
TRACE OPTIMIZATION AND EIGENPROBLEMS IN DIMENSION

REDUCTION METHODS

E. KOKIOPOULOU∗, J. CHEN† , AND Y. SAAD†

Abstract. This paper gives an overview of the eigenvalue problems encountered in areas of data mining that are related
to dimension reduction. Given some input high-dimensional data, the goal of dimension reduction is to map them to a low-
dimensional space such that certain properties of the initial data are preserved. Optimizing the above properties among the
reduced data can be typically posed as a trace optimization problem that leads to an eigenvalue problem. There is a rich
variety of such problems and the goal of this paper is to unravel relations between them as well as to discuss effective solution
techniques. First, we make a distinction between projective methods that determine an explicit linear projection from the
high-dimensional space to the low-dimensional space, and nonlinear methods where the mapping between the two is nonlinear
and implicit. Then, we show that all of the eigenvalue problems solved in the context of explicit projections can be viewed
as the projected analogues of the so-called nonlinear or implicit projections. We also discuss kernels as a means of unifying
both types of methods and revisit some of the equivalences between methods established in this way. Finally, we provide some
illustrative examples to showcase the behavior and the particular characteristics of the various dimension reduction methods
on real world data sets.

Key words. Linear Dimension Reduction, Nonlinear Dimension Reduction, Principal Component Analysis, Projection
methods, Locally Linear Embedding (LLE), Kernel methods, Locality Preserving Projections (LPP), Laplacean Eigenmaps.

1. Introduction. The term ‘data mining’ refers to a broad discipline which includes such
diverse areas as machine learning, data analysis, information retrieval, pattern recognition,
and web-searching, to list just a few. The widespread use of linear algebra techniques in many
sub-areas of data mining is remarkable. A prototypical area of data mining where numerical
linear algebra techniques play a crucial role is that of dimension reduction which is the
focus of this study. Dimension reduction is ubiquitous in applications ranging from pattern
recognition and learning [50] to the unrelated fields of graph drawing [26, 32], materials
research [13, 11], and magnetism [42]. Given a set of high-dimensional data, the goal of
dimension reduction is to map the data to a low-dimensional space. Specifically, we are
given a data matrix

X = [x1, . . . , xn] ∈ R
m×n, (1.1)

for which we wish to find a low-dimensional analogue

Y = [y1, . . . , yn] ∈ R
d×n, (1.2)

with d ≪ m, which is a faithful representation of X in some sense. As will be seen, many of
the dimension reduction techniques lead to optimization problems which typically involve a
trace. This in turn leads to eigenvalue problems [38].

It may be helpful to define some terms used in data mining. Among the many problems
which arise in data mining, two are of primary importance. One is ‘unsupervised clustering’,
which is the task of finding subsets of the data such that items from the same subset are
most similar and items from distinct subsets are most dissimilar. The second is classification
(supervised learning), whereby we are given a set of distinct sets that are labeled (e.g.
samples of handwritten digits labeled from 0 to 9) and when a new sample is presented to
us we must determine to which of the sets is it most likely to belong. For the example of

∗Seminar for Applied Mathematics, ETH, HG G J49, Rämistrasse 101, 8092 Zürich, Switzerland. Email:
effrosyni.kokiopoulou@sam.math.ethz.ch

†Department of Computer Science and Engineering; University of Minnesota; Minneapolis, MN 55455. Email: (jchen,

saad)@cs.umn.edu. Work supported by NSF under grant DMS-0810938 and by the Minnesota Supercomputer Institute.

1

handwritten digits this is the problem of recognizing a digit given many labeled samples of
already deciphered digits available in a given data set. In order to perform these tasks it is
common to first process the given datasets (e.g. the database of handwritten digits) in order
to reduce its dimension, i.e., to find a dataset of much lower dimension than the original one
but which preserves its main features. What is often misunderstood is that this dimension
reduction is not done for the sole purpose of reducing cost but mainly for reducing the effect
of noise and extracting the main features of the data. For this reason the term “feature
extraction” is sometimes used in the literature instead of dimension reduction.

There have been two types of methods proposed for dimension reduction. The first class
of methods can be termed “projective”. This includes all linear methods whereby the data
matrix is explicitly transformed into a low-dimensional version. Then these projective meth-
ods find an explicit linear transformation to perform the reduction, i.e., they find a m × d
matrix V and express the reduced dimension data as Y = V T X. This class of methods
includes the standard Principal Component Analysis (PCA), the Locality Preserving Pro-
jection (LPP) [22], the Orthogonal Neighborhood Preserving Projections, (ONPP) [24] and
other variants of these. A second class of methods that do not rely on explicit projections
and are inherently nonlinear [27], find directly the low dimensional data matrix Y , by simply
imposing that certain locality or affinity between near-by points be preserved. Furthermore,
both types of dimension reduction methods can be extended to their supervised versions,
where each data point is associated with a class label and the class labels are taken into
account when performing the reduction step.

The goal of this paper is to try to unravel some of the relationships between these
dimension reduction methods, their supervised counterparts and the optimization problems
that they rely upon. The paper will not describe the details of the various applications.
Instead these will be summarized and expressed in simple mathematical terms with the
goal of showing the objective function that is optimized in each case. In addition, two
main observations will be made in this paper. The first is about a distinction between the
projective methods and the nonlinear ones. Specifically, the eigenvalue problem solved in
the linear case consists of applying a projection technique, i.e., a Rayleigh-Ritz projection
method, as it leads to the solution of an eigenvalue problem in the space spanned by the
columns of the data matrix XT . The second is that these two families of methods can be
brought together thanks to the use of kernels. These observations will strengthen a few
similar observations made in a few earlier papers, e.g., [24, 21, 55]. The observation that
kernels can help unify dimension reduction has been made before. Ham et al [21] note
that several of the known standard methods (LLE [34], Isomap [46], Laplacean eigenmaps
[4, 5] can be regarded as some form of Kernel PCA. In [24], it was observed that linear and
nonlinear projection methods are in fact equivalent, in the sense that one can define one
from the other with the help of kernels.

Producing a set Y in the form (1.2) that is an accurate representation of the set X in
(1.1), with d ≪ m, can be achieved in different ways by selecting the type of the reduced
data Y as well as the desirable properties to be preserved. By type we mean whether we
require that Y be simply a low-rank representation of X, or a data set in a vector space with
fewer dimensions. Examples of properties to be preserved may include the global geometry,
neighborhood information such as local neighborhoods [5, 34] and local tangent space [60],
distances between data points [46, 54], or angles formed by adjacent line segments [43]. The

2

mapping from X to Y may be implicit (i.e., not known via an explicit function) or explicit.
Nonlinear (i.e., implicit) methods make no assumptions about the mapping and they only
compute for each xi its corresponding yi in the reduced space. On the other hand, linear
methods compute an explicit linear mapping between the two.

The rest of this paper is organized as follows. Section 2 summarizes a few well-known
results of linear algebra that will be exploited repeatedly in the paper. Then, Sections 3 and 4
provide a brief overview of nonlinear and linear methods respectively for dimension reduction.
Section 5 discusses dimension reduction in supervised settings, where the class labels of the
data are taken into account. Section 6 provides an analysis of relations between the different
methods as well as connections to methods from different areas, such as spectral clustering
and projection techniques for eigenvalue problems. Kernelized versions of different linear
dimension reduction methods are discussed in Section 7, along with various relationships
with their nonlinear counterparts. Finally, Section 8 provides illustrative examples for data
visualization and classification of handwritten digits and faces, and the paper ends with a
conclusion in Section 10.

2. Preliminaries. First, given a symmetric matrix A, of dimension n×n and an arbitrary
unitary matrix V of dimension n × d then the trace of V T AV is maximized when V is an
orthogonal basis of the eigenspace associated with the (algebraically) largest eigenvalues.
In particular, it is achieved for the eigenbasis itself: if eigenvalues are labeled decreasingly
and u1, · · · , ud are eigenvectors associated with the first d eigenvalues λ1, · · · , λd, and U =
[u1, · · · , ud], with UT U = I, then,

max
8

<

:

V ∈ R
n×d

V T V = I

Tr
[
V T AV

]
= Tr

[
UT AU

]
= λ1 + · · · + λd. (2.1)

While this result is seldom explicitly stated on its own in standard textbooks, it is an imme-
diate consequence of the Courant-Fisher characterization, see, e.g., [33, 35]. It is important
to note that the optimal V is far from being unique. In fact, any V which is an orthonormal
basis of the eigenspace associated with the first d eigenvalues will be optimal. In other words,
what matters is the subspace rather than a particular orthonormal basis for it.

The main point is that to maximize the trace in (2.1), one needs to solve a standard
eigenvalue problem. In many instances, we need to maximize Tr [V T AV] subject to a new
normalization constraint for V , one that requires that V be B-orthogonal, i.e., V T BV =
I. Assuming that A is symmetric and B positive definite, we know that there are n real
eigenvalues for the generalized problem Au = λBu, with B-orthogonal eigenvectors. If
these eigenvalues are labeled decreasingly, and if U = [u1, · · · , ud] is the set of eigenvectors
associated with the first d eigenvalues, with UT BU = I, then we have

max
8

<

:

V ∈ R
n×d

V T BV = I

Tr
[
V T AV

]
= Tr

[
UT AU

]
= λ1 + · · · + λd. (2.2)

In reality, Problem (2.2) often arises as a simplification of an objective function that is
3

more difficult to maximize, namely:

max
8

<

:

V ∈ R
n×d

V T CV = I

Tr
[
V T AV

]

Tr [V T BV]
. (2.3)

Here B and C are assumed to be symmetric and positive definite for simplicity. The matrix
C defines the desired orthogonality and in the simplest case it is just the identity matrix. The
original version shown above has resurfaced in recent years, see, e.g., [19, 49, 56, 59] among
others. Though we will not give the above problem as much attention as the more standard
problem (2.2), it is important to give an idea on the way it is commonly solved. There is
no loss of generality in assuming that C is the identity. Since B is assumed to be positive
definite1, it is not difficult to see that there is a maximum µ that is reached for a certain (non-
unique) orthogonal matrix, which we will denote by U . Then, Tr [V T AV]−µ Tr [V T BV] ≤ 0
for any orthogonal V . This means that for this µ we have Tr [V T (A − µB)V] ≤ 0 for any
orthogonal V , and also Tr [UT (A − µB)U] = 0. Therefore we have the following necessary
condition for the pair µ, U to be optimal:

max
V T V =I

Tr [V T (A − µB)V] = Tr [UT (A − µB)U] = 0. (2.4)

According to (2.1), the maximum trace of V T (A − µB)V is simply the sum of the largest d
eigenvalues of A − µB and U is the set of corresponding eigenvectors. If µ maximizes the
trace ratio (2.3) (with C = I), then the sum of the largest d eigenvalues of the pencil A−µB
equals zero, and the corresponding eigenvectors form the desired optimal solution of (2.3).

