UNIVERSITY
 OF Minnesota twin cities

Filtering techniques for eigenvalue problems Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Emory University - Math-CS colloquium Feb. 22, 2019

Background. Origins of Eigenvalue Problems

- Structural Engineering $[K \boldsymbol{K}=\boldsymbol{\lambda} \boldsymbol{M u}]$ (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
> Large eigenvalue problems in quantum chemistry use up biggest portion of the time in supercomputer centers

Background. New applications in data analytics

> Machine learning problems often require a (partial) Singular Value Decomposition -
$>$ Somewhat different issues in this case:

- Very large matrices, update the SVD
- Compute dominant singular values/vectors
- Many problems of approximating a matrix (or a tensor) by one of lower rank (Dimension reduction, ...)
$>$ But: Methods for computing SVD often based on those for standard eigenvalue problems

Background. The Problem (s)

> Standard eigenvalue problem:

$$
\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}
$$

Often: \boldsymbol{A} is symmetric real (or Hermitian complex)
$>$ Generalized problem $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{x} \quad$ Often: \boldsymbol{B} is symmetric positive definite, \boldsymbol{A} is symmetric or nonsymmetric
$>$ Quadratic problems: $\left(A+\lambda B+\lambda^{2} C\right) u=0$
Nonlinear

eigenvalue problems
(NEVP)

$>$ General form of NEVP $\quad A(\lambda) x=0$
> Nonlinear eigenvector problems:

$$
\left[A+\lambda B+F\left(u_{1}, u_{2}, \cdots, u_{k}\right)\right] u=0
$$

What to compute:

- A few $\boldsymbol{\lambda}_{i}$'s with smallest or largest real parts;
- All $\boldsymbol{\lambda}_{i}$'s in a certain region of \mathbb{C};
- A few of the dominant eigenvalues;
- All $\boldsymbol{\lambda}_{i}$'s (rare).

Large eigenvalue problems in applications

Some applications require the computation of a large number of eigenvalues and vectors of very large matrices.
$>$ Density Functional Theory in electronic structure calculations: 'ground states'
$>$ Excited states involve transitions and invariably lead to much more complex computations. \rightarrow Large matrices, *many* eigenpairs to compute

Computing earth normal modes (J. Shi \& M. V. De Hoop)

- FEM model leads to a generalized eigenvalue problem
- Compute (a large number of) eigenvalues in an interval
- More on this later

Background: The main tools

Projection process:

(a) Build a 'good' subspace $K=\operatorname{span}(V)$;
(b) get approximate eigenpairs by a Rayleigh-Ritz process:
$\tilde{\lambda}, \tilde{u} \in K$ satisfy: $(A-\tilde{\lambda} I) \tilde{u} \perp K \longrightarrow$

$$
V^{H}(A-\tilde{\lambda} I) V y=0
$$

$>\tilde{\boldsymbol{\lambda}}=$ Ritz value, $\tilde{\boldsymbol{u}}=\boldsymbol{V} \boldsymbol{y}=$ Ritz vector
$>$ Two common choices for K :

1) Power subspace $K=\operatorname{span}\left\{A^{k} X_{0}\right\}$; or $\operatorname{span}\left\{P_{k}(A) X_{0}\right\}$;
2) Krylov subspace $K=\operatorname{span}\left\{v, A v, \cdots, A^{k-1} v\right\}$

Background. The main tools (cont)

Shift-and-invert:

$>$ If we want eigenvalues near σ, replace A by $(A-\sigma I)^{-1}$.
Example: power method: $\boldsymbol{v}_{\boldsymbol{j}}=\boldsymbol{A} \boldsymbol{v}_{j-1} /$ scaling replaced by

$$
v_{j}=\frac{(A-\sigma I)^{-1} v_{j-1}}{\text { scaling }}
$$

$>$ Works well for computing a few eigenvalues near $\sigma /$
> Used in commercial package NASTRAN (for decades!)
$>$ Requires factoring $(A-\sigma I)$ (or $(A-\sigma B)$ in generalized case.) But convergence will be much faster.
> A solve each time - Factorization done once (ideally).

