

Iterative methods: from theory to practice (A tutorial)

Yousef Saad, Ruipeng Li, Yuanzhe Xi (Minnesota) (LLNL)
(Emory)

Copper Mountain Conference on Iterative Methods

March 31, 2022

Schedule

> In short: Two 'core' lectures of 50 mn each, two supplemental lectures of 35 mn each, and a 10 mn break in middle.

10:00-10:50	Y. Saad	Intro. Sparsity. Basic projection methods. Krylov subspace methods.
$10: 50-11: 25$	Y. Xi	Application: GMRES/Anderson mixing for GANs; Polynomial filtering - Eigenvalue Pbs
$11: 25-11: 35$		Break [coffee / quick lunch time]
$11: 35-12: 25$	Y. Saad	Preconditioning techniques, Multilevel methods, Dom. Decomp. ideas.
12:25-13:00	R. Li	Software, Applications, Demos.

$>$ All times are in MST time zone - [Same as in official program]

Introduction: Linear System Solvers

> Problem considered:
Linear systems of equations

$$
A x=b
$$

> Can view the problem from somewhat different angles:

- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- System of equations where \boldsymbol{A} is not explicitly available

We consider: Second viewpoint +A is Sparse

Problem can be seen in virtually every scientific or engineering application: Fluid Dynamics, Chemical reactions, Equilibrium models (economics), circuit/device simulation,

Solving sparse systems today

Fast Poisson Solvers

Background. Three types of methods:
$>$ Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
> Iterative methods: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods..
> Special purpose methods: Multigrid, Fast-Poisson solvers, ...

Remark:

The first 2 classes of methods have always been in competition.

Quotation from R. Varga's book on iterative methods [1962]
"As an example of the magnitude of problems that have been successfully solved by cyclic iterative methods, the Bettis Atomic Power Laboratory of the Westinghouse Electric Corporation had in daily use in 1960 a 2-dimensional program which would treat as a special case Laplacean-type matrix equations of order 20,000."

He adds in footnote: (paraphrase) the program was written for the Philco-2000 computer which had 32,000 words of core storage (!). "Even more staggering": Bettis had a 3-D code which could treat coupled matrix equations of order 108,000.
> Today: tens of millions is common, hundreds of millions, to billions not too uncommon

Long standing debate: direct vs. iterative

> Starting in the 1970's: huge progress of sparse direct solvers
> Iterative methods - much older - not designed for 'general systems'. Big push in the 1980s with help from 'preconditioning'
> General consensus now: Direct methods do well for 2-D problems and some specific applications [e.g., structures, ...]
> Usually too expensive for 3-D problems
$>$ Huge difference between 2-D and 3-D case
$>$ Test: Two Laplacean matrices of same dimension $n=122,500$. First: on a 350×350 grid (2D); Second: on a $50 \times 50 \times 49$ grid (3D)

> Pattern of a similar [much smaller] coefficient matrix

* demo_2Dvs3D.m

SPARSE MATRICES ; DATA STRUCTURES

What are sparse matrices?

Common definition: "..matrices that allow special techniques to take advantage of the large number of zero elements and the structure."

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.
Observation: \boldsymbol{A}^{-1} is usually dense, but L and \boldsymbol{U} in the LU factorization may be reasonably sparse (if a good technique is used).

Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

Sparse matrices in Matlab

> Explore the scripts Lap2D, mark (provided in matlab suite) for generating sparse matrices.
> Explore the commands spy, sparse
« demo sparse0 and demo_mark
Load a matrix can_445 from the SuiteSparse collection. Show its pattern

Sparse matrices - continued

> Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically, i.e., without storing the zeros
$>$ Example: To add two square dense matrices of size \boldsymbol{n} requires $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ operations. To add two sparse matrices \boldsymbol{A} and \boldsymbol{B} requires $\boldsymbol{O}(\boldsymbol{n n z}(\boldsymbol{A})+\boldsymbol{n n z}(\boldsymbol{B}))$ where $\boldsymbol{n n z}(\boldsymbol{X})=$ number of nonzero elements of a matrix \boldsymbol{X}.
$>$ For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.

Data structures: The coordinate format (COO)

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

AA	JR	JC
12.	5	5
9.	3	5
7.	3	3
5.	2	4
1.	1	1
2.	1	4
11.	4	4
3.	2	1
6.	3	1
4.	2	2
8.	3	4
10.	4	3

Compressed Sparse Row (CSR) format

$$
A=\left(\begin{array}{ccccc}
12 . & 0 . & 0 . & 11 . & 0 . \\
10 . & 9 . & 0 . & 8 . & 0 . \\
7 . & 0 . & 6 . & 5 . & 4 . \\
0 . & 0 . & 3 . & 2 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

$>I A(j)$ points to beginning or row j in arrays AA, JA
> Related: Compressed Sparse Column format, Modified Sparse Row format (MSR).

AA	JA IA
12	$1<1$
11	4
10	$1 \leftarrow 3$
9	
8	4
7	1
6	$3 \quad 10$
5	4
4	5.12
3	
2	413
1	5

> Used predominantly in Fortran \& portable codes [e.g. Metis] what about C?

CSR (CSC) format - C-style

* CSR: Collection of pointers of rows \& array of row lengths
typedef struct SpaFmt \{
| *----style CSR format - used internally
for all matrices in CSR/CSC format
int n ; /* size of matrix */
int *nzcount; /* length of each row */
int $* * j a ; \quad / *$ to store column indices */
double **ma; /* to store nonzero entries */
\} SparMat;
aa[i] [*] == entries of i-th row (col.);
$\mathrm{ja}[\mathrm{i}][*]==\mathrm{col}$. (row) indices,
nzcount [i] $==$ number of nonzero elmts in row (col.) i

Data structure used in Csparse

typedef struct cs_sparse
\{/* matrix in compressed-column or triplet form */
int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size $\mathrm{n}+1$) or col indices (size nzmax) */
int *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ int nz ; /* \# of entries in triplet matrix, -1 for compressed-col */
\} cs ;
> Can be used for CSR, CSC, and COO (triplet) storage
$>$ Easy to use from Fortran

Computing $y=A x$ - row and column storage

Row-form:
Dot product of $\boldsymbol{A}(i,:)$ and \boldsymbol{x} gives $\boldsymbol{y}_{\boldsymbol{i}}$

Column-form:
Linear combination of columns $A(:, j)$ with coefficients $\boldsymbol{x}_{\boldsymbol{j}}$ yields \boldsymbol{y}

Matvec - row version

void matvec(csptr mata, double $* x$, double $* y$) \{
int in k, *ki;

$$
\text { double } * k r \text {; }
$$

$$
\text { for (} i=0 ; i<m a t a->n ; i++) \text { \{ }
$$

$$
y[i]=0.0
$$

$$
\mathrm{kr}=\operatorname{mata}->\operatorname{ma}[\mathrm{i}] ;
$$

$$
\mathrm{ki}=\operatorname{mata}->j a[\mathrm{i}] ;
$$

$$
\text { for (} k=0 ; k<\text { mata->nzcount [i] ; k++) }
$$

\}

$$
\mathrm{y}[\mathrm{i}]+=\mathrm{kr}[\mathrm{k}] * \mathrm{x}[\mathrm{ki}[\mathrm{k}]]
$$

\}
> Uses sparse dot products (sparse SDOTS)

* Operation count

Matvec - Column version

void matvecC(csptr mata, double $* x$, double $* y$)
\{

```
    int n = mata->n, i, k, *ki;
```

 double *kr;
 for (\(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n}\); \(\mathrm{i}++\))
 \(y[i]=0.0\);
 for (\(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n}\); \(\mathrm{i}++\)) \{
 \(\mathrm{kr}=\) mata->ma[i];
 ki = mata->ja[i];
 for (k=0; k<mata->nzcount[i]; k++)
 \(\mathrm{y}[\mathrm{ki}[\mathrm{kj}]+=\mathrm{kr}[\mathrm{k}] * \mathrm{x}[\mathrm{i}]\);
 \}
 \}
> Uses sparse vector combinations (sparse SAXPY)

* Operation count
> Using the CS data structure from Suite-Sparse:

```
int cs_gaxpy (cs *A, double *x, double *y) {
    int p, j, n, *Ap, *Ai;
    n = A }>>\textrm{n};A\textrm{Ap}=A->>, p;Ai=A->i; Ax = A->x
    for (j=0; j<n; j++) {
            for (p=Ap[j]; p<Ap[j+1];p++)
            y[Ai[p]] += Ax[p]*x[j];
    }
return(1)
```

