
Iterative methods: from theory to practice (A
tutorial)

Yousef Saad, Ruipeng Li, Yuanzhe Xi
(Minnesota) (LLNL) (Emory)

Copper Mountain Conference
on Iterative Methods

March 31, 2022

Schedule

ä In short: Two ‘core’ lectures of 50mn each, two supplemental
lectures of 35mn each, and a 10mn break in middle.

10:00–10:50 Y. Saad Intro. Sparsity. Basic projection methods.
Krylov subspace methods.

10:50–11:25 Y. Xi Application: GMRES/Anderson mixing for
GANs; Polynomial filtering - Eigenvalue Pbs

11:25-11:35 Break [coffee / quick lunch time]

11:35-12:25 Y. Saad Preconditioning techniques, Multilevel
methods, Dom. Decomp. ideas.

12:25-13:00 R. Li Software, Applications, Demos.

ä All times are in MST time zone – [Same as in official program]

Copper Mountain Conf. 03-31-2022 p. 2

Introduction: Linear System Solvers

ä Problem considered:
Linear systems of equations

Ax = b

ä Can view the problem from somewhat different angles:

• Discretized problem coming from a PDE

• An algebraic system of equations [ignore origin]

• System of equations where A is not explicitly available

We consider: Second viewpoint + A is Sparse

Problem can be seen in virtually every scientific or engineering ap-
plication: Fluid Dynamics, Chemical reactions, Equilibrium models
(economics), circuit/device simulation,

Copper Mountain Conf. 03-31-2022 p. 3

Solving sparse systems today

General

Purpose

 Specialized

Direct sparse
Solvers

Iterative

A x = b
∆ u = f− + bc

Methods
Preconditioned Krylov

Fast Poisson
Solvers

Multigrid
Methods

Copper Mountain Conf. 03-31-2022 p. 4

Background. Three types of methods:

ä Direct methods : based on sparse Gaussian eimination, sparse
Cholesky,..

ä Iterative methods: compute a sequence of iterates which converge
to the solution - preconditioned Krylov methods..

ä Special purpose methods: Multigrid, Fast-Poisson solvers, ...

Remark:
The first 2 classes of methods have always been in
competition.

Copper Mountain Conf. 03-31-2022 p. 5

Quotation from R. Varga’s book on iterative methods [1962]

“As an example of the magnitude of problems
that have been successfully solved by cyclic iterative
methods, the Bettis Atomic Power Laboratory of the
Westinghouse Electric Corporation had in daily use in
1960 a 2-dimensional program which would treat as a
special case Laplacean-type matrix equations of order
20,000.”

He adds in footnote: (paraphrase) the program was written for the
Philco-2000 computer which had 32,000 words of core storage (!).
“Even more staggering”: Bettis had a 3-D code which could treat
coupled matrix equations of order 108,000.

ä Today: tens of millions is common, hundreds of millions, to
billions not too uncommon

Copper Mountain Conf. 03-31-2022 p. 6

Long standing debate: direct vs. iterative

ä Starting in the 1970’s: huge progress of sparse direct solvers

ä Iterative methods - much older - not designed for ‘general sys-
tems’. Big push in the 1980s with help from ‘preconditioning’

ä General consensus now: Direct methods do well for 2-D problems
and some specific applications [e.g., structures, ...]

ä Usually too expensive for 3-D problems

ä Huge difference between 2-D and 3-D case

ä Test: Two Laplacean matrices of same dimensionn = 122, 500.
First: on a 350× 350 grid (2D); Second: on a 50× 50× 49 grid
(3D)

Copper Mountain Conf. 03-31-2022 p. 7

ä Pattern of a similar [much smaller] coefficient matrix

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 4380

Finite Diff. Laplacean 30x30

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 5740

Finite Diff. Laplacean 10x10x9

- demo 2Dvs3D.m

Copper Mountain Conf. 03-31-2022 p. 8

SPARSE MATRICES ; DATA STRUCTURES

What are sparse matrices?

Common definition: “..matrices that allow special techniques to
take advantage of the large number of zero elements and the
structure.”

A few applications of sparse matrices: Structural Engineering, Reser-
voir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU

factorization may be reasonably sparse (if a good technique is used).

Copper Mountain Conf. 03-31-2022 p. 10

Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

Copper Mountain Conf. 03-31-2022 p. 11

Sparse matrices in Matlab

ä Explore the scripts Lap2D, mark (provided in matlab suite) for
generating sparse matrices.

ä Explore the commands spy, sparse

- demo sparse0 and demo mark

- Load a matrix can 445 from the SuiteSparse collection. Show
its pattern

Copper Mountain Conf. 03-31-2022 p. 12

Sparse matrices - continued

ä Main goal of Sparse Matrix Techniques: To perform standard
matrix computations economically, i.e., without storing the zeros

ä Example: To add two square dense matrices of size n requires
O(n2) operations. To add two sparse matrices A and B requires
O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero
elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of
nonzero elements is O(n).

Copper Mountain Conf. 03-31-2022 p. 13

Data structures: The coordinate format (COO)

A =

1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.

ä Also known as ‘triplet format’
ä Simple data structure - Often used as
’entry’ format in packages
ä Variant used in matlab
ä Note: order of entries is arbitrary [in
matlab: sorted by columns]

AA JR JC
12. 5 5

9. 3 5
7. 3 3
5. 2 4
1. 1 1
2. 1 4

11. 4 4
3. 2 1
6. 3 1
4. 2 2
8. 3 4

10. 4 3

Copper Mountain Conf. 03-31-2022 p. 14

Compressed Sparse Row (CSR) format

A =

12. 0. 0. 11. 0.
10. 9. 0. 8. 0.
7. 0. 6. 5. 4.
0. 0. 3. 2. 0.
0. 0. 0. 0. 1.

ä IA(j) points to beginning or row j in arrays
AA, JA

ä Related: Compressed Sparse Column format,
Modified Sparse Row format (MSR).

1

4

1

2

4

1

3

4

5

3

4

5

10

12

13

 3

 1

 6

AA JA IA

12

10

 8

 7

 2

 3

 4

 6

 5

 9

 1

11

ä Used predominantly in Fortran & portable codes [e.g. Metis] –
what about C?