Background. The main tools (cont)

Deflation:

> Once eigenvectors converge remove them from the picture

Restarting Strategies :

> Restart projection process by using information gathered in previous steps
$>$ ALL available methods use some combination of these ingredients.
[e.g. ARPACK: Arnoldi/Lanczos + 'implicit restarts’ + shift-andinvert (option).]

Solving large eigenvalue problems: Current state-of-the art

$>$ Eigenvalues at one end of the spectrum:

- Subspace iteration + filtering [e.g. FEAST, Cheb,...]
- Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..), e.g., ARPACK code, PRIMME.
- Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]
- + Many others - more or less related to above
> 'Interior' eigenvalue problems (middle of spectrum):
- Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g., NASTRAN
- Rational filtering [FEAST, Sakurai et al.,..]

Solving large interior eigenvalue problems

Three broad approaches:

1. Shift-invert: $A \longrightarrow(A-\sigma I)^{-1}$
2. Polynomial filtering: $\boldsymbol{A} \longrightarrow p(A)$
3. Rational filtering: $A \rightarrow \sum \alpha_{i}\left(A-\sigma_{i} I\right)^{-1}$

Issues with shift-and invert (and related approaches)
$>$ Direct methods for the solves may be too expensive

- Why not use iterative methods?
> Iterative techniques often fail -
- Reason: Highly indefinite problems.

Filtering and "Spectrum Slicing"

> Context: very large number of eigenvalues to be computed
> Goal: compute spectrum by slices by applying filtering
> Apply Lanczos or Subspace iteration to problem:

$$
\phi(A) u=\mu u
$$

$\phi(t) \equiv$ a polynomial or rational function that enhances wanted eigenvalues

For each slice Do:
[get *all* eigenpairs in a slice] EndDo

Goal: Compute each slice independently from the others.

Rationale. Eigenvectors associated with different slices need not be orthogonalized against each other :

$>$ Can get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]
> Note: Orthogonalization + RR cost can be very high if we do not slice the spectrum

Illustration: All eigenvalues in [0, 1] of a 49^{3} Laplacean

Note:
This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case.

POLYNOMIAL FILTERS

Polynomial filtering

> Apply Lanczos or Subspace iteration to:

$$
M=\phi(A)
$$

where $\phi(t)$ is
a polynomial
$>$ Each matvec $y=A v$ is replaced by $y=\phi(A) v$
> Eigenvalues in high part of filter will be computed first
$>$ Old (forgotten) idea. But new context is *very* favorable

What polynomials?

> For end-intervals: use standard Chebyshev polynomials (1st kind)

Deg. 6 Cheb. polynom., damped interv=[0.2, 2]

Pol. of degree 32 approx $\delta(.5)$ in $[-111]$

Simplest technique: δ-Dirac function

$>$ Obtain the LS approximation to the δ - Dirac function - Centered at some point (TBD) inside the interval.

Three filters using different smoothing

Pol. of degree 32 approx $\delta(.5)$ in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$

\longleftarrow Can use same damping: Jackson, Lanczos σ damping, or none.

Theory

The Chebyshev expansion of δ_{γ} is

$$
\rho_{k}(t)=\sum_{j=0}^{k} \mu_{j} T_{j}(t) \text { with } \mu_{j}= \begin{cases}\frac{1}{2} & j=0 \\ \cos \left(j \cos ^{-1}(\gamma)\right) & j>0\end{cases}
$$

$>$ Recall: The delta Dirac function is not a function - we can't properly approximate it in least-squares sense. However:

Proposition Let $\hat{\rho}_{k}(t)$ be the polynomial that minimizes $\|r(t)\|_{w}$ over all polynomials r of degree $\leq k$, such that $r(\gamma)=1$, where $\|\cdot\|_{w}$ represents the Chebyshev L^{2}-norm.
Then $\hat{\rho}_{k}(t)=\rho_{k}(t) / \rho_{k}(\gamma)$.