When B is positive definite, it can be seen that the function

f(θ) = max
V T V =I

Tr [V T (A − θB)V]

is a decreasing function of θ. For θ = 0 we have f(θ) > 0. For θ > λmax(A,B) we
have f(θ) < 0, where λmax(A,B) is the largest generalized eigenvalue of the pencil (A,B).
Finding the optimal solution will involve a search for the (unique) root of f(θ). In [49] and
[19] algorithms were proposed to solve (2.3) by computing this root and by exploiting the
above relations. No matter what method is used it appears clear that it will be far more
expensive to solve (2.3) than (2.2), because the search for the root µ will typically involve
solving several eigenvalue problems instead of just one.

3. Nonlinear dimension reduction. We start with an overview of nonlinear methods. In
what follows, we discuss LLE and Laplacean Eigenmaps, which are the most representative
nonlinear methods for dimensionality reduction. These methods begin with the construction
of a weighted graph which captures some information on the local neighborhood structure
of the data. In the sequel, we refer to this graph as the “affinity graph”. Specifically, the
affinity (or adjacency) graph is a graph G = (V , E) whose nodes V are the data samples. The
edges of this graph can be defined for example by taking a certain nearness measure and
including all points within a radius ǫ of a given node, to its adjacency list. Alternatively,

1We can relax the assumptions: B can be positive semidefinite, but for the problem to be well-posed its null space must be
of dimension less than d. Also if A is positive semidefinite, we must assume that Null(A) ∩ Null(B) = ∅.

4

one can include those k nodes that are the nearest neighbors to xi. In the latter case it is
called the k-NN graph. It is typical to assign weights wij on the edges eij ∈ E of the affinity
graph. The affinity graph along with these weights then defines a matrix W whose entries
are the weights wij’s that are nonzero only for adjacent nodes in the graph.

3.1. LLE. In Locally Linear Embedding (LLE), the construction of the affinity graph is
based on the assumption that the points lie on some high-dimensional manifold, so each
point is approximately expressed as a linear combination of a few neighbors, see [34, 37].
Thus, the affinity matrix is built by computing optimal weights which will relate a given
point to its neighbors in some locally optimal way. The reconstruction error for sample i can
be measured by

∥
∥
∥
∥
∥
xi −

∑

j

wijxj

∥
∥
∥
∥
∥

2

2

. (3.1)

The weights wij represent the linear coefficients for (approximately) reconstructing the sam-
ple xi from its neighbors {xj}, with wij = 0, if xj is not one of the k nearest neighbors of xi.
We can set wii ≡ 0, for all i. The coefficients are scaled so that their sum is unity, i.e.,

∑

j

wij = 1. (3.2)

Determining the wij’s for a given point xi is a local calculation, in the sense that it only
involves xi and its nearest neighbors. As a result computing the weights will be fairly
inexpensive; an explicit solution can be extracted by solving a small linear system which
involves a ‘local’ Grammian matrix, for details see [34, 37]. After this phase is completed
we have available a matrix W which is such that each column xi of the data set is well
represented by the linear combination

∑

j wijxj. In other words, X ≈ XW T , i.e., XT is a
set of approximate left null vectors of I − W .

The procedure then seeks d-dimensional vectors yi, i = 1, . . . , n so that the same relation
is satisfied between the matrix W and the yi’s. This is achieved by minimizing the objective
function

FLLE(Y) =
∑

i

‖yi −
∑

j

wijyj‖
2
2. (3.3)

LLE imposes two constraints to this optimization problem: i) the mapped coordinates must
be centered at the origin and ii) the embedded vectors must have unit covariance:

∑

i

yi = 0; and
1

n

∑

i

yiy
T
i = I . (3.4)

The objective function (3.3) is minimized with these constraints on Y .
We can rewrite (3.3) as a trace by noting that FLLE(Y) = ‖Y − Y W T‖2

F , and this leads
to:

FLLE(Y) = Tr
[
Y (I − W T)(I − W)Y T

]
. (3.5)

5

Therefore the new optimization problem to solve is2

min
8

<

:

Y ∈ R
d×n

Y Y T = I

Tr
[
Y (I − W T)(I − W)Y T

]
. (3.6)

The solution of the problem is obtained from the set of eigenvectors associated with the d
smallest eigenvalues of M ≡ (I − W T)(I − W):

(I − W T)(I − W)ui = λiui; Y = [u2, · · · , ud+1]
T . (3.7)

Note that the eigenvector associated with the eigenvalue zero is discarded and that the
matrix Y is simply the set of bottom eigenvectors of (I − W T)(I − W) associated with the
2nd to (d + 1)-th eigenvalues. We will often refer to the matrix M = (I − W T)(I − W) as
the LLE matrix.

3.2. Laplacean Eigenmaps. The Laplacean Eigenmaps technique is rather similar to LLE.
It uses different weights to represent locality and a slightly different objective function. Two
common choices are weights of the heat kernel wij = exp(−‖xi −xj‖

2
2/t) or constant weights

(wij = 1 if i and j are adjacent, wij = 0 otherwise). It is important to note that the choice
of the parameter t is crucial to the performance of this method. The name heat ‘kernel’ is
self explaining, since the matrix [wij] happens to be positive semi-definite.

Once this graph is available, a Laplacean matrix of the graph is constructed, by setting
a diagonal matrix D with diagonal entries dii =

∑

j wij. The matrix

L ≡ D − W

is the Laplacean of the weighted graph defined above. Note that the row-sums of the matrix
L are zero by the definition of D, so L1 = 0, and therefore L is singular. The problem in
Laplacean Eigenmaps is then to minimize

FEM(Y) =
n∑

i,j=1

wij‖yi − yj‖
2
2 (3.8)

subject to an orthogonality constraint that uses the matrix D for scaling:

Y DY T = I .

The rationale for this approach is to put a penalty for mapping nearest neighbor nodes in the
original graph to distant points in the low-dimensional data.

Compare (3.8) and (3.3). The difference between the two is subtle and one might ask if
(3.8) can also be converted into a trace optimization problem similar to (3.6). As it turns
out FEM can be written as a trace that will put the method quite close to LLE in spirit:

FEM(Y) = 2Tr [Y (D − W)Y T]. (3.9)

Therefore the new optimization problem to solve is

min
8

<

:

Y ∈ R
d×n

Y D Y T = I

Tr
[
Y (D − W)Y T

]
. (3.10)

2The final yi’s are obtained by translating and scaling each column of Y .

6

The solution Y to this optimization problem can be obtained from the eigenvectors associated
with the d smallest eigenvalues of the generalized eigenvalue problem

(D − W)ui = λiDui ; Y = [u2, · · · , ud+1]
T . (3.11)

One can also solve a standard eigenvalue problem by making a small change of variables
and this is useful to better see links with other methods. Indeed, it would be useful to
standardize the constraint Y DY T so that the diagonal scaling does not appear. For this we
set Ŷ = Y D1/2 and Ŵ = D−1/2WD−1/2, and this simplifies (3.10) into:

min
8

<

:

Ŷ ∈ R
d×n

Ŷ Ŷ T = I

Tr
[

Ŷ (I − Ŵ)Ŷ T
]

. (3.12)

In this case, (3.11) yields:

(I − Ŵ)ûi = λiûi ; Y = [û2, · · · , ûd+1]
T D1/2 . (3.13)

The quantity L̂ = I − Ŵ = D−1/2LD−1/2 is called the normalized Laplacean.

4. Linear dimension reduction. The methods in the previous section do not provide an ex-
plicit function that maps a vector x into its low-dimensional representation y in d-dimensional
space. This mapping is only known for each of the vectors xi of the data set X. For each xi

we know how to associate a low-dimensional item yi. In some applications it is important
to be able to find the mapping y for an arbitrary, ‘out-of-sample’ vector x. The methods
discussed in this section have been developed in part to address this issue. They are based
on using an explicit (linear) mapping defined by a matrix V ∈ R

m×d. These projective
techniques replace the original data X by a matrix of the form

Y = V T X, where V ∈ R
m×d. (4.1)

Once the matrix V has been learned, each vector xi can be projected to the reduced space
by simply computing yi = V T xi. If V is a unitary matrix, then Y represents the orthogonal
projection of X into the V -space.

4.1. PCA. The best known technique in this category is Principal Component Analysis
(PCA). PCA computes an orthonormal matrix V such that the variance of the projected
vectors is maximized, i.e, V is the maximizer of

max
V ∈ R

m×d

V T V = I

n∑

i=1

∥
∥
∥
∥
∥
yi −

1

n

n∑

j=1

yj

∥
∥
∥
∥
∥

2

2

, yi = V T xi. (4.2)

Recalling that 1 denotes the vector of all ones, the objective function in (4.2) becomes

FPCA(Y) =
n∑

i=1

∥
∥
∥
∥
∥
yi −

1

n

n∑

j=1

yj

∥
∥
∥
∥
∥

2

2

= Tr

[

V T X(I −
1

n
11

T)XT V

]

.

7

In the end, the above optimization can be restated as

max
8

<

:

V ∈ R
m×d

V T V = I

Tr

[

V T X(I −
1

n
11

T)XT V

]

. (4.3)

In the sequel we will denote by X̄ the matrix X(I − 1
n
11

T) which is simply the matrix with
centered data, i.e., each column is x̄i = xi −µ where µ is the mean of X, µ =

∑
xi/n. Since

the matrix in (4.3) can be written V T X̄X̄T V , so (4.3) becomes

max
8

<

:

V ∈ R
m×d

V T V = I

Tr
[
V T X̄X̄T V

]
. (4.4)

The orthogonal matrix V which maximizes the trace in (4.4) is simply the set of left singular
vectors of X̄, associated with the largest d singular values,

[X̄X̄]T vi = λivi. (4.5)

The matrix V = [v1, · · · , vd] is used for projecting the data, so Y = V T X̄. If X̄ = UΣZT is
the SVD of X̄, the solution to the above optimization problem is V = Ud, the matrix of the
first d left singular vectors of X, so, denoting by Σd the top left d× d block of Σ, and Zd the
matrix of the first d columns of Z, we obtain

Y = UT
d X̄ = ΣdZ

T
d . (4.6)

As it turns out, maximizing the variance on the projected space is equivalent to mini-
mizing the projection error

‖X̄ − V V T X̄‖2
F = ‖X̄ − V Y ‖2

F .

This is because a little calculation will show that

‖X̄ − V Y ‖2
F = Tr [(X̄ − V Y)T (X̄ − V Y)] = Tr [X̄T X̄] − Tr [V T X̄X̄T V].

The matrix V V T is an orthogonal projector onto the span of V . The points V yi ∈ R
m are

sometimes referred to as reconstructed points. PCA minimizes the sum of the squares of the
distance between any point in the data set and its reconstruction, i.e., its projection.

4.2. MDS and ISOMAP3. In metric Multi-Dimensional Scaling (metric MDS) the prob-
lem posed is to project data in such a way that distances ‖yi−yj‖2 between projected points
are closest to the original distances ‖xi − xj‖2. Instead of solving the problem in this form,
MDS uses a criterion based on inner products.