GRAPH MODELS

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{A} :

$$
V=\{1,2, \ldots, N\} \quad E=\left\{(i, j) \mid a_{i j} \neq 0\right\}
$$

$>G==$ undirected if \boldsymbol{A} has a symmetric pattern
Example:

Reorderings and graphs

$>$ Let $\pi=\left\{i_{1}, \cdots, i_{n}\right\}$ a permutation
$>A_{\pi, *}=\left\{a_{\pi(i), j}\right\}_{i, j=1, \ldots, n}=$ matrix \boldsymbol{A} with its i-th row replaced by row number $\pi(i)$.
$>A_{*, \pi}=$ matrix A with its j-th column replaced by column $\pi(j)$.
$>$ Define $P_{\pi}=I_{\pi, *}=$ "Permutation matrix" - Then:
(1) Each row (column) of $\boldsymbol{P}_{\boldsymbol{\pi}}$ consists of zeros and exactly one " 1 "
(2) $\boldsymbol{A}_{\boldsymbol{\pi}, *}=\boldsymbol{P}_{\boldsymbol{\pi}} \boldsymbol{A}$
(3) $\boldsymbol{P}_{\pi} \boldsymbol{P}_{\pi}^{T}=\boldsymbol{I}$
(4) $\boldsymbol{A}_{*, \pi}=\boldsymbol{A} \boldsymbol{P}_{\pi}^{T}$

$$
\text { Consider now: } A^{\prime}=A_{\pi, \pi}=P_{\pi} A P_{\pi}^{T}
$$

$>$ Element in position $(\boldsymbol{i}, \boldsymbol{j})$ in matrix \boldsymbol{A}^{\prime} is exactly element in position $(\pi(i), \pi(j))$ in $A .\left(a_{i j}^{\prime}=a_{\pi(i), \pi(j)}\right)$

$$
(i, j) \in E_{A^{\prime}} \quad \Longleftrightarrow \quad(\pi(i), \pi(j)) \in E_{A}
$$

General picture :

Example: A 9×9 'arrow' matrix and its adjacency graph.

* Fill-in?
> Graph and matrix after swapping nodes 1 and 9:

* Fill-in?

BASIC RELAXATION METHODS

Basic Relaxation Schemes

Relaxation schemes: based on the decomposition $A=D-E-F$

$\boldsymbol{D}=\operatorname{diag}(\mathrm{A}),-\boldsymbol{E}=$ strict lower part of \boldsymbol{A} and $\boldsymbol{- F}$ its strict upper part.
$>$ For example, Gauss-Seidel iteration :

$$
(D-E) x^{(k+1)}=F \boldsymbol{x}^{(k)}+b
$$

> Most common techniques 60 years ago.
> Now: used as smoothers in Multigrid or as preconditioners
Note: If $\rho_{i}^{(k)}=i$ th component of current residual $\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ then 'relaxation' form of GS is:

$$
\begin{aligned}
& \xi_{i}^{(k+1)}=\xi_{i}^{(k)}+\frac{\rho_{i}^{(k)}}{a_{i i}} \\
& \text { for } \boldsymbol{i}=1, \cdots, n
\end{aligned}
$$

Iteration matrices

> Jacobi, Gauss-Seidel, SOR, \&

$$
x^{(k+1)}=M x^{(k)}+f
$$ SSOR iterations are of the form

- $M_{J a c}=D^{-1}(E+F)=I-D^{-1} A$
- $M_{G S}(A)=(D-E)^{-1} F=I-(D-E)^{-1} A$

SOR relaxation: $\xi_{i}^{(k+1)}=\omega \xi_{i}^{(G S, k+1)}+(1-\omega) \xi_{i}^{(k)}$

- $M_{S O R}(A)=(D-\omega E)^{-1}(\omega F+(1-\omega) D)$

$$
=I-\left(\omega^{-1} D-E\right)^{-1} A
$$

(Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

PROJECTION METHODS

Projection Methods

$>$ The main idea of projection methods is to extract an approximate solution from a subspace.
$>$ We define a subspace of approximants of dimension \boldsymbol{m} and a set of \boldsymbol{m} conditions to extract the solution
> These conditions are typically expressed by orthogonality constraints.
> This defines one basic step which is repeated until convergence (alternatively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be viewed as a projection step
> Initial Problem: $b-A x=0$

Given two subspaces K and L of \mathbb{R}^{N} define the approximate problem:

Find $\tilde{\boldsymbol{x}} \in \boldsymbol{K}$ such that $\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}} \perp \boldsymbol{L}$

> Petrov-Galerkin condition
$>\boldsymbol{m}$ degrees of freedom $(\boldsymbol{K})+\boldsymbol{m}$ constraints $(\boldsymbol{L}) \rightarrow$
> a small linear system ('projected problem')
$>$ This is a basic projection step. Typically a sequence of such steps are applied
$>$ With a nonzero initial guess x_{0}, approximate problem is
Find $\quad \tilde{x} \in x_{0}+\boldsymbol{K}$ such that $\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}} \perp \boldsymbol{L}$
Write $\tilde{\boldsymbol{x}}=\boldsymbol{x}_{0}+\boldsymbol{\delta}$ and $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0} . \rightarrow$ system for δ :

Find $\boldsymbol{\delta} \in \boldsymbol{K}$ such that $\boldsymbol{r}_{0}-\boldsymbol{A} \boldsymbol{\delta} \perp \boldsymbol{L}$

© Formulate Gauss-Seidel as a projection method -
\$ Generalize Gauss-Seidel by defining subspaces consisting of 'blocks' of coordinates $\operatorname{span}\left\{e_{i}, e_{i+1}, \ldots, e_{i+p}\right\}$

Matrix representation:

Let

- $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$ a basis of $\boldsymbol{K} \&$
- $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right]$ a basis of L
$>$ Write approximate solution as $\tilde{\boldsymbol{x}}=\boldsymbol{x}_{0}+\delta \equiv \boldsymbol{x}_{0}+\boldsymbol{V} \boldsymbol{y}$ where $\boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}$. Then Petrov-Galerkin condition yields:

$$
W^{T}\left(r_{0}-A V y\right)=0
$$

> Therefore,

$$
\tilde{x}=x_{0}+V\left[W^{T} A V\right]^{-1} W^{T} r_{0}
$$

Remark: In practice $\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces \boldsymbol{K}, and \boldsymbol{L};
2. Choose bases:

$$
\begin{aligned}
& \boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right] \text { for } \boldsymbol{K} \text { and } \\
& \boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right] \text { for } \boldsymbol{L} .
\end{aligned}
$$

$$
r \leftarrow b-A x
$$

3. Compute :

$$
\begin{aligned}
& y \leftarrow\left(W^{T} A V\right)^{-1} W^{T} r \\
& x \leftarrow x+\boldsymbol{V} y
\end{aligned}
$$

Two Important Particular Cases.

1. $L=K$
$>$ When \boldsymbol{A} is SPD then $\left\|x^{*}-\tilde{x}\right\|_{A}=\min _{z \in K}\left\|x^{*}-z\right\|_{A}$.
> Class of Galerkin or Orthogonal projection methods
$>$ Important member of this class: Conjugate Gradient (CG) method
2. $L=A K$.

In this case $\|b-A \tilde{\boldsymbol{x}}\|_{2}=\min _{z \in K}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{z}\|_{2}$
> Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

One-dimensional projection processes

$$
\begin{aligned}
K & =\operatorname{span}\{d\} \\
& =\operatorname{and} \\
L & =\operatorname{span}\{e\}
\end{aligned}
$$

Then $\tilde{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{\alpha} \boldsymbol{d}$. Condition $\boldsymbol{r}-\boldsymbol{A} \boldsymbol{\delta} \perp \boldsymbol{e}$ yields

$$
\alpha=\frac{(r, e)}{(A d, e)}
$$

$>$ Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration
(3) Residual norm steepest descent

1. Steepest descent.

A is SPD. Take at each step $\boldsymbol{d}=\boldsymbol{r}$ and $\boldsymbol{e}=\boldsymbol{r}$.

$>$ Each step minimizes $f(x)=\left\|x-x^{*}\right\|_{A}^{2}=\left(A\left(x-x^{*}\right),(x-\right.$ $\left.x^{*}\right)$) in direction $-\nabla f$.
$>$ Convergence guaranteed if \boldsymbol{A} is SPD.
« As is formulated, the above algorithm requires 2 'matvecs' per step. Reformulate it so only one is needed.

