
Pointers & Memory Management in C

� Learning Goals:

* Motivation

* Pointer as an Abstract Data Type

- Attributes and value domains

- Operators (malloc, free, calloc, realloc)

* Visualizing pointers w/ box-pointer diagrams

- More Operators: Assignment, Comparison, Initialization

- Yet More Operators (pointer arithmetic)

* What are Pointers used for in C?

- Dynamic Data-Structures, array, string,

- result parameters

* Common errors and how to handle those?

- dangling pointers, memory leaks, ...

- signal handlers for SIGSEGV, SIGBUS

- malloc.h library

− 2 −

Pointers ADT

� Pointer as an Abstract Data Type

� Attributes: value (unsigned integer)

* Domain: memory address

* of base type T

� Operations:

* address (&)

* dereference (*)

* assignment

* relational, e.g. ==, !=

* pointer arithmetic

* memory allocation, deallocation

− 3 −

What can pointers point to?

� Reference (&) and Dereference (*) operators

int *point1;

int data1;

int main()

{ int *my_point = &data1;

int *your_point;

int more_data;

point1 = &more_data;

your_point = point1;

*your_point = 17;

*my_point = 33;

}

� Draw memory diagram to explain the code.

− 4 −

Memory allocation/deallocation

� Simple Example - malloc(), free()

#include <stdlib.h>

int main() {

double *point;

point = (double*) malloc(sizeof(double)) ;

/* code to use the variable */

free(point);

}

� Access via . and -> operators

struct date {

int month, day, year;

};

int main() {

struct date *my_date;

my_date = (struct date *)malloc(sizeof(struct date));

(*my_date).year = 1776;

my_date->month = 7;

my_date->day = 4;

/* code using my_date */

free(my_date);

}

− 5 −

Memory allocation/deallocation routines

� Q? How do we allocate/deallocate memory in C?

	 void *malloc(numBytes)

* argument = number of bytes requested

* returns pointer to allocated space

int *p; p = malloc(sizeof(int));

 void free(p)

* Recycle the space pointed to by pointer p

� void *calloc(numItems, itemSize)

* Allocates space for an array of items

* Returns pointer to beggingin of allocated space

* Argument 1 = Number of items

* Argument 2 = Size of an item

* Items Initialized to 0

� void *realloc(*oldSpace, sizeNewSpace) --> pointer to new space

- copies oldSpace to newSpace, deallocates oldSpace.

− 6 −

Memory allocation/deallocation

 Exercise: What will printf print?

float *p, *q, *r;

p = (float*) malloc(sizeof(float));

q = (float*) malloc(sizeof(float));

*p = 1.0; *q = *p; r = q ;

printf("%g, %g, %g ", *p, *q, *r) ;

� Exercise: What will printf print?

student *s, *t;

s = (struct student*) malloc(sizeof(student));

(*s).id = 1111;

strcpy(s->name, "Mary");

printf("%d %s ", s->id, (*s).name);

� Q? Contrast the following pairs:

p, *p;

(p == q), ((*p) == (*q))

(r == q), (p == q)

� Compare (*s).name vs. *(s.name) vs. *s.name

* Hint: priority(.) > priority(*))

− 7 −

Box Pointer Diagrams

� Pointer Semantics: Box-pointer diagrams

* Trace (declaration, memory allocation, assignment, ...)

* Ex. Draw box pointer diagram after each statement of program

p

q

r

s

t

id name

1.0

1.0

1111 M a r y

− 8 −

What are Pointers used for in C?

� C is a low level language

* relative to C++, Java, ...

* Compiler support for many features missing

* Programmers implement high level concepts

* Self-discipline from Programmers is crucial

� Do it yourself w/ Pointers

* Arrays

* Strings

* Parameter passing

- result parameters

- functions as parameters

* Dynamic Data Structures

− 9 −

Pointers & Arrays

int index;

double ar[4];

double *pt;

int main()

{

pt = ar + 2; /* pt point to ar[2] */

for (index = 0; index < 4; index++) [

ar[index] = (double)(3 * index);

}

}

� Arrays are implemented with Pointers

* Elements are contiguous in memory

* ar = const pointer to first element (i.e.ar[0])

* ar[index] computes ar + index * size(element)

* same as *(ar + index)

− 10 −

Pointers arithmetic with Strings

� String = array of characters

� Q? What will the following print?

char str[] = "ABCDEFG";

char *PC = str, *PC2 = PC + 1;

short X = 33; short *PX = &X;

printf("%c ", *PC) ;

/* Pointer comparison (==, !=) */

if (PC != PC2) printf ("PC and PC2 are different") ;

/*pointer arithmetic */

/*pointer + number -> pointer */

PC =+ 4; printf("%c ", *PC) ;

