Computing the diagonal of the inverse of a sparse matrix

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

“Sparse Days”, Toulouse, June 15, 2010
Motivation: DMFT

‘Dynamic Mean Field Theory’ - quantum mechanical studies of highly correlated particles

Equation to be solved (repeatedly) is Dyson’s equation

\[
G(\omega) = [(\omega + \mu)I - V - \Sigma(\omega) + T]^{-1}
\]

- \(\omega\) (frequency) and \(\mu\) (chemical potential) are real
- \(V\) = trap potential = real diagonal
- \(\Sigma(\omega)\) = local self-energy - a complex diagonal
- \(T\) is the hopping matrix (sparse real).
Interested only in diagonal of $G(\omega)$ – in addition, equation must be solved self-consistently and ...

... must do this for many ω’s

Related approach: Non Equilibrium Green’s Function (NEGF) approach used to model nanoscale transistors.

Many new applications of diagonal of inverse [and related problems.]

A few examples to follow
Problem 1: Compute $\text{Tr}[\text{inv}[A]]$ the trace of the inverse.

- Arises in cross validation:
 \[
 \frac{\| (I - A(\theta)) g \|_2}{\text{Tr}(I - A(\theta))}
 \]
 with
 \[
 A(\theta) \equiv I - D(D^T D + \theta LL^T)^{-1} D^T,
 \]
 D == blurring operator and L is the regularization operator.

- In [Hutchinson '90] $\text{Tr}[\text{Inv}[A]]$ is stochastically estimated.

- Many authors addressed this problem.
Problem 2: Compute $\text{Tr} \ [f(A)]$, f a certain function that arises in many applications in Physics. Example:

- Stochastic estimations of $\text{Tr} \ (f(A))$ extensively used by quantum chemists to estimate Density of States, see

Problem 3: Compute $\text{diag}[\text{inv}(A)]$ the diagonal of the inverse

- Arises in Dynamic Mean Field Theory [DMFT, motivation for this work].

In DMFT, we seek the diagonal of a “Green’s function” which solves (self-consistently) Dyson’s equation. [see J. Freericks 2005]

- Related approach: Non Equilibrium Green’s Function (NEGF) approach used to model nanoscale transistors.

- In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
Problem 4: Compute $\text{diag}[f(A)]$; $f = \text{a certain function}$.

- Arises in any density matrix approach in quantum modeling - for example Density Functional Theory.

- Here, $f = \text{Fermi-Dirac operator}$:

$$f(\epsilon) = \frac{1}{1 + \exp(\frac{\epsilon - \mu}{k_B T})}$$

Note: when $T \to 0$ then f becomes a step function.

Note: if f is approximated by a rational function then $\text{diag}[f(A)] \approx \text{a lin. combinaiton of terms like } \text{diag}[(A - \sigma_i I)^{-1}]$

- Linear-Scaling methods based on approximating $f(H)$ and $\text{Diag}(f(H))$ – avoid ‘diagonalization’ of H
Methods based on the sparse L U factorization

- Basic reference:

- Described in [Duff, Erisman, Reid, p. 273]

- Algorithm used by Erisman and Tinney [Num. Math. 1975]
Main idea. If $A = LDU$ and $B = A^{-1}$ then

$$B = U^{-1}D^{-1} + B(I - L); \quad B = D^{-1}L^{-1} + (I - U)B.$$

Not all entries are needed to compute selected entries of B.

For example: Consider lower part, $i > j$; use first equation:

$$b_{ij} = (B(I - L))_{ij} = - \sum_{k>j} b_{ik}l_{kj}$$

Need entries b_{ik} of row i where $L_{kj} \neq 0$, $k > j$.

“Entries of B belonging to the pattern of $(L, U)^T$ can be extracted without computing any other entries outside the pattern.”

