FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

e Brief review of floating point arithmetic
e Model of floating point arithmetic

e Notation, backward and forward errors



Roundoff errors and floating-point arithmetic

» The basic problem: The set A of all possible representable numbers on a given
machine is finite - but we would like to use this set to perform standard arithmetic
operations (+,*,-,/) on an infinite set. The usual algebra rules are no longer satisfied
since results of operations are rounded.

» Basic algebra breaks down in floating point arithmetic.

Example: |In floating point arithmetic.

a+(b+c)!'= (a+0b)+c

#1| Matlab experiment: For 10,000 random numbers find number of instances when
the above is true. Same thing for the multiplication..

4-2 GvL 2.7 — Float




Floating point representation: |

Real numbers are represented in two parts: A mantissa (significand) and an expo-
nent. If the representation is in the base 3 then:

€r = :I:(.dldz s dt)ﬂe

» .dqd- - - - d; is a fraction in the base-3 representation (Generally the form is nor-
malized in that d; # 0), and e is an integer

» Often, more convenient to rewrite the above as:

x=x(m/B%) x B¢ = +m x B¢
» Mantissa m is an integer with 0 < m < 3% — 1.

4-3 GvL 2.7 — Float




Machine precision - machine epsilon

» Notation : fl(x) = closest floating point representation of real number x
(‘'rounding’)
» When a number x is very small, there is a point when 1 + & == 1 in a machine

sense. The computer no longer makes a difference between 1 and 1 + .

Machine epsilon: | The smallest number e such that 1+ € is a float that is different

from one, is called machine epsilon. Denoted by macheps or eps, it represents the
distance from 1 to the next larger floating point number.

» With previous representation, eps is equal to 3~ ¢-1),

4-4 GvL 2.7 — Float




Example: |In IEEE standard double precision, 3 = 2, and t = 53 (includes
‘hidden bit’). Therefore eps = 27°2,

Unit Round-off = A real number x can be approximated by a floating number fI(x)
with relative error no larger than u = $3~ (1.

» u is called Unit Round-off.

» In fact can easily show:

fl(x) = x(1 + 9) with |§] < u

#2| Matlab experiment: find the machine epsilon on your computer.

» What conditions/ rules should be satisfied by floating point arithmetic? The IEEE
standard is a set of standards adopted by many CPU manufacturers.

4-5 GvL 2.7 — Float




Among |IEEE rules:

Rule 1. I fl(x) =x(1+¢€), where |e|] <u

Rue2. | fll@®y) = (01 +eo) wherefeo| Su O
Rule 3. I For +, * operations: flla®b) = fl(b® a)

#3| Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly gener-
ated numbers a;, b;.

4-6 GvL 2.7 — Float




Example: | Consider the sum of 3 numbers: y = a + b + c.
» Done as fl(a + b+ ¢) = fl(fl(a + b) + ¢)

flla+b) = (a+b)(1 +e)
flla+b+c) = [(a+b)(1+e) +c[(1+ €)
a(l+ €)1 +e€)+b(A+ €)1+ e2)
+c(1 + €3)
a(l+4+61) +b(1+ 03) + c(1 + 05)

W|th1—|—31—1—|—02 (1—|—€1)(1—|—€2) and1—|—93 (1—|—62)

» For a longer sum we would have something like:

1+6;=0+e)(X+e)(---)(1+ €ny)
We will study such products shortly

4-7

GvL 2.7 — Float




» Remark on order of the sum. If y; = fl(fl(a + b) + ¢):

yl = [(e+b+c) + (a +b)er)] (1 + €2)

a-+b
=(@a+bt+o) |l ———alte) te

So disregarding the high order term €1 €5

fl(flla+b)+c) = (a+b+c)(1+ e3)
a-+b
€3 ~ €1 + €3

a-+t+b-+c

!

4-8 GvL 2.7 — Float




» |f we redid the computation as y» = fl(a + fI(b + ¢)) we would find

flla+ fl(b+c)) = (a+b+c)(1+ e4)
b+ c

€4 ~ 61—|—€2

a-+b-+c

!

» The error is amplified by the factor (a 4+ b)/y in the first case and (b + ¢) /y in
the second case.

