ERRATA #1

This errata was sent to SIAM for the second printing of the book – so you may find these errors if you bought the copies from the first printing (before 2004 or so).
Many thanks to Kees Vuik, Zhong-Zhi Bai, Sabine Le Borne, and Rudnei Dias da Cunha, for bringing a few errors to my attention.

1 The easy ones

1. Page 140, Line 5 of section 5.3.2. \((r, r)\) should be \((Ar, r)\). Correct formula is:

\[\alpha \leftarrow (Ar, r) / (Ar, Ar) \]

The same error occurs again in line 3 of algorithm 5.3 which should be:

3. \[\alpha \leftarrow (Ar, r) / (p, p) \]

2. Page 145, Line -3. There is no square in the denominator. Correct formula:

\[\|d_{\text{new}}\|_A \leq \left(1 - \frac{1}{n\kappa(A)} \right)^{1/2} \|d\|_A, \]

3. Page 146, line 10. Same formula - same error.
4. Page 425, Line 15. \(u_h^{\text{new}} = \ldots\) has a term missing in the brackets. Correct formula is

\[u_h^{\text{new}} = S_h^{\nu_2} [S_h^{\nu_1} u_h^0 + J_h^i A_H^{-1} I_h^H (-A_h S_h^{\nu_1} u_h^0)]. \]

5. Page 426, Line -15: \(7/3\eta n\) should be replaced by \((4/3)\eta n\).
6. Page 209, Line 2 of Algorithm 6.24 should be:

2. For \(j = p, p + 1, \ldots, m + p - 1\), Do:

7. Page 191, Lines -1 and -2 and Page 192, line 2: \(-\gamma_m\) should be \(+\gamma_m\). Also in Line 5. of Algorithm 6.19, \(-\gamma_j\) should be \(+\gamma_j\).

2 Problems with figures

1. In Figure 1.1, a big diagonal across the base rectangle got inserted (this was not in my original figure). Here is the original figure:
In Figure 3.11 (p. 95), 5 and 6 need to be interchanged in the left figure. The correct figure is:

3 Section 9.6

This section contains a few errors (Thanks to Kees Vuik for finding these) and it is best to rewrite the section.

4 The Concus, Golub, and Widlund Algorithm

When the matrix is nearly symmetric, we can think of preconditioning the system with the symmetric part of \(A \). This gives rise to a few variants of a method known as the CGW method, from the names of the three authors Concus and Golub [88], and Widlund [312] who proposed this technique in the middle of the 1970s. Originally, the algorithm was not viewed from the angle of preconditioning. Writing \(A = M - N \), with \(M = \frac{1}{2}(A + A^H) \), the authors observed that the preconditioned matrix

\[
M^{-1}A = I - M^{-1}N
\]

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect to the \(M \)-inner product. It is not too difficult to show that the tridiagonal matrix corresponding to the Lanczos algorithm, applied to \(A \) with the \(M \)-inner product, has the form

\[
T_m = \begin{pmatrix}
1 & \eta_2 & \eta_3 & \cdots & \eta_m & 1 \\
\eta_2 & 1 & \eta_3 & \cdots & \eta_{m-1} & 1 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\eta_{m-1} & \cdots & 1 & \eta_m & 1 \\
\eta_m & \cdots & \eta_{m-1} & \cdots & 1 \\
1 & \cdots & \cdots & \cdots & \cdots & 1
\end{pmatrix}.
\]

As a result, a three-term recurrence in the Arnoldi process is obtained, which results in a solution algorithm that resembles the standard preconditioned CG algorithm (Algorithm 9.1).

A version of the algorithm can be derived easily. The developments in Section 6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, show that the vector \(x_{j+1} \) can be expressed as

\[
x_{j+1} = x_j + \alpha_j p_j.
\]

The preconditioned residual vectors must then satisfy the recurrence

\[
z_{j+1} = z_j - \alpha_j M^{-1} A p_j
\]
and if the z_j’s are to be M-orthogonal, then we must have $(z_j - \alpha_j M^{-1} A p_j, z_j)_M = 0$. As a result,

$$\alpha_j = \frac{(z_j, z_j)_M}{(M^{-1} A p_j, z_j)_M} = \frac{(r_j, z_j)}{(Ap_j, z_j)}.$$

Also, the next search direction p_{j+1} is a linear combination of z_{j+1} and p_j,

$$p_{j+1} = z_{j+1} + \beta_j p_j.$$

Since $M^{-1} A p_j$ is orthogonal to all vectors in K_{j-1}, a first consequence is that

$$(Ap_j, z_j) = (M^{-1} A p_j, p_j - \beta_{j-1} p_{j-1})_M = (M^{-1} A p_j, p_j)_M = (Ap_j, p_j).$$

In addition, $M^{-1} A p_{j+1}$ must be M-orthogonal to p_j, so that $\beta_j = -(M^{-1} A z_{j+1}, p_j)_M / (M^{-1} A p_j, p_j)_M$. The relation $M^{-1} A = I - M^{-1} N$, the fact that $N' = -N$, and that $(z_{j+1}, p_j)_M = 0$ yield,

$$(M^{-1} A z_{j+1}, p_j)_M = -(M^{-1} N z_{j+1}, p_j)_M = (z_{j+1}, M^{-1} N p_j)_M = -(z_{j+1}, M^{-1} A p_j)_M.$$

Finally, note that $M^{-1} A p_j = -\frac{1}{\alpha_j} (z_{j+1} - z_j)$ and therefore we have (note the sign difference with the standard PCG algorithm)

$$\beta_j = -\frac{(z_{j+1}, z_{j+1})_M}{(z_j, z_j)_M} = -\frac{(z_{j+1}, r_{j+1})}{(z_j, r_j)}.$$