Convergence based on the Kantorovitch inequality: Let \boldsymbol{B} be an SPD matrix, $\boldsymbol{\lambda}_{\text {max }}, \boldsymbol{\lambda}_{\text {min }}$ its largest and smallest eigenvalues. Then,

$$
\frac{(B x, x)\left(B^{-1} x, x\right)}{(x, x)^{2}} \leq \frac{\left(\lambda_{\max }+\lambda_{\min }\right)^{2}}{4 \lambda_{\max } \lambda_{\min }}, \quad \forall x \neq 0
$$

This helps establish the convergence result
Let \boldsymbol{A} an SPD matrix. Then, the \boldsymbol{A}-norms of the error vectors $d_{k}=x_{*}-x_{k}$ generated by steepest descent satisfy:

$$
\left\|d_{k+1}\right\|_{A} \leq \frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}\left\|d_{k}\right\|_{A}
$$

$>$ Algorithm converges for any initial guess x_{0}.

Proof: Observe $\left\|d_{k+1}\right\|_{A}^{2}=\left(A d_{k+1}, d_{k+1}\right)=\left(r_{k+1}, d_{k+1}\right)$
$>$ by substitution,

$$
\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}-\alpha_{k} r_{k}\right)
$$

$>$ By construction $r_{k+1} \perp r_{k}$ so we get $\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}\right)$. Now:

$$
\begin{aligned}
\left\|d_{k+1}\right\|_{A}^{2} & =\left(r_{k}-\alpha_{k} A r_{k}, d_{k}\right) \\
& =\left(r_{k}, A^{-1} r_{k}\right)-\alpha_{k}\left(r_{k}, r_{k}\right) \\
& =\left\|d_{k}\right\|_{A}^{2}\left(1-\frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A r_{k}\right)} \times \frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A^{-1} r_{k}\right)}\right) .
\end{aligned}
$$

Result follows by applying the Kantorovich inequality.

2. Minimal residual iteration.

A positive definite ($\boldsymbol{A}+\boldsymbol{A}^{\boldsymbol{T}}$ is SPD). Take at each step $\boldsymbol{d}=\boldsymbol{r}$ and $e=\boldsymbol{A r}$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x \\
& \alpha \leftarrow(A r, r) /(A r, A r) \\
& x \leftarrow x+\alpha r \\
& \hline
\end{aligned}
$$

$>$ Each step minimizes $f(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A x}\|_{2}^{2}$ in direction \boldsymbol{r}.
$>$ Converges under the condition that $A+A^{T}$ is SPD.
« As is formulated, the above algorithm would require 2 'matvecs' at each step. Reformulate it so that only one matvec is required

Convergence

Let \boldsymbol{A} be a real positive definite matrix, and let

$$
\mu=\lambda_{\min }\left(A+A^{T}\right) / 2, \quad \sigma=\|A\|_{2}
$$

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

$$
\left\|r_{k+1}\right\|_{2} \leq\left(1-\frac{\mu^{2}}{\sigma^{2}}\right)^{1 / 2}\left\|r_{k}\right\|_{2}
$$

$>$ In this case Min. Res. converges for any initial guess x_{0}.

Proof: Similar to steepest descent. Start with

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k+1}, r_{k}-\alpha_{k} A r_{k}\right) \\
& =\left(r_{k+1}, r_{k}\right)-\alpha_{k}\left(r_{k+1}, A r_{k}\right)
\end{aligned}
$$

By construction, $r_{k+1}=r_{k}-\alpha_{k} A r_{k}$ is $\perp A r_{k}$, so: $\left\|r_{k+1}\right\|_{2}^{2}=\left(r_{k+1}, r_{k}\right)=\left(r_{k}-\alpha_{k} A r_{k}, r_{k}\right)$. Then:

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k}, r_{k}\right)-\alpha_{k}\left(A r_{k}, r_{k}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)}{\left(r_{k}, r_{k}\right)} \frac{\left(A r_{k}, r_{k}\right)}{\left(A r_{k}, A r_{k}\right)}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)^{2}}{\left(r_{k}, r_{k}\right)^{2}} \frac{\left\|r_{k}\right\|_{2}^{2}}{\left\|A r_{k}\right\|_{2}^{2}}\right)
\end{aligned}
$$

Result follows from the inequalities $(\boldsymbol{A x}, \boldsymbol{x}) /(\boldsymbol{x}, \boldsymbol{x}) \geq \boldsymbol{\mu}>0$ and $\left\|A r_{k}\right\|_{2} \leq\|A\|_{2}\left\|r_{k}\right\|_{2}$.

3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step $\boldsymbol{d}=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{r}$ and $e=A d$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x, d=A^{T} r \\
& \alpha \leftarrow\|d\|_{2}^{2} /\|A d\|_{2}^{2} \\
& x \leftarrow x+\alpha d
\end{aligned}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction $-\nabla f$.
$>$ Important Note: equivalent to usual steepest descent applied to normal equations $\boldsymbol{A}^{T} \boldsymbol{A x}=\boldsymbol{A}^{T} \boldsymbol{b}$.
$>$ Converges under the condition that \boldsymbol{A} is nonsingular.
Demos: run demo1Dproj

KRYLOV SUBSPACE METHODS

Motivation

$>$ Common feature of one-dimensional projection techniques:

$$
x_{n e w}=x+\alpha d
$$

where $\boldsymbol{d}=$ a certain direction.
$>\boldsymbol{\alpha}$ is defined to optimize a certain function.
$>$ Equivalently: determine $\boldsymbol{\alpha}$ by an orthogonality constraint

Example	$\ln \mathrm{MR}:$
$\boldsymbol{x}(\boldsymbol{\alpha})=\boldsymbol{x}+\boldsymbol{\alpha} \boldsymbol{d}$, with $\boldsymbol{d}=\boldsymbol{b}-\boldsymbol{A x}$.	
$\min _{\alpha}\\|\boldsymbol{b}-\boldsymbol{A x}(\boldsymbol{\alpha})\\|_{2}$ reached iff $\boldsymbol{b}-\boldsymbol{A x}(\boldsymbol{\alpha}) \perp \boldsymbol{r}$	

> One-dimensional projection methods are greedy methods. They are 'short-sighted'.

Example:

Recall in Steepest Descent: New direc- $r \leftarrow b-\boldsymbol{A x}$, tion of search $\tilde{\boldsymbol{r}}$ is \perp to old direction of search r.
$\alpha \leftarrow(r, r) /(A r, r)$
$x \leftarrow x+\alpha r$

Question: can we do better by combining successive iterates?
> Yes: Krylov subspace methods..

Krylov subspace methods: Introduction

$>$ Consider MR (or steepest

$$
\begin{aligned}
r_{k+1} & =b-A\left(x^{(k)}+\alpha_{k} r_{k}\right) \\
& =r_{k}-\alpha_{k} A r_{k} \\
& =\left(I-\alpha_{k} A\right) r_{k}
\end{aligned}
$$ descent). At each iteration:

$>$ In the end:
$r_{k+1}=\left(I-\alpha_{k} A\right)\left(I-\alpha_{k-1} A\right) \cdots\left(I-\alpha_{0} A\right) r_{0}=p_{k+1}(A) r_{0}$ where $\boldsymbol{p}_{k+1}(t)$ is a polynomial of degree $k+1$ of the form

$$
p_{k+1}(t)=1-t q_{k}(t)
$$

Show that: $x^{(k+1)}=x^{(0)}+q_{k}(A) r_{0}$, with deg $\left(q_{k}\right)=\boldsymbol{k}$
$>$ Krylov subspace methods: iterations of this form that are 'optimal' [from \boldsymbol{m}-dimensional projection methods]

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, \boldsymbol{A}^{m-1} \boldsymbol{v}_{1}\right\}
$$

- The most important class of iterative methods.
- Many variants exist depending on the subspace \boldsymbol{L}.

Simple properties of \boldsymbol{K}_{m}

$>$ Notation: $\boldsymbol{\mu}=$ deg. of minimal polynomial of \boldsymbol{v}_{1}. Then:

- $\boldsymbol{K}_{m}=\left\{\boldsymbol{p}(\boldsymbol{A}) \boldsymbol{v}_{1} \mid \boldsymbol{p}=\right.$ polynomial of degree $\left.\leq \boldsymbol{m}-1\right\}$
- $\boldsymbol{K}_{\boldsymbol{m}}=\boldsymbol{K}_{\boldsymbol{\mu}}$ for all $\boldsymbol{m} \geq \boldsymbol{\mu}$. Moreover, $\boldsymbol{K}_{\boldsymbol{\mu}}$ is invariant under \boldsymbol{A}.
- $\operatorname{dim}\left(K_{m}\right)=\boldsymbol{m}$ iff $\mu \geq \boldsymbol{m}$.