» In order to sum n numbers accurately, it is better to start with small numbers first.
[However, sorting before adding is not worth it.]

» But watch out if the numbers have mixed signs!

4-9 GvL 2.7 — Float




The absolute value notation

» For a given vector x, |x| is the vector with components |x;|, i.e., |x| is the
component-wise absolute value of x.

» Similarly for matrices: |A| = {laij| }i=1,...m; j=1,..n
» An obvious result: The basic inequality

[fl(ai;) — aij| < u ail
translates into |fI(A) — Al < u |A]

» A< Bmeansa;; < bj;foralll<t1<m; 1 <3< n

4-10 GvL 2.7 — Float




Backward and forward errors

» Assume the approximation g to y = alg(x) is computed by some algorithm with
arithmetic precision €. Possible analysis: find an upper bound for the Forward error

|Ay| = |y — 9|

» This is not always easy.

Alternative question: | find equivalent perturbation on initial data (x) that pro-

duces the result g. In other words, find Ax so that:

alg(x + Ax) = g

» The value of | Ax| is called the backward error. An analysis to find an upper bound
for |Ax| is called Backward error analysis.

4-11 GvL 2.7 — Float




a b d e
Example: A= <O c) B = <O f)

Consider the product: flI(A.B) =

ad(l1+€1) | [ae(l1 4+ €3) +bf(1 + €3)] (1 + €4)
0 cf(1+ e5)

with e; < u, forz = 1, ..., 5. Result can be written as:

a b(]_ —|— 63)(1 —|— 64) d(]. —|— 61) 6(1 —|— 62)(1 —|— 64)
0 c(1 + e5) 0 f

» So fl(A.B) = (A + E,) (B + Ep).
» Backward errors E 4, Eg satisfy:
|[Eal <2ul|A|+0(u?;  |Ep| <2ulB|+ O(u?)

4-12 GvL 2.7 — Float




» When solving Az = b by Gaussian Elimination, we will see that a bound on ||e, ||
such that this holds exactly:

A(wcomputed + e:c) =b
is much harder to find than bounds on || E 4||, ||es|| such that this holds exactly:

(A + EA)wcomputed — (b + eb)-

Note: In many instances backward errors are more meaningful than forward errors:
If initial data is accurate only to 4 digits say, then my algorithm for computing = need
not guarantee a backward error of less then 10~ for example. A backward error
of order 104 is acceptable.

4-13 GvL 2.7 — Float




Error Analysis: Inner product

» Inner products are in the innermost parts of many calculations. Their analysis is
important.

Lemma: If |6;] <u and nu < 1 then

nu
I (1+46;,) =146, where |0,] < —
1 — nu

» Common notation ~,, = —=

1—52

#4| Prove the lemma [Hint: use induction]

4-14 GvL 2.7 — Float




» Can use the following simpler result:

Lemma: If |6;] < u and nu < .01 then
IT*  (1446;) =146, where |6, <1.01nu

Example: | Previous sum of numbers can be written

flla+b+c) = fl(fl(a+Db) +c)
= [(a+b)(1 + €) + ] (1 + €)
= a(l4+€)(1+e)+b1l+e)l+e)+
c(1 + e3)
= a(l+61)+b(1+4+63)+ c(1+ 03)
— exact sum of slightly perturbed inputs,

where all 8;’s satisfy |0;| < 1.01nu (here n = 2) — Alternative |0;| < ~,



» Backward error result (output is exact sum of perturbed input)

» Alternatively, can write ‘forward’ bound:
[flla+b+c)—(a+b+c)| < [ab:] + |bO2| + |cB3].

(bound on | output - exact sum | )

4-16 GvL 2.7 — Float




Analysis of inner products (cont.)

Consider Spn=Ffl(x1*xy1 +xT2%xys+ -+ + Ty * Yn)

» In what follows n;'s come from %, €;'s come from +
» They satisfy: |n;| < u and |¢;| < u.