Copper Mountain Conf. 03-31-2022 p. 15

CSR (CSC) format - C-style

* CSR: Collection of pointers of rows & array of row lengths

typedef struct SpaFmt {
/*---
| C-style CSR format - used internally
| for all matrices in CSR/CSC format
|---*/

int n; /* size of matrix */
int *nzcount; /* length of each row */
int **ja; /* to store column indices */
double **ma; /* to store nonzero entries */

} SparMat;

aa[i][*] == entries of i-th row (col.);
ja[i][*] == col. (row) indices,
nzcount[i] == number of nonzero elmts in row (col.) i

Copper Mountain Conf. 03-31-2022 p. 16

Data structure used in Csparse [T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{/* matrix in compressed-column or triplet form */
int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size n+1) or

col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix,

-1 for compressed-col */
} cs ;

ä Can be used for CSR, CSC, and COO (triplet) storage

ä Easy to use from Fortran

Copper Mountain Conf. 03-31-2022 p. 17

Computing y = Ax – row and column storage

Row-form:
Dot product of A(i, :)
and x gives yi

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

Column-form:
Linear combination of
columnsA(:, j) with co-
efficients xj yields y

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

Copper Mountain Conf. 03-31-2022 p. 18

Matvec – row version

void matvec(csptr mata, double *x, double *y)
{

int i, k, *ki;
double *kr;
for (i=0; i<mata->n; i++) {

y[i] = 0.0;
kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[i] += kr[k] * x[ki[k]];
}

}

ä Uses sparse dot products (sparse SDOTS)

- Operation count

Copper Mountain Conf. 03-31-2022 p. 19

Matvec – Column version

void matvecC(csptr mata, double *x, double *y)
{

int n = mata->n, i, k, *ki;
double *kr;
for (i=0; i<n; i++)

y[i] = 0.0;
for (i=0; i<n; i++) {

kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[ki[k]] += kr[k] * x[i];
}

}

ä Uses sparse vector combinations (sparse SAXPY)

- Operation count

Copper Mountain Conf. 03-31-2022 p. 20

ä Using the CS data structure from Suite-Sparse:

int cs_gaxpy (cs *A, double *x, double *y) {
int p, j, n, *Ap, *Ai;
n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
for (j=0; j<n; j++) {

for (p=Ap[j]; p<Ap[j+1];p++)
y[Ai[p]] += Ax[p]*x[j];

}
return(1)
}

Copper Mountain Conf. 03-31-2022 p. 21

GRAPH MODELS

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2,, N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern

Example:
?
?

? ?
?

1 2

34

? ?

? ?
? ?

? ?

1

3

2

4

Copper Mountain Conf. 03-31-2022 p. 23

Reorderings and graphs

ä Let π = {i1, · · · , in} a permutation

ä Aπ,∗ =
{
aπ(i),j

}
i,j=1,...,n

= matrixA with its i-th row replaced

by row number π(i).

ä A∗,π = matrix A with its j-th column replaced by column π(j).

ä Define Pπ = Iπ,∗ = “Permutation matrix” – Then:

(1) Each row (column) of Pπ consists of zeros and exactly one “1”
(2) Aπ,∗ = PπA
(3) PπP

T
π = I

(4) A∗,π = AP T
π

Copper Mountain Conf. 03-31-2022 p. 24

Consider now: A′ = Aπ,π = PπAP
T
π

ä Element in position (i, j) in matrix A′ is exactly element in
position (π(i), π(j)) in A. (a′ij = aπ(i),π(j))

(i, j) ∈ EA′ ⇐⇒ (π(i), π(j)) ∈ EA

General picture :

i j

π(i)
π (j) ’Old labels’

‘New labels’

Copper Mountain Conf. 03-31-2022 p. 25

Example: A 9 × 9 ’arrow’ matrix and its adjacency graph.

5

6

7

8

4 2

3

91

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

- Fill-in?

Copper Mountain Conf. 03-31-2022 p. 26

ä Graph and matrix after swapping nodes 1 and 9:

9 1

3

5

6

7

8

4 2

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

- Fill-in?

Copper Mountain Conf. 03-31-2022 p. 27

BASIC RELAXATION METHODS

Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A = D − E − F

D

−F

−E

D = diag(A), −E = strict lower part of A
and −F its strict upper part.
ä For example, Gauss-Seidel iteration :

(D − E)x(k+1) = Fx(k) + b

ä Most common techniques 60 years ago.

ä Now: used as smoothers in Multigrid or as preconditioners

Note: If ρ
(k)
i = ith component

of current residual b − Ax then
‘relaxation’ form of GS is:

ξ
(k+1)
i = ξ

(k)
i +

ρ
(k)
i

aii

for i = 1, · · · , n

Copper Mountain Conf. 03-31-2022 p. 29

Iteration matrices

ä Jacobi, Gauss-Seidel, SOR, &
SSOR iterations are of the form

x(k+1) = Mx(k) + f

• MJac = D−1(E + F) = I −D−1A

• MGS(A) = (D − E)−1F = I − (D − E)−1A

SOR relaxation: ξ
(k+1)
i = ωξ

(GS,k+1)
i + (1− ω)ξ

(k)
i

• MSOR(A) = (D − ωE)−1(ωF + (1− ω)D)
= I − (ω−1D − E)−1A

- Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

Copper Mountain Conf. 03-31-2022 p. 30

PROJECTION METHODS

Projection Methods

ä The main idea of projection methods is to extract an approximate
solution from a subspace.

ä We define a subspace of approximants of dimension m and a set
of m conditions to extract the solution

ä These conditions are typically expressed by orthogonality con-
straints.

ä This defines one basic step which is repeated until convergence
(alternatively the dimension of the subspace is increased until con-
vergence).

