THE URV & SINGULAR VALUE DECOMPOSITIONS

¢ Orthogonal subspaces

e Orthogonal projectors, Orthogonal decomposition
e The URV decomposition

e The Singular Value Decomposition

e Properties of the SVD. Relations to eigenvalue problems

Orthogonal projectors and subspaces

Notation: Given a supspace X of R™ define: Xt={yly Lz, Vz € X}

» LetQ = [q1,- - - , g,] an orthonormal basis of X
How would you obtain such a basis?

» Then define orthogonal projector P = QQT

Properties

(@ P?=P b)(I—-P)2=1—P
(c) Ran(P) = X (d) Null(P) = x+
(e) Ran(I — P) = Null(P) = x+

» Note that (b) means that I — P is also a projector
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Proof. (a), (b) are trivial

(c): Clearly Ran(P) = {z| x = QQ%Ty,y € R} C X. Anyxz € X isof
the form z = Qy,y € R". Take Pz = QQT(Qy) = Qy = z. Since x = Pz,
x € Ran(P). So X C Ran(P). Intheend X = Ran(P).

(d: ze Xt (z,y) =0,Vy € X < (2,Q2) = 0,Vz € R" <> (QTx, 2) =
0,Vz eR" < QTz =0+ QQTr =0+ Pr =0+« = € Null(P).

(e): Need to show inclusion both ways.

e x € Null(lP) <> Pr=0+< (I—P)x=x —x € Ran(I — P)

exc Ran(I—P)«~ JyeR"e=I—-P)y >Px=PI—-P)y=0—
x € Null(P)
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Result: JAny x € R™ can be written in a unique way as

T=x1+x2, T € X, T2 € X
» Proof: Justset xy = Px, x> = (I — P)x

> Note: Xnxt={o}

» Therefore: R"= X @ X+

» Called the Orthogonal Decomposition
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Orthogonal decomposition

» In other words R™ = PR™ & (I — P)R™ or:
R™ = Ran(P) & Ran(I — P) or:
R™ = Ran(P) & Null(P) or:
R™ = Ran(P) ® Ran(P)t

» Can complete basis {q1, - - - , g} into orthonormal basis of R™, q,11,++* , @m

» {qri1,°++ qm} =basisof X+. —  dim(X') =m — r.
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Four fundamental supspaces - URV decomposition

Let A € R™>" and consider Ran(A)~*

Property 1: Ran(A)+ = Null(AT)

Proof: © € Ran(A)* iff (Ay, z) = 0 for all y; iff (y, ATz) = 0forally ...

Property 2: Ran(AT) = Null(A)+

» Take X = Ran(A) in orthogonal decomoposition. » Result:

4 fundamental subspaces
Ran(A) Null(AT)
Ran(AT) Null(A)

R™ = Ran(A) ® Null(AT)
R"” = Ran(AT) @ Null(A)

9-6 GvL 2.4, 5.4-5-SVD

» Express the above with bases for R™ :

h’/la U2yt g Upy Up 1y Up42y° 00 ung]
Ran(A) Null(AT)
and for R™  [v1, Vg, *+* y Upy Vpi1y Upt2y 20 ’U@]
Ran(AT) Null(A)

» Observe ul Av; = 0 fori > r or j > r. Therefore

co

T I
UAV-R-(0 0

) C E RTXT _)
mXxn

A=URVT

» General class of URV decompositions
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» Far from unique.

Show how you can get a decomposition in which C'is lower (or upper) triangular,
from the above factorization.

» Can select decomposition so that R is upper triangular — URV decomposition.
» Can select decomposition so that R is lower triangular — ULV decomposition.

» SVD = special case of URV where R = diagonal

How can you get the ULV decomposition by using only the Householder QR
factorization (possibly with pivoting)? [Hint: you must use Householder twice]
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The Singular Value Decomposition (SVD)

Theorem | For any matrix A € R™*" there exist unitary matrices U € R™*™
and V. &€ R"*" such that

A=UxVvT

where X is a diagonal matrix with entries o;; > 0.
o1 > 02 > -+ 0pp > 0 With p = min(n, m)

» The o;;’s are the singular values. Notation change o;; — o;

Proof: |Let oy = ||All2 = max,, |4),=1 ||Ax||2. There exists a pair of unit vectors
v1, w1 such that

A’Ul = o1U;
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» Complete v, into an orthonormal basis of R™

V = [v1, Vo] = n X n unitary

» Complete u, into an orthonormal basis of R™

U = [uy,Uz] = m X m unitary

Define U, V as single Householder reflectors.

» Then, it is easy to show that

T T
. oL w T _[(orwh) _
AV—U><<0 B)—)UAV_<0 B>_A1
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» Observe that
g1
> o} + [lw]|* = \/of + [Jw]|? < )‘
2 w 2

(%)
w
» Complete the proof by an induction argument. |

» This shows that w must be zero [why?]
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VT

O
O
Case 1: A = U Y
O

Case 2: vT

9-12 GvL 2.4,5.4-5-8VD




The “thin” SVD

» Consider the Case-1. It can be rewritten as

A = [UUs)] (2(3)1> vT

Which gives:
A=U, VT

where U; is m X n (same shape as A),and X;and V aren X n
» Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of A and the SVD

of an n X n matrix?
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A few properties. | Assume that

o1>0y2>:--2>20,>0ando, ;1 =--=0,=0

Then:

e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{uy, u2,...,u,}

o Null(AT) = span{u; 1, Uri2y .+ Um}

e Ran(AT) = span{vy, va,...,v,.}

e Null(A) = span{“r-ﬁ-l’ Up425 e 00 Un}
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Properties of the SVD (continued)

i
e The matrix A admits the SVD expansion: A=) o]
=1

e |Al|2 = o4 = largest singular value

o |Allr = (S0, 02)"?

e When A is an n X n nonsingular matrix then ||A=1||s = 1/,

k
Theorem | [Eckart-Young-Mirsky] Let k < r and Ay = Z O'iu,"vf then

=1

in [|A—Bl.=[A— Al =
ranrlg%g;:k ” ”2 ” k”2 Ok+1
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Proof: First: ||A — Bl|2 > o1, for any rank-k matrix B.
Consider X = span{vy, va, - -+ , Vx+1}. Note:
dim(Null(B)) =n — k — Null(B) N X # {0}
[Why?]
Letxg € Null(B) N X, xy # 0. Write zp = V'y. Then
(A — B)xoll2 = [|[Azoll2 = [UEVIVy|l2 = || Zyl|2
But [|Xy|l2 > okt1llzoll2 (Show this). — ||A — Bl|2 > okt

Second: take B = Ay,. Achieves the min. [_]
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Right and Left Singular vectors:

A’Ui = o;U;

. . T . —_— . .
» v;’s = right singular vectors; Aluj = o

» wu;’s = left singular vectors.

» Consequence ATAv; = ov; and AATu; = olu;
» Right singular vectors (v;’s) are eigenvectors of AT A
» Left singular vectors (u;’s) are eigenvectors of AAT

» Possible to get the SVD from eigenvectors of AAT and AT A — but: difficulties
due to non-uniqueness of the SVD
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Define the » X r matrix

21 = diag(al, ey 0',«)

» Let A € R™*™ and consider ATA (€ R™*"):

2
ATA =vyTyvT 5 ATA=V (201 8) vT
N——

nXxn

» This gives the spectral decomposition of AT A.
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» Similarly, U gives the eigenvectors of AAT.

Important:

ATA = VD, VT and AAT = UD,UT give the SVD factors U, V' up to signs!
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