'The soul of a new filter' - A few technical details

$$
\boldsymbol{p}_{\boldsymbol{m}}(\boldsymbol{t})=\sum_{j=0}^{m} \gamma_{j}^{(m)} \boldsymbol{\mu}_{j} \boldsymbol{T}_{j}(\boldsymbol{t})
$$

$$
\begin{aligned}
\mu_{k} & = \begin{cases}1 / 2 & \text { if } k==0 \\
\cos \left(k \cos ^{-1}(\gamma)\right) \text { otherwise }\end{cases} \\
\gamma_{j}^{(m)} & =\text { Damping coefficients. }
\end{aligned}
$$

> quite simple...
> .. provided we handle a few practical issues

Issue \# one: | 'balance the filter'

$>$ To facilitate the selection of 'wanted' eigenvalues [Select λ 's such that $\phi(\lambda)>$ bar] we need to ...
$>\ldots$ find γ so that $\phi(\xi)==\phi(\eta)$

Procedure: Solve the equation $\phi_{\gamma}(\xi)-\phi_{\gamma}(\eta)=0$ with respect to γ, accurately. Use Newton or eigenvalue formulation.

Issue \# two: | Determine degree \& polynomial (automatically)

>1) Start low (e.g. 2); 2) Increase degree until value (s) at the boundary (ies) become small enough -
$>$ Can also use criterion based on derivatives at $\xi \& \eta$

Issue \# Three : | Gibbs oscillations

$>$ Discontinuous 'function' approximated \rightarrow Gibbs oscillations
> Three options:

- No damping
- Jackson damping
- Lanczos σ damping

$>$ Good compromise: Lanczos σ damping

COMBINING FILTERING WITH A PROJECTION METHOD

Backround: The Lanczos Algorithm

$>$ Algorithm builds orthonormal basis $V_{m}=\left[v_{1}, v_{2}, \cdots, v_{m}\right]$ for the Krylov subspace: $\operatorname{span}\left\{v_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, A^{m-1} v_{1}\right\}$
$>$... such that:
$V_{m}^{H} A V_{m}=T_{m}$ - with

$$
\boldsymbol{T}_{m}=\left(\begin{array}{ccccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{2} & & & & \\
\boldsymbol{\beta}_{2} & \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{3} & & & \\
& \boldsymbol{\beta}_{3} & \boldsymbol{\alpha}_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \boldsymbol{\alpha}_{m}
\end{array}\right)
$$

> Note: three term recurrence:

$$
\boldsymbol{\beta}_{j+1} \boldsymbol{v}_{j+1}=\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{j}}-\boldsymbol{\alpha}_{j} \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}
$$

$>$ Eigenvalues of \boldsymbol{A} on both ends of spectrum are well approximated by eigenvalues of T_{m} (Ritz values).

Which Projection: Lanczos,w/o restarts, Subspace iteration,..

Options:

> Subspace iteration: quite appealing in some applications (e.g., electronic structure): Can re-use previous subspace.
> Simplest: (+ most efficient) Lanczos without restarts
> Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos et al '98, Wu \& Simon'00]
$>$ Crucial tool in TR Lanczos: deflation ('Locking')
Main idea: Keep extracting eigenvalues in interval $[\boldsymbol{\xi}, \boldsymbol{\eta}]$ until none are left.
> If filter is good: Can catch all eigenvalues in interval

Polynomial filtered Lanczos: No-Restart version

> Use Lanczos with full reorthogonalization on $\rho(A)$. Eigenvalues of $\rho(A)$: $\rho\left(\lambda_{i}\right)$
$>$ Accept if $\rho\left(\boldsymbol{\lambda}_{i}\right) \geq$ bar
$>$ Ignore if $\rho\left(\boldsymbol{\lambda}_{i}\right)<$ bar

How do I slice a spectrum?