Example: Each relaxation step in Gauss-Seidel can be
viewed as a projection step

Copper Mountain Conf. 03-31-2022 p. 32

Projection methods

ä Initial Problem: b−Ax = 0

Given two subspaces K and L of RN define the approximate prob-
lem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

ä Petrov-Galerkin condition

ä m degrees of freedom (K) + m constraints (L)→

ä a small linear system (‘projected problem’)

ä This is a basic projection step. Typically a sequence of such steps
are applied

Copper Mountain Conf. 03-31-2022 p. 33

ä With a nonzero initial guess x0, approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. → system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

- Formulate Gauss-Seidel as a projection method -

- Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’
of coordinates span{ei, ei+1, ..., ei+p}

Copper Mountain Conf. 03-31-2022 p. 34

Matrix representation:

Let
•V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

ä Write approximate solution as x̃ = x0 + δ ≡ x0 + V y where
y ∈ Rm. Then Petrov-Galerkin condition yields:

W T(r0 −AV y) = 0

ä Therefore,

x̃ = x0 + V [W TAV]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a
simple structure [tridiagonal, Hessenberg,..]

Copper Mountain Conf. 03-31-2022 p. 35

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases:
V = [v1, . . . , vm] for K and
W = [w1, . . . , wm] for L.

3. Compute :
r ← b−Ax,
y ← (W TAV)−1W Tr,

x← x+ V y.

Copper Mountain Conf. 03-31-2022 p. 36

Two Important Particular Cases.

1. L = K

ä When A is SPD then ‖x∗ − x̃‖A = minz∈K ‖x∗ − z‖A.

ä Class of Galerkin or Orthogonal projection methods

ä Important member of this class: Conjugate Gradient (CG) method

2. L = AK .

In this case ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

ä Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...

Copper Mountain Conf. 03-31-2022 p. 37

One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃ = x+ αd. Condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

ä Three popular choices:

(1) Steepest descent

(2) Minimal residual iteration

(3) Residual norm steepest descent

Copper Mountain Conf. 03-31-2022 p. 38

1. Steepest descent.

A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Each step minimizes f(x) = ‖x−x∗‖2
A = (A(x−x∗), (x−

x∗)) in direction −∇f .

ä Convergence guaranteed if A is SPD.

- As is formulated, the above algorithm requires 2 ‘matvecs’ per
step. Reformulate it so only one is needed.

Copper Mountain Conf. 03-31-2022 p. 39

Convergence based on the Kantorovitch inequality: Let B be an
SPD matrix, λmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤

(λmax + λmin)
2

4 λmaxλmin
, ∀x 6= 0.

ä This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors
dk = x∗ − xk generated by steepest descent satisfy:

‖dk+1‖A ≤
λmax − λmin
λmax + λmin

‖dk‖A

ä Algorithm converges for any initial guess x0.

Copper Mountain Conf. 03-31-2022 p. 40

Proof: Observe ‖dk+1‖2
A = (Adk+1, dk+1) = (rk+1, dk+1)

ä by substitution,

‖dk+1‖2
A = (rk+1, dk − αkrk)

ä By construction rk+1 ⊥ rk so we get ‖dk+1‖2
A = (rk+1, dk).

Now:

‖dk+1‖2
A = (rk − αkArk, dk)

= (rk, A
−1rk)− αk(rk, rk)

= ‖dk‖2
A

(
1−

(rk, rk)

(rk, Ark)
×

(rk, rk)

(rk, A−1rk)

)
.

Result follows by applying the Kantorovich inequality.

Copper Mountain Conf. 03-31-2022 p. 41

2. Minimal residual iteration.

A positive definite (A+AT is SPD). Take at each step d = r and
e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction r.

ä Converges under the condition that A+AT is SPD.

- As is formulated, the above algorithm would require 2 ’matvecs’
at each step. Reformulate it so that only one matvec is required

Copper Mountain Conf. 03-31-2022 p. 42

Convergence

Let A be a real positive definite matrix, and let

µ = λmin(A+AT)/2, σ = ‖A‖2.

Then the residual vectors generated by the Min. Res. Algorithm
satisfy:

‖rk+1‖2 ≤
(

1−
µ2

σ2

)1/2

‖rk‖2

ä In this case Min. Res. converges for any initial guess x0.

Copper Mountain Conf. 03-31-2022 p. 43

Proof: Similar to steepest descent. Start with

‖rk+1‖2
2 = (rk+1, rk − αkArk)

= (rk+1, rk)− αk(rk+1, Ark).

By construction, rk+1 = rk − αkArk is ⊥ Ark, so:
‖rk+1‖2

2 = (rk+1, rk) = (rk − αkArk, rk). Then:

‖rk+1‖2
2 = (rk, rk)− αk(Ark, rk)

= ‖rk‖2
2

(
1−

(Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)
= ‖rk‖2

2

(
1−

(Ark, rk)
2

(rk, rk)2

‖rk‖2
2

‖Ark‖2
2

)
.

Result follows from the inequalities (Ax, x)/(x, x) ≥ µ > 0 and
‖Ark‖2 ≤ ‖A‖2 ‖rk‖2.

Copper Mountain Conf. 03-31-2022 p. 44

3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step d = ATr and
e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖2

2/‖Ad‖2
2

x← x+ αd

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction −∇f .

ä Important Note: equivalent to usual steepest descent applied to
normal equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.

- Demos: run demo1Dproj

Copper Mountain Conf. 03-31-2022 p. 45

KRYLOV SUBSPACE METHODS

Motivation

ä Common feature of one-dimensional projection techniques:

xnew = x+ αd

where d = a certain direction.

ä α is defined to optimize a certain function.

ä Equivalently: determine α by an orthogonality constraint

Example
In MR:
x(α) = x+ αd, with d = b−Ax.
minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods are greedy methods. They
are ‘short-sighted’.

Copper Mountain Conf. 03-31-2022 p. 47

Example:

Recall in Steepest Descent: New direc-
tion of search r̃ is ⊥ to old direction of
search r.

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

Question: can we do better by combining successive iterates?

ä Yes: Krylov subspace methods..

Copper Mountain Conf. 03-31-2022 p. 48

Krylov subspace methods: Introduction

ä Consider MR (or steepest
descent). At each iteration:

rk+1 = b−A(x(k) + αkrk)

= rk − αkArk
= (I − αkA)rk

ä In the end:

rk+1 = (I−αkA)(I−αk−1A) · · · (I−α0A)r0 = pk+1(A)r0

where pk+1(t) is a polynomial of degree k + 1 of the form

pk+1(t) = 1− tqk(t)

- Show that: x(k+1) = x(0) + qk(A)r0 , with deg (qk) = k

ä Krylov subspace methods: iterations of this form that are ‘opti-
mal’ [from m-dimensional projection methods]

Copper Mountain Conf. 03-31-2022 p. 49

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km

ä Notation: µ = deg. of minimal polynomial of v1. Then:

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}
•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.