It is now assumed that the data is centered at zero so we replace X by X̄. An important
result used is that one can recover distances from inner products and vice-versa. The matrix
of inner products, i.e., the Grammian of X̄, defined by

G = [〈x̄i, x̄j〉]i,j=1,··· ,n (4.7)

3These methods are essentially not linear methods; however, they are very closely related to PCA and better be presented
in this section.

8

determines completely the distances, since ‖x̄i − x̄j‖
2 = gii + gjj − 2gij. The reverse can also

be done, i.e., one can determine the inner products from distances by ‘inverting’ the above
relations. Indeed, under the assumption that the data is centered at zero, it can be shown
that [47]

gij =
1

2

[

1

n

∑

k

(sik + sjk) − sij −
1

n2

∑

k,l

skl

]

,

where sij = ‖x̄i − x̄j‖
2. In the matrix form, it is

G = −
1

2
[I −

1

n
11

T]S[I −
1

n
11

T] ; S = [sij]i,j=1,...,n.

As a result of the above equality, in order to find a d-dimensional projection which preserves
inter-distances as best possible, we need to find a d× n matrix Y whose Grammian Y T Y is
close to G, the Grammian of X, i.e., we need to find the solution of

min
Y ∈ Rd×n

‖G − Y T Y ‖2
F . (4.8)

Let G = ZΛZT be the eigenvalue decomposition of G, where it is assumed that the eigen-

values are labeled from largest to smallest. Then the solution to (4.8) is Y = Λ
1/2
d ZT

d where
Zd consists of the first d columns of Z, Λd is the d× d upper left block of Λ. Note that with
respect to the SVD of X̄ this is equal to ΣdZ

T
d , which is identical with the result obtained

with PCA, see equation (4.6). So metric MDS gives the same exact result as PCA. However
it arrives at this result using a different path. PCA uses the covariance matrix, while MDS
uses the Gram matrix. From a computational cost point of view, there is no real difference if
the calculation is based on the SVD of X̄. We should note that the solution to (4.8) is unique

only up to unitary transformations. This is because a transformation such as Ŷ = QY of Y ,
where Q is unitary, will not change distances between y-points.

Finally, we mention in passing that the technique of ISOMAP [46] essentially performs
the same steps as MDS, except that the Grammian G = X̄T X̄ is replaced by a pseudo-
Grammian Ĝ obtained from geodesic distances between the points xi:

Ĝ = −
1

2
[I −

1

n
11

T]Ŝ[I −
1

n
11

T] ; Ŝ = [ŝij]i,j=1,...,n,

where ŝij is the squared shortest graph distance between xi and xj.

4.3. LPP. The Locality Preserving Projections (LPP) [22] is a graph-based projective
technique. It projects the data so as to preserve a certain affinity graph constructed from
the data. LPP defines the projected points in the form yi = V T xi by putting a penalty
for mapping nearest neighbor nodes in the original graph to distant points in the projected
data. Therefore, the objective function to be minimized is identical with that of Laplacean
Eigenmaps,

FLPP (Y) =
n∑

i,j=1

wij‖yi − yj‖
2
2 .

9

The matrix V , which is the actual unknown, is implicitly represented in the above function,
through the dependence of the yi’s on V . Writing Y = V T X, we reach the optimization
problem,

min
8

<

:

V ∈ R
m×d

V T (XDXT) V = I

Tr
[
V T X(D − W)XT V

]
(4.9)

whose solution can be computed from the generalized eigenvalue problem

X(D − W)XT vi = λiXDXT vi. (4.10)

Similarly to Eigenmaps, the smallest d eigenvalues and eigenvectors must be computed.
It is simpler to deal with the ‘normalized’ case of LPP, by scaling the set Y as before in

the case of Laplacean Eigenmaps (see eq. (3.12)). We define Ŷ = Y D1/2 = V T XD1/2. So, if

X̂ = XD1/2, we have Ŷ = V T X̂, and the above problem then becomes

min
8

<

:

V ∈ R
m×d

V T (X̂X̂T) V = I

Tr
[

V T X̂(I − Ŵ)X̂T V
]

(4.11)

where Ŵ is the same matrix as in (3.12). The eigenvalue problem to solve is now

X̂(I − Ŵ)X̂T vi = λiX̂X̂T vi. (4.12)

The projected data yi is defined by yi = V T xi for each i, where V = [v1, · · · , vd].

4.4. ONPP. Orthogonal Neighborhood Preserving Projection (ONPP) [24, 25] seeks an
orthogonal mapping of a given data set so as to best preserve the same affinity graph as
LLE. In other words, ONPP is an orthogonal projection version of LLE. The projection
matrix V in ONPP is determined by minimizing the same objective function as in (3.5),
with the additional constraint that Y is of the form Y = V T X and the columns of V be
orthonormal, i.e. V T V = I. The optimization problem becomes

min
8

<

:

V ∈ R
m×d

V T V = I

Tr
[
V T X(I − W T)(I − W)XT V

]
. (4.13)

Its solution is the basis of the eigenvectors associated with the d smallest eigenvalues of the
matrix M̃ ≡ X(I − W T)(I − W)XT = XMXT .

X(I − W T)(I − W)XT ui = λui. (4.14)

Then the projector V is [u1, u2, · · · , ud] and results in the projected data Y = V T X.
The assumptions that were made when defining the weights wij in Section 3.1 imply that

the n× n matrix I −W is singular due to eq. (3.2). In the case when m > n the matrix M̃ ,
which is of size m × m, is at most of rank n and it is therefore singular. In the case when
m ≤ n, M̃ is not necessarily singular but it is observed in practice that ignoring the smallest
eigenvalue is helpful [25].

10

4.5. Other variations on the locality preserving theme. A few possible variations of the
methods discussed above can be developed. As was seen ONPP is one such variation which
adapts the LLE affinity graph and seeks a projected data which preserves this graph just as
in LLE. Another very simple option is to solve the same optimization problem as ONPP but
require the same orthogonality of the projected data as LLE, namely: Y Y T = I. This yields
the constraint V T XXT V = I instead of the V T V = I required in ONPP. In [24] we called
this Neighborhood Preserving Projections (NPP). The resulting new optimization problem is
the following modification of (4.13)

min
8

<

:

V ∈ R
m×d

V T XXT V = I

Tr
[
V T X(I − W T)(I − W)XT V

]
. (4.15)

and the new solution is

X(I − W T)(I − W)XT ui = λ(XXT)ui. (4.16)

As before, V = [u1, · · · , ud] and yi = V T xi, i = 1, · · · , n.
Another variation goes in the other direction by using the objective function of LPP

(using graph Laplaceans) and requiring the data to be orthogonally projected:

min
8

<

:

V ∈ R
m×d

V T V = I

Tr
[
V T X(D − W)XT V

]
. (4.17)

This was referred to as Orthogonal Locality Preserving Projections (OLPP), in [24]. Note in
passing that a different technique was developed in [10] and named Orthogonal Laplacean
faces, which is also sometimes referred to as OLPP. We will not refer to this method in this
paper and there is therefore no confusion.

5. Supervised dimension reduction. The problem of classification can be described as
follows. We are given a data set consisting of c known subsets (classes or clusters) which are
labeled from 1 to c. When a new item is presented to us, we need to determine to which of
the classes (clusters) it is the most related in some sense. When the class labels of the data
set are taken into account during dimension reduction, the process is called supervised (and
unsupervised in the opposite case). It has been observed in general that supervised methods
perform better in many classification tasks relative to the unsupervised ones. In what follows,
we first describe supervised versions of the above graph-based methods and then we discuss
Linear Discriminant Analysis (LDA), which is one of the most popular supervised techniques
for linear dimension reduction.

5.1. Supervised graph-based methods. As discussed so far, the above methods do not
make use of class labels. It is possible to develop supervised versions of the above methods
by taking the class labels into account. Assume that we have c classes and that the data
are organized, without loss of generality, as X1, · · · , Xc with Xi ∈ R

m×ni , where ni denotes
the number of samples that belong to the ith class. In other words, assume that the data
samples are ordered according to their class membership.

In supervised methods the class labels are used to build the graph. The main idea is to
build the graph in a discriminant way in order to reflect the categorization of the data into

11

different classes. One simple approach is to impose that an edge eij = (xi, xj) exists if and
only if xi and xj belong to the same class. In other words, we make adjacent those nodes
that belong to the same class. For instance, preserving localities in such a supervised graph,
will result in samples from the same class being projected close-by in the reduced space.

Consider now the structure of the induced adjacency matrix H. Observe that the data
graph G consists of c cliques, since the adjacency relationship between two nodes reflects
their class membership. Let 1nj

denote the vector of all ones, with length nj, and Hj =
1
nj

1nj
1

T
nj

∈ R
nj×nj be the block corresponding to the jth class. The n× n adjacency matrix

H will be of the following form

H = diag[H1, H2, · · · , Hc]. (5.1)

Thus, the (1,1) diagonal block is of size n1 × n1 and has the constant entries 1/n1, the (2,2)
diagonal block is of size n2×n2 and has the constant entries 1/n2, and so on. Using the above
supervised graph in the graph-based dimension reduction methods yields their supervised
versions.

5.2. LDA. The principle used in Linear Discriminant Analysis (LDA) is to project
the original data linearly in such a way that the low-dimensional data is best separated.
Fisher’s Linear Discriminant Analysis, see, e.g., Webb [50], seeks to project the data in low-
dimensional space so as to maximize the ratio of the “between scatter” measure over “within
scatter” measure of the classes, which are defined next. Let µ be the mean of all the data
set, and µ(k) be the mean of the k-th class, which is of size nk, and define the two matrices

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T , (5.2)

SW =
c∑

k=1

∑

xi ∈Xk

(xi − µ(k))(xi − µ(k))T . (5.3)

If we project the set on a one-dimensional space spanned by a given vector a, then the
quantity

aT SBa =
c∑

i=1

nk|a
T (µ(k) − µ)|2

represents a weighted sum of (squared) distances of the projection of the centroids of each
set from the mean µ. At the same time, the quantity

aT SW a =
c∑

k=1

∑

xi ∈ Xk

|aT (xi − µ(k))|2

is the sum of the variances of each the projected sets.
LDA projects the data so as to maximize the ratio of these two numbers:

max
a

aT SBa

aT SW a
. (5.4)

12

This optimal a is known to be the eigenvector associated with the largest eigenvalue of the
pair (SB, SW). If we call ST the total covariance matrix

ST =
∑

xi ∈ X

(xi − µ)(xi − µ)T , (5.5)

then,

ST = SW + SB. (5.6)

Therefore, (5.4) is equivalent to

max
a

aT SBa

aT ST a
, (5.7)

or

min
a

aT SW a

aT ST a
, (5.8)

where an optimal a is known to be the eigenvector associated with the largest eigenvalue of
the pair (SB, ST), or the smallest eigenvalue of the pair (SW , ST).