$>$ Tools: Density of States (used in EVSL) or eigenvalue counts (used in FEAST)

- L. Lin, YS, Chao Yang [Siam review '16] - E. Di Napoli, E. Polizzi, YS ['16]
- KPM method - see, e.g., : [Weisse, Wellein, Alvermann, Fehske, '06]
- Interesting instance of a tool from physics used in linear algebra.
> Misconception: ‘load balancing will be assured by just having slices with roughly equal numbers of eigenvalues'
> In fact - will help mainly in balancing memory usage..

Slice spectrum into 8 with the DOS

$>$ We must have:

$$
\int_{t_{i}}^{t_{i+1}} \phi(t) d t=\frac{1}{n_{s l i c e s}} \int_{a}^{b} \phi(t) d t
$$

RATIONAL FILTERS

Why use rational filters?

> Consider a spectrum like this one:

> Polynomial filtering utterly ineffective for this case
> Second issue: situation when Matrix-vector products are expensive
> Generalized eigenvalue problems.
$>$ Alternative is to use rational filters:

$$
\phi(z)=\sum_{j} \frac{\alpha_{j}}{z-\sigma_{j}}
$$

$$
\phi(A)=\sum_{j} \alpha_{j}\left(A-\sigma_{j} I\right)^{-1}
$$

We now need to solve linear systems
> Tool: Cauchy integral representations of spectral projectors

$$
P=\frac{-1}{2 i \pi} \int_{\Gamma}(A-s I)^{-1} d s
$$

- Numer. integr. $\boldsymbol{P} \rightarrow \tilde{\boldsymbol{P}}$
- Use Krylov or S.I. on \tilde{P}
> Sakurai-Sugiura approach [Krylov]
> Polizzi [FEAST, Subsp. Iter.]

What makes a good filter

> Assume subspace iteration is used with above filters. Which filter will give better convergence?
> Simplest and best indicator of performance of a filter is the magnitude of its derivative at -1 (or 1)

The Gauss viewpoint: Least-squares rational filters

$>$ Given: poles $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}$
$>$ Related basis functions $\phi_{j}(z)=\frac{1}{z-\sigma_{j}}$
Find $\phi(z)=\sum_{j=1}^{p} \alpha_{j} \phi_{j}(z)$ that minimizes

$$
\int_{-\infty}^{\infty} w(t)|h(t)-\phi(t)|^{2} d t
$$

$>\boldsymbol{h}(\boldsymbol{t})=$ step function $\chi_{[-1,1]}$.
$>w(t)=$ weight function. For example $a=10$, $\beta=0.2$

$$
w(t)=\left\{\begin{array}{lll}
0 & \text { if } & |t|>a \\
\boldsymbol{\beta} \text { if } & |t| \leq 1 \\
1 & \text { else } &
\end{array}\right.
$$

How does this work?

$>$ Small example : Laplacean on a 43×53 grid. $(n=2279)$
>4 poles obtained from mid-point rule
$>$ Want: all $(\boldsymbol{n e v}=31)$ eigenvalues in $[0,0.2]$
$>$ Use 1) standard subspace iteration + Cauchy (FEAST) then
2) subspace iteration + LS Rat. Appox.

> LS Uses the same poles + same factorizations as Cauchy but
$>$... much faster as expected from a look at the curves of the functions
> Other advantages:

- Can select poles far away from real axis \rightarrow faster iterative solvers
- Very flexible - can be adapted to many situations
- Can repeat poles (!)
> Implemented in EVSL.. [Interfaced to UMFPACK as a solver]

Spectrum Slicing and the EVSL project

$>$ EVSL package now at version 1.1.x
> Uses polynomial and rational filtering: Each can be appealing in different situations.