Copper Mountain Conf. 03-31-2022 p. 50

Arnoldi’s algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

For j = 1, ...,m Do:
Compute w := Avj
For i = 1, . . . , j Do:
hi,j := (w, vi)
w := w − hi,jvi

EndDo
Compute: hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

EndDo

Copper Mountain Conf. 03-31-2022 p. 51

Result of orthogonalization process (Arnoldi):

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm =

@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@

O
Hm =

Vm+1 = [Vm, vm+1]

AVm = Vm+1Hm

Copper Mountain Conf. 03-31-2022 p. 52

Arnoldi’s Method for linear systems (Lm = Km)

From Petrov-Galerkin condition when Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in Arnoldi’s. Then

xm = x0 + βVmH
−1
m e1

- What is the residual vector rm = b−Axm?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s OR-
THORES [1982], Axelsson’s projection method [1981],..

* Also Conjugate Gradient method [see later]

Copper Mountain Conf. 03-31-2022 p. 53

Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain relation

xm = x0 + Vm[W T
mAVm]−1W T

mr0

= x0 + Vm[(AVm)TAVm]−1(AVm)Tr0.

ä Use again v1 := r0/(β := ‖r0‖2) and the relation

AVm = Vm+1Hm

ä xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym
where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm.

Copper Mountain Conf. 03-31-2022 p. 54

ä Gives the Generalized Minimal Residual method (GMRES) ([Saad-
Schultz, 1986]):

xm = x0 + Vmym where

ym = min
y
‖βe1 − H̄my‖2

ä Several Mathematically equivalent methods:

• Axelsson’s CGLS • Orthomin (1980)
• Orthodir • GCR

Copper Mountain Conf. 03-31-2022 p. 55

The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmet-
ric matrix then the matrix Hm is symmetric tridiagonal:

hij = 0 1 ≤ i < j − 1; and

hj,j+1 = hj+1,j, j = 1, . . . ,m

Copper Mountain Conf. 03-31-2022 p. 56

ä We can write

Hm =

α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .

βm αm

(1)

The vi’s satisfy a 3-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos

Copper Mountain Conf. 03-31-2022 p. 57

The Lanczos algorithm

ALGORITHM : 1 Lanczos

1. Choose an initial vector v1, s.t. ‖v1‖2 = 1
Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)
5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

Copper Mountain Conf. 03-31-2022 p. 58

Lanczos algorithm for linear systems

ä Usual orthogonal projection method setting:

•Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos
algorithm

ä Three different possible implementations.

(1) Arnoldi-like;

(2) Exploit tridiagonal nature of Hm (DIOM);

(3) Conjugate gradient (CG) - derived from (2)

ä We will skip details and just show the algorithm

Copper Mountain Conf. 03-31-2022 p. 59

The Conjugate Gradient Algorithm (A S.P.D.)

ALGORITHM : 2 Conjugate gradient algorithm

1 Start: r0 := b−Ax0, p0 := r0.
2. Iterate: Until convergence Do:
3. αj := (rj, rj)/(Apj, pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, rj+1)/(rj, rj)
7. pj+1 := rj+1 + βjpj
8. EndDo

• rj = scaling × vj+1. The rj’s are orthogonal.

• The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.

Copper Mountain Conf. 03-31-2022 p. 60

IN BRIEF: METHODS BASED ON BI-ORTHOGONALIZATION

BiCG and related methods

ALGORITHM : 3 BiConjugate Gradient (BCG)

1. Compute r0 := b−Ax0. Choose r∗0 such that (r0, r
∗
0) 6= 0.

2. Set, p0 := r0, p∗0 := r∗0
3. For j = 0, 1, . . ., until convergence Do:,
4. αj := (rj, r

∗
j)/(Apj, p

∗
j)

5. xj+1 := xj + αjpj
6. rj+1 := rj − αjApj
7. r∗j+1 := r∗j − αjATp∗j
8. βj := (rj+1, r

∗
j+1)/(rj, r

∗
j)

9. pj+1 := rj+1 + βjpj
10. p∗j+1 := r∗j+1 + βjp

∗
j

11.EndDo

Copper Mountain Conf. 03-31-2022 p. 62

ALGORITHM : 4 Conjugate Gradient Squared

1. Compute r0 := b−Ax0; r∗0 arbitrary.
2. Set p0 := u0 := r0.
3. For j = 0, 1, 2 . . . , until convergence Do:
4. αj = (rj, r

∗
0)/(Apj, r

∗
0)

5. qj = uj − αjApj
6. xj+1 = xj + αj(uj + qj)
7. rj+1 = rj − αjA(uj + qj)
8. βj = (rj+1, r

∗
0)/(rj, r

∗
0)

9. uj+1 = rj+1 + βjqj
10. pj+1 = uj+1 + βj(qj + βjpj)
11.EndDo

Copper Mountain Conf. 03-31-2022 p. 63

ALGORITHM : 5 BCGSTAB

1. Compute r0 := b−Ax0; r∗0 arbitrary;
2. p0 := r0.
3. For j = 0, 1, . . . , until convergence Do:
4. αj := (rj, r

∗
0)/(Apj, r

∗
0)

5. sj := rj − αjApj
6. ωj := (Asj, sj)/(Asj, Asj)
7. xj+1 := xj + αjpj + ωjsj
8. rj+1 := sj − ωjAsj
9. βj :=

(rj+1,r
∗
0)

(rj,r
∗
0)
× αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)
11.EndDo

- DemoKrylov

Copper Mountain Conf. 03-31-2022 p. 64

PRECONDITIONING

Preconditioning – Basic principles

Basic idea
use Krylov subspace method on a modified system,
e.g.:

M−1Ax = M−1b.

• The matrix M−1A need not be formed explicitly; only need to
solve Mw = v whenever needed.

• Consequence: fundamental requirement is that it should be easy
to compute M−1v for an arbitrary vector v.