» The inner product s,, is computed as:

1. 81 = fl(x1y1) = (z1y1) (1 + M)

2. 85 = fl(s1 + fl(2y2)) = fl(s1 + T2y2(1 + 12))
= (1y1(1 + m1) + z2y2(1 + 1n2)) (1 + €2)
=x1y1(1 + 1) (1 + €2) + T2y2(1 + 1m2) (1 + €2)

3. 83 = fl(s2 + fl(x3ys)) = fl(s2 + z3y3(1 + n3))
= (82 + 3y3(1 + m3)) (1 + €3)
417 e GVL 2.7 —Float




Expand: s3 = xy1(1 4+ 711)(1 + €2)(1 + €3)
+x2y2(1 + 12) (1 + €2) (1 + €3)
+x3y3(1 + n3) (1 + €3)

» Induction would show that [with convention that €; = 0]

sn= i1 +n) [[(1+¢)
i=1 j=i

Q: How many terms in the coefficient of x;y; do we have?

e Whene >1:1+(n—214+1)=n—1+ 2

A: e Wheni = 1: n (since e; = 0 does not count)

» Bottom line: always < n.

4-18

GvL 2.7 — Float




» For each of these products

(L+m) [[_;(1 +€)=1+86;, with |0;] <, so:

Sn = > . iyi(1+0;) with [6;] <, or:

Il (Z?Zl wzyz) = > i Ty + D 2y with 0] < v,

» This leads to the final result (forward form)

fl (Z -’Bzyz> — > Ty
i=1 i=1

1=1

» or (backward form)

fl <Z wzyz> = szyz(l +6;) with [0 < vy
i=1

1=1

4-19 GvL 2.7 — Float




Main result on inner products:

» Backward error

o fl(z'y) = [+ (1 +do)]" [y -+ (1 + dy)]
expression:

where ||dgl|co < Yy, O = @, y.

» Equality valid even if one of the d., d,, absent.
» Forward error expression: | fl(z"y) — xly| < v, |z|" |yl
» Alternative for results above: replace ~,, by 1.01u.

» Above assumes nu < .01. Whenu =~ 107!, this holds for n < 1014

4-20 GvL 2.7 — Float




» Consequence for matrix products: (A € R™*", B € R"*P)

|fI(AB) — AB| < v |A||B|

» Another way to write the result (less precise) is

[fl(z"y) — 2yl < nu |z[" |y|+ O(u?)

4-21 GvL 2.7 — Float




#5] Assume you use single precision for which you have u = 2. x 107%. What
is the largest n for which nu < 0.01 holds? Any conclusions for the use of single

precision arithmetic?

#6| What does the main result on inner products imply for the case when y = x?
[Contrast the relative accuracy you get in this case vs. the general case when y # ]

4-22 GvL 2.7 — Float




#7

#n8

Show for any x, y, there exist Ax, Ay such that

fl(xz'y) = (z + Azx)ly, with |Az| < .|z
fl(wTy) — wT(y + Ay), with [Ay| < v,y

(Continuation) Let A an m X n matrix, x an n-vector, and y = Ax. Show that

there exist a matrix A A such

#9

fi(y) = (A+ AA)z, with |AA| < v.]4

(Continuation) From the above derive a result about a column of the product of

two matrices A and B. Does a similar result hold for the product AB as a whole?

4-23

GvL 2.7 — Float




Error Analysis for linear systems: Triangular case

» Recall

ALGORITHM : 1. Back-Substitution algorithm

Fort =n:—1:1 do:

t:= bz
Fory =1+ 1 :n do
=1 — Qa;jx; t:=1— (a”i,i-l-l:na wi—i—l:n)
t:=1t— a;jx; .
End — t — an inner product
xr; = t/a,z-i
End

» We must require that each a;; 7 0

» Round-off error (use previous results for (-, +))?
4-24

GvL 2.7 — Float




The computed solution @ of the triangular system Ux = b computed by the back-
substitution algorithm satisfies:

(U + E)é =b

with
|E| <nu |[U|l+ O(u?)

» Backward error analysis. Computed x solves a slightly perturbed system.

» Backward error not large in general. It is said that triangular solve is “backward
stable”.




Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then
the computed factors L and U satisfy

LU=A1+ H

with |H| < 3(n—1) x u (|A]+|L][0]) +O(?)

» Solution & computed via Lj = band U& = § is s. t.