The above one-dimensional projection is generalized to ones on d-dimensional spaces, i.e.,
modify the objective function such that the vector a is replaced by a matrix V . A traditional
way is to minimize the trace of V T SBV while requiring the columns of the solution matrix
V to be SW -orthogonal, i.e., imposing the condition V T SW V = I. The optimum is achieved
for the set of eigenvectors of the generalized eigenvalue problem

SBui = λiSW ui ,

associated with the largest d eigenvalues. Incidentally, the above problem can also be for-
mulated as a generalized singular value problem (see e.g., [23]). Another approach [49] casts
the problem as minimizing the ratio of the two traces:

max
8

<

:

V ∈ R
n×d

V T V = I

Tr
[
V T SBV

]

Tr [V T SW V]
.

Approaches for solving this problem were briefly discussed in Section 2.
Note that with simple algebraic manipulations, the matrices SB, SW and ST can be

expressed in terms of the data matrix X̄:

SB = X̄HX̄T ,

SW = X̄(I − H)X̄T ,

ST = X̄X̄T .

The matrix SB has rank at most c because each of the blocks in H has rank one and therefore
the matrix H itself has rank c. Because the matrix I − H is an orthogonal projector, its
range is the null-space of H which has dimension n − c. Thus, I − H which plays the role
of a Laplacean, has rank at most n − c. The corresponding eigenvalue problem to solve for
(5.8) is

X̄(I − H)X̄T ui = λi(X̄X̄T)ui (5.9)

13

6. Connections between dimension reduction methods. This section establishes connec-
tions between the various methods discussed in previous sections.

6.1. Relation between the LLE matrix and the Laplacan matrix. A comparison between
(3.6) and (3.12) shows that the two are quite similar. The only difference is in the matrix

inside the bracketed term. In one case it is of the form Y (I − Ŵ)Y T where I − Ŵ is the
normalized graph Laplacean, and in the other it is of the form Y (I −W T)(I −W)Y T where
W is an affinity matrix. Can one just interpret the LLE matrix (I − W T)(I − W) as a
Laplacean matrix? A Laplacean matrix L associated with a graph is a a symmetric matrix
whose off-diagonal entries are non-positive, and whose row-sums are zero (or equivalently,
the diagonal entries are the negative sums of the off-diagonal entries). In other words, lij ≤ 0
for i 6= 0, lii = −

∑

j lij. The LLE matrix M = (I−W)T (I−W) satisfies the second property

(zero row sum) but not the first (nonpositive off-diagonals) in general.
Proposition 6.1. The symmetric matrix M = (I − W)T (I − W) has zero row (and

column) sums. In addition, denoting by w:j the j-th column of W ,

mjj = 1 + ‖w:j‖
2 ; mij = −(wij + wji) + 〈w:j, w:i〉, i 6= j . (6.1)

Proof. Since (I − W) has row sums equal to zero, then (I − W)1 = 0 and therefore
M1 = (I − W T)(I − W)1 = 0, which shows that the row sums of M are zero. Since M is
symmetric, its column-sums are also zero. Since M = I −W −W T + W TW , a generic entry
mij = eT

i Mej of M is given by,

mij = eT
i ej − eT

i Wej − eT
i W T ej + eT

i W T Wej

= δij − (wij + wji) + 〈w:i, w:j〉

from which the relations (6.1) follow immediately after recalling that wii = 0.
Expression (6.1) shows that the off-diagonal entries of M can be positive, i.e., it is not

true that mij ≤ 0 for all i 6= j. In the particular situation when wij = wji = 0 and i 6= j, then
mij = 〈w:i, w:j〉 and (6.1) implies that mij ≥ 0. When wij and wji are not both equal to zero
but they are both small, then by the same argument it is likely that mij will be non-negative.
It can be observed with randomly generated sparse matrices that in general there are few
other instances of positive off-diagonal entries, i.e., in most cases, mij is positive only when
wij + wji is zero or small. For example, for the matrix

W =

0 0.4 0.6 0
0.1 0 0.3 0.6
0.2 0.4 0 0.4
0 0.5 0.5 0

one finds that all off-diagonal entries of (I − W T)(I − W) are negative except the entries
(1,4) and (by symmetry) (4,1) whose value, the inner product of columns 1 and 4, equals
0.14.

Among other similarities between the LLE matrix and the graph Laplacean, is the fact
that both matrices are symmetric positive semidefinite and that they are both related to the
local structure of the data since they relate nearby points by a relation.

14

Since any matrix M = (I−W T)(I−W) cannot be a graph Laplacean matrix, one can ask

the reverse question: Given a normalized Laplacean matrix which we write as L̂ = I − Ŵ , is
it possible to find a matrix W such that the matrix M equals L̂? One easy answer is obtained

by restricting W to being symmetric. In this case, W = I−
√

I − Ŵ , which is dense and not
necessarily positive. There is one important situation where the Graph Laplacean is easily
written as an LLE matrix and that is when I − W is a projector. One specific situation of
interest is when L = I − 1

n
11

T , which is the projector used by PCA, see (4.3). In this case

(I−W T)(I−W) = I−Ŵ which means that the two methods will yield the same result. Yet
another situation of the same type in which L is a projector, arises in supervised learning,
which brings us to the next connection.

6.2. Connection between LDA, supervised NPP and supervised LPP. Notice that in the
supervised setting discussed in Section 5.1 the block diagonal adjacency matrix H (see eq.
(5.1)) is a projector. To see why this is true define the characteristic vector gk for class k as
the vector of R

n whose ith entry is one if xi belongs to class k and zero otherwise. Then, H
can be alternatively written as

H =
c∑

k=1

gkg
T
k

nk

,

which shows that H is a projector. Now take W = Ŵ = H and observe that (I − W T)(I −

W) = I −W = I − Ŵ = I −H in this case. Next, compare (5.9), (4.12) and (4.16) and note
that they are identical.

Proposition 6.2. LDA, supervised LPP and supervised NPP are mathematically equiv-
alent when W = Ŵ = H.

6.3. Connection between PCA and LPP. Next we will make other important connec-
tions between PCA and LPP. One of these connections was observed in [22], see also [24].
Essentially, by defining the Laplacean graph to be a dense graph, specifically by defining
L = I − 1

n
11

T , one can easily see that the matrix XLXT is a scaled covariance matrix
and thus ignoring the constraint in LPP, one would get the projection on the lowest modes
instead of the highest ones as in PCA.

Another connection is now considered. Compare the two eigen-problems (4.5) and (4.12)
and notice that for PCA we seek the largest eigenvalues whereas for LPP we seek the smallest
ones. If we are able to select Ŵ in (4.12) so that X̂(I − Ŵ)X̂T = I then we would recover
the result of PCA (apart from the diagonal scaling with D). We can restrict the choice
by assuming D = I and assume that the data is centered, so X1 = 0. Then, it is easy
to select such a matrix Ŵ in the common situation where m < n and X is of full rank.
It is the matrix Ŵ = I − XT (XXT)−2X. With this, the LPP problem (4.12) becomes
vi = λi(XXT)vi and we are computing the smallest λi and associated vi’s, which correspond

to the largest eigenpairs of the covariance matrix. Note also that I − Ŵ = SST where
S = X† is the pseudo-inverse of X. We will revisit this viewpoint when we discuss kernels
in Section 7.

Proposition 6.3. When X is m × n with m < n and full rank, LPP with the graph
Laplacean replaced by the matrix I − Ŵ = XT (XXT)−2X is mathematically equivalent to
PCA.

15

6.4. Connection to projection methods for eigenvalue problems. Comparing the eigenvalue
problems (4.12) and (4.16) will reveal an interesting connection with projection methods
for eigenvalue problems. Readers familiar with projection methods will recognize in these
problems, a projection-type technique for eigenvalue problems, using the space spanned by
XT . Recall that a projection method for computing approximate eigenpairs of a matrix
eigenvalue problem of the form

Au = λu

utilizes a certain subspace K from which the eigenvectors are extracted. Specifically, the
conditions are as follows, where the tildes denote the approximation: Find ũ ∈ K and
λ̃ ∈ C such that

Aũ − λ̃ũ ⊥ K . (6.2)

This is referred to as an orthogonal projection method. Stating that ũ ∈ K gives k degrees
of freedom if dim(K) = k, and condition (6.2) imposes k independent constraints. If V is a
basis of the subspace K, then the above conditions become ũ = V y, for a certain y ∈ R

k,
and (6.2) leads to

V T (A − λ̃I)V y = 0 or V T AV y = λ̃V T V y.

LLE is mathematically equivalent to computing the lowest eigenspace of the LLE matrix
M = (I − W T)(I − W). Eigenmaps seeks the lowest eigenspace of the matrix I − Ŵ .

Proposition 6.4. LPP is mathematically equivalent to a projection method on Span {XT}

applied to the normalized Laplacean matrix L̂ = I−Ŵ , i.e., it is a projected version of eigen-
maps. It will yield the exact same result as eigenmaps when Span {XT} is invariant under

L̂. NPP is mathematically equivalent to a projection method on Span {XT} applied to the
matrix (I − W T)(I − W), i.e., it is a projected version of LLE. It will yield the exact same
results as LLE when Span {XT} is invariant under (I − W T)(I − W).

One particular case when the two methods will be mathematically equivalent is in the
special situation of undersampling, i.e., when m ≥ n and the rank of X is equal to n. In this
case XT is of rank n and therefore the subspace Span {XT} is trivially invariant under L̂.

Corollary 6.5. When the column rank of X is equal to n (undersampled case) LPP
is mathematically equivalent to Eigenmaps and NPP is mathematically equivalent to LLE.

6.5. Connection to spectral clustering/partitioning. It is important to comment on a few
relationships with the methods used for spectral clustering (graph partitioning) [45, 31, 14,
28]. Given a weighted undirected graph G = (V , E), a k-way partitioning amounts to finding
k disjoint subsets V1, V2, . . . , Vk of the vertex set V , so that the total weights of the edges that
cross different partitions are minimized, while the sizes of the subsets are roughly balanced.
Formally, a k-way clustering is to minimize the following cost function:

F(V1, . . . ,Vk) =
k∑

ℓ=1

∑

i∈Vℓ,j∈V
c
ℓ
wij

∑

i∈Vℓ
di

, (6.3)

where di =
∑

j∈V wij is the degree of a vertex i. For each term in the summation of this

objective function, the numerator
∑

i∈Vℓ,j∈V
c
ℓ
wij is the sum of the weights of edges crossing

16

the partition Vℓ and its complement Vc
ℓ , while the denominator

∑

i∈Vℓ
di is the “size” of the

partition Vℓ.
If we define an n × k matrix Z, whose ℓ-th column is a cluster indicator of the partition

Vℓ, i.e.,

Z(j, ℓ) =

{

1/
√∑

i∈Vℓ
di if j ∈ Vℓ

0 otherwise,
(6.4)

then the cost function is exactly the trace of the matrix ZT LZ:

F(V1, . . . ,Vk) = Tr (ZT LZ),

with Z satisfying

ZT DZ = I,

where L (the graph Laplacean) and D are defined as before. Therefore, the clustering
problem stated above can be formulated as that of finding a matrix Z in the form of (6.4)
such that Tr (ZT LZ) is minimum and ZT DZ = I. This being a hard problem to solve,
one usually considers a heuristic which computes a matrix Z that is no longer restricted
to the form (6.4), so that the same two conditions are still satisfied. With this relaxation,
the columns of Z are known to be the k smallest eigenvectors of the generalized eigenvalue
problem

Lzi = λiDzi. (6.5)

The above solution Z has a natural interpretation related to Laplacean Eigenmaps. Imag-
ine that there is a set of high dimensional data points which are sampled from a manifold. We
perform dimension reduction on these data samples using the Laplacean Eigenmaps method.
Then Z is the low dimensional embedding of the original manifold, that is, each sample on
the manifold is mapped to a row of Z, in the k-dimensional space. Thus, a good clustering
of Z in some sense implies a reasonable clustering of the original high dimensional data.