Copper Mountain Conf. 03-31-2022 p. 66

Left, Right, and Split preconditioning

Left preconditioning: M−1Ax = M−1b

Right preconditioning: AM−1u = b, with x = M−1u

Split preconditioning: M−1
L AM−1

R u = M−1
L b, with x = M−1

R u

[Assume M is factored: M = MLMR.]

Copper Mountain Conf. 03-31-2022 p. 67

Preconditioned CG (PCG)

ä Assume: A and M are both SPD.

ä Applying CG directly to M−1Ax = M−1b or AM−1u = b
won’t work because coefficient matrices are not symmetric.

ä Alternative: when M = LLT use split preconditioner option

ä Second alternative: Observe that M−1A is self-adjoint wrt M
inner product:

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M−1Ay)M

ä Can now use CG on M−1Ax = M−1b with M-inner products.
Details omitted.

Copper Mountain Conf. 03-31-2022 p. 68

Flexible accelerators

Question: What can we do in case M is defined only approxi-

mately? i.e., if it can vary from one step to the other.?

Applications:

ä Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-
grid, etc..

ä Chaotic relaxation type preconditioners (e.g., in a parallel com-
puting environment)

ä Mixing Preconditioners; ... etc.

Answer: Flexible accelerator - e.g. FGMRES. Details skipped.

Copper Mountain Conf. 03-31-2022 p. 69

Standard preconditioners

• Simplest preconditioner: M = Diag(A) ä poor convergence.

• Next to simplest: SSOR M = (D − ωE)D−1(D − ωF)

• Still simple but often more efficient: ILU(0).

• ILU(p) – ILU with level of fill p – more complex.

• Class of ILU preconditioners with threshold

• Class of approximate inverse preconditioners

• Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multi-
grid, M-level ILU, ..

Copper Mountain Conf. 03-31-2022 p. 70

The SOR/SSOR preconditioner

D

−F

−E

ä SOR preconditioning

MSOR = (D − ωE)

ä SSOR preconditioning

MSSOR = (D − ωE)D−1(D − ωF)

ä MSSOR = LU , L = lower unit matrix, U = upper triangular.
One solve with MSSOR ≈ same cost as a MAT-VEC.

Q: Choice of ω; Can use k steps instead of 1 step→ best k?

- demo effect of prec

- Write matlab script for k-step SSOR preconditioner – using
relaxation, i.e., start from iters/sorRelax.m.

Copper Mountain Conf. 03-31-2022 p. 71

ILU(0) and IC(0) preconditioners

ä Notation: NZ(X) = {(i, j) | Xi,j 6= 0}

ä Formal definition of ILU(0):

A = LU +R
NZ(L)

⋃
NZ(U) = NZ(A)

rij = 0 for (i, j) ∈ NZ(A)

ä This does not define ILU(0) in a unique way.

Constructive definition: Compute the LU factorization of A but
drop any fill-in in L and U outside of Struct(A).

ä ILU factorizations are often based on i, k, j version of GE.

Copper Mountain Conf. 03-31-2022 p. 72

Not accessed

Accessed but not

Accessed and
modified

modified

Copper Mountain Conf. 03-31-2022 p. 73

ILU(0) – zero-fill ILU

ALGORITHM : 6 ILU(0)

For i = 1, . . . , N Do:
For k = 1, . . . , i− 1 and if (i, k) ∈ NZ(A) Do:

Compute aik := aik/akj
For j = k + 1, . . . and if (i, j) ∈ NZ(A), Do:
compute aij := aij − aikak,j.

EndFor
EndFor

ä WhenA is SPD then the ILU factorization = Incomplete Cholesky
factorization – IC(0). Meijerink and Van der Vorst [1977].

Copper Mountain Conf. 03-31-2022 p. 74

Typical eigenvalue distribution of preconditioned matrix

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Copper Mountain Conf. 03-31-2022 p. 75

Pattern of ILU(0) for 5-point matrix

Copper Mountain Conf. 03-31-2022 p. 76

Higher order ILU factorization

ä Higher accuracy incomplete Cholesky: for regularly structured
problems, IC(p) allows p additional diagonals in L.

ä Can be generalized to irregular sparse matrices using the notion
of level of fill-in [Watts III, 1979]

• Initially Levij =

{
0 for aij 6= 0
∞ for aij == 0

• At a given step i of Gaussian elimination:

Levkj = min{Levkj;Levki + Levij + 1}

Copper Mountain Conf. 03-31-2022 p. 77

ä ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU and...

* ...typically in fewer steps and fewer arithmetic operations.

Copper Mountain Conf. 03-31-2022 p. 78

ILU(1)

Copper Mountain Conf. 03-31-2022 p. 79

ALGORITHM : 7 ILU(p)

For i = 2, N Do
For each k = 1, . . . , i− 1 and if aij 6= 0 do

Compute aik := aik/ajj
Compute ai,∗ := ai,∗ − aikak,∗.
Update the levels of ai,∗
Replace any element in row i with lev(aij) > p by zero.

EndFor
EndFor

ä The algorithm can be split into a symbolic and a numerical phase.
Level-of-fill set up in symbolic phase

Copper Mountain Conf. 03-31-2022 p. 80

ILU with threshold: ILUT(k, ε)

ILU(p) factorizations are based on structure only and not numerical
values ä potential problems for non M-matrices.

Alternative: ILU with Threshold, ILUT

• During each i-th step in GE (i, k, j version), discard pivots or
fill-ins whose value is below ε‖rowi(A)‖.

• Once the i-th row of L+U , (L-part + U-part) is computed retain
only the k largest elements in both parts.

ä Advantages: controlled fill-in. Smaller memory overhead.

ä Easy to implement and can be made quite inexpensive.

Copper Mountain Conf. 03-31-2022 p. 81

log2
ε0
ε

C
P
U

T
i
m
e

1.0 3.0 5.0 7.0 9.0

0.

4.0

8.0

12.

16.

20.

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D((((�

���

""
""
�
�
�
�
�
�
�
�

Typical curve of CPU time versus numerical threshold

- demoPrec

Copper Mountain Conf. 03-31-2022 p. 82

MULTI-LEVEL PRECONDITIONERS

Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robustness

Main idea: use “cliques”, or “aggregates”. No coupling between
the aggregates.