Arnoldi's algorithm

$>$ Goal: to compute an orthogonal basis of $\boldsymbol{K}_{\boldsymbol{m}}$.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.

$$
\begin{aligned}
& \text { For } j=1, \ldots, m \text { Do: } \\
& \quad \begin{array}{l}
\text { Compute } w:=\boldsymbol{A} v_{j} \\
\quad \text { For } i=1, \ldots, j \text { Do: } \\
\quad h_{i, j}:=\left(w, v_{i}\right) \\
\quad w:=w-h_{i, j} v_{i}
\end{array}
\end{aligned}
$$

EndDo
Compute: $\boldsymbol{h}_{j+1, j}=\|\boldsymbol{w}\|_{2}$ and $\boldsymbol{v}_{j+1}=\boldsymbol{w} / \boldsymbol{h}_{j+1, j}$
EndDo

Result of orthogonalization process (Arnoldi):

1. $\boldsymbol{V}_{m}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right]$ orthonormal basis of \boldsymbol{K}_{m}.
2. $A V_{m}=V_{m+1} \overline{\boldsymbol{H}}_{m}$
3. $\boldsymbol{V}_{m}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \overline{\boldsymbol{H}}_{m} \\
& \overline{\boldsymbol{H}}_{m}= \\
& \boldsymbol{V}_{m+1}=\left[\boldsymbol{V}_{m}, \boldsymbol{v}_{m+1}\right]
\end{aligned}
$$

Arnoldi's Method for linear systems ($L_{m}=K_{m}$)

From Petrov-Galerkin condition when $\boldsymbol{L}_{m}=\boldsymbol{K}_{\boldsymbol{m}}$, we get

$$
x_{m}=x_{0}+V_{m} H_{m}^{-1} V_{m}^{T} r_{0}
$$

$>$ Select $\boldsymbol{v}_{1}=\boldsymbol{r}_{0} /\left\|\boldsymbol{r}_{0}\right\|_{2} \equiv \boldsymbol{r}_{0} / \boldsymbol{\beta}$ in Arnoldi's. Then

$$
x_{m}=x_{0}+\beta V_{m} H_{m}^{-1} e_{1}
$$

What is the residual vector $\boldsymbol{r}_{m}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{m}$?
Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's ORTHORES [1982], Axelsson's projection method [1981],..
* Also Conjugate Gradient method [see later]

Minimal residual methods $\left(L_{m}=A K_{m}\right)$

When $\boldsymbol{L}_{m}=\boldsymbol{A} \boldsymbol{K}_{m}$, we let $\boldsymbol{W}_{m} \equiv \boldsymbol{A} \boldsymbol{V}_{m}$ and obtain relation

$$
\begin{aligned}
x_{m} & =x_{0}+V_{m}\left[W_{m}^{T} A V_{m}\right]^{-1} W_{m}^{T} r_{0} \\
& =x_{0}+V_{m}\left[\left(A V_{m}\right)^{T} A V_{m}\right]^{-1}\left(A V_{m}\right)^{T} r_{0}
\end{aligned}
$$

$>$ Use again $v_{1}:=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$ and the relation

$$
A V_{m}=V_{m+1} \bar{H}_{m}
$$

$>x_{m}=x_{0}+V_{m}\left[\overline{\boldsymbol{H}}_{m}^{T} \overline{\boldsymbol{H}}_{m}\right]_{\overline{\boldsymbol{H}}^{-1}} \overline{\boldsymbol{H}}_{m}^{T} \beta e_{1}=x_{0}+V_{m} \boldsymbol{y}_{m}$ where \boldsymbol{y}_{m} minimizes $\left\|\boldsymbol{\beta} \boldsymbol{e}_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ over $\boldsymbol{y} \in \mathbb{R}^{m}$.
$>$ Gives the Generalized Minimal Residual method (GMRES) ([SaadSchultz, 1986]):

$$
\begin{aligned}
& \boldsymbol{x}_{m}=\boldsymbol{x}_{0}+\boldsymbol{V}_{m} \boldsymbol{y}_{m} \quad \text { where } \\
& \boldsymbol{y}_{m}=\min _{y}\left\|\boldsymbol{\beta} \boldsymbol{e}_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}
\end{aligned}
$$

> Several Mathematically equivalent methods:

- Axelsson's CGLS • Orthomin (1980)
- Orthodir - GCR

The symmetric case: Observation

Observe: When \boldsymbol{A} is real symmetric then in Arnoldi's method:

$$
H_{m}=V_{m}^{T} A V_{m}
$$

must be symmetric. Therefore
Theorem. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix $\boldsymbol{H}_{\boldsymbol{m}}$ is symmetric tridiagonal:

$$
\begin{aligned}
h_{i j} & =0 \quad 1 \leq i<j-1 ; \quad \text { and } \\
h_{j, j+1} & =h_{j+1, j}, j=1, \ldots, m
\end{aligned}
$$

> We can write

$$
\boldsymbol{H}_{m}=\left[\begin{array}{cccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{2} & & & & \tag{1}\\
\boldsymbol{\beta}_{2} & \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{3} & & & \\
& \boldsymbol{\beta}_{3} & \boldsymbol{\alpha}_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \boldsymbol{\alpha}_{m}
\end{array}\right]
$$

The \boldsymbol{v}_{i} 's satisfy a 3-term recurrence [Lanczos Algorithm]:

$$
\boldsymbol{\beta}_{j+1} \boldsymbol{v}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}
$$

> Simplified version of Arnoldi's algorithm for sym. systems.
Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos

The Lanczos algorithm

ALGORITHM : 1. Lanczos

1. Choose an initial vector \boldsymbol{v}_{1}, s.t. $\left\|v_{1}\right\|_{2}=1$

$$
\text { Set } \beta_{1} \equiv 0, v_{0} \equiv 0
$$

2. For $j=1,2, \ldots, m$ Do:
3. $w_{j}:=A v_{j}-\boldsymbol{\beta}_{j} v_{j-1}$
4. $\quad \alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \boldsymbol{\beta}_{j+1}:=\left\|\boldsymbol{w}_{j}\right\|_{2}$. If $\boldsymbol{\beta}_{j+1}=\mathbf{0}$ then Stop
7. $\boldsymbol{v}_{j+1}:=\boldsymbol{w}_{j} / \boldsymbol{\beta}_{\boldsymbol{j}+1}$
8. EndDo

Lanczos algorithm for linear systems

> Usual orthogonal projection method setting:

- $L_{m}=K_{m}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}$
- Basis $\boldsymbol{V}_{m}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$ of \boldsymbol{K}_{m} generated by the Lanczos algorithm
$>$ Three different possible implementations.
(1) Arnoldi-like;
(2) Exploit tridiagonal nature of \boldsymbol{H}_{m} (DIOM);
(3) Conjugate gradient (CG) - derived from (2)
> We will skip details and just show the algorithm

The Conjugate Gradient Algorithm (A S.P.D.)

ALGORITHM : 2. Conjugate gradient algorithm

1 Start: $r_{0}:=b-A x_{0}, p_{0}:=r_{0}$.
2. Iterate: Until convergence Do:
3. $\alpha_{j}:=\left(r_{j}, r_{j}\right) /\left(A p_{j}, p_{j}\right)$
4. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
6. $\quad \boldsymbol{\beta}_{j}:=\left(r_{j+1}, r_{j+1}\right) /\left(r_{j}, r_{j}\right)$
7. $\boldsymbol{p}_{j+1}:=\boldsymbol{r}_{j+1}+\boldsymbol{\beta}_{j} \boldsymbol{p}_{j}$
8. EndDo

- $\boldsymbol{r}_{j}=$ scaling $\times \boldsymbol{v}_{j+1}$. The $\boldsymbol{r}_{\boldsymbol{j}}$'s are orthogonal.
- The \boldsymbol{p}_{j} 's are \boldsymbol{A}-conjugate, i.e., $\left(\boldsymbol{A} \boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)=\mathbf{0}$ for $\boldsymbol{i} \neq \boldsymbol{j}$.