It is worthwhile to mention that by slightly modifying the cost function (6.3) we can
arrive at a similar spectral problem. For this, consider minimizing the objective function

F̂(V1, . . . ,Vk) =
k∑

ℓ=1

∑

i∈Vℓ,j∈V
c
ℓ
wij

|Vℓ|
. (6.6)

Comparing (6.6) with (6.3), one sees that the only difference in the objective is the notion of
“size of a subset”: Here the number of vertices |Vℓ| is used to measure the size of Vℓ, while
in (6.3) this is replaced by the sum of the degree of the vertices in Vℓ, which is related to the

number of edges. Similar to the original problem, if we define the matrix Ẑ as

Ẑ(j, ℓ) =

{

1/
√

|Vℓ| if j ∈ Vℓ

0 otherwise,

then we get the following two equations:

F̂(V1, . . . ,Vk) = Tr (ẐT LẐ), ẐT Ẑ = I.
17

The cost function (6.6) is again hard to minimize and we can relax the minimization to
obtain the eigenvalue problem:

Lẑi = λ̂iẑi. (6.7)

The partitioning resulting from minimizing the objective function (6.6) approximately
via (6.7) is called the ratio cut [20]. The one resulting from minimizing (6.3) approximately
via (6.5) is called the normalized cut [45]. We will refer to the problem of finding the ratio
cut (resp. finding the normalized cut), as the spectral ratio cut problem, (resp. spectral
normalized cut problem). Finding the ratio cut amounts to solving the standard eigenvalue
problem related to the graph Laplacean L, while finding the normalized cut is equivalent to
solving the eigenvalue problem related to the normalized Laplacean L̂ = D−1/2LD−1/2. This
connection results from different interpretations of the “size of a set”. The second smallest
eigenvector ẑ2 (the Fiedler vector [15, 16]) of L plays a role similar to that of vector z2

described above. Since Z is the standard low dimensional embedding of the manifold in the
high dimensional ambient space, a natural question is: Is Ẑ also a good embedding of this
manifold? As will be seen later in Section 7.2, Ẑ is the low dimensional embedding of a
“kernel” version of PCA that uses an appropriate kernel.

6.6. Unifying Framework. We now summarize the various connections that we have
drawn so far. The objective functions and the constraints imposed on the optimization
problems seen so far are shown in Table 6.1. As can be seen the methods can be split in
two classes. The first class, which can be termed a class of ‘implicit mappings’, includes
LLE, Laplacean Eigenmaps and ISOMAP. Here, the sought low-dimensional data set Y is
obtained from solving an optimization problem of the form,

min
8

<

:

Y ∈ R
d×n

Y BY T = I

Tr
[
Y AY T

]
(6.8)

where B is either the identity matrix (LLE) or the matrix D (Eigenmaps). For LLE the
matrix A is A = (I − W T)(I − W) and for Eigenmaps, A is the Laplacean matrix.

Method Object. (min) Constraint

LLE Tr [Y (I − WT)(I − W)Y T] Y Y T = I

Eigenmaps Tr [Y (D − W)Y T] Y DY T = I

PCA/MDS Tr [−V T X(I − 1

n
11T)XT V] V T V = I

LPP Tr [V T X(D − W)XT V] V T XDXT V = I

OLPP Tr [V T X(D − W)XT V] V T V = I

NPP Tr [V T X(I − WT)(I − W)XT V] V T XXT V = I

ONPP Tr [V T X(I − WT)(I − W)XT V] V T V = I

LDA Tr [V T X(I − H)XT V] V T XXT V = I

Spect. Clust. (ratio cut) Tr [ZT (D − W)Z] ZT Z = I

Spect. Clust. (normalized cut) Tr [ZT (D − W)Z] ZT DZ = I

Table 6.1

Objective functions and constraints used in several dimension reduction methods.

18

The second class of methods, which can be termed the class of ‘projective mappings’
includes PCA/MDS, LPP, ONPP, and LDA, and it can be cast as an optimization problem
of the form

min
8

<

:

V ∈ R
m×d

V T B V = I

Tr
[
V T XAXT V

]
. (6.9)

Here, B is either the identity matrix (ONPP, PCA) or a matrix of the form XDXT or XXT .
For ONPP the matrix A is the same as the LLE matrix (I − W)(I − W T) and for LPP, A
is a Laplacean graph matrix. For LDA, A = I − H. For PCA/MDS the largest eigenvalues
are considered so the trace is maximized instead of minimized. This means that we need to
take A to be the negative identity matrix for this case. In all cases the resulting V matrix
is the projector, so Y = V T X is the low-dimension data. Figure 6.1 shows pictorially the
relations between the various dimension reduction methods.

ISOMAP MDS PCA

ONPP NPP LPP OLPP

LLE Eigenmaps

G redefined equivalent

Ŵ
=

I
−

(
X

†)(
X

†)
T

equivalent to LDA

if W = Ŵ = H

Y
=

V
T

X
V

T

V
=

I

Y
=

V
T

X

Y
=

V
T

X

Y
=

V
T

X

V
T

V
=

I

(I − WT)(I − W) vs. I − Ŵ

Fig. 6.1. Relations between the different dimension reduction methods.

7. Kernels. Kernels have been extensively used as a means to represent data by mappings
that are intrinsically nonlinear, see, e.g., [30, 48, 39, 44]. Kernels are based on an implicit
nonlinear mapping Φ : R

m → H, where H is a certain high-dimensional feature space.
Denote by Φ(X) = [Φ(x1), Φ(x2), . . . , Φ(xn)] the transformed data set in H. We will also
use Φ (a matrix) as a shorthand notation of Φ(X) when there is no risk of confusion with
the mapping.

The Moore-Aronszajn theorem [1] indicates that for every symmetric positive definite
kernel there is a dot product defined on some Hilbert space. For finite samples X, the

19

main idea is that the transformation Φ need only be known through its Grammian, which
is symmetric positive (semi-)definite, on the data X. In other words, what is known is the
matrix K whose entries are

Kij ≡ k(xi, xj) = 〈Φ(xi), Φ(xj)〉. (7.1)

This is the Gram matrix induced by the kernel k(x, y) associated with the feature space.
In fact, another interpretation of the kernel mapping is that we are defining an alternative
inner product in the X-space, which is expressed through the inner product of every pair
(xi, xj) as 〈xi, xj〉 = kij.

Formally, any of the techniques seen so far can be implemented with kernels as long as
its inner workings require only inner products to be implemented. In the sequel we denote
by K the kernel matrix:

K ≡ Φ(X)T Φ(X) = [ki,j]i,j=1,··· ,n = [Φ(xi)
T Φ(xj)]i,j=1,··· ,n . (7.2)

7.1. Explicit mappings with kernels. Consider now the use of kernels in the context of
the ‘projective mappings’ seen in Section 6.6. These compute a projection matrix V by
solving an optimization problem of the form (6.9). Formally, if we were to work in feature
space, then X in (6.9) would become Φ(X), i.e., the projected data would take the form
Y = V T Φ(X). Here V ∈ R

N×d, where N is the (typically large and unknown) dimension
of the feature space.

The cost function (6.9) would become

Tr
[
V T Φ(X)AΦ(X)T V

]
, (7.3)

where A is one of the matrices defined earlier for each method. We note in passing that the
matrix A, which should capture local neighborhoods, must be based on data and distances
between them in the feature space.

Since Φ(X) is not explicitly known (and is of large dimension) this direct approach does
not work. However, as was suggested in [25], one can exploit the fact that V can be restricted
(again implicitly) to lie in the span of Φ(X), since V must project Φ(X). For example, we
can implicitly use an orthogonal basis if the span of Φ(X), via an implicit QR factorization
of Φ(X) as was done in [25]. In the following this factorization is avoided for simplicity.

7.2. Kernel PCA. Kernel PCA, see, e.g., [41], corresponds to performing classical PCA
on the set {Φ(xi)}. Using Φ̄ to denote the matrix [Φ(x̄1), . . . , Φ(x̄n)], this leads to the
optimization problem:

max Tr [V T Φ̄Φ̄T V] subject to V T V = I .

From what was seen before, we would need to solve the eigenvalue problem

Φ̄Φ̄T ui = λui,

and the projected data will be Y = [u1, . . . , ud]
T Φ̄.

The above problem is not solvable as is because the matrix Φ̄Φ̄T is not readily available.
What is available is the Grammian Φ̄T Φ̄. This suggest the following right singular vector
approach. We multiply both sides of the above equation by Φ̄T , which yields:

[Φ̄T Φ̄]
︸ ︷︷ ︸

K̄

Φ̄T ui = λiΦ̄
T ui

20

We stated above that the matrix K̄ is available – but in reality since the Φi are not explicitly
available we cannot recenter the data in feature space. However, there is no real issue because
K̄ can be expressed easily from K since K̄ = Φ̄T Φ̄ = (I − 1

n
11

T)K(I − 1
n
11

T), see [30].
Recall that Y = V T Φ̄, where V = [u1, · · · , ud], so the vectors Φ̄T ui in the above equation

are just the transposes of the rows of the low-dimensional Y . In the end, the rows of Y ,
when transposed, are the largest d eigenvectors of the Gram matrix. In other words, Y is
obtained by solving the largest d eigenvectors of the system

K̄zi = λizi, [z1, . . . , zd] = Y T . (7.4)

It is interesting to compare this problem with the one obtained for the spectral ratio cut
(6.7): the columns of Y T (n-vectors) are the smallest eigenvectors of the Laplacean matrix
L. Hence, it is clear that the spectral ratio cut problem can be interpreted as Kernel PCA
with the kernel K = L† [21, 17]. Figure 7.1 shows pictorially this relation and other ones to
be discussed in the sequel.

Proposition 7.1. The kernel version of PCA, using the kernel K = L†, is mathemati-
cally equivalent to the spectral ratio cut problem in feature space.

Kernel NPP Kernel LPP Kernel PCA

LLE
Eigenmaps /

Normalized cut Ratio cut

eq
u
iv

a
le

n
t

eq
u
iv

a
le

n
t

K
=

L
†

Fig. 7.1. Kernel methods and their equivalents.

7.3. Kernel LPP. To define a kernel version of LPP, we can proceed similarly to PCA.
Denote again by Φ the system Φ ≡ Φ(X), and let K ≡ ΦT Φ, which is assumed to be
invertible. The problem (4.9) for LPP in feature space is

min
V

Tr
[
V T ΦLΦT V

]
Subj. to V T ΦDΦT V = I

which leads to the eigenvalue problem:

ΦLΦT ui = λiΦDΦT ui .