No Coupling

ä Label nodes of independent sets first

Copper Mountain Conf. 03-31-2022 p. 84

Group Independent Set reordering

Separator

First Block

Simple strategy used: Do a Cuthill-MKee ordering until there are
enough points to make a block. Reverse ordering. Start a new block
from a non-visited node. Continue until all points are visited. Add
criterion for rejecting “not sufficiently diagonally dominant rows.”

Copper Mountain Conf. 03-31-2022 p. 85

Original matrix

Block size of 6

Block size of 20

Algebraic Recursive Multilevel Solver (ARMS)

ä Shape of reordered matrix:

PAP T =

(
B F
E C

)
=

E

C

F

B

ä Block factorize:

(
B F
E C

)
=

(
L 0

EU−1 I

) (
U L−1F
0 S

)
ä S = C−EB−1F = Schur complement + dropping to reduce
fill

ä Next step: treat the Schur complement recursively

Copper Mountain Conf. 03-31-2022 p. 89

Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)(
I 0
0 Al+1

)(
Ul L

−1
l Fl

0 I

)
ä Bl ≈ LlUl; Al+1 ≈ Sl = Cl − ElU−1

l L−1
l Fl

ä L-solve ∼ restriction; U-solve ∼ prolongation.

ä Perform above block factorization recursively on Al+1

ä Blocks in Bl treated as sparse. Can be large or small.

ä Algorithm is fully recursive

ä Stability criterion in block independent sets algorithm

Copper Mountain Conf. 03-31-2022 p. 90

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix, A0 = P T
0 AP0 .

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

Problem: Fill-in

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 12205

ä

ä

Remedy: dropping strategy

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 4255

ä Treat the Schur complement recursively

ä Solve last Schur complement system with ILUT-GMRES.

Copper Mountain Conf. 03-31-2022 p. 92

ALGORITHM : 8 ARMS(Alev) factorization

1. If lev = last lev then
2. Compute Alev ≈ LlevUlev
3. Else:
4 Find an independent set permutation Plev
5. Apply permutation Alev := P T

levAlevP
6. Compute factorization
7. Call ARMS(Alev+1)
8. EndIf

Copper Mountain Conf. 03-31-2022 p. 93

Time for a Matlab demo

- Look at the armsC part of the matlab suite. arms2.m builds
the arms preconditioner – compare with the algorithm given earlier.
[really recursive?]

- Run test driver is demoArms.m -

Copper Mountain Conf. 03-31-2022 p. 94

USE OF COMPLEX SHIFTS

Use of complex shifts

ä Several papers promoted the use of complex shifts [or very similar
approaches] for Helmholtz

[1] X. Antoine – Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci.
Comput.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée, Comm.
in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.

Copper Mountain Conf. 03-31-2022 p. 96

ä Illustration with an experiment: finite difference discretization of
−∆ on a 25× 20 grid.

ä Add a negative shift of −1 to resulting matrix.

ä Do an ILU factorization of A and plot eigs of L−1AU−1.

ä Used LUINC from matlab - no-pivoting and threshold = 0.1.

Copper Mountain Conf. 03-31-2022 p. 97

ä Terrible spectrum:

−12 −10 −8 −6 −4 −2 0 2

x 10
12

−15

−10

−5

0

5

10

15

Copper Mountain Conf. 03-31-2022 p. 98

ä Now plot eigs of L−1AU−1 where L,U are inc. LU factors of
B = A+ 0.25 ∗ i

ä Much better!
Observed by many
[PDE viewpoint]

Idea:

Adapt technique to
ILU:
Add complex shifts
before ILU

−0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Copper Mountain Conf. 03-31-2022 p. 99

Explanation

Question:
What if we do an exact fac-
torization [droptol = 0]?
ä Λ(L−1AU−1) =
Λ[(A+ αiI)−1A]

ä Λ =
{

λj
λj+iα

}
ä Located on a circle – with
a cluster at one.
ä Figure shows situation on
the same example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ä Next figures approximate spectra for previous (real) example

Copper Mountain Conf. 03-31-2022 p. 100

−1 0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

Spectrum of the Helmholtz operator matrix, A

real

im
ag

in
ar

y

−1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

Spectrum of AM−1, M = LU on A

real

im
ag

in
ar

y

0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

Spectrum of AM−1, M = LU on shifted A (dd−based scheme)

real

im
ag

in
ar

y

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

Spectrum of AM−1, M = LU on shifted A (τ−based scheme)

real

im
ag

in
ar

y

Copper Mountain Conf. 03-31-2022 p. 101

Helmholtz equation example

ä Started from collaboration with R. Kechroud, A. Soulaimani
(ETS, Montreal), and Shiv Gowda [Math. Comput. Simul., vol.
65., pp 303–321 (2004)]

ä Problem is set in the open domain Ωe of Rd

∆u+ k2u = f in Ω
u = −uinc on Γ

or ∂u
∂n

= −∂uinc
∂n

on Γ

limr→∞ r
(d−1)/2

(
∂u
∂~n
− iku

)
= 0 Sommerfeld cond.

where: u the wave diffracted by Γ, f = source function = zero
outside domain

Copper Mountain Conf. 03-31-2022 p. 102

ä Issue: non-reflective boundary conditions when making the do-
main finite.

ä Artificial boundary Γart added – Need non-absorbing BCs.

ä For high frequencies, linear systems become very ‘indefinite’ –
[eigenvalues on both sides of the imaginary axis]

ä Not very good for iterative methods

Copper Mountain Conf. 03-31-2022 p. 103

Application to the Helmholtz equation

Test Problem Soft obstacle = disk of radius r0 = 0.5m. Incident
plane wave with a wavelength λ; propagates along the x-axis.

2nd order Bayliss-Turkel
boundary conditions used
on Γart, located at a dis-
tance 2r0 from obstacle.
Discretization: isoparamet-
ric elements with 4 nodes.
Analytic solution known.