> IN BRIEF: METHODS BASED ON BI-ORTHOGONALIZATION

BiCG and related methods

ALGORITHM : 3. BiConjugate Gradient (BCG)

1. Compute $r_{0}:=b-A x_{0}$. Choose r_{0}^{*} such that $\left(r_{0}, r_{0}^{*}\right) \neq 0$.
2. Set, $p_{0}:=r_{0}, p_{0}^{*}:=r_{0}^{*}$
3. For $j=0,1, \ldots$, until convergence Do:,
4. $\alpha_{j}:=\left(r_{j}, r_{j}^{*}\right) /\left(A p_{j}, p_{j}^{*}\right)$
5. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
6. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
7. $r_{j+1}^{*}:=r_{j}^{*}-\alpha_{j} A^{T} p_{j}^{*}$
8. $\quad \boldsymbol{\beta}_{j}:=\left(\boldsymbol{r}_{j+1}, r_{j+1}^{*}\right) /\left(\boldsymbol{r}_{j}, r_{j}^{*}\right)$
9. $\boldsymbol{p}_{j+1}:=\boldsymbol{r}_{j+1}+\boldsymbol{\beta}_{j} \boldsymbol{p}_{j}$
10. $p_{j+1}^{*}:=r_{j+1}^{*}+\beta_{j} p_{j}^{*}$
11. EndDo

ALGORITHM : 4. Conjugate Gradient Squared

1. Compute $\boldsymbol{r}_{0}:=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0} ; \boldsymbol{r}_{0}^{*}$ arbitrary.
2. Set $\boldsymbol{p}_{0}:=u_{0}:=\boldsymbol{r}_{0}$.
3. For $\boldsymbol{j}=0,1,2 \ldots$, until convergence Do:
4. $\alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
5. $\boldsymbol{q}_{j}=u_{j}-\alpha_{j} A p_{j}$
6. $\quad x_{j+1}=x_{j}+\alpha_{j}\left(u_{j}+q_{j}\right)$
7. $r_{j+1}=r_{j}-\alpha_{j} A\left(u_{j}+q_{j}\right)$
8. $\quad \boldsymbol{\beta}_{j}=\left(\boldsymbol{r}_{j+1}, \boldsymbol{r}_{0}^{*}\right) /\left(\boldsymbol{r}_{j}, \boldsymbol{r}_{0}^{*}\right)$
9. $\boldsymbol{u}_{j+1}=\boldsymbol{r}_{j+1}+\boldsymbol{\beta}_{j} \boldsymbol{q}_{j}$
10. $p_{j+1}=u_{j+1}+\boldsymbol{\beta}_{j}\left(q_{j}+\beta_{j} p_{j}\right)$
11. EndDo

ALGORITHM : 5. BCGSTAB

1. Compute $\boldsymbol{r}_{0}:=b-A \boldsymbol{x}_{0} ; \boldsymbol{r}_{0}^{*}$ arbitrary;
2. $p_{0}:=r_{0}$.
3. For $\boldsymbol{j}=0,1, \ldots$, until convergence Do:
4. $\alpha_{j}:=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
5. $\quad s_{j}:=r_{j}-\alpha_{j} A p_{j}$
6. $\quad \omega_{j}:=\left(A s_{j}, s_{j}\right) /\left(A s_{j}, A s_{j}\right)$
7. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}+\omega_{j} s_{j}$
8. $\quad r_{j+1}:=s_{j}-\omega_{j} A s_{j}$
9. $\quad \boldsymbol{\beta}_{j}:=\frac{\left(r_{j+1}, r_{*}^{*}\right)}{\left(r_{j}, r_{0}^{*}\right)} \times \frac{\alpha_{j}}{\omega_{j}}$
10. $p_{j+1}:=r_{j+1}+\beta_{j}\left(p_{j}-\omega_{j} A p_{j}\right)$
11. EndDo
® DemoKrylov

PRECONDITIONING

Preconditioning - Basic principles

Basic idea
use Krylov subspace method on a modified system, e.g.:

$$
M^{-1} A x=M^{-1} b
$$

- The matrix $\boldsymbol{M}^{-1} \boldsymbol{A}$ need not be formed explicitly; only need to solve $\boldsymbol{M w}=\boldsymbol{v}$ whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $\boldsymbol{M}^{-1} \boldsymbol{v}$ for an arbitrary vector \boldsymbol{v}.

Left, Right, and Split preconditioning
Left preconditioning: $\quad \boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{M}^{-1} \boldsymbol{b}$

Right preconditioning: $\boldsymbol{A} \boldsymbol{M}^{-1} \boldsymbol{u}=\boldsymbol{b}$, with $\boldsymbol{x}=\boldsymbol{M}^{-1} \boldsymbol{u}$
Split preconditioning: $M_{L}^{-1} A M_{R}^{-1} u=M_{L}^{-1} b$, with $\boldsymbol{x}=M_{R}^{-1} \boldsymbol{u}$
[Assume M is factored: $M=M_{L} M_{R}$.]

Preconditioned CG (PCG)

$>$ Assume: \boldsymbol{A} and \boldsymbol{M} are both SPD.
$>$ Applying CG directly to $M^{-1} \boldsymbol{A x}=\boldsymbol{M}^{-1} \boldsymbol{b}$ or $\boldsymbol{A} \boldsymbol{M}^{-1} u=b$ won't work because coefficient matrices are not symmetric.
> Alternative: when $M=L L^{T}$ use split preconditioner option
$>$ Second alternative: Observe that $M^{-1} \boldsymbol{A}$ is self-adjoint wrt \boldsymbol{M} inner product:

$$
\left(M^{-1} A x, y\right)_{M}=(A x, y)=(x, A y)=\left(x, M^{-1} A y\right)_{M}
$$

$>$ Can now use CG on $\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{M}^{-1} \boldsymbol{b}$ with M -inner products. Details omitted.

Flexible accelerators

Question: What can we do in case M is defined only approximately? i.e., if it can vary from one step to the other.?

Applications:

> Iterative techniques as preconditioners: Block-SOR, SSOR, Multigrid, etc..
> Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)
> Mixing Preconditioners; ... etc.
Answer: Flexible accelerator - e.g. FGMRES. Details skipped.

Standard preconditioners

- Simplest preconditioner: $\mathrm{M}=\operatorname{Diag}(\mathrm{A})>$ poor convergence.
- Next to simplest: SSOR $M=(D-\omega E) D^{-1}(D-\omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) - ILU with level of fill p - more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigrid, M-level ILU, ..

The SOR/SSOR preconditioner

> SOR preconditioning

$$
M_{S O R}=(D-\omega E)
$$

$>$ SSOR preconditioning

$$
M_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

$>M_{S S O R}=\boldsymbol{L U}, \boldsymbol{L}=$ lower unit matrix, $\boldsymbol{U}=$ upper triangular. One solve with $M_{S S O R} \approx$ same cost as a MAT-VEC.

Q: Choice of $\boldsymbol{\omega}$; Can use \boldsymbol{k} steps instead of 1 step \rightarrow best \boldsymbol{k} ?
® demo_effect_of_prec
@ Write matlab script for \boldsymbol{k}-step SSOR preconditioner - using relaxation, i.e., start from iters/sorRelax.m.

$I L U(0)$ and $I C(0)$ preconditioners

Notation: $\quad N Z(X)=\left\{(i, j) \mid X_{i, j} \neq 0\right\}$

$>$ Formal definition of $\operatorname{ILU}(0)$:

$$
\begin{aligned}
& A=L U+R \\
& N Z(L) \cup N Z(U)=N Z(A) \\
& r_{i j}=0 \text { for }(i, j) \in N Z(A)
\end{aligned}
$$

$>$ This does not define $\boldsymbol{I} \boldsymbol{L} \boldsymbol{U}(0)$ in a unique way.
Constructive definition: Compute the LU factorization of \boldsymbol{A} but drop any fill-in in L and \boldsymbol{U} outside of $\operatorname{Struct}(\boldsymbol{A})$.
$>$ ILU factorizations are often based on $\boldsymbol{i}, \boldsymbol{k}, \boldsymbol{j}$ version of GE .