Again this is not solvable because the matrices ΦLΦT and ΦDΦT are not available.
Proceeding in the same was as for PCA, and assuming for simplicity that Φ is of full

rank, we can left-multiply by ΦT , then by K−1, and recalling that Y = V T Φ, we obtain
Y T = [z2, . . . , zd+1] where

Lzi = λiDzi. (7.5)
21

One may be puzzled by the remarkable fact that the Grammian matrix K no longer appears
in the equation. It is important to recall however, that the information about distances must
already be reflected in the Laplacean pair (L,D). In effect this shows the result established
in [22].

Proposition 7.2. The kernel version of LPP is mathematically equivalent to Laplacean
eigenmaps in feature space.

We note that this is in fact a practical equivalence as well, i.e., the computational prob-
lems to which the two methods arrive are the same. What appeared to be a nonlinear method
(eigenmaps) becomes a linear one using a kernel.

An immediate question is: do we explicitly know the related mapping? In [6] an infinite
dimensional operator was used as a means to define out-of-sample extensions of various non-
linear methods. All that is needed is to find a continuous kernel K(x, y) whose discretization
gives rise to the discrete kernel K(xi, xj).

7.4. Kernel ONPP. The kernel version of ONPP seeks to minimize the function

min
V ∈ RL×d V T V =I

[
V T ΦMΦT V

]
(7.6)

which leads to the eigenvalue problem:

ΦMΦT ui = λiui. (7.7)

We now again multiply by ΦT to the left and note as before K = ΦT Φ, and that the solution
Y is such that Y T = ΦT [u2, . . . , ud+1]. This leads to the eigenvalue problem

KMzi = λizi or MzT
i = K−1zT

i , [z2, . . . , zd+1] = Y T (7.8)

whose solution is the set of eigenvectors of the matrix M but with a different orthogonality
constraint, namely the K−1-orthogonality.

In other words, the rows of the projected data Y can be directly computed as the (trans-
posed) eigenvectors of the matrix KM associated with the smallest d eigenvalues.

Though the matrix KM in (7.8) is nonsymmetric, the problem is similar to the eigenvalue
problem Mz = λK−1z and therefore, the eigenvectors are orthogonal with respect to the
K−1-inner product, i.e., zT

i K−1zj = δij. This can also be seen by introducing the Cholesky
factorization of K, K = RRT and setting ẑ = R−1z. The set of ẑ’s is orthogonal.

It is also useful to translate the optimization problem corresponding to the eigenvalue
problem (7.8) for the Y variable. Clearly Kernel ONPP solves the optimization problem:

min
8

<

:

Y ∈ R
d×n

Y K−1Y T = I

Tr
[
Y MY T

]
. (7.9)

This new problem is again in R
n. In practice, there is still an issue to be resolved with

this new setting, namely we need a matrix M = (I − W T)(I − W) which is determined for
the points in feature space. In other words the affinity matrix W should be for the points
Φ(xi) not the xi’s. Again this is easily achievable because the method for constructing W
only requires local grammians which are available from K; see [24] for details.

We now address the same question as the one asked for the relation between LPP and
eigenmaps in feature space. The question is whether or not performing LLE in feature

22

space will yield the kernel version of ONPP. Clearly, the problem (7.9) to which we arrive
with kernel ONPP does not resemble the optimization problem of LLE. This is easy to
understand: ONPP uses an orthogonal projection while LLE requires the embedded data to
be orthogonal. If we were to enforce the same orthogonality on the yi’s as in LLE we might
obtain the same result and this is indeed the case.

Recall that we defined this option in Section 4.5 and called it NPP. Consider this alter-
native way of defining ONPP and referred to as NPP in Section 4.5. Proceeding as above,
one arrives at the following optimization problem for Kernel NPP:

min
V ∈ Rm×d V T ΦΦT V =I

[
V T ΦMΦT V

]

which leads to the eigenvalue problem:

ΦMΦT ui = λiΦΦT ui.

Multiplying by ΦT and then by K−1, we arrive again at the following problem from which
the kernel matrix K has again disappeared:

MΦT ui = λiΦ
T ui → Mzi = λizi (7.10)

The projected data is now identical with that obtained from LLE applied to Φ.
Proposition 7.3. Kernel NPP is equivalent to LLE performed in feature space.
It is interesting to note that kernel methods tend to use dense kernels – as these are

commonly defined as integral operators. Graph Laplaceans on the other hand are sparse
and represent – inverses of integral operators. This is just the same situation one has with
operators on Hilbert spaces: kernel operators are compact operators which when discretized
(Nystrom) yield dense matrices, and their inverses are partial differential operators which
when discretized yield sparse matrices.

7.5. What about LLE and Eigenmaps?. In principle, it would be perfectly possible to
implement kernel variants of LLE and eigenmaps - since these require constructions of neigh-
borhood matrices which can be adapted by using distances obtained from some Grammian
K. However, this would be redundant with the nonlinear nature of LLE/eigenmaps. To
understand this it is useful to come back to the issue of the similarity of LLE with Kernel
ONPP. Comparing the two methods, one observes that the eigenvalue problems of the pro-
jective methods (PCA, LPP, ONPP,..) are m×m problems, i.e., they are in the data space.
In contrast all kernel methods share with LLE and eigenmaps the fact that the eigenprob-
lems are all n × n. Thus, none of the eigenvalue problems solved by Kernel PCA, Kernel
LPP, and Kernel ONPP, involves the data set X explicitly, in contrast with those eigenvalue
problems seen for the non-kernel versions of the same methods. Compare for example (4.10)
for the standard LPP with (7.5) for Kernel LPP or the problems (4.5) and (7.4) for PCA
and kernel PCA. In essence, the data is hidden in the Gram matrix K (or its Cholesky factor
R) for PCA, and/or the Laplacean pair L,D for LPP. In effect, one can consider that there
is only one big class of methods which can be defined using various kernels.

7.6. The kernel effect: A toy example. To illustrate the power of kernels, it is best to
take a small artificial example. We take n points (n = 500 in this experiment), generated so
that half of the points are randomly drawn from a square centered at the origin and with

23

width 1.5 and the other half are generated so they lie in an annulus surrounding the square.
The annulus is the region between the half disk of radius 3.5 centered at [1.0, 0] and the
half disk of radius 4.5 centered at [1.0, 0]. This is shown in the first plot of Figure 7.2.
The figure is in 2-D. The line shown in this first figure shows how a method based on PCA
(called PDDP, see [9]) partitions the set. It fails to see the two distinct parts. In fact any
linear separation will do a mediocre job here because the two sets cannot be partitioned by
a straight line. What we do next is use kernels to transform the set. In fact the experiment
is unusual in that we take the 2-D set and project it into a 2-Dimensional set with Kernel
PCA. Recall that this is equivalent to eigenmaps with the Grammian matrix replacing the
usual graph Laplacean. The method amounts to simply taking the kernel K̄ (see Section 7.2
and equation (7.4)) and computing its largest 2 eigenvectors. This yields two vectors which
after transposition yield the projected data Y . Since the dimensions of X and Y are the
same there is no dimension reduction per se, but the projection will nevertheless show the
effect of kernels and illustrate how they work.

We use a Gaussian kernel which we write in the form K(x, y) = exp(−‖x − y‖2
2/σ

2).
This is a very popular kernel, see, e.g., [40]. One of the difficulties with this kernel is that
it requires finding a good parameter σ. It is often suggested to select a value of σ equal to
half the median of pairwise distances obtained from a large sample of points. In our case,
we use all the 500 points for this purpose and call σ0 the corresponding optimal value. In
the experiment we use several values of σ around this pseudo-optimal value σ0. Specifically
we take σ2 of the form σ2

0/C where C takes the values: C = 3, 2, 1, 0.5, 0.2. The results of
the related KPCA projections are shown in Figure 7.2.

When the parameter C takes values of 0.1 (σ2 ≈ 27.46..) and smaller, the resulting figures
start to very much resemble the original picture. These are omitted. This experiment reveals
a number of features of kernel methods in general and this particular kernel. When σ is large
(C in the experiment is small), then inner-products become basically close to being constant
(constant one) and so the Grammian will then be similar to the trivial one seen for PCA.
This means we will tend to get results similar to those with standard PCA and this is indeed
what is observed. For smaller values of σ the situation is quite different. In this case, large
pairwise squared distances ‖x − y‖2 are amplified and the negative exponential essentially
makes them close to zero. This has the effect of ‘localizing’ the data. For σ = σ0, (leftmost
figure in second row), the separation achieved between the 2 sets is quite remarkable. Now
an algorithm such as K-means (see, e.g., [50]) can do a perfect job at identifying the two
clusters (provided we know there are 2 such clusters) and a linear separation can also be
easily achieved. This is a major reason why linear methods are not to be neglected. Note
that as σ increases, the set corresponding to the annulus expands gradually from a very
densely clustered set to one which reaches a better balance with the other set (for σ0 for
example). This can be explained by the fact that pairwise distances between points of the
annulus are larger than those of the square.

8. Illustrative examples. The goal of this section is to demonstrate the methods just seen
on a few simple examples.

8.1. Projecting digits in 2-D space. Figure 8.1 shows the dimension reduction results of a
handwritten digits (‘0’–‘9’) data set [2], which consists of 200 samples per digit. Each sample
was originally represented as a 649-dimensional feature vector, including the Fourier coef-

24

−2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4
Spectral Bisection (PDDP)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Projection with Kernels −− σ2 = 0.91545

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Projection with Kernels −− σ2 = 1.3732

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Projection with Kernels −− σ2 = 2.7463

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Projection with Kernels −− σ2 = 5.4927

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Projection with Kernels −− σ2 = 13.7317

Fig. 7.2. Original figure (top-left) and results of projections using kernels with different values of σ

ficients, profile correlations, Karhunen-Love coefficients, pixels averages, Zernike moments,
and morphological features. Due to the huge differences between the numeric ranges of the
features, we normalize each feature such that the maximum value is one.

Here are the main observations from these plots. First, the supervised method LDA
does well in separating the samples of different classes, as compared with the unsupervised
method PCA. Both methods take into account the variances of the samples, but LDA makes
a distinction between the “within scatter” and “between scatter”, and outperforms PCA in
separating the different classes. Second, both in theory and in practice, LLE and Eigenmaps
share many similarities. For the present data set, both methods yield elongated and thin
clusters. These clusters stretch out in the low dimensional space, yet each one is localized
and different clusters are well separated. Our third observation concerns NPP and LPP, the
linear variants of LLE and Eigenmaps, respectively. The methods should preserve locality
of each cluster just as their nonlinear counterparts. They yield bigger cluster shapes instead
of the “elongated and thin” ones of their nonlinear counterparts. The fourth observation is
that ONPP and OLPP, the orthogonal variants of NPP and LPP, yield poorly separated
projections of the data in this particular case. The samples of the same digit are distributed
in a globular shape (possibly with outliers), but for different digits, samples just mingle
together, yielding a rather undesirable result. Although the orthogonal projection methods
OLPP and ONPP do quite a good job for face recognition (see Section 8.3.2, and results

25

(a) PCA (b) LDA

(c) LLE (d) NPP (e) ONPP

(f) Eigenmaps (g) LPP (h) OLPP

0 1 2 3 4 5 6 7 8 9

Fig. 8.1. Low dimensional (2D) representations of handwritten digits.

in [24]) they yield poor 2-D projections in this case. A possible explanation is that we are
projecting on a space of dimension 2 only, from a high dimensional space while face recog-
nition methods utilize much higher dimensions to successfully classify faces. The problem
is also intrinsically different. In the current situation we are trying to visualize a clustering
of many data items on a 2-D plane surface, whereas in classification we use the projected
d-dimension data to compare a test image to other images, which are labeled. The visual
clustering of the data when projected in 2-D space does not matter.

