
CSci 5304, F’23 Solution keys to some exercises from: Set 3

-1 Exact solution of system
2 4 4

1 5 6

1 3 1



x1

x2

x3

 =


6

4

8


Solution: You will find x = [1, 3,−2]T . �

-2 Justify the column version of Back-subsitution algorithm.

Solution: The system Ax = b can be written in column form as

follows:

x1a:,1 + x2a:,2 + · · · + xna:,n = b

In first step we compute xn = bn/an,n. Now move last term in left-

hand side of above system to the right:

x1a:,1 + x2a:,2 + · · · + xn−1a:,n−1 = b− xna:,n ≡ b(1)

This is a new system of n equations that has (n − 1) unknowns and

the right-hand-side b(1). The last equation of this system is of the form

0 = 0 and can therefore be ignored. Thus, we end up wih a system of
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size (n−1)× (n−1) that is still upper triangular and we can repeat

the above argument recursively.

-3 Exact operation count for GE.

Solution:

T =

n−1∑
k=1

n∑
i=k+1

(2(n− k) + 3)

=

n−1∑
k=1

(2(n− k) + 3)(n− k)

= 2

n−1∑
k=1

(n− k)2 + 3

n−1∑
k=1

(n− k)

= 2

n−1∑
j=1

j2 + 3

n−1∑
j=1

j

In the last step we made a change of variables j = n − k. Now

we know that
∑n

k=1 k
2 = n(n + 1)(2n + 1)/6 and

∑n
k=1 k =

n(n+ 1)/2 and so

T = 2
(n− 1)(n)(2n− 1)

6
+ 3 ×

n(n− 1)

2

= ....

= n(n− 1)

(
2n

3
+

7

6

)
(1)

Note in passing the remarkable fact that the above final expression is
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always an integer (it has to be) no matter what (integer) value n takes.

�

-4 Practical use: Show how to use the LU factorization to solve

linear systems with the same matrixA and different b’s.

Solution: If we have the LU factorizationA = LU available then we

can solve the linear systemAx = b by writing it as

L (Ux)︸ ︷︷ ︸
y

= b

So we solve for y: Ly = b then once y is computed we solve for

x: Ux = y. This involves two triangular solves at the cost of n2

each instead of the O(n3) cost of redoing everything with Gaussian

elimination.�

-5 LU factorization of the matrixA =


2 4 4

1 5 6

1 3 1

?

Solution: You will find

L =


1 0 0

1/2 1 0

1/2 1/3 1

 U =


2 4 4

0 3 4

0 0 −7/3

 �
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-6 Determinant ofA?

Solution: It is the determinant of U which is −12.

-7 True or false: “Computing the LU factorization of matrix A in-

volves more arithmetic operations than solving a linear system Ax =

b by Gaussian elimination”.

Solution: The number of arithmetic operations is identical. (The LU

factorization involves additional memory moves to store the factors -

but these are no floating point operations)

-8 Operation count for Gauss-Jordan. Order of the cost? How does

it compare with Gaussian Elimination?

Solution: From the notes:

T =

n−1∑
k=1

n−1∑
i=1

[2(n− k) + 3)] =

n−1∑
k=1

(n− 1)[2(n− k) + 3]

= (n− 1)

n−1∑
j=1

[2j + 3]

= (n− 1) [n(n− 1) + 3(n− 1)]

= (n− 1)2(n+ 3) = (n− 1)3 + 4(n− 1)2

The bottom line is that the cost is ≈ n3 which is 50% more expensive

than GE. This additional cost is not worth it in spite of the simplicity
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of the algorithm. For this Gauss-Jordan is seldom used in practice.

-9 What is the matrix PA when

P =


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


A =


1 2 3 4

5 6 7 8

9 0 −1 2

−3 4 −5 6


?

Solution: Instead of multiplying you just permute the row: row 1 in

new matrix is row 3 of old matrix, row 2 is row 1 of old matrix, etc.

PA =


9 0 −1 2

1 2 3 4

−3 4 −5 6

5 6 7 8



-10 In the previous example where

>> A = [ 1 2 3 4; 5 6 7 8; 9 0 -1 2 ; -3 4 -5 6]

Matlab gives det(A) = −896. What is det(PA)?