Spectrum slicing: Invokes Kernel Polynomial Method or Lanczos quadrature to cut the overall interval containing the spectrum into small sub-intervals.

Levels of parallelism

The two main levels of parallelism in EVSL

gVSL Main Contributors (version 1.1.0+) \& Support

- Ruipeng Li

LLNL

- Yuanzhe Xi

Asst. Prof. Emory

- Luke Erlandson PhD Student, GTech.
> Work supported by NSF (past work: DOE)
> See web-site for details:
http://www-users.cs.umn.edu/~saad/software/EVSL/

EVSL: current status \& plans

Version _1.0 Released in Sept. 2016

- Matrices in CSR format (only)
- Standard Hermitian problems (no generalized)
- Spectrum slicing with KPM (Kernel Polynomial Meth.)
- Trivial parallelism across slices with OpenMP
- Methods:
- Non-restart Lanczos - polynomial \& rational filters
- Thick-Restart Lanczos - polynomial \& rational filters
- Subspace iteration - polynomial \& rational filters

Version _1.1.x \quad V_1.1.0 Released back in August 2017.

- general matvec [passed as function pointer]
- $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B x}$
- Fortran (03) interface.
- Spectrum slicing by Lanczos and KPM
- Efficient Spectrum slicing for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{x}$ (no solves with B).

Version_1.2.x pEVSL - In progress

- Fully parallel version [MPI + openMP]

Spectrum slicing and the EVSL package

- All eigenvalues in [0, 1] of of a 49^{3} discretized Laplacian
- eigs(A, 1971,'sa'): 14830.66 sec
- Solution: Use DOS to partition $[0,1]$ into 5 slices
- Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

[a_{i},a_{i+1}]{}	\# eigs	CPU time (sec)		max residual	
		matvec	orth.		
$[0.00000,0.37688]$	386	1.31	18.26	28.66	2.5×10^{-14}
$[0.37688,0.57428]$	401	3.28	38.25	56.75	8.7×10^{-13}
$[0.57428,0.73422]$	399	4.69	36.47	56.73	1.7×10^{-12}
$[0.73422,0.87389]$	400	5.97	38.60	61.40	6.6×10^{-12}
$[0.87389,1.00000]$	385	6.84	36.16	59.45	4.3×10^{-12}

$>$ Grand tot. $=263 \mathrm{~s}$. Time for slicing the spectrum: 1.22 sec .

Computing the Earth normal modes

- Collaborative effort: Rice-UMN:
J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop
- FEM model leads to a generalized eigenvalue problem:

$$
\left[\begin{array}{ccc}
\boldsymbol{A}_{s} & & \boldsymbol{E}_{f s} \\
& 0 & \boldsymbol{A}_{d} \\
\boldsymbol{E}_{f s}^{T} & \boldsymbol{A}_{d}^{T} & \boldsymbol{A}_{\boldsymbol{p}}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}^{s} \\
\boldsymbol{u}^{f} \\
\boldsymbol{p}^{e}
\end{array}\right]=\omega^{2}\left[\begin{array}{lll}
\boldsymbol{M}_{s} & & \\
& \boldsymbol{M}_{f} & \\
& &
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}^{s} \\
\boldsymbol{u}^{f} \\
\boldsymbol{p}^{e}
\end{array}\right]
$$