Γ

Γ
art

Copper Mountain Conf. 03-31-2022 p. 104

Comparisons

ä Test problem seen earlier. Mesh size 1/h = 160→
n = 28, 980, nnz = 260, 280

0 50 100 150 200 250 300 350 400 450 500

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration count

lo
g

of
 r

es
id

ua
l n

or
m

Convergence profiles of ARMS with different shifting schemes

ARMS + dd−based shift
ARMS + τ−based shift
ARMS + no shift

ARMS & shifted variants

0 50 100 150 200 250

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration count

lo
g

of
 r

es
id

ua
l n

or
m

Convergence profiles of ILUT with different shifting schemes

ILUT + dd−based shift

ILUT + τ−based shift

ILUT + no shift

ILUT & shifted variants

Copper Mountain Conf. 03-31-2022 p. 105

ä Wavenumber varied - tests with ILUT

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ILUT (no shift)

4π 60 134 2.32 3.65e+ 03
8π 30 263 2.25 1.23e+04
16π 15 − - -
24π 10 − - -

ILUT (dd-based)

4π 60 267 2.24 2.29e+ 03
8π 30 255 2.23 4.73e+03
16π 15 101 3.14 6.60e+02
24π 10 100 3.92 2.89e+02

ILUT (τ -based)

4π 60 132 2.31 2.98e+ 03
8π 30 195 2.19 4.12e+03
16π 15 75 3.11 7.46e+02
24π 10 86 3.85 2.73e+02

Copper Mountain Conf. 03-31-2022 p. 106

ä Wavenumber varied - tests with ARMS

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ARMS (no shift)

4π 60 120 3.50 7.48e+ 03
8π 30 169 4.03 1.66e+04
16π 15 282 4.50 2.44e+03
24π 10 − - -

ARMS (dd-based)

4π 60 411 3.83 5.12e+ 02
8π 30 311 4.37 5.67e+02
16π 15 187 4.71 3.92e+02
24π 10 185 3.00 2.54e+02

ARMS (τ -based)

4π 60 106 3.45 7.56e+ 03
8π 30 79 3.84 6.41e+03
16π 15 39 3.95 1.26e+03
24π 10 94 3.02 4.71e+02

Copper Mountain Conf. 03-31-2022 p. 107

‘ALGEBRAIC’ DOMAIN DECOMPOSITION METHODS

Preconditioners in ‘algebraic’ DD context

Common framework: Partition mesh, ‘distribute’ matrix, then ex-
ploit a form of Schwarz technique ...

... or a form of ‘approximate’ Schur complement technique

ä In recent years: many researchers have discovered the importance
of some form of ‘low-rank correction’

ä Related methods: ‘deflation’, ‘Smoothed Aggregation (SA)’, ...

ä Next: Our work in LR correction techniques

Copper Mountain Conf. 03-31-2022 p. 109

Schur complement + low-rank correction techniques

ä Algebraic DD: Partition graph using ‘edge separation’:

Edge Separation:

●

●
●

●●

●

●

●

●

●

Local view:

External interface points

Interior points

points
Local interface

Local
Equations

[
Bi Ei
ET
i Ci

] [
ui
yi

]
+

[
0∑

j∈Ni
Eijyj

]
=

[
fi
gi

]
ä Assume (for now) A is Symmetric Positive Definite (SPD)

Copper Mountain Conf. 03-31-2022 p. 110

Recall: The global system

ä Global matrix has the form

(
B E
ET C

)

����
����
����
����

����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

������������������
������������������

���������
���������
���������
���������

��������
��������
��������
��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 4380

Copper Mountain Conf. 03-31-2022 p. 111

Schur Complement System

Background:(
B E
ET C

)
=

(
I

ETB−1 I

)(
B E
S

)
S = C − ETB−1E

ä S ∈ Rs×s == ‘Schur complement’ matrix
ä Solution obtained from two solves with B, one with S

Next: Find approximate inverse of S.

ä Assume C is SPD and let C = LLT . Then:

S = L
(
I − L−1ETB−1EL−T

)
LT ≡ L(I −H)LT .

ä Define: H = L−1ETB−1EL−T

ä Can show: λj(H) ∈ [0, 1)

Copper Mountain Conf. 03-31-2022 p. 112

Decay properties of S−1 − C−1

ä We have: S−1 = L−T(I −H)−1L−1

ä Can we write: S−1 = C−1+ Low rank correction ?

S−1 − C−1 = L−T(I − (I −H)−1)L−1 ≡ L−TXL−1

ä Thus, S−1 = C−1 + L−TXL−1. Note:

λk(X) =
λk(H)

1− λk(H)

ä Well separated when λk → 1.

Copper Mountain Conf. 03-31-2022 p. 113

Decay properties of S−1 − C−1

ä Example: 2-D Laplacian, nx = ny = 32, 4 subdomains

ä Λ(X) and Λ(S−1 − C−1) = Λ(L−TXL−1)

5 eigenvectors:
82.5% of X, 85.1% of
L−TXL−1

10 eigenvectors:
89.7% of X, 91.4% of
L−TXL−1

0

2

4

6

8

10

12

14

16

18

20

λ
i
(X

)

λ
i
(L

−
T
X
L
−
1
)

ä Closed form analysis available for 2D Laplaceans

Copper Mountain Conf. 03-31-2022 p. 114

Low-rank approximation

• Preconditioner for A:

M =

(
I

ETB−1 I

)(
B E

S̃

)
• (n− s) of λi(AM

−1) = 1, the other s→ λi(SS̃
−1)

• Eigendecomposition H = UΛUT . Replace Λ with Λ̃

• Recall S−1 = L−T(I −H)−1L−1, and rewrite

S−1 = L−TU(I − Λ)−1UTL−1

S̃−1 = L−TU(I − Λ̃)−1UTL−1

• Can show: λ(SS̃−1) =
1− λi
1− λ̃i

, i = 1, . . . , s

Copper Mountain Conf. 03-31-2022 p. 115

Numerical Experiments

• Intel Xeon X5675 (12 MB Cache, 3.06 GHz, 6-core), Xeon X5560
(8 MB Cache, 2.8 GHz, 4-core) at MSI

• Written in C/C++, MKL; OpenMP parallelism

• Accelerators: CG, GMRES(40)

• Partitioning with Metis

Details:

[R. Li, Y. Xi, and YS] “Schur Complement based domain decompo-
sition preconditioners with Low-rank corrections”, Numer. Lin. Alg.
Appl., pp. 706-729 (2016).