(A+ E)Z = b with|E| < nu (3|A| 15| |ff|) + O(u?)

4-26 GvL 2.7 — Float




» “Backward” error estimate.
» |L| and |U| are not known in advance — they can be large.
» What if partial pivoting is used?

» Permutations introduce no errors. Equivalent to standard LU factorization on
matrix PA.

» |L| is small since I;; < 1. Therefore, only U is “uncertain”

» |n practice partial pivoting is “stable” —i.e., it is highly unlikely to have a very large
U.

4-27 GvL 2.7 — Float




Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two parts: A mantissa
and an exponent. If the representation is in the base 3 then:

r = :l:(.dldz OONC dm)I@,Be

» .d.d- - - -d,, is a fraction in the base-3 representation
» e is an integer - can be negative, positive or zero.

» Generally the form is normalized in that d; # O.

4-28 GvL 2.7 — FloatSuppl




Example: | In base 10 (for illustration)

1. 1000.12345 can be written as

0.100012345,¢ x 104

2. 0.000812345 can be written as
0.812345;5 X 1073

» Problem with floating point arithmetic: we have to live with limited precision.

Example: | Assume that we have only 5 digits of accuray in the mantissa and 2
digits for the exponent (excluding sign).

.dl d2 d3 d4 d5 €1 €2

4-29 GvL 2.7 — FloatSuppl




Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

1000.2 = .1/0lolol2]0]4]; 1.07r=[1]0]7]0/0o]0]1

First task: I align decimal points. The one with smallest exponent will be (inter-
nally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 x 10*

Second task: I add mantissas:

+
© o o
—_ O —
o o o
o o o
a2 o
Do N
SN




Third task:

round result. Result has 6 digits - can use only 5 so we can

» Chopresult:|.1/0

0

1

2

» Round result: |.1 /0

0

3

Fourth task:

Normalize result if needed (not needed here)

result with rounding:

A

0

0

|

3

0

4

4-31

J

#10| Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

GvL 2.7 — FloatSuppl




The IEEE standard
32 bit I (Single precision) :

8 bits < 23 bits —

\ . A 7

exponent mantissa

sign | H

» Number is scaled so it is in the form 1.d;ds...d>3 X 2¢ - but leading one is not
represented.

» e is between -126 and 127.

» [Here is why: Internally, exponent e is represented in “biased” form: what is
stored is actually ¢ = e + 127 — so the value c of exponent field is between 1 and
254. The values ¢ = 0 and ¢ = 255 are for special cases (0 and oo)]




64 bit I (Double precision) :

+ | 11 bits +— 52bits —
C N -~ /N -~ J
2 exponent mantissa

» Bias of 1023 so if e is the actual exponent the content of the exponent field is
c =e -+ 1023

» Largest exponent: 1023; Smallest = -1022.
» ¢ = 0 and ¢ = 2047 (all ones) are again for 0 and oo

» Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one
hidden).

» In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

4-33 GvL 2.7 — FloatSuppl




#11] Take the number 1.0 and see what will happen if you add 1/2,1/4,....,27.
Do not forget the hidden bit!

Hidden bit  (Not represented)
Expon. | < 52bits —
e 1/1/0/0/0/0/0/0|0|0|0|0

e 1/0{1/0/0/0/0 0/0/0O0]|0
e 1/0/0/1/0/0/0 0/0/0O0]|0

e 110/0/0/0/00|0/0|0 0 T
e 1/0/0/0/0/0/00/0/0O0]|0

(Note: The e’ part has 12 bits and includes the sign)

» Conclusion

FU(1+2752) #£ 1but: fI(1+2753) ==11l

4-34 GvL 2.7 — FloatSuppl




Special Values

» Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

» Allow for unnormalized numbers,
leading to gradual underflow.

» Exponent field = 11111111111 (largest possible value)
Number represented is ”Inf” ”-Inf” or "NaN”.




Recent trend: GPUs

» Graphics Processor Units: Very fast boards attached to CPUs for heavy-duty
computing

» e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops = 102 operations per
second) for certain types of computations.

» Single precision much faster than double ...

» ... and there is also “half-precision” which is = 16 times faster than standard 64bit
arithmetic

» Used primarily for Deep-learning




