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The importance of spatial data mining is growing with the increasing incidence and importance of large geo-spatial datasets [6] such as maps, repositories of remote-sensing images, and the decennial census. Spatial data mining plays an important role in Army’s strategic, tactical, and operational planning. Some of the applications are predicting global hot spots (e.g., Forecasting Militarized Interstate Disputes [1],[2]), inferring enemy tactics (e.g. flank attack) from blobology, locating lost ammunition dumps, locating enemy sites (e.g. sniper in a haystack). Other organizations interested in spatial data mining include M(mobile)-commerce industry (location-based services), NASA (studying the climatological effects of El Nino, land-use classification and global change using satellite imagery), National Institute of Health (predicting the spread of disease), National Imagery and Mapping Agency (creating high resolution three-dimensional maps from satellite imagery), National Institute of Justice (finding crime hot spots), and transportation agencies (detecting local instability in traffic). 

The differences between classical and spatial data mining are similar to the differences between classical and spatial statistics. First, spatial data is embedded in a continuous space, whereas classical datasets are often discrete. Second, spatial patterns are often local whereas classical data mining techniques often focus on global patterns. Finally, one of the common assumptions in classical statistical analysis is that data samples are independently generated. When it comes to the analysis of spatial data, however, the assumption about the independence of samples is generally false because spatial data tends to be highly auto- correlated. For example, people with similar characteristics, occupation, and background tend to cluster together in the same neighborhoods. In spatial statistics this tendency is called spatial autocorrelation.  Ignoring spatial autocorrelation when analyzing data with spatial characteristics may produce hypotheses or models that are inaccurate or inconsistent with the dataset.  Thus classical data mining algorithms often perform poorly when applied to spatial datasets. Thus new methods are needed to analyze spatial data to detect spatial patterns.

The roots of spatial data mining lie in spatial statistics, spatial analysis, geographic information systems, machine learning, image analysis, and data mining. The main contributions made by computer science researchers to this area include algorithms and data-structures that can scale up to massive (terabytes to peta-bytes) datasets as well as the formalization of newer spatio-temporal patterns (e.g. co-locations), which were not explored by other research communities due to computational complexity. Spatial data mining projects in our group include location prediction, detection of spatial outliers, and discovery of spatial co-location patterns. 

Location prediction is concerned with the discovery of a model to infer locations of a spatial phenomenon from the maps of other spatial features. For example, ecologists build models to predict habitats for endangered species using maps of vegetation, water bodies, climate, and other related species. Figure 1 shows the learning dataset consisting of nest location, distance to open water, vegetation durability and water depth maps used in building a location prediction model for red-winged blackbirds in the Darr and Stubble wetlands on the shores of Lake Erie in Ohio. Classical data mining techniques yield weak prediction models, as they do not capture the auto-correlation in spatial datasets. We provided a formal comparison [3] of diverse techniques from spatial statistics (e.g. spatial auto regression) as well as image classification (e.g. Markov Random Field-based Bayesian classifiers). Mathematical formulations are shown in Table 1. We are currently developing scalable parallel algorithms for these techniques.
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Table 1: Summary of SAR, MRF and Spatial Outlier Detection techniques.
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Spatial outliers are significantly different from their neighborhood even though they may not be significantly different from the entire population. For example, a brand new house in an old neighborhood of a growing metropolitan area is a spatial outlier. Figure 2a shows a road occupancy map. Figure 2b shows another use of spatial outliers in traffic measurements for sensors on I-35W (North bound) for a 24-hour time period. Sensor 9 seems to be a spatial outlier and may be a bad sensor. Note that the figure also shows three clusters of sensor behaviors namely, morning rush hour, evening rush hour, and busy day-time. Spatial statistics tests (see Table 1) for detecting spatial outliers do not scale up to massive datasets, such as the Twin Cities traffic dataset measured at thousands of locations in 30-second intervals and archived for years. We generalized spatial statistics tests to spatio-temporal datasets and developed scalable algorithms [4] for detecting spatial outliers in massive traffic datasets.
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The co-location pattern discovery process finds frequently co-located subsets of spatial event types given a map (see Figure 3) of their locations. For example, the analysis of the habitats of animals and plants may identify the co-locations of predator-prey species, symbiotic species, and fire events with fuel, ignition sources etc. Readers may find it interesting to analyze the map in Figure 3 to find the co-location patterns. (There are two co-location patters of size 2 in this map.) Our group has provided one of the most natural formulations as well as the first algorithms [5] for discovering co-location patterns from large spatial datasets and applying them to climatology data from NASA.

Conclusions: Our research in the area of spatial data mining had resulted in efficient algorithms in the area of location prediction, spatial outlier detection and spatial co-location identification. We also provided very natural formulations of these problems. Our group is currently working on modeling spatial concepts in classical data mining techniques to improve prediction/classification accuracy and computational efficiency, and designing new algorithms for efficient route finding (location based services) and emergency evacuation (home land security) applications. For more details visit http://www.cs.umn.edu/research/shashi-group/ and consult chapter 7 of our recent book [6].

References:

[1] J. David Singer. The “Correlates of War” Project: Interim Report and Rationale. World Politics, 24(2): 243-270. 1972.

[2] Peter Brecke. The Long-Term Patterns of Violent Conflict in Different Regions of the World. Uppsala Conflict Data Conference, June 2001.

[3] S. Shekhar, P. Schrater, W. R. Raju, W. Wu, Spatial Contextual Classification and Prediction Models for Mining Geospatial Data, IEEE Transactions on Multimedia, 4(2): 174-188, 2002.
[4] S. Shekhar, C.T. Lu, P. Zhang, A. Unified Approach to Spatial Outliers Detection. Technical Report TR01-045, Computer Sci. Dept., U. of Minnesota, submitted to the IEEE Transactions on Knowledge and Data Engineering (A summary of results appeared in Proc. SIGKDD Intl. Conf. on Data Mining 2001).
[5] S. Shekhar and Y. Huang, Discovering Spatial Co-location Patterns: A Summary of Results, Proc. of 7th International Symposium on Spatial and Temporal Databases (SSTD01), L.A., CA, July 2001.

[6] S. Shekhar and S. Chawla, Spatial Databases: A Tour, Prentice Hall, 2003 (ISBN 0-13-017480-7).







Nest locations





Distance to open water





Vegetation durability





Water depth





Figure 1. Learning Dataset
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Figure 2 (a) Traffic occupancy map, (b) Spatial outlier in traffic volume data.
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Spatial Outlier Detection Test


1. Choice of Spatial Statistic


    S(x) = [f(x)–E y( N(x)(f(y))]


    Theorem: S(x) is normally distributed


                     if f(x) is normally distributed


2. Test for Outlier Detection


          | (S(x) - (s) / (s | >  ( 


Hypothesis


   - I/O cost determined by clustering efficiency








Spatial Auto regression Model (SAR)


y = (Wy + X( + (


- W models neighborhood relationships


- ( Models strength of spatial dependencies


- ( Error vector











Markov Random Field based Bayesian Classifiers


Pr(li | X, Li) = Pr(X|li, Li) Pr(li | Li) / Pr (X)


- Pr(li | Li) can be estimated from training data


- Li denotes set of labels in the neighborhood of


     si excluding labels at si


- Pr(X|li, Li) can be estimated using kernel 


     functions











Figure 3. Illustration of co-location patterns