$I L U(O)$ - zero-fill ILU

ALGORITHM: 6. ILU(0)

```
For \(i=1, \ldots, N\) Do:
    For \(k=1, \ldots, i-1\) and if \((i, k) \in N Z(A)\) Do:
        Compute \(a_{i k}:=a_{i k} / a_{k j}\)
        For \(j=k+1, \ldots\) and if \((i, j) \in N Z(A)\), Do:
        compute \(a_{i j}:=a_{i j}-a_{i k} a_{k, j}\).
    EndFor
    EndFor
```

$>$ When \boldsymbol{A} is SPD then the ILU factorization = Incomplete Cholesky factorization - IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution of preconditioned matrix

Pattern of ILU(0) for 5-point matrix

Higher order ILU factorization

> Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows \boldsymbol{p} additional diagonals in \boldsymbol{L}.
> Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

- Initially $L e v_{i j}= \begin{cases}0 & \text { for } a_{i j} \neq 0 \\ \infty & \text { for } a_{i j}=0\end{cases}$
- At a given step i of Gaussian elimination:

$$
\boldsymbol{L e} \boldsymbol{v}_{k j}=\min \left\{\boldsymbol{L} e \boldsymbol{v}_{k j} ; \boldsymbol{L} \boldsymbol{e} \boldsymbol{v}_{k i}+\boldsymbol{L} \boldsymbol{e} \boldsymbol{v}_{i j}+1\right\}
$$

$>\operatorname{ILU}(\mathrm{p})$ Strategy $=$ drop anything with level of fill-in exceeding \boldsymbol{p}. * Increasing level of fill-in usually results in more accurate ILU and... * ...typically in fewer steps and fewer arithmetic operations.

ALGORITHM : 7. ILU(p)

For $i=2, N$ Do

For each $k=1, \ldots, i-1$ and if $a_{i j} \neq 0$ do
Compute $a_{i k}:=a_{i k} / a_{j j}$
Compute $a_{i, *}:=a_{i, *}-a_{i k} a_{k, *}$.
Update the levels of $\boldsymbol{a}_{i, *}$
Replace any element in row \boldsymbol{i} with $\operatorname{lev}\left(\boldsymbol{a}_{i j}\right)>\boldsymbol{p}$ by zero.
EndFor
EndFor
$>$ The algorithm can be split into a symbolic and a numerical phase.
Level-of-fill set up in symbolic phase

ILU with threshold: $\operatorname{ILUT}(k, \epsilon)$

ILU(p) factorizations are based on structure only and not numerical values > potential problems for non M-matrices.

Alternative: ILU with Threshold, ILUT

- During each i-th step in GE $(\boldsymbol{i}, \boldsymbol{k}, \boldsymbol{j}$ version), discard pivots or fill-ins whose value is below $\epsilon\left\|\boldsymbol{r o w}_{i}(A)\right\|$.
- Once the \boldsymbol{i}-th row of $\boldsymbol{L}+\boldsymbol{U}$, (L-part $+\boldsymbol{U}$-part) is computed retain only the \boldsymbol{k} largest elements in both parts.
> Advantages: controlled fill-in. Smaller memory overhead.
$>$ Easy to implement and can be made quite inexpensive.

Typical curve of CPU time versus numerical threshold

- demoPrec

MULTI-LEVEL PRECONDITIONERS

Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robustness
Main idea: use "cliques", or "aggregates". No coupling between the aggregates.

$>$ Label nodes of independent sets first

Group Independent Set reordering

Simple strategy used: Do a Cuthill-MKee ordering until there are enough points to make a block. Reverse ordering. Start a new block from a non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

Original matrix

Block size of 6

Block size of 20

Algebraic Recursive Multilevel Solver (ARMS)

> Shape of reordered matrix:

$>$ Block factorize: $\quad\left(\begin{array}{ll}\boldsymbol{B} & \boldsymbol{F} \\ \boldsymbol{E} & \boldsymbol{C}\end{array}\right)=\left(\begin{array}{cc}\boldsymbol{L} & \boldsymbol{0} \\ \boldsymbol{E} \boldsymbol{U}^{-1} & \boldsymbol{I}\end{array}\right)\left(\begin{array}{cc}\boldsymbol{U} & \boldsymbol{L}^{-1} \boldsymbol{F} \\ \mathbf{0} & \boldsymbol{S}\end{array}\right)$
$>\boldsymbol{S}=\boldsymbol{C}-\boldsymbol{E} \boldsymbol{B}^{-1} \boldsymbol{F}=$ Schur complement + dropping to reduce fill
> Next step: treat the Schur complement recursively

Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:

$$
\left(\begin{array}{ll}
B_{l} & F_{l} \\
\boldsymbol{E}_{l} & C_{l}
\end{array}\right) \approx\left(\begin{array}{cc}
\boldsymbol{L}_{l} & 0 \\
\boldsymbol{E}_{l} U_{l}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & A_{l+1}
\end{array}\right)\left(\begin{array}{cc}
U_{l} & L_{l}^{-1} F_{l} \\
0 & I
\end{array}\right)
$$

$>B_{l} \approx L_{l} U_{l} ; A_{l+1} \approx S_{l}=C_{l}-E_{l} U_{l}^{-1} L_{l}^{-1} F_{l}$
> L-solve \sim restriction; U-solve \sim prolongation.
> Perform above block factorization recursively on \boldsymbol{A}_{l+1}
$>$ Blocks in $\boldsymbol{B}_{\boldsymbol{l}}$ treated as sparse. Can be large or small.
> Algorithm is fully recursive
> Stability criterion in block independent sets algorithm

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A, and reordered matrix, $A_{0}=P_{0}^{T} A P_{0}$.

Problem: Fill-in

Remedy: dropping strategy

$>$ Treat the Schur complement recursively
> Solve last Schur complement system with ILUT-GMRES.

ALGORITHM : 8. $\operatorname{ARMS}\left(\boldsymbol{A}_{\text {lev }}\right)$ factorization

1. If lev $=$ last lev then
2. Compute $A_{\text {lev }} \approx L_{\text {lev }} U_{\text {lev }}$
3. Else:

4 Find an independent set permutation $\boldsymbol{P}_{\text {lev }}$
5. Apply permutation $A_{\text {lev }}:=P_{\text {lev }}^{T} A_{\text {lev }} P$
6. Compute factorization
7. Call $\operatorname{ARMS}\left(\boldsymbol{A}_{\text {lev }+1}\right)$
8. Endlf

Time for a Matlab demo

\& Look at the armsC part of the matlab suite. arms2.m builds the arms preconditioner - compare with the algorithm given earlier. [really recursive?]

USE OF COMPLEX SHIFTS

Use of complex shifts

> Several papers promoted the use of complex shifts [or very similar approaches] for Helmholtz
[1] X. Antoine - Private comm.
[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci. Comput., Vol. 29, pp. 1942-1958, 2007
[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée, Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.
$>$ Illustration with an experiment: finite difference discretization of $-\Delta$ on a 25×20 grid.
$>$ Add a negative shift of -1 to resulting matrix.
$>$ Do an ILU factorization of \boldsymbol{A} and plot eigs of $\boldsymbol{L}^{-1} \boldsymbol{A} U^{-1}$.
Used LUINC from matlab - no-pivoting and threshold $=0.1$.

> Terrible spectrum:

$>$ Now plot eigs of $\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{U}^{-1}$ where $\boldsymbol{L}, \boldsymbol{U}$ are inc. LU factors of $B=A+0.25 * i$

Explanation

Question:

What if we do an exact factorization [droptol $=0$]?
$>\quad \Lambda\left(L^{-1} A U^{-1}\right)=$
$\Lambda\left[(A+\alpha i I)^{-1} A\right]$
$>\Lambda=\left\{\frac{\lambda_{j}}{\lambda_{j}+i \alpha}\right\}$
> Located on a circle - with a cluster at one.
> Figure shows situation on the same example

> Next figures approximate spectra for previous (real) example

Spectrum of $A M^{-1}, M=L U$ on shifted A (dd-based scheme)

Spectrum of $A M^{-1}, M=L U$ on shifted A (τ-based scheme)

Helmholtz equation example

> Started from collaboration with R. Kechroud, A. Soulaimani (ETS, Montreal), and Shiv Gowda [Math. Comput. Simul., vol. 65., pp 303-321 (2004)]
$>$ Problem is set in the open domain Ω_{e} of \mathbb{R}^{d}

$$
\left\{\begin{aligned}
\Delta u+k^{2} u & =f \quad \text { in } \Omega \\
u & =-u_{i n c} \text { on } \Gamma \\
\text { or } \frac{\partial u}{\partial n} & =-\frac{\partial u_{i n c}}{\partial n} \text { on } \Gamma \\
\lim _{r \rightarrow \infty} r^{(d-1) / 2}\left(\frac{\partial u}{\partial \vec{n}}-i k u\right) & =0 \quad \text { Sommerfeld cond. }
\end{aligned}\right.
$$

where: \boldsymbol{u} the wave diffracted by $\Gamma, \boldsymbol{f}=$ source function $=$ zero outside domain
> Issue: non-reflective boundary conditions when making the domain finite.
$>$ Artificial boundary $\Gamma_{a r t}$ added - Need non-absorbing BCs.
> For high frequencies, linear systems become very 'indefinite' [eigenvalues on both sides of the imaginary axis]
$>$ Not very good for iterative methods

Application to the Helmholtz equation

Test Problem Soft obstacle $=$ disk of radius $\boldsymbol{r}_{0}=0.5 \mathrm{~m}$. Incident plane wave with a wavelength $\boldsymbol{\lambda}$; propagates along the \boldsymbol{x}-axis.