Solution: It changes sign so det(PA) = 896. This is because the

permutation π = [3, 1, 4, 2] is made of 3 interchanges.
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-11 Given a banded matrix with upper bandwidth q and lower band-

width p, what is the operation count (leading term only) for solving the

linear system Ax = b with Gaussian elimination without pivoting?

What happens when partial pivoting is used? Give the new operation

count for the worst case scenario.

Solution: [Note: it is assumed that p � n and q � n but p and

q are not related]. The important observation here is that Gaussian

elimination without pivoting for this band matrix will operate on a

rectangle: at step k only rows k+1 to k+p are affected and columns

k + 1 to k + q are affected.
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In this rectangle each entry will be modified at the cost of 2 operations

(*, +). Total: 2pq for each step. So Gaussian elimination without piv-

oting for this band matrix costs approximately 2npq flops. Using band

backward substitution to obtain the solution x costs ≈ 2nq flops.

The total operation count (leading term only): ≈ 2npq + 2nq =

2nq(p+1). Note that when p is small the cost of susbstitution cannot

be ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the

resulting matrix will be p + q. In this case, the total operation count

(leading term only) becomes: ≈ 2np(p+ q)(p+ 1).

Additional notes on the LU factorization The lecture notes

mention an ‘algorithmic’ approach to understanding the LU factor-

ization. Here again is the illustration of the k-th step of Gaussian

Elimination (GE):

piv = a(i,k)/a(k,k) 

row(i):=row(i) − piv*row(k)

For i=k+1:n Do:

Row k

Row i

A

Pivot column

a(k,k)

piv = a(i,k)/a(k,k)
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We will focus on how the i-th row is transformed throughout the algo-

rithm. In words: the ith row undergoes i − 1 transformations (each

indexed by k in the algorithm). After these i − 1 GE steps the row

remains unchanged. Each of these i − 1 transformations - which

corresponds to the steps k = 1, 2, · · · , i− 1, is as follows

ai,: = ai,: − piv ∗ ak,:

We will need to make the following changes to the notation for better

clarity. Once a row say aj,: no longer changes [i.e., when it undergoes

no further transformations] we will call it uj,: - reflecting the fact that

this will end up in the final U matrix of the LU factorization. In

addition we will change ‘piv’ in the above equation into lik which

we recall is equal to aik/akk. Finally, we must also add a superscript

to row i to index the transformation number k. With this, the above

equation becomes

a
(k)
i,: = a

(k−1)
i,: − lik ∗ uk,:

Notice how ak,: has been changed to uk,:. Indeed the pivot row used

for any elimination no longer changes. We will write the above relation

for k = 1, 2, · · · , i − 1. After these i − 1 transformations a(k)
i,: is

no longer changed and becomes the row uk, the kth row of U .
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a
(1)
i,: = ai,: − li1 ∗ u1,:

a
(2)
i,: = a

(1)
i,: − li2 ∗ u2,:

a
(3)
i,: = a

(2)
i,: − li3 ∗ u2,:

· · · = · · · − () ∗ (· · · )

a
(i−2)
i,: = a

(i−3)
i,: − li,i−2 ∗ u2,:

a
(i−1)
i,: = a

(i−2)
i,: − li,i−1 ∗ u2,:

Notice that a(0)
i: is just ai:. If you add all

the equations on the left - things cancel out

- and you will wind up with:

a
(i−1)
i: = ai: −

i−1∑
k=1

likuk:

The row a(i−1)
i: is no longer modified.

Therefore, it should be change to ui:. and so we get:

ui: = ai: −
i−1∑
k=1

likuk: or ai: = ui: +

i−1∑
k=1

likuk:.

Next define the matrix L whose entries lij’s are the same as above for

i > j (lower part), lii = 1 (diagonal), and lij = 0 for j > i (upper

part). The above equation can now be rewritten as

ai: = ui: +

i−1∑
k=1

likuk: =
n∑
k=1

likuk:

This translates exactly the equationA = LU written in row-form. �
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