CSci 5304, F°23  Solution keys to some exercises from: Set 3

#»1| Exact solution of system

(2 4 4\ (wl\ (6\

\t8 1 =) 8

Solution: You will find z = [1,3, —2]T. OJ

#12| Justify the column version of Back-subsitution algorithm.

Solution: The system Ax = b can be written in column form as

follows:

r1a.:1 + L2a. 2 + -+ LnQ:n = b

In first step we compute x,, = b, /ay . Now move last term in left-

hand side of above system to the right:
Tia.1 + x20.2+ -+ Tp_10:. 1 = b —xHa., = b

This is a new system of n equations that has (n — 1) unknowns and
the right-hand-side b(1). The last equation of this system is of the form

0 = 0 and can therefore be ignored. Thus, we end up wih a system of

3-1



size (n — 1) X (n — 1) that is still upper triangular and we can repeat

the above argument recursively.

#3| Exact operation count for GE.

Solution:
n—1 n
T => > (2(n—k)+3)
k=1 i=k+1
n—1
= Y @ —k) +3)(n— k)
k=1
n—1 n—1
=2) (n—k)’+3> (n—k)
k=1 k=1
n—1 n—1
=23 433
j=1 j=1
In the last step we made a change of variables 3 = n — k. Now

we know that Y, _ k> = n(n +1)(2n + 1)/6and Y ,_ k =
n(n 4+ 1)/2 and so

o (1 — 1)(72)(2’” —1) 43w n(nz— 1)

= n(n—1) (2_’"' 4 Z) )

Note in passing the remarkable fact that the above final expression is

T =
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always an integer (it has to be) no matter what (integer) value n takes.

[l

#n4

Practical use: Show how to use the LU factorization to solve

linear systems with the same matrix A and different b’s.

Solution: If we have the LU factorization A = LU available then we

can solve the linear system Ax = b by writing it as

L({U=x) =5
~——
Y
So we solve for y: Ly = b then once y is computed we solve for
x: Ux = y. This involves two triangular solves at the cost of 122

each instead of the O(n?) cost of redoing everything with Gaussian

elimination.[]

#n5

(244\

LU factorization of the matrix A = | 1 5 6 |?

\131)

Solution: You will find

[ 1 00\ (244\

L=1|1/2 1 of U=|03 4 L]
\1/2 1/3 1) \0 0 —7/3)
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Determinant of A?

Solution: It is the determinant of U which is —12.

#o7

True or false: “Computing the LU factorization of matrix A in-

volves more arithmetic operations than solving a linear system Ax =

b by Gaussian elimination”.

Solution: The number of arithmetic operations is identical. (The LU

factorization involves additional memory moves to store the factors -

but these are no floating point operations)

#8

Operation count for Gauss-Jordan. Order of the cost? How does

it compare with Gaussian Elimination?

Solution: From the notes:

T

n—1 n—1

S S 2n— k) £3)] =3 (n—1)[2(n — k) + 3]

k=1 i=1

= (1) Y (2 +3

= (n—1)[n(n—-1)4+ 3(n —1)]

= (n—1?*n+3)=(n-—-1)>+4(n—-1)*

The bottom line is that the cost is & n3 which is 50% more expensive

than GE. This additional cost is not worth it in spite of the simplicity
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of the algorithm. For this Gauss-Jordan is seldom used in practice.

#9 What is the matrix P A when

/0010\ (1 2 3 4)

1000 5 6 7 8

0001 9 0 —1 2
\0100) \—3 4 —5 6

Solution: Instead of multiplying you just permute the row: row 1 in

new matrix 1s row 3 of old matrix, row 2 is row 1 of old matrix, etc.

(9 0—12\

1 2 3 4
PA =

—3 4 —5 6

\5678)

#110| In the previous example where

> A =[12 34, 560678, 9 0-12,; -3 4 -5 0]

Matlab gives det(A) = —896. What is det(P A)?

