Errata for Iterative Methods for Sparse Linear Systems

Page	Error
23	Next, it is proved by contradiction that there are no <u>nonlinear</u> elementary divisors.
30	Since $\underline{\operatorname{diag}(D)} > 0 \dots$ (assuming that $A > 0 \iff \forall i, j \ (a_{ij} > 0)$)
31	Since $\overline{a_{ik}}c_{ki} \leq 0$ for all $k \neq i \dots$
32	The matrix D_B is positive because diag $(D_B) \ge \text{diag}(D_A) > 0$ (again assuming that
	$A > 0 \iff \forall i, j \ (a_{ij} > 0)).$
119	The definitions here should use row sums (i.e., $\sum_{j=1, j \neq i}^{j=n} \cdots$) for consistency with the proof of Theorem 4.9 on p. 122.
120	There is an extraneous negative sign on the right-hand side of the first equation in the proof of Theorem 4.6.
121	cannot be an interior point to the disc $D(a_{mm}, \rho_m)$.
121	it is necessary that $ \xi_j = 1$ for all <i>j</i> such that $a_{mj} \neq 0$. (This does not change the
	rest of the proof.)
122	
	$\sum_{j>m} \underline{-a_{mj}} \xi_j = \lambda(a_{mm}\xi_m + \sum_{j$
	which yields the inequality
	$ \lambda \leq \frac{\sum_{\underline{j} \geq \underline{m}} a_{\underline{m}j} \xi_j }{ a_{\underline{m}m} - \sum_{\underline{j} \leq \underline{m}} a_{\underline{m}j} \xi_j } \leq \frac{\sum_{\underline{j} \geq \underline{m}} a_{\underline{m}j} }{ a_{\underline{m}m} - \sum_{\underline{j} \leq \underline{m}} a_{\underline{m}j} }.$
145	its symmetric part $(A + A^T)/2$ is Symmetric Positive Definite (for consistency with (1.50) and p. 215)
163	Thus, the $n \times (m+1)$ matrix $[h_0, h_1, \ldots, h_m] \ldots$
178	Replace $h_{66}^{(5)}$ with h_{66} in (6.45).
181	Since γ_m is defined as the last component of g_m after Ω_m is applied, while $\gamma_m^{(m-1)}$ is defined as the last component of \overline{g}_{m-1} (i.e., $\gamma_m = c_m \gamma_m^{(m-1)}$), the last component of \overline{g}_5 in (6.49) should be $\underline{\gamma}_6^{(5)}$. However, this creates a conflict with the definition of \overline{g}_m in (6.40).
185	$W_{m+1} = V_{m+1}S$ <u>has orthonormal columns</u> .
185	Change r^G to r_m^G in (6.61).
185	The assertion $\kappa_2(V_{m+1}) = \kappa_2(S)$ does not seem evident.
185	The condition number of a rectangular matrix has not been defined at this point.
196	the method is a realization of an orthogonal projection technique onto the Krylov subspace $\mathcal{K}_m(A, r_0)$
200	The vectors p_j are multiples of the p_{j+1} 's of Algorithm 6.17.

Page	Error
206	if $h_{ij} = 0$ for $i < j - s + 1$, then an $(s + 1)$ -term recurrence can be defined
207	\dots since A has μ distinct eigenvalues, there is a polynomial q of degree at most $\mu - 1$
	such that $q(\lambda_i) = \overline{\lambda_i} \dots$
207	We do not necessarily have $\mu - 1 \le s - 1$; what is in fact needed for this proof i $\nu(A) \le \deg(q) - 1$ and $\deg(q) - 1 \le s - 1$. The former is a consequence of the fact that $A^H = q(A)$, and the latter is demonstrated by the rest of the proof.
207	The fact that there exists a nonzero vector of grade μ does not seem trivial.
208	$(Av_j, v_i) = 0$ for all i, j such that $i + s \le j \le \mu(v_1) - \underline{2}$
208	The definition of $CG(s)$ given is in fact $CG(s+1)$ according to the original definition of Faber and Manteuffel; with this definition the following adjustment is necessary:
208	if and only if the minimal polynomial of A has degree $\leq s + 1$, or
208	it is easy to show that in this case A either has a minimal degree $= 1$, or (see Faber and Manteuffel for an explanation)
210	\ldots has two solutions w which are inverses of each other.
211	I was unable to locate Zarantonello's lemma in the given reference; nevertheless, have written a simple proof of it here: http://www.cs.ubc.ca/~njhu/math, zarantonello.pdf
211	the ellipse $E(0, 1, (\rho + \rho^{-1})/2)$ reduces to (for consistency with p. 213)
211	$ \gamma - c > \rho$
213	Plugging in $z = c+a$ does not give $C_k(a/d)$ in the numerator but rather $C_k(-a/d)$. Thi can be rectified by writing $\hat{C}_k(z) = C_k((z-c)/d)/C_k((\gamma-c)/d)$, which is equivalen by symmetry of the Chebyshev polynomials.
223	In P-6.1(d), the dimensions of the matrices being multiplied are incompatible.
233	there is a scalar γ_i such that $\hat{w}_{i+1} = \gamma_i p_i (A^T) w_1$.
233	$\langle p_j, p_j \rangle = (p_j(A)v_1, p_j(A^T)w_1)$ (by (7.7); no γ_j factor)
252	Multiplying (7.62) by A results in $Ap_{2j} = Au_{2j} + \beta_{2j-2}(Aq_{2j-2} + \beta_{2j-2}Ap_{2j-2}) \dots$