- Want all eigen-values/vectors inside a given interval
- Issue 1: 'mass' matrix has a large null space..
- Issue 2: interior eigenvalue problem
- Solution for 1: change formulation of matrix problem [eliminate p^{e}...]
$>$ New formulation :

$$
\begin{aligned}
& \underbrace{\left\{\left(\begin{array}{cc}
\boldsymbol{A}_{s} & 0 \\
0 & 0
\end{array}\right)-\binom{\boldsymbol{E}_{f s}}{\boldsymbol{A}_{d}} \boldsymbol{A}_{p}^{-1}\left(\begin{array}{ll}
\boldsymbol{E}_{f s}^{T} & \boldsymbol{A}_{d}^{T}
\end{array}\right)\right\}}_{\widehat{A}}\binom{\boldsymbol{u}^{s}}{\boldsymbol{u}^{f}}= \\
& \omega^{2} \underbrace{\left(\begin{array}{cc}
\boldsymbol{M}_{s} & 0 \\
0 & \boldsymbol{M}_{f}
\end{array}\right)}_{\widehat{M}}\binom{\boldsymbol{u}^{s}}{\boldsymbol{u}^{f}}
\end{aligned}
$$

> Use polynomial filtering - need to solve with \widehat{M} but ...

- ... severe scaling problems if direct solvers are used

Hence:
$>$ Replace action of M^{-1} by a low-deg. polynomial in M [to avoid direct solvers]
> Memory : parallel shift-invert and polynomial filtering Machine: Comet, SDSC

Matrix size	

Recent: weak calability test for different solid (Mars-like) models on TACC Stampede2

$\mathrm{nn} / \mathrm{np}$	Mat-size	$\boldsymbol{A} \boldsymbol{v}(m \mathrm{~s})$	\leftarrow Eff.	$\boldsymbol{M} \boldsymbol{v}(m \mathrm{~s})$	\leftarrow Eff.	$M^{-1} v(\mu \mathrm{~s})$	\leftarrow Eff.
$2 / 96$	$1,038,084$	1760	1.0	495	1.0	0.01044	1.0
$4 / 192$	$2,060,190$	1819	0.960	568	0.865	0.0119	0.870
$8 / 384$	$3,894,783$	1741	0.948	571	0.813	0.0119	0.825
$16 / 768$	$7,954,392$	1758	0.959	621	0.763	0.0129	0.774
$32 / 1536$	$15,809,076$	1660	1.009	572	0.824	0.0119	0.834
$64 / 3072$	$31,138,518$	1582	1.043	566	0.820	0.0117	0.837
$128 / 6144$	$61,381,362$	1435	1.133	546	0.838	0.0113	0.851
$256 / 12288$	$120,336,519$	1359	1.173	592	0.757	0.01221	0.774

Nonlinear eigenvalue problems

> Joint work work with A. Miedlar and M. Elguide

$$
T(z) u=0 \quad z \rightarrow T(z) \text { maps } \mathbb{C} \text { to } \mathbb{C}^{n \times n}
$$

> Classical (well-understood) case: Polynomial:

$$
T(z)=A_{0}+z A_{1}+\cdots+z^{p} A_{p}
$$

$>$ Often treated with linearization, e.g., when $p=2$ $\left(A_{0}+z A_{1}+z^{2} A_{2}\right) u=0 \rightarrow$ (among other forms)

$$
\left[\left(\begin{array}{cc}
0 & I \\
-A_{0} & -A_{1}
\end{array}\right)-z\left(\begin{array}{cc}
I & 0 \\
0 & A_{2}
\end{array}\right)\right]\binom{u}{z u}=0
$$

$>$ General case can be very different from linear case.

Restrict slightly the class of problems we consider:

$$
T(z)=-B_{0}+z A_{0}+f_{1}(z) A_{1}+\ldots+f_{p}(z) A_{p}
$$

$>$ Main assumption: each of the analytic functions $f_{j}: \Omega \rightarrow$
\mathbb{C} well approximated by a rational function.
$>$ Write (Cauchy integral representation of f_{j}):

$$
f_{j}(z)=-\frac{1}{2 i \pi} \int_{\Gamma} \frac{f_{j}(t)}{z-t} d t, \quad z \in \Omega .
$$

$>$ Then use numerical quadrature with quadrature points σ_{i} 's on contour $\Gamma \rightarrow$

$$
f_{j}(z) \approx r_{j}(z) \equiv \sum_{i=1}^{m} \frac{\alpha_{i j}}{z-\sigma_{i}} .
$$