PC--; printf("%c ", *PC) ;

/* pointer - pointer -> number */

printf("%d ", (PC2 - PC)) ;

− 11 −

Pointers & Parameter Passing

� Parameter Types

* Input to function, or value

* Output from function or result

� C only support Input parameters

* Output parameters are implemented by pointers

* Example: swap() function

#include <stdio.h>

void swap(int *i, int *j)

{

int t;

t = *i;

*i = *j;

*j = t;

}

{

int a,b;

a=5;

b=10;

printf("%d %d0,a,b);

swap(&a,&b);

printf("%d %d0,a,b);

}

− 12 −

Multiple usage of pointers

� 1.4 Programming in UNIX

* Extended example - argument arrays!

� Strings = array of characters

char *s = "abc" ;

char s[] = "abc" ;

� Arrays of strings

int main(int argc, char *argv[]); /*Example 1.7, pp. 17 */

char ** makeargv(char *s); /*Example 1.8, pp. 18 */

char **myargv; /*Example 1.9, pp. 18 */

� Parameter Passing

* Passing an array of string as result parameter

* Example 1.12, page 19

int makeargv(char *s, char *** argvp)

* Program 1.2, page 22-23

int makeargv(char *s, char *delimiters, char *** argvp)

� Ex. Review Program 1.1 and 1.2 to answer the following:

* What are argv[] and argc used for?

* What is the parameter passing mode in C?

* What are the data types of arguments to makeargv()?

− 13 −

Why use Pointers and Dynamic data structures?

� What are Dynamic data structures?

* Collections which expand and contract as program executes.

* Different from Arrays, whose sizes are fixed at creation

� Why do we use Dynamic data structures?

* 1. Flexibility - conceptually closer to many data-structures

- e.g. Unix directory, roadmaps, electrical circuits, ...

* 2. Simplify programming - do not need to decide max_size

* 3. Performance - may save memory

- e.g. interpreter for Lisp, Magic (VLSI design editor), AutoCAD

 Three areas of memory during program execution

* Static Area - holds global variables

* Program Stack - holds local variables from functions/blocks

* Heap (free memory) - for dynamic use by program via pointers

! How is Dynamic data structures implemented?

* Declare Pointers

* Allocate memory at run-time as elements come

* Deallocate memory if elements are deleted

* A garbage collector recycles memory (Green thing!)

− 14 −

Comparing Implementations

" Two Major Choices for Implementing Data Structures

* Array Based OR Pointer Based

* Ex. Binary Tree - which implementation is preferred?

Q

G S

D

P R

X

Q

G S

D P R X

IMPLEMENTING

TREES
0 1 2 3 5 8

Q G S D P R X

1

2

3

4

5

6

-1

-1

4 6 7
element

lChild

rChild

− 15 −

Common Errors With Pointers

Match list of errors with Code fragments:

* A. Never reference a node after it is deallocated

* B. Do not return pointer to local var of functions

* C. Never reference a pointer before it is allocated

* D. Avoid Memory allocation in infinite loop

* E. Use dereferencing operator (*, ->) whenever needed.

* F. Use malloc(), free() with non-pointer arguments

$ Code Fragments

/* fragment 1 */

Tree *t1; printf("%d", t1->freq); ;

/* fragment 2 */

do { t1->left = new Tree; t1 = t1->left } while (TRUE);

/* fragment 3 */

free(t1); printf("%d", t1->frequency()) ;

/* fragment 4 */

Tree t1; t1 = malloc(sizeof(Tree)); free(t1);

Tree *t1; *t1 = malloc(sizeof(Tree)); free(t1*); //error

/* fragment 5 */

Tree *t1, *t2; /* ... */

printf("%d", t1.frequency()); /* error */

− 16 −

Revisit 1.4 Programming in UNIX

% Extended example - argument arrays!

* Review pointers, argv[], argc, parameter passing

& Ex. Review Program 1.1 and 1.2 to answer the following:

* What are argv[] and argc used for?

* What is the parameter passing mode in C?

* What are the data types of arguments to makeargv()?

* What does makeargv() return?

* List a few possible error situations for makeargv().

- How does makeargv() respond to those errors?

* Is it possible to rewrite makeargv() with following header?

- Headers from Example 1.8, Example 1.10

int makeargv(char *s, char *delimiters, char **argvp)

* What is maximum number of arguments allowed?

* Is there any memory leak? Justify your answer.

- Consider memory allocated to ’t’ and ’*argvp’

' Q? What the following loop do?

for (i=1; i< numtokens + 1; i++)

*((*argvp) + i) = strtok(NULL, delimiters);

* Why is the above loop not followed by free(t)?

