) created by inexplicit, overlapping and potentially
infinite transactions in spatial data sets. We proposed user-specified neighbor-
hoods notion in place of transactions to specify groups of items and define inter-
est measures which are robust in face of potentially infinite overlapping neigh-
borhoods. We define a new spatial measure of conditional probability as well as a
new monotonic measure of prevalence to allow iterative pruning. Our proposed



19

co-location miner algorithm employs innovative ideas such as the generalized
apriori_gen function to efficiently enumerate the neighborhoods of interest. We
provide proofs of correctness and completeness for the Co-location Miner al-
gorithm in the presence of various performance optimizations.

Our future plan is to carry out experimental evaluation and performance
turning. Plane sweeping algorithms are also under exploration.
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Appendix: the Apriori Algorithm

Table 5. Notation

k-itemset An itemset having k items

Ly, Set of large k-itemsets (those with minimum support). Each member
of this set has two fields: i) itemset and ii) support count

Cy Set of candidate k-itemsets (potentially large itemsets). Each member
of this set has two fields: i) itemset and ii) support count.

Cr Set of candidate k-itemsets when the TIDs of the generating transac-

tions are kept associated with the candidates.

Algorithm Apriori [2]:
1) Ly = {large 1-itemsets};
2) for ( k =2; Lp—1 # O; k++} do begin
3)  C} = apriori-gen(Lg_1); //New candidates
4)  forall transactions t € D do begin
5) C; = subset(Cy, t); //Candidates contained in ¢
6) forall candidates ¢ € C; do
7 c.count—+-+;

) end

) Ly = {c € Cg|c.count > minsup}
10) end

11) Answer = J, Lg;

© o

The apriori-gen function takes as argument L1, the set of all large (k-
1)-itemsets. The function works as folows. First, in the join step, we join Lj_;
with Lk,1:

insert into C},

select p.item;, p.items,, ..., p.itemy_1, ¢.itemg_4
from Ly_1 p, Lg-1 ¢
where p.item; = q.itemy, ..., p.itemy_o = g.itemy_o,p.itemy_1 < g.itemy_;

Next, in the prune step, we delete all itemsets ¢ € Cy, such that some (k—1)-
subset of ¢ is not in Lj_;:

forall itemsets ¢ € Cy, do
forall (k — 1)-subsets s of ¢ do
if (s ¢ Ly_1) then
delete ¢ from Cj;