8.2. Effect of kernelization. We consider the same dataset as in Section 8.1 but now,
fewer digits are taken for each experiment. Specifically we look at digits that are usually
more difficult to distinguish, and we select first the 3 digits ‘5’, ’8’ and ’9’. We consider only
two methods here, namely PCA and OLPP, and their kernel versions, K-PCA and K-OLPP.

For the kernel version we use the same Gaussian kernel K(x, y) = exp(−‖x− y‖2
2/σ

2) as
in Section 7.6. As suggested in Section 7.6, the parameter σ is selected to be half the median

26

−6 −4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4
PCA

dig−5
dig−8
dig−9

−0.1 −0.05 0 0.05 0.1 0.15
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

K−PCA −− Gaussian weights w. σ=4.9659

dig−5
dig−8
dig−9

Fig. 8.2. PCA and K-PCA for digits 5, 8, and 9 of dataset mfeat

0.3705 0.371 0.3715 0.372 0.3725 0.373 0.3735 0.374 0.3745 0.375
0.054

0.0545

0.055

0.0555

0.056

0.0565

0.057

0.0575
OLPP k =6 −− constant weights

dig−5
dig−8
dig−9

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

K−OLPP k =6, σ =4.8868

dig−5
dig−8
dig−9

Fig. 8.3. OLPP and K-OLPP for digits 5, 8, and 9 of dataset mfeat

of all pairwise distances obtained from a random sample of 1000 points4. This typically
results in a reasonable estimate of the best σ.

The improvement seen from the standard versions to the kernel versions is striking.
Clearly, not all values of σ will yield a good improvement. For example when we tried taking
4 digits, the results for basically any σ were rather poor for this particular dataset.

The next test example uses another digit data set, one which is publicly available from
S. Roweis’ web page 5. This dataset contains 39 samples from each class (the digits ’0’-
’9’). Each digit image sample is represented lexicographically as a vector in space R

320 and
consists of zeros and ones. Figure 8.4 shows a random sample of 20 such pictures (20 pictures
randomly selected out of the whole set of 390 pictures). As can be seen a few of the prints
are rather difficult to decipher.

We repeat the previous experiment but this time we select 4 digits: 1, 3, 7, 9. The results
are shown in Figures 8.5 and 8.6. The kernel used here is the same as before. Since our set

4If the data set contains fewer than 1000 samples then all samples are used.
5http://www.cs.toronto.edu/roweis/data.html

27

5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20

5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20

5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20

5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20
5 10 15

5

10

15

20

Fig. 8.4. A sample of 20 digit images from the Roweis data set

2 4 6 8 10 12 14 16 18
−6

−4

−2

0

2

4

6

8
PCA

dig−1
dig−3
dig−7
dig−9

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

K−PCA −− Gaussian weights w. σ=5.9161

dig−1
dig−3
dig−7
dig−9

Fig. 8.5. PCA and K-PCA for digits 1, 3, 7, 9 of the Roweis digits dataset

is not too large (156 images in all) we simply took σ to be equal to the half the median of all
pairwise distances in the set. The value of σ found in this way is shown in the corresponding
plots.

The improvement seen from the standard versions to the kernel versions is remarkable.
Just as before, not all values of σ will yield a good improvement.

Data set No of classes No of samples per class

mfeat 10 200
Roweis 10 39
UMIST 20 19-48
ORL 40 10
AR 126 8

Table 8.1

Data sets and their characteristics.

8.3. Classification experiments. In this section we illustrate the methods discussed in the
paper on two different classification tasks; namely, digit recognition and face recognition.
Recall from Section 5 that the problem of classification is to determine the class of a test
sample, given the class labels of previously seen data samples (i.e., training data). Table 8.1

28

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5
OLPP k =4 −− constant weights

dig−1
dig−3
dig−7
dig−9

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

K−OLPP k =4, σ =5.9161

dig−1
dig−3
dig−7
dig−9

Fig. 8.6. OLPP and K-OLPP for digits 1, 3, 7, 9 of the Roweis digits dataset

Fig. 8.7. Sample from the UMIST database.

summarizes the characteristics of the data sets used in our evaluation. For digit recognition,
we use the mfeat and Roweis data sets that were previously used in Sections 8.1 and 8.2.
For face recognition, we use the UMIST [18], ORL [36] and AR [29] databases. We provide
more information below.

• The UMIST database contains 20 people under different poses. The number of differ-
ent views per subject varies from 19 to 48. We used a cropped version of the UMIST
database that is publicly available from S. Roweis’ web page6. Figure 8.7 illustrates
a sample subject from the UMIST database along with its first 20 views.

• The ORL database contains 40 individuals and 10 different images for each individual
including variation in facial expression (smiling/non smiling) and pose. Figure 8.8
illustrates two sample subjects of the ORL database along with variations in facial
expression and pose.

• The AR face database contains 126 individuals and 8 different images for each indi-
vidual including variation in facial expression and lighting. Figure 8.9 illustrates two
sample subjects of the AR database along with variations in facial expression and
lighting.

In all graph-based methods we use supervised graphs, see Section 5.1. In the LPP and
OLPP methods we use Gaussian weights, see Sections 7.6 and 8.2. The parameter σ is
determined as described in Section 8.2. Finally, we should mention that the above methods
have been pre-processed with a preliminary PCA projection step. The PCA projection is
used in order to reduce the dimension of the data vectors to ntrain − c, where ntrain is the
number of training samples (see e.g., [25, 24]). In what follows we discuss first recognition
of handwritten digits and then face recognition. In both tasks, recognition is done in the

6http://www.cs.toronto.edu/∼roweis/data.html

29

Fig. 8.8. Sample from the ORL database.

Fig. 8.9. Sample from the AR database.

reduced space, after dimension reduction, using nearest neighbor classification.

8.3.1. Handwritten digit recognition. This problem is of great practical importance to
postal and delivery services around the world. The number of classes here is c = 10. We
compare the linear dimension reduction methods discussed in this paper. We use 50 and
15 training samples per class in the mfeat and Roweis data sets respectively. The rest of
samples are assigned to the test set.

Figure 8.10 shows the average classification error rate of all methods with respect to the
dimension d of the reduced space. The averages are computed over 100 random formations
of the training and test sets. Note that for LDA we only report the average performance at
d = c − 1, as it cannot provide more than c − 1 discriminant axes.

First, observe that the performance of LPP parallels that of NPP. This is mostly due to
Proposition 6.2, although in this case the relation W = Ŵ = H is not exactly true, due to
the different weights used in each method (i.e., Gaussian weights in LPP and LLE weights
in NPP). Then, notice that the orthogonal methods i.e., PCA, ONPP and OLPP offer the
best performances and significantly outperform the non-orthogonal ones.

8.3.2. Face recognition. The problem of face recognition is somewhat similar to the one
just described for digit recognition. We want now to recognize subjects based on facial im-
ages. Face recognition has numerous applications such as surveillance, automated screening,
authentication and human-computer interaction, to name just a few.

We use 5, 10 and 5 training samples per class in the ORL, UMIST and AR data sets
respectively, while the rest of samples are assigned to the test set. Figures 8.11 and 8.12 show
the average classification error rates of all methods on the above three data sets. The averages
are computed over 100 random formations of the training and test sets. As was previously
done, for LDA we only report the average performances up to d = c − 1. Notice again that
the orthogonal methods are in general superior to the non-orthogonal ones. Observe also
that the orthogonal graph-based methods, ONPP and OLPP, are the best performers for
the face recognition task.

One reason why orthogonal projection methods do well for classification may be that
distances are not too distorted when projecting data. Indeed ‖V T (x − y)‖ ≤ ‖x − y‖, and
in fact this distance may be fairly accurate for points belonging to X due to the choice of V
(e.g., when columns of V consist of the singular vectors of X as in PCA).

30

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Number of basis vectors

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

PCA

LDA

ONPP

OLPP

NPP

LPP

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

Number of basis vectors

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

PCA

LDA

ONPP

OLPP

NPP

LPP

Fig. 8.10. Handwritten digit recognition. Left panel: mfeat data set and right panel: Roweis data set.

10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

Number of basis vectors

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

PCA

LDA

ONPP

OLPP

NPP

LPP

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10

11

12

Number of basis vectors

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

PCA

LDA

ONPP

OLPP

NPP

LPP

Fig. 8.11. Face recognition results on the ORL (left) and UMIST(right) datasets.

9. Beyond spectral methods and trace optimization. While this paper focused on dimen-
sion reduction based on spectral techniques and trace optimization, other existing powerful
methods rely on convex optimization with constraints. This section briefly describes two
examples in this class for illustration purposes. For a recent survey of these techniques see
[7] for example.

Possibly the best known technique along these lines in supervised learning is the method
of Support Vector Machines (SVM); see [8, 12, 48].

It is in spirit similar to LDA (cf. Section 5.2) in that it finds a one dimensional projection
to separate the data in some optimal way. Formally, the SVM approach consists of finding a
hyperplane which best separates two training sets belonging to two classes. If the hyperplane
is wT x + b = 0, then the classification function would be f(x) = sign(wT x + b). This will
assign the value y = +1 to one class and y = −1 to the other, and it is capable of perfectly
separating the two classes in ideal situations when the classes are linearly separable.

One of the key ingredients used by SVM is the notion of margin, which is the distance
between two parallel support planes for the two classes. First, observe that the parameters
w, b can be normalized by looking for hyperplanes of the form wT x + b ≥ 1 to include one
set and wT x + b ≤ −1 to include the other. With yi = +1 for one class and yi = −1 for

31

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Number of basis vectors

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

PCA
LDA
ONPP
OLPP
NPP
LPP

Fig. 8.12. Face recognition results on the AR dataset.

the other, we can write the constraints as yi(w
T xi + b) ≥ 1. The margin is the maximum

distance between two such planes. SVM finds w, b so that the margin is minimized.
Therefore, SVM finds the best separating hyperplane (middle of the two support planes)

by maximizing the margin subjected to the constraint yi(w
T xi + b) ≥ 1. As it turns out

the margin is given by γ = 2/‖w‖2. (Figure 9.1 shows an illustration.) This leads to the
following constrained quadratic programming problem:

min
w.b

1

2
‖w‖2

2

s.t. yi(w
T xi + b) ≥ 1, ∀xi.