Solution: It changes sign so det(PA) = 896. This is because the

permutation 7 = [3, 1, 4, 2] is made of 3 interchanges.
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#11| Given a banded matrix with upper bandwidth q and lower band-

width p, what is the operation count (leading term only) for solving the
linear system Ax = b with Gaussian elimination without pivoting?
What happens when partial pivoting is used? Give the new operation

count for the worst case scenario.

Solution: [Note: it is assumed that p << n and g < n but p and
q are not related]. The important observation here is that Gaussian
elimination without pivoting for this band matrix will operate on a
rectangle: at step k only rows k + 1 to k + p are affected and columns
k + 1 to k + q are affected.




In this rectangle each entry will be modified at the cost of 2 operations
(*, +). Total: 2pq for each step. So Gaussian elimination without piv-
oting for this band matrix costs approximately 2npq flops. Using band
backward substitution to obtain the solution & costs = 2nq flops.
The total operation count (leading term only): = 2npq + 2nq =
2nq(p—+1). Note that when p is small the cost of susbstitution cannot

be ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the

resulting matrix will be p 4+ q. In this case, the total operation count

(leading term only) becomes: = 2np(p + q)(p + 1).

Additional notes on the LU factorization The lecture notes
mention an ‘algorithmic’ approach to understanding the LU factor-

ization. Here again is the illustration of the k-th step of Gaussian

Elimination (GE):

Pivot column
¢ a(k,k)
ya

IR Row k
1

piv = a(i,k)/a(k;k) For i=k+1:n Do:

- S - Row i piv = a(i,k)/a(k,k)
A row(i):=row(i) - piv*row(k)
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We will focus on how the 2-th row is transformed throughout the algo-
rithm. In words: the 2th row undergoes ¢ — 1 transformations (each
indexed by k in the algorithm). After these 2 — 1 GE steps the row
remains unchanged. Each of these 2 — 1 transformations - which

corresponds to the steps k = 1,2,--+ ,2 — 1, is as follows

a;.

90

@j; — PLU * Qj,;

We will need to make the following changes to the notation for better
clarity. Once a row say a; . no longer changes [i.e., when it undergoes
no further transformations] we will call it w; . - reflecting the fact that
this will end up in the final U matrix of the LU factorization. In
addition we will change ‘piv’ in the above equation into l;; which
we recall is equal to a;x/agg. Finally, we must also add a superscript
to row 2 to index the transformation number k. With this, the above

equation becomes

ag,k:) = al" ™ — 1, * Uk,

Ty

Notice how ay . has been changed to uy, .. Indeed the pivot row used

for any elimination no longer changes. We will write the above relation
(k)

fork = 1,2,.--,7 — 1. After these ¢ — 1 transformations a; . is

no longer changed and becomes the row g, the kth row of U.
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o — 4 L % u Notice that a,ﬁ.") 1s just a;.. If you add all
i, — i T 71 1 )
(2) 1) _ the equations on the left - things cancel out
a’fi,: — a’z,: — b2 ¥ U,
(3) 2) - and you will wind up with:
a,;. a;.’ — liz * ug,

1—1
c=ee =)k (---) ag?_l)zai;—zlikuk:
k=1

(1—2) _ (i—3) — 10 % Us.

X ’.' The row a,('i_l) 1S NO longer modified.
(i—1) CL(Z_2) _1 " 1:

i, i,: 1,2—1 u27

Therefore, it should be change to u;.. and so we get:

1—1 1—1
Ui = ;. — g lixug. or a;. = u; + E Lirug..

Next define the matrix L whose entries l;;’s are the same as above for
© > j (lower part), I;; = 1 (diagonal), and [;; = 0 for 3 > ¢ (upper

part). The above equation can now be rewritten as

1—1 n
a;. = u;. + E lirug. = E likug.

This translates exactly the equation A = LU written in row-form. []
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