> Consequence: $\boldsymbol{T}(\boldsymbol{z})$ approximated by

$$
\begin{gathered}
\widetilde{T}(z)=-B_{0}+z A_{0}+\sum_{j=1}^{p} \sum_{i=1}^{m} \frac{\alpha_{i j}}{z-\sigma_{i}} A_{j}=\ldots \\
\equiv-B_{0}+z A_{0}+\sum_{i=1}^{m} \frac{B_{i}}{z-\sigma_{i}}, \quad \text { where: } \\
B_{i}=\sum_{j=0}^{p} \alpha_{i j} A_{j}, \quad i=1, \ldots, m . \\
{\left[-B_{0}+z A_{0}+\sum_{i=1}^{m} \frac{B_{i}}{z-\sigma_{i}}\right] u=0}
\end{gathered}
$$

> 'Surrogate' for original problem $T(z) u=0$

Linearization

$$
v_{i}=\frac{u}{\sigma_{i}-z} \rightarrow \tilde{T}(z) u=\left(-B_{0}+z A_{0}\right) u-\sum_{i=1}^{m} B_{i} v_{i}
$$

$>\tilde{T}(\lambda) u=0 \quad$ iff
$\mathcal{A} \boldsymbol{w}=\lambda \mathcal{M} \boldsymbol{w} \quad$ where:
$\mathcal{M}=\left[\begin{array}{lllll}\boldsymbol{I} & & & & \\ & \boldsymbol{I} & & & \\ & & \ddots & & \\ & & \ddots & \\ & & & & A_{0}\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{ccccc}\sigma_{1} I & & & & -\boldsymbol{I} \\ & \sigma_{2} I & & & -\boldsymbol{I} \\ & & \ddots & & \vdots \\ & & & \sigma_{m} \boldsymbol{I} & -\boldsymbol{I} \\ B_{1} & B_{2} & \ldots & B_{m} & B_{0}\end{array}\right]$.
$>$ Eigenvalue problem of size $n(m+1)$
$>$ Special form: matrix need not be stored explicitly.

Approaches

1. Can use a shift-and-invert Arnlodi on whole system [Pb: memory when $m \gg 1$]
> Block structure exploited.
2. Can use a shift-and-invert Subspace iteration [memory: similar pb.]
> Advantages: Less memory, 'one-shot-method' can be very efficient (memory)
3. Add restart to 2 but work only with vectors of length \boldsymbol{n}.

Reduced Subspace Iteration: (Case when $\mathcal{M}=I$)

1. While Convergence not yet reached
2. For $j=1: \nu$
3. Select $\boldsymbol{w}=[\boldsymbol{v} ; \boldsymbol{u}] \quad$ / See below
4. Do q steps of inverse iteration: $w:=(\mathcal{A}-\sigma I)^{-1} w$
5. If $\boldsymbol{w}=[\boldsymbol{v} ; \boldsymbol{u}] \equiv$ last iterate, set $\boldsymbol{U}(:, \boldsymbol{j})=\boldsymbol{u}$
6. EndFor
7. Use \boldsymbol{U} to perform Rayleigh-Ritz procedure
8. EndWhile

Step 2: (1) Very first outer loop: take random vectors.
(2) Other outer iterations: If $(\boldsymbol{\lambda}, \boldsymbol{u})$ is an eigenpair from step 7 , define v-part as $v_{i}=u /\left(\sigma_{i}-\lambda\right)$ - then:

$$
\boldsymbol{w}=\left[\boldsymbol{v}_{1} ; \boldsymbol{v}_{2} ; \cdots ; \boldsymbol{v}_{m} ; \boldsymbol{u}\right] \quad \text { (Matlab notation) }
$$