Often the dual problem is solved instead of the above primal problem. In case the two classes
are not separable, the constraint is relaxed by introducing slack variables. In addition, the
problem is often solved in ‘feature space’, meaning simply that a kernel is used to redefine
the inner product to enable a linear separation of the two classes.

There are several other types of optimization problems involving Semi-Definite Program-
ming, in which the optimization problem involves matrices which are constrained to be semi
positive definite. Maximum Variance Unfolding (MVU) is one such example; see [52, 53].
Assume we have a certain affinity graph available. We could wish to find a set of cen-
tered points in low-dimensional space (constraint:

∑

i yi = 0) which maximize the variance
∑

i ‖yi‖
2
2 with the constraint that ‖yi − yj‖2 = ‖xi − xj‖2 whenever (xi, xj) are linked by an

edge. This is a quadratic programming problem with quadratic constraints. It is possible
to provide a solution in terms of the matrix Grammian of the low-dimensional data, i.e.,
K = Y T Y . This then leads to the following semi-definite program:

Maximize
∑

i

Kii subject to

(i) Kii + Kjj − 2Kij = ‖xi − xj‖
2
2 if (xj, xj) ∈ E

(ii)
∑

ij Kij = 0
(iii) K ≻ 0

Once the matrix K is found, one computes Y of dimension d × n such Y T Y = K and this
involves a diagonalization of K.

We have given just two examples (one supervised, one unsupervised) of methods involving
more complex techniques (i.e., optimization) than those methods seen in earlier sections,

32

γ

Fig. 9.1. Illustration of the margin in SVM.

which were based on (projected) eigenvalue problems. Many other convex optimization
formulations have been discussed in, e.g., [57, 58, 3]. We point out that these optimization
methods tend to be far more expensive than spectral methods and this limits their capability
for handling large scale problems. For this reason, simpler techniques resorting to spectral
problems are sometimes preferred. Realistic large scale system can have millions or even
billions of variables and constraints and this puts them out of reach of the methods based
on these sophisticated optimization techniques. A common alternative in such situations is
to perform sampling on the data and reduce the problem size. This is the case for MVU,
where a landmark version [51] was proposed if the sample size becomes large. Yet another
alternative is to apply heuristics and/or to relax the constraints in order to find approximate
solutions. In contrast, as long as the matrix is sparse, eigenvalue problems can still be
efficiently solved.

10. Conclusion. This paper gave an overview of spectral problems which arise in dimen-
sion reduction methods, with an emphasis on the many interrelations between the various
approaches used in the literature. These dimension reduction methods are often governed by
a trace optimization problem with constraints, along with some data locality criteria. When
viewed from this angle, and with the help of kernels, one can easily define a comprehensive
unifying framework for dimension reduction methods. The illustrative examples shown indi-
cate that in spite of their seemingly similar nature, these methods can yield vastly different
performances for a given task.

Many challenging issues remain interesting to explore for a linear algebra specialist in-
terested in this topic. For example, although kernels are indeed very powerful, we do not
know how to select them (optimally) for a specific dataset and problem. Moreover, kernel
methods lead to large n×n matrices, typically dense problems, which are difficult to handle
in practice. This leads to a broader issue that remains a thorn in this area, namely the
general question of computational cost. Methods considered in the literature so far have
often relied on very expensive matrix factorizations, the most common being the SVD, and

33

in view of the ever-increasing sizes of practical datasets, it has become critical to now search
for less costly alternatives.

REFERENCES

[1] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337–404,
1950.

[2] A. Asuncion and D.J. Newman. UCI machine learning repository (multiple features data set). URL: http://www.ics.
uci.edu/~mlearn/MLRepository.html.

[3] Francis Bach and Zäıd Harchaoui. Diffrac: a discriminative and flexible framework for clustering. In Advances in Neural
Information Processing Systems 20, 2008.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in
Neural Information Processing Systems 14, pages 585–591. MIT Press, 2001.

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation,
15(6):1373–1396, 2003.

[6] Y. Bengio, J-F Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-Sample Extensions for LLE,
Isomap, MDS, Eigenmaps, and Spectral Clustering. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf,
editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[7] Kristin P. Bennett and Emilio Parrado-Hernandez. The interplay of optimization and machine learning research. Journal
of Machine Learning Research, 7:1265–1281, 2006.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, 2006.
[9] Daniel Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325–344, 1998.

[10] D. Cai, X. He, J. Han, and H.-J. Zhang. Orthogonal Laplacianfaces for face recognition. IEEE Trans. on Image
Processing, 15(11):3608–3614, 2006.

[11] G. Ceder, D. Morgan, C. Fischer, K. Tibbetts, and S. Curtarolo. Data-mining-driven quantum mechanics for the
prediction of structure. MRS Bulletin, 31:981–985, 2006.

[12] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.
[13] Stefano Curtarolo, Dane Morgan, Kristin Persson, John Rodgers, and Gerbrand Ceder. Predicting crystal structures

with data mining of quantum calculations. Phys. Rev. Lett., 91(13):135503, Sep 2003.
[14] Chris Ding. Spectral clustering. ICML 2004 tutorial, 2004.
[15] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298–305, 1973.
[16] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslo-

vak Math. J., 25:619–633, 1975.
[17] François Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-walk computation of similarities

between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and
Data Engineering, 19(3):355–369, 2007.

[18] D. B Graham and N. M Allinson. Characterizing virtual eigensignatures for general purpose face recognition. Face
Recognition: From Theory to Applications, 163:446–456, 1998.

[19] Yue-Fei Guo, Shi-Jin Li, Jing-Yu Yang, Ting-Ting Shu, and Li-De Wu. A generalized Foley-Sammon transform based on
generalized Fisher discriminant criterion and its application to face recognition. Pattern Recogn. Lett., 24(1-3):147–
158, 2003.

[20] L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 11(9):1074–1085, 1992.

[21] Jihun Ham, Daniel D. Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the dimensionality reduction of
manifolds. In ICML ’04: Proceedings of the twenty-first international conference on Machine learning, page 47, New
York, NY, USA, 2004. ACM.

[22] X. He and P. Niyogi. Locality preserving projections. In Proc. Conf. Advances in Neural Information Processing Systems,
2003.

[23] P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE
Trans. on Patt. Anal. and Mach. Intel., 26(8):995–1006, 2004.

[24] E. Kokiopoulou and Y. Saad. Orthogonal neighborhood preserving projections. In J. Han et al., editor, IEEE 5th Int.
Conf. on Data Mining (ICDM05), Houston, TX, Nov. 27-30th, pages 234–241. IEEE, 2005.

[25] E. Kokiopoulou and Y. Saad. Orthogonal neighborhood preserving projections: A projection-based dimensionality re-
duction technique. IEEE TPAMI, 29:2143–2156, 2007.

[26] Yehuda Koren. On spectral graph drawing. In In COCOON 03, volume 2697 of LNCS, pages 496–508. Springer-Verlag,
2003.

[27] John A. Lee and Michel Verleysen. Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer,
2007.

[28] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.
[29] A. M. Martinez and R. Benavente. The AR face database. Technical Report 24, CVC, 1998.
[30] K. R. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to kernel-based learning algorithms.

IEEE Transactions on Neural Networks, 12:181–201, 2001.
[31] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In Advances in

Neural Information Processing Systems 14, 2002.
[32] Andreas Noack. An energy model for visual graph clustering. In Proceedings of the 11th International Symposium on

34

Graph Drawing (GD 2003), LNCS 2912, pages 425–436. Springer-Verlag, 2004.
[33] B. N. Parlett. The Symmetric Eigenvalue Problem. Number 20 in Classics in Applied Mathematics. SIAM, Philadelphia,

1998.
[34] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323–2326, 2000.
[35] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York, 1992.
[36] F. Samaria and A. Harter. Parameterisation of a stochastic model for human face identification. In 2nd IEEE Workshop

on Applications of Computer Vision, Sarasota FL, December 1994.
[37] L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of nonlinear manifolds. Journal of Machine

Learning Research, 4:119–155, 2003.
[38] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee. Spectral methods for dimensionality reduction. In

B. Schöelkopf, O. Chapelle, and A. Zien, editors, Semisupervised Learning. 2006.
[39] Bernhard Schlköpf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Opti-

mization, and Beyond. The MIT Press, 2001.
[40] B. Schölkopf and A. Smola. Learning with Kernels. The MIT press, Cambridge, Massachusetts, 2002.
[41] B. Schölkopf, A. Smola, and K. Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural compu-

tation, 10:1299–1319, 1998.
[42] S. E. Sebastian, N. Harrison, C. D. Batista, L. Balicas, M. Jaime, P. A. Sharma, N. Kawashima, and I. R. Fisher.

Dimensional reduction at a quantum critical point. Nature, 441:617, 2006.
[43] F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear dimensionality reduction. In Proceedings

of the Twenty Second International Conference on Machine Learning (ICML), 2005.
[44] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
[45] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell., 22(8):888–

905, 2000.
[46] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality

reduction. Science, 290:2319–2323, 2000.
[47] Warren S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4), 1952.
[48] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[49] Huan Wang, S.C. Yan, D.Xu, X.O. Tang, and T. Huang. Trace ratio vs. ratio trace for dimensionality reduction. In

IEEE Conference on Computer Vision and Pattern Recognition, 2007, pages 17–22, 2007.
[50] A. Webb. Statistical Pattern Recognition, 2nd edition. J. Wiley & sons, Hoboken, NJ, 2002.
[51] K. Weinberger, B. Packer, and L. Saul. Nonlinear dimensionality reduction by semidefinite programming and kernel

matrix factorization. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics,
2005.

[52] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-04), volume 2, pages 988–995, 2004.

[53] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum variance unfolding.
In AAAI’06: proceedings of the 21st national conference on Artificial intelligence, pages 1683–1686. AAAI Press,
2006.

[54] K.Q. Weinberger and L.K. Saul. Unsupervised learning of image manifolds by semidefinite programming. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2004.

[55] Christopher K.I. Williams. On a connection between kernel PCA and metric multidimensional scaling. Machine Learning,
46(1-3):11–19, 2002.

[56] Shiming Xiang, Feiping Nie, and Changshui Zhang. Learning a mahalanobis distance metric for data clustering and
classification. Pattern Recognition, 41(12):3600 – 3612, 2008.

[57] Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clustering. In Advances in Neural
Information Processing Systems 17, 2005.

[58] Linli Xu and Dale Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In Proceedings
of the 20th National Conference on Artificial Intelligence, 2005.

[59] Shuicheng Yan and Xiaoou Tang. Trace quotient problems revisited. In A. Leonardis, H. Bischof, and A. Pinz, editors,
Proceedings of the European Conference on Computer Vision, volume 2 of Lecture Notes in Computer Science,
Number 3952, pages 232–244, Berlin-Heidelberg, 2006. Springer Verlag.

[60] Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space
alignment. SIAM Journal on Scientific Computing, 26(1):313–338, 2005.

35

