Errata for Iterative Methods for Sparse Linear Systems

Page

Error
Next, it is proved by contradiction that there are no nonlinear elementary divisors.
Since $\underline{\operatorname{diag}(D)}>0 \ldots$ (assuming that $A>0 \Longleftrightarrow \forall i, j\left(a_{i j}>0\right)$)
Since $a_{i k} c_{k i} \leq 0$ for all $k \neq i \ldots$
The matrix D_{B} is positive because $\underline{\operatorname{diag}\left(D_{B}\right) \geq \underline{\operatorname{diag}}\left(D_{A}\right)}>0$ (again assuming that $A>0 \Longleftrightarrow \forall i, j\left(a_{i j}>0\right)$.
The definitions here should use row sums (i.e., $\sum_{j=1, j \neq i}^{j=n} \cdots$) for consistency with the proof of Theorem 4.9 on p. 122.
There is an extraneous negative sign on the right-hand side of the first equation in the proof of Theorem 4.6.
\ldots cannot be an interior point to the disc $D\left(\underline{a_{m m}}, \rho_{m}\right)$.
\ldots it is necessary that $\left|\xi_{j}\right|=1$ for all j such that $a_{m j} \neq 0$. (This does not change the rest of the proof.)

$$
\sum_{\underline{j>m}}-a_{m j} \xi_{j}=\lambda\left(a_{m m} \xi_{m}+\sum_{\underline{j<m}} a_{m j} \xi_{j}\right),
$$

which yields the inequality

$$
|\lambda| \leq \frac{\sum_{j>m}\left|a_{m j}\right|\left|\xi_{j}\right|}{\left|a_{m m}\right|-\sum_{\underline{j<m}}\left|a_{m j}\right|\left|\xi_{j}\right|} \leq \frac{\sum_{\underline{j>m}}\left|a_{m j}\right|}{\left|a_{m m}\right|-\sum_{\underline{j<m}}\left|a_{m j}\right|}
$$

...its symmetric part $\left(A+A^{T}\right) / 2$ is Symmetric Positive Definite ... (for consistency with (1.50) and p. 215)
Thus, the $n \times(m+1)$ matrix $\left[h_{0}, h_{1}, \ldots, h_{m}\right] \ldots$
Replace $h_{66}^{(5)} \overline{\text { with } \underline{h_{66}}}$ in (6.45).
Since γ_{m} is defined as the last component of g_{m} after Ω_{m} is applied, while $\gamma_{m}^{(m-1)}$ is defined as the last component of \bar{g}_{m-1} (i.e., $\gamma_{m}=c_{m} \gamma_{m}^{(m-1)}$), the last component of \bar{g}_{5} in (6.49) should be $\underline{\gamma_{6}^{(5)}}$. However, this creates a conflict with the definition of \bar{g}_{m} in (6.40).
$W_{m+1}=V_{m+1} S$ has orthonormal columns.
Change r^{G} to $\underline{r_{m}^{G}}$ in (6.61).
The assertion $\kappa_{2}\left(V_{m+1}\right)=\kappa_{2}(S)$ does not seem evident.
The condition number of a rectangular matrix has not been defined at this point.
.... the method is a realization of an orthogonal projection technique onto the Krylov subspace $\mathcal{K}_{m}\left(A, r_{0}\right) \ldots$
The vectors p_{j} are multiples of the p_{j+1} 's of Algorithm 6.17.

Page	Error
206	\ldots if $h_{i j}=0$ for $i<j-s+1$, then an (s+1)-term recurrence can be defined
207	... since A has μ distinct eigenvalues, there is a polynomial q of degree at most $\mu-1$ such that $q\left(\lambda_{i}\right)=\overline{\lambda_{i}} \ldots$
207	We do not necessarily have $\mu-1 \leq s-1$; what is in fact needed for this proof is $v(A) \leq \operatorname{deg}(q)-1$ and $\operatorname{deg}(q)-1 \leq s-1$. The former is a consequence of the fact that $A^{H}=q(A)$, and the latter is demonstrated by the rest of the proof.
207	The fact that there exists a nonzero vector of grade μ does not seem trivial.
208	$\left(A v_{j}, v_{i}\right)=0$ for all i, j such that $i+s \leq j \leq \mu\left(v_{1}\right)-\underline{2}$
208	The definition of $C G(s)$ given is in fact $C G(s+1)$ according to the original definition of Faber and Manteuffel; with this definition the following adjustment is necessary:
208	\ldots if and only if the minimal polynomial of A has degree $\leq \underline{s+1}$, or
208	\ldots. it is easy to show that in this case A either has a minimal degree $\equiv 1$, or \ldots. (see Faber and Manteuffel for an explanation)
210	\ldots. . has two solutions w which are inverses of each other.
211	I was unable to locate Zarantonello's lemma in the given reference; nevertheless, I have written a simple proof of it here: http://www.cs.ubc.ca/~njhu/math/ zarantonello.pdf
211	\ldots the ellipse $E\left(0,1,\left(\underline{\left.\rho+\rho^{-1}\right) / 2}\right)\right.$ reduces to \ldots. (for consistency with p. 213)
211	$\underline{\|\gamma-c\|}>\rho$
213	Plugging in $z=c+a$ does not give $C_{k}(a / d)$ in the numerator but rather $C_{k}(-a / d)$. This can be rectified by writing $\hat{C}_{k}(z)=C_{k}((z-c) / d) / C_{k}((\gamma-c) / d)$, which is equivalent by symmetry of the Chebyshev polynomials.
223	In P-6.1(d), the dimensions of the matrices being multiplied are incompatible.
233	\ldots there is a scalar γ_{j} such that $\hat{w}_{j+1}=\gamma_{j} p_{j}\left(A^{T}\right) \underline{w_{1}}$.
233	$\left\langle p_{j}, p_{j}\right\rangle=\left(p_{j}(A) v_{1}, p_{j}\left(A^{T}\right) w_{1}\right)$ (by (7.7); no γ_{j} factor)
252	Multiplying (7.62) by A results in $A p_{2 j}=A u_{2 j}+\beta_{2 j-2}\left(A q_{2 j-2}+\beta_{2 j-2} A p_{2 j-2}\right) .$.