Accuracy of computed eigenvalues

Proposition Let us assume that $\left\|f_{j}(z)-r_{j}(z)\right\|_{\Omega_{1}} \leq \varepsilon$ for $j=1, \cdots, p$ and let $(\widetilde{\lambda}, \widetilde{u})$ be an exact eigenpair of the surrogate problem with $\widetilde{\lambda}$ located inside Ω_{1} and $\|\widetilde{u}\|=1$ for a certain vector norm $\|\cdot\|$. Let $\mu=\sum_{j=1}^{p}\left\|\boldsymbol{A}_{j}\right\|$. Then,

$$
\|T(\widetilde{\lambda}) \widetilde{u}\| \leq \mu \varepsilon
$$

Proposition Let us assume that $\left\|f_{j}(z)-r_{j}(z)\right\|_{\Omega_{1}} \leq \epsilon$ for $j=1, \cdots, p$ and let (λ, u) be an exact eigenpair for $T(z)$ with λ located inside Ω_{1} and $\|u\|=1$. Then, (λ, u) is an approximate eigenpair of the surrogate problem, i.e.,

$$
\|\widetilde{T}(\lambda) u\| \leq \mu \varepsilon
$$

where μ is defined above.

The halo of extraneous eigenvalues

> Observed behavior: many 'extraneous’ or 'spurious’ eigenvalues congregate around the contour of integration..

Example: $T(z)=-B_{0}+\lambda A_{0}+\lambda^{2} A_{2}$ where [Matlab] ($\mathrm{n}=4$)

```
B0=-2*eye(n)+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1);
A0=eye(n);
A2=0.5*(n*eye(n)-eye(n,1)*ones(1,n)-ones(n,1)*eye(1,n));
```

> Spectrum inside rectangle with bottom-left and top-right corners $(-1,-1.5 i),(0,1.5 i)$
$>$ Use this for integration contour.

Left: The 8 eigenvalues of original problem (circle); the 4 eigenvalues of the linear part (square); contour and quadrature points along it.

Right: Eigenvalues computed with $m=20$ quadrature points (plus) along with contour, original eigenvalues (circle), and eigenvalues of linear part (square).

Using a total of $m=32$ quadrature points (left) and $m=60$ quadrature points (right).
(i) Spectrum of Linear part outside contour APPROXIMATED
(ii) Spectrum of Linear part inside contour IGNORED
(iii) Spectrum of $T(z)$ inside contour APPROXIMATED
(iv) Other eigenvalues populate the contour

Example

Hadeler problem of dimension $n=200$:

$$
\begin{aligned}
T(\lambda) & =\left(e^{\lambda}-1\right) B_{1}+\lambda^{2} B_{2}-B_{0} \quad \text { with: } \\
B_{0} & =b_{0} I, \quad b_{0}=100 \\
b_{j k}^{(1)} & =(n+1-\max (j, k)) j k \\
b_{j k}^{(2)} & =n \delta_{j k}+1 /(j+k)
\end{aligned}
$$

Eigenvalues of Hadeler Pb. inside a circle of radius $r=10$ and center $c=$ -30 obtained by the reduced subspace iteration ('+'), and by Beyn's method ('O'). Quadrature: GaussLegendre with 50 points.
> Current work: Helmholtz equation (in 3-D):

$$
\Delta u+k^{2} u=0 \quad+B . C .
$$

Using the Boundary Element Method (BEM) produces a nonlinear eigenvalue problem.

Conclusion

$>$ EVSL code available here: [Current version: version 1.1.1]
www. cs.umn. edu/~saad/software/EVSL
$>$ EVSL Also on github (development)
Plans: (1) Release fully parallel code; (2) Block versions;
(3) Iterative solvers for rational filt.; (4) Nonhermitian case;
> Earth modes calculations done with fully parallel code
> Scalability issues with parallel direct solvers ...
> ... Needed: iterative solvers for the highly indefinite case
> Frontier in eigenvalue problem: Nonlinear case