Copper Mountain Conf. 03-31-2022 p. 116

SLR, indefinite model problems

• −∆ shifted by −sI. 2D: s = 0.01, 3D: s = 0.05

Grid
ILDLT-GMRES RAS-GMRES
fill p-t its i-t fill p-t its i-t

2562 8.2 .17 F - 6.3 .13 F -
5122 8.4 .70 F - 8.4 .72 F -

10242 13 5.1 F - 19 22 F -
403 6.9 .25 54 .54 6.7 .25 99 .30
643 9.0 1.4 F - 11.8 2.2 F -

1003 15 11 F - 12 15 F -

SLR-GMRES
nd rk fill p-t its i-t

8 32 6.4 .21 33 .125
16 64 7.6 2.1 93 1.50

8 128 11 25 50 4.81
64 32 6.7 .49 23 .123

128 64 9.1 3.9 45 1.16
128 180 15 63 88 13.9

Copper Mountain Conf. 03-31-2022 p. 117

‘Non-standard’ DD framework: HID ordering

ä Issue: Schur complement can become large (3D Pbs)

ä Remedy: Use Hierarchical Interface Decomposition (HID) - Henon
and YS’05

Goal: Define a method that descends into interface variables in a
hierarchical way→ need a hierarchy of ’interfaces’.

ä Ideas of this type in the Domain Decomposition context (PDEs)
by Smith and Widlund (89) – [“Wirebasket” techniques]

Copper Mountain Conf. 03-31-2022 p. 118

The hierarchical decomposition of a graph - example

Domain

Edges

Points

Interior

Point

Cross-

Graph Matrix pattern

ä C1 = subdomain interiors; C2 = sets of edges; C3 = cross-
points

ä Label by levels→ block-diagonal structure at each level

Copper Mountain Conf. 03-31-2022 p. 119

ä Easy way to get an HID: Nested Dissection ordering

1
2

3
 7

5

4

8

6

9

10

11

12

13

14

15

Levels

9

13 14 2

15 3

12 1
10 11

 01 2 3 4 5 6 7 8

Up: 3-level partition of a 2-D domain.
An HID tree with connector level infor-
mation.
Right: Non-zero pattern of the reordered
matrix.

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
�����

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

2

6

5

4

3

1

8

10

15

14

13

12

11

9

7

Copper Mountain Conf. 03-31-2022 p. 120

Recursive preconditioner

Al =

(
Bl El
ET
l Cl

)
and Cl = Al+1 for l = 0 : L− 1,

A0 == HID-reordered matrix A

Al == matrix Cl−1 for l = 1, 2, · · · , L

AL == submatrix associated with the top-level connector.

ä Each leading block Bl in Al has a block-diagonal structure

Goal:
Explore multilevel strategies to approximate the factor-
ization of Al

Copper Mountain Conf. 03-31-2022 p. 121

ä Recall factorization:

Al =

(
I

ET
l B
−1
l I

)(
Bl

Sl

)(
I B−1

l El
I

)
Sl = Cl − ET

l B
−1
l El

Main Observation: S−1
l − C

−1
l nearly small rank

ä Rank bounded by number of cross-points (connectors at level l
that intersect with connectors of higher levels)..

Copper Mountain Conf. 03-31-2022 p. 122

Idea: Write

A−1
l =

(
I −B−1

l El
I

)(
B−1
l

S−1
l

)(
I

−ET
l B
−1
l I

)
.

ä Approximate S−1
l as S−1

l ≈ C
−1
l −WlHlW

T
l

ä Next: set Cl = Al+1 → exploit recursivity

ä Last level: use (incomplete) Cholesky.

ä Next: illustration for 3 levels.

Copper Mountain Conf. 03-31-2022 p. 123

ä At levels l = 0, 1, 2 express A−1
l as :

A−1
l =

(
I −B−1

l El
I

)(
B−1
l

S−1
l

)(
I

−ET
l B
−1
l I

)
.

ä S−1
l needed→ Approximate as S−1

l ≈ C
−1
l +WlHlW

T
l

ä C−1
l needed→ if l == 2 get C2 ≈ L2L

T
2 ,

else set Al+1 = Cl & go to next level

C = A
l l+1

l l l l

T
S = C − E B E

−1

l

B

CE S
S

S

0

 0
0

 2
0

 C

B1

C
2

2

2L

B
1

1 1
1

1

E
T

1

T

E 2

T

Copper Mountain Conf. 03-31-2022 p. 124

Computing the low-rank correction

ä Let C = LLT and G = L−1(C − S)L−T

We have S = L(I −G)LT →

S−1 − C−1 = L−T
[
(I −G)−1 − I

]
L−1

= L−T
[
G(I −G)−1

]
L−1.

ä Use Lanczos algorithm to get a few of the largest eigenvalues of
G with associated eigenvectors:

[Wl,Σl] = eigs(C−1
l ET

l B
−1
l El, k)→

S−1
l − C

−1
l ≈WlHlW

T
l , with Hl = Σl(I − Σl)

−1.

ä Need to solve with Cl → exploit recursivity

Copper Mountain Conf. 03-31-2022 p. 125

Recent work: the GeMSLR package

ä Thanks: Tianshi Xu, Yuanzhe Xi, Ruipeng Li, Vasilis Kalantzis,
Geoffrey Dillon,

ä Extension to nonsymmetric case + full parrallel implementation

ä Generalized Multilevel Schur-complement, Low-Rank precondi-
tioner (GeMSLR)

ä Parallel code called GeMSLR developed in C++

ä Complex version available

ä Details skipped – Ruipeng will provide illustrations

Copper Mountain Conf. 03-31-2022 p. 126

Resources (url links are ‘clickable’)

ä PDF of ‘Iterative methods for sparse linear systems, 2nd Ed/’
https://www-users.cse.umn.edu/∼saad/IterMethBook 2ndEd.pdf

ä Links to software packages:
https://www-users.cse.umn.edu/∼saad/software/

ä There you will find (for example)
parGeMSLR

EVSL
pARMS

...

Copper Mountain Conf. 03-31-2022 p. 127

https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cse.umn.edu/~saad/software/
https://www-users.cse.umn.edu/~saad/software/ParGeMSLR/index.html
https://www-users.cse.umn.edu/~saad/software/EVSL/index.html
https://www-users.cse.umn.edu/~saad/software/pARMS/index.html

