A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank
matrix before attempting to solve the original problem

» Regularization methods require the solution of a least-squares linear system Az = b
approximately in the dominant singular space of A

» The Latent Semantic Indexing (LSI) method in information retrieval, performs the
“query” in the dominant singular space of A

» Methods utilizing Principal Component Analysis, e.g. Face Recognition.
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Commonality: Approximate A (or Af) by a lower rank approximation A, (using
dominant singular space) before solving original problem.

» This approximation captures the main features of the data while getting rid of noise
and redundancy

Note: Common misconception: ‘we need to reduce dimension in order to reduce
computational cost’. In reality: using less information often yields better
results. This is the problem of overfitting.

» Good illustration: Information Retrieval (IR)
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Information Retrieval: Vector Space Model

» Given: a collection of documents (columns of a matrix A) and a query vector gq.

» Collection represented by an m x n term by document matrix with

» Queries (‘pseudo-documents’) g are represented similarly to a column
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Vector Space Model - continued

» Problem: find a column of A that best matches g

» Similarity metric: angle between the column and q - Use cosines:

lc"q
llcll2llqll2

» To rank all documents we need to compute

s =ATq

» s = similarity vector.

» Literal matching — not very effective.
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Use of the SVD

» Many prob

» Need to extract intrinsic information — or underlying “semantic” information —

» Solution (LSI): replace matrix A by a low rank approximation using the Singular

Value Decom

lems with literal matching: polysemy, synonymy, ...

position (SVD)

A=UxVT — Ak = UkEkaT

» U, : term space, V;,: document space.

» Refer to this as Truncated SVD (TSVD) approach
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New similarity vector:

sy = ALq = ViZUl'q

Issues:

» Problem 1: How to select k?

» Problem 2: computational cost (memory + computation)

» Problem 3: updates [e.g. google data changes all the time]

» Not practical for very large sets
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Dimension reduction The problem

Dimensionality Reduction (DR) techniques pervasive to many applications

» Often main goal of dimension reduction is not to reduce computational cost. In- > Given d <'m find a mapping )L

stead: ®:x cR™ — y €R?

» Mapping may be explicit (e.g., y = V'x)

« Dimension reduction used to reduce noise and redundancy in data > Or implicit (nonlinear) /.

» Dimension reduction used to discover patterns (e.g., supervised learning)

» Techniques depend on desirable features or application: Preserve angles? Pre-
serve distances? Maximize variance? ..

Find a low-dimensional representation Y € R¥>"of X &
Rmxn_

Practically:

» Two classes of methods: (1) projection techniques and (2) nonlinear implicit meth-

ods.
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Projection-based Dimensionality Reduction

Given: a data set X = [x1,®2,...,x,], and d the dimension of the desired
reduced space Y.

Want: a linear transformation from X to Y

m x X c Rmxn
m Vv c Rde
o[V Y |a |
n — Y € R¥x»

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)

Problem: Find the best such mapping (optimization) given that the y;’s must satisfy
certain constraints
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Principal Component Analysis (PCA)

» PCA: find V (orthogonal) so that projected data Y = V7TX has maximum
variance

» Maximize over all orthogonal m X d matrices V':

i

2
Z y,—%zy] =...=Tr [VTXXTV]
J 2

Where: X = [Z1,- -+ ,Z,| With & = z; — pu, p = mean.

Solution: | V = { dominant eigenvectors } of covariance matrix

> i.e., Optimal V' = Set of left singular vectors of X associated with d largest singular
values.
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Show that X = X (I — Lee”) (here e = vector of all ones). What does the
projector (I — Lee™) do?

#3 ow that solution V' also minimizes ‘reconstruction error’ ..
[#23] Show that solution V" al inimizes tructi ’
dollzi = vvTz|® =3 |z - Vil
i i

#4] .. and that it also maximizes Y, ; [ly; — v;||?
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Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming
commonality (low rank matrix).

given data predictions
movie | Paul | Jane | Ann | Paul | Jane | Ann
Title-1| —1 3| -1|-1.2, 1.7/-0.7
Title-2 4 X 3| 28| -1.2| 25
Title-3| -3 1] —4|-2.7| 1.0|-25
Title-4| x| -1| -1|-0.5|-0.3/-0.6
Title-5 3| 2| 1| 18/ -14| 14
Title-6| -2 3| x|-1.6| 1.8|-1.2
A X
> Minimize [|(X — A)masll7 + 2l X |l
“minimize sum-of-squares of deviations from known ratings

plus sum of singular values of solution (to reduce the rank).”
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