2nd order Bayliss-Turkel boundary conditions used on $\Gamma_{a r t}$, located at a distance $2 r_{0}$ from obstacle. Discretization: isoparametric elements with 4 nodes. Analytic solution known.

Comparisons

$>$ Test problem seen earlier. Mesh size $1 / h=160 \rightarrow$ $n=28,980, n n z=260,280$

Convergence profiles of ARMS with different shifting schemes

ARMS \& shifted variants

ILUT \& shifted variants
> Wavenumber varied - tests with ILUT

Preconditioner	k	$\frac{\lambda}{h}$	Iters.	Fill Factor	$\left\\|(L U)^{-1} e\right\\|_{2}$
ILUT (no shift)	4π	60	134	2.32	$3.65 e+03$
	8π	30	263	2.25	$1.23 \mathrm{e}+04$
	16π	15	-	-	-
	24π	10	-	-	-
ILUT (dd-based)	4π	60	267	2.24	$2.29 e+03$
	8π	30	255	2.23	$4.73 \mathrm{e}+03$
	16π	15	101	3.14	$6.60 \mathrm{e}+02$
	24π	10	100	3.92	$2.89 \mathrm{e}+02$
ILUT ($\boldsymbol{\tau}$-based)	4π	60	132	2.31	$2.98 e+03$
	8π	30	195	2.19	$4.12 \mathrm{e}+03$
	16π	15	75	3.11	$7.46 \mathrm{e}+02$
	24π	10	86	3.85	$2.73 \mathrm{e}+02$

> Wavenumber varied - tests with ARMS

Preconditioner	k	$\frac{\lambda}{h}$	Iters.	Fill Factor	$\left\\|(L U)^{-1} e\right\\|_{2}$
ARMS (no shift)	4π	60	120	3.50	$7.48 e+03$
	8π	30	169	4.03	$1.66 \mathrm{e}+04$
	16π	15	282	4.50	$2.44 \mathrm{e}+03$
	24π	10	-	-	-
ARMS (dd-based)	4π	60	411	3.83	$5.12 e+02$
	8π	30	311	4.37	$5.67 \mathrm{e}+02$
	16π	15	187	4.71	$3.92 \mathrm{e}+02$
	24π	10	185	3.00	$2.54 \mathrm{e}+02$
ARMS (τ-based)	4π	60	106	3.45	$7.56 e+03$
	8π	30	79	3.84	$6.41 \mathrm{e}+03$
	16π	15	39	3.95	$1.26 \mathrm{e}+03$
	24π	10	94	3.02	$4.71 \mathrm{e}+02$

'ALGEBRAIC' DOMAIN DECOMPOSITION METHODS

Preconditioners in 'algebraic' DD context

Common framework: Partition mesh, 'distribute' matrix, then exploit a form of Schwarz technique ...
... or a form of 'approximate' Schur complement technique
$>$ In recent years: many researchers have discovered the importance of some form of 'low-rank correction'
> Related methods: 'deflation', 'Smoothed Aggregation (SA)', ...
$>$ Next: Our work in LR correction techniques

Schur complement + low-rank correction techniques

> Algebraic DD: Partition graph using 'edge separation':

$$
\begin{aligned}
& \text { Local } \\
& \text { Equations }
\end{aligned} \quad\left[\begin{array}{cc}
\boldsymbol{B}_{i} & \boldsymbol{E}_{i} \\
\boldsymbol{E}_{i}^{T} & \boldsymbol{C}_{i}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}_{i} \\
\boldsymbol{y}_{i}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\sum_{j \in N_{i}} \boldsymbol{E}_{i j} \boldsymbol{y}_{j}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{f}_{i} \\
\boldsymbol{g}_{i}
\end{array}\right]
$$

$>$ Assume (for now) \boldsymbol{A} is Symmetric Positive Definite (SPD)

Recall: The global system

$>$ Global matrix has the form $\left(\begin{array}{cc}\boldsymbol{B} & \boldsymbol{E} \\ \boldsymbol{E}^{T} & \boldsymbol{C}\end{array}\right)$

Schur Complement System

Background:

$\left(\begin{array}{cc}\boldsymbol{B} & \boldsymbol{E} \\ \boldsymbol{E}^{T} & \boldsymbol{C}\end{array}\right)=\left(\begin{array}{cc}\boldsymbol{I} \\ \boldsymbol{E}^{T} \boldsymbol{B}^{-1} & \boldsymbol{I}\end{array}\right)\left(\begin{array}{cc}\boldsymbol{B} & \boldsymbol{E} \\ & \boldsymbol{S}\end{array}\right) \quad \boldsymbol{S}=\boldsymbol{C}-\boldsymbol{E}^{T} \boldsymbol{B}^{-1} \boldsymbol{E}$
$>S \in \mathbb{R}^{s \times s}==$ 'Schur complement' matrix
Solution obtained from two solves with \boldsymbol{B}, one with \boldsymbol{S}
Next: Find approximate inverse of S.
$>$ Assume \boldsymbol{C} is SPD and let $\boldsymbol{C}=\boldsymbol{L} \boldsymbol{L}^{\boldsymbol{T}}$. Then:
$S=L\left(I-L^{-1} E^{T} B^{-1} E L^{-T}\right) L^{T} \equiv L(I-H) L^{T}$.
> Define:
$\boldsymbol{H}=\boldsymbol{L}^{-1} \boldsymbol{E}^{T} \boldsymbol{B}^{-1} \boldsymbol{E} \boldsymbol{L}^{-\boldsymbol{T}}$
> Can show:
$\lambda_{j}(H) \in[0,1)$

Decay properties of $\mathrm{S}^{-1}-\mathrm{C}^{-1}$
$>$ We have: $\quad S^{-1}=L^{-T}(I-H)^{-1} L^{-1}$
$>$ Can we write: $S^{-1}=C^{-1}+$ Low rank correction ?

$$
S^{-1}-C^{-1}=L^{-T}\left(I-(I-H)^{-1}\right) L^{-1} \equiv L^{-T} X L^{-1}
$$

$>$ Thus, $S^{-1}=C^{-1}+L^{-T} \boldsymbol{X} L^{-1}$. Note:

$$
\lambda_{k}(X)=\frac{\lambda_{k}(H)}{1-\lambda_{k}(H)}
$$

$>$ Well separated when $\boldsymbol{\lambda}_{k} \rightarrow 1$.

Decay properties of $\mathrm{S}^{-1}-\mathrm{C}^{-1}$

$>$ Example: 2-D Laplacian, $\boldsymbol{n}_{\boldsymbol{x}}=\boldsymbol{n}_{\boldsymbol{y}}=32,4$ subdomains $>\Lambda(X)$ and $\Lambda\left(S^{-1}-C^{-1}\right)=\Lambda\left(L^{-T} X L^{-1}\right)$

5 eigenvectors: 82.5% of $X, 85.1 \%$ of $L^{-T} X L^{-1}$

10 eigenvectors: 89.7% of $X, 91.4 \%$ of $L^{-T} X L^{-1}$

> Closed form analysis available for 2D Laplaceans

Low-rank approximation

- Preconditioner for \boldsymbol{A} :

$$
M=\left(\begin{array}{cc}
\boldsymbol{I} & \\
\boldsymbol{E}^{T} \boldsymbol{B}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{B} & \boldsymbol{E} \\
& \tilde{\boldsymbol{S}}
\end{array}\right)
$$

- $(n-s)$ of $\lambda_{i}\left(A M^{-1}\right)=1$, the other $s \rightarrow \lambda_{i}\left(S \tilde{S}^{-1}\right)$
- Eigendecomposition $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$. Replace Λ with $\tilde{\Lambda}$
- Recall $S^{-1}=L^{-T}(\boldsymbol{I}-\boldsymbol{H})^{-1} L^{-1}$, and rewrite

$$
\begin{aligned}
& S^{-1}=L^{-T} U(I-\Lambda)^{-1} U^{T} L^{-1} \\
& \tilde{S}^{-1}=L^{-T} U(I-\tilde{\Lambda})^{-1} U^{T} L^{-1}
\end{aligned}
$$

- Can show: $\lambda\left(S \tilde{S}^{-1}\right)=\frac{1-\lambda_{i}}{1-\tilde{\lambda}_{i}}, \quad i=1, \ldots, s$

Numerical Experiments

- Intel Xeon X5675 (12 MB Cache, 3.06 GHz, 6-core), Xeon X5560 (8 MB Cache, $2.8 \mathrm{GHz}, 4$-core) at MSI
- Written in C/C++, MKL; OpenMP parallelism
- Accelerators: CG, GMRES(40)
- Partitioning with Metis

Details:

[R. Li, Y. Xi, and YS] "Schur Complement based domain decomposition preconditioners with Low-rank corrections", Numer. Lin. Alg. Appl., pp. 706-729 (2016).

SLR, indefinite model problems

$-\quad-\Delta$ shifted by $-s I$. 2D: $s=0.01,3 \mathrm{D}: s=0.05$

Grid	ILDLT-GMRES			RAS-GMRES fill p-t its i-t				SLR-GMRES			
	fill p-t it								rk	-t	
$256{ }^{2}$	8.2 .17 F	F			6.3 .13	F			326.4	. 2133	. 125
$512{ }^{2}$	8.4 .70 F	F			8.4 .72	F		16	647.6	2.19	1.50
$1024{ }^{2}$	135.1 F	F	-		1922	F			12811	25	4.81
40^{3}	6.9 .255		. 54		6.7 .25	99			326	. 49	3
64^{3}	9.01 .4 F				1.82 .2	F		128	649.1	3.945	1.16
100^{3}	1511 F	F			1215	F		128	18015	6388	13.9

'Non-standard' DD framework: HID ordering

> Issue: Schur complement can become large (3D Pbs)
$>$ Remedy: Use Hierarchical Interface Decomposition (HID) - Henon and YS'05

Goal: Define a method that descends into interface variables in a hierarchical way \rightarrow need a hierarchy of 'interfaces'.
$>$ Ideas of this type in the Domain Decomposition context (PDEs) by Smith and Widlund (89) - ["Wirebasket" techniques]

The hierarchical decomposition of a graph - example

Graph

Matrix pattern
$>C^{1}=$ subdomain interiors; $C^{2}=$ sets of edges; $C^{3}=$ crosspoints
$>$ Label by levels \rightarrow block-diagonal structure at each level
> Easy way to get an HID: Nested Dissection ordering

Up: 3-level partition of a 2-D domain. An HID tree with connector level information.
Right: Non-zero pattern of the reordered matrix.

Recursive preconditioner

$$
\boldsymbol{A}_{l}=\left(\begin{array}{cc}
\boldsymbol{B}_{l} & \boldsymbol{E}_{l} \\
\boldsymbol{E}_{l}^{T} & \boldsymbol{C}_{l}
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}_{l}=\boldsymbol{A}_{l+1} \quad \text { for } \quad l=0: \boldsymbol{L}-1
$$

$\boldsymbol{A}_{0}==$ HID-reordered matrix \boldsymbol{A}
$A_{l}==$ matrix C_{l-1} for $l=1,2, \cdots, L$
$\boldsymbol{A}_{\boldsymbol{L}}==$ submatrix associated with the top-level connector.
$>$ Each leading block \boldsymbol{B}_{l} in \boldsymbol{A}_{l} has a block-diagonal structure

Goal:
Explore multilevel strategies to approximate the factorization of \boldsymbol{A}_{l}
> Recall factorization:

$$
\begin{aligned}
& \boldsymbol{A}_{l}=\left(\begin{array}{cc}
\boldsymbol{I} & \\
\boldsymbol{E}_{l}^{T} \boldsymbol{B}_{l}^{-1} & \boldsymbol{I}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{B}_{l} & \\
& \boldsymbol{S}_{l}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{B}_{l}^{-1} \boldsymbol{E}_{l} \\
& \boldsymbol{I}
\end{array}\right) \\
& S_{l}=C_{l}-\boldsymbol{E}_{l}^{T} \boldsymbol{B}_{l}^{-1} \boldsymbol{E}_{l}
\end{aligned}
$$

Main Observation: $S_{l}^{-1}-C_{l}^{-1}$ nearly small rank
> Rank bounded by number of cross-points (connectors at level \boldsymbol{l} that intersect with connectors of higher levels)..

Idea: Write

$$
A_{l}^{-1}=\binom{\boldsymbol{I}-\boldsymbol{B}_{l}^{-1} \boldsymbol{E}_{l}}{\boldsymbol{I}}\left(\begin{array}{cc}
\boldsymbol{B}_{l}^{-1} & \\
& S_{l}^{-1}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{I} \\
-\boldsymbol{E}_{l}^{T} \boldsymbol{B}_{l}^{-1} \\
\end{array}\right)
$$

$>$ Approximate S_{l}^{-1} as $S_{l}^{-1} \approx C_{l}^{-1}-W_{l} H_{l} W_{l}^{T}$
$>$ Next: set $C_{l}=A_{l+1} \rightarrow$ exploit recursivity
> Last level: use (incomplete) Cholesky.
$>$ Next: illustration for 3 levels.
$>$ At levels $l=0,1,2$ express A_{l}^{-1} as :

$$
A_{l}^{-1}=\binom{\boldsymbol{I}-B_{l}^{-1} \boldsymbol{E}_{l}}{I}\left(\begin{array}{cc}
\boldsymbol{B}_{l}^{-1} & \\
& S_{l}^{-1}
\end{array}\right)\binom{\boldsymbol{I}}{-\boldsymbol{E}_{l}^{T} B_{l}^{-1} I}
$$

$>S_{l}^{-1}$ needed \rightarrow Approximate as $S_{l}^{-1} \approx C_{l}^{-1}+W_{l} H_{l} W_{l}^{T}$
$>C_{l}^{-1}$ needed \rightarrow if $l==2$ get $C_{2} \approx L_{2} L_{2}^{T}$, else set $A_{l+1}=C_{l} \&$ go to next level

Computing the low-rank correction

$>$ Let $C=L L^{T}$ and $G=L^{-1}(C-S) L^{-T}$
We have $S=L(I-G) L^{T} \rightarrow$

$$
\begin{aligned}
S^{-1}-C^{-1} & =L^{-T}\left[(I-G)^{-1}-I\right] L^{-1} \\
& =L^{-T}\left[G(I-G)^{-1}\right] L^{-1}
\end{aligned}
$$

Use Lanczos algorithm to get a few of the largest eigenvalues of G with associated eigenvectors:

$$
\left[\boldsymbol{W}_{l}, \boldsymbol{\Sigma}_{l}\right]=\operatorname{eigs}\left(\boldsymbol{C}_{l}^{-1} \boldsymbol{E}_{l}^{T} \boldsymbol{B}_{l}^{-1} \boldsymbol{E}_{l}, \boldsymbol{k}\right) \rightarrow
$$

$$
S_{l}^{-1}-C_{l}^{-1} \approx W_{l} H_{l} W_{l}^{T}, \quad \text { with } \quad H_{l}=\Sigma_{l}\left(I-\Sigma_{l}\right)^{-1}
$$

$>$ Need to solve with $C_{l} \rightarrow$ exploit recursivity

Recent work: the GeMSLR package

> Thanks: Tianshi Xu, Yuanzhe Xi, Ruipeng Li, Vasilis Kalantzis, Geoffrey Dillon,
> Extension to nonsymmetric case + full parrallel implementation
> Generalized Multilevel Schur-complement, Low-Rank preconditioner (GeMSLR)
> Parallel code called GeMSLR developed in C++
> Complex version available
> Details skipped - Ruipeng will provide illustrations

Resources (url links are 'clickable')

$>$ PDF of 'Iterative methods for sparse linear systems, 2nd Ed/' https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
> Links to software packages:
https://www-users.cse.umn.edu/~saad/software/
$>$ There you will find (for example) parGeMSLR

EVSL pARMS