An algorithm based on a form of nested dissection is described in Li, Ahmed, Glimeck, Darve [2008]

Difficulty: 3-D problems.
Stochastic Estimator

- $A =$ original matrix, $B = A^{-1}$.
- $\delta(B) = \text{diag}(B)$ [matlab notation]
- $\mathcal{D}(B) =$ diagonal matrix with diagonal $\delta(B)$
- \odot and \oslash: Elementwise multiplication and division of vectors
- $\{v_j\}$: Sequence of s random vectors

Result:

$$\delta(B) \approx \left[\sum_{j=1}^{s} v_j \odot Bv_j \right] \oslash \left[\sum_{j=1}^{s} v_j \odot v_j \right]$$

Refs: C. Bekas, E. Kokiopoulou & YS ('05), Recent: C. Bekas, A. Curioni, I. Fedulova '09.
Let $V_s = [v_1, v_2, \ldots, v_s]$. Then, alternative expression:

$$
\mathcal{D}(B) \approx \mathcal{D}(BV_sV_s^\top)\mathcal{D}^{-1}(V_sV_s^\top)
$$

Question: When is this result exact?

Main Proposition

- Let $V_s \in \mathbb{R}^{n \times s}$ with rows $\{v_j,;\}$; and $B \in \mathbb{C}^{n \times n}$ with elements $\{b_{jk}\}$
- Assume that: $\langle v_j,; , v_k,; \rangle = 0$, $\forall j \neq k$, s.t. $b_{jk} \neq 0$

Then:

$$
\mathcal{D}(B) = \mathcal{D}(BV_sV_s^\top)\mathcal{D}^{-1}(V_sV_s^\top)
$$

Approximation to b_{ij} exact when rows i and j of V_s are \perp
Idea from information theory: Hadamard matrices

Consider the matrix V – want the rows to be as ‘orthogonal as possible among each other’, i.e., want to minimize

$$E_{rms} = \frac{\|I - VV^T\|_F}{\sqrt{n(n-1)}} \quad \text{or} \quad E_{max} = \max_{i \neq j} |VV^T|_{ij}$$

Problems that arise in coding: find code book [rows of V = code words] to minimize 'cross-correlation amplitude'

Welch bounds:

$$E_{rms} \geq \sqrt{\frac{n-s}{(n-1)s}} \quad E_{max} \geq \sqrt{\frac{n-s}{(n-1)s}}$$

Result: \exists a sequence of s vectors v_k with binary entries which achieve the first Welch bound if $s = 2$ or $s = 4k$.
Hadamard matrices are a special class: $n \times n$ matrices with entries ± 1 and such that $HH^\top = nI$.

Examples:

\[
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix}.
\]

Achieve both Welch bounds

Can build larger Hadamard matrices recursively:

Given two Hadamard matrices H_1 and H_2, the Kronecker product $H_1 \otimes H_2$ is a Hadamard matrix.

Too expensive to use the whole matrix of size n

Can use $V_s = \text{matrix of } s \text{ first columns of } H_n$
Pattern of $V_s V_s^\top$, for $s = 32$ and $s = 64$.
A Lanczos approach

Given a Hermitian matrix A - generate Lanczos vectors via:

$$\beta_{i+1} q_{i+1} = A q_i - \alpha_i q_i - \beta_i q_{i-1}$$

α_i, β_{i+1} selected s.t. $\|q_{i+1}\|_2 = 1$ and $q_{i+1} \perp q_i, q_{i+1} \perp q_{i-1}$

Result:

$$AQ_m = Q_m T_m + \beta_{m+1} q_{m+1} e_m^\top,$$

When $m = n$ then $A = Q_n T_n Q_n^\top$ and $A^{-1} = Q_n T_n^{-1} Q_n^\top$.

For $m < n$ use the approximation: $A^{-1} \approx Q_m T_m^{-1} Q_m^\top \rightarrow$

$$\mathcal{D}(A^{-1}) \approx \mathcal{D}[Q_m T_m^{-1} Q_m^\top]$$
ALGORITHM : 1 \(\text{diagInv via Lanczos} \)

For \(j = 1, 2, \cdots \), Do:

\[
\beta_{j+1} q_{j+1} = A q_j - \alpha_j q_j - \beta_j q_{j-1} \quad \text{[Lanczos step]}
\]

\[
p_j := q_j - \eta_j p_{j-1}
\]

\[
\delta_j := \alpha_j - \beta_j \eta_j
\]

\[
d_j := d_{j-1} + \frac{p_j \circ p_j}{\delta_j} \quad \text{[Update of diag(inv(A))]}
\]

\[
\eta_{j+1} := \frac{\beta_{j+1}}{\delta_j}
\]

EndDo

- \(d_k \) (a vector) will converge to the diagonal of \(A^{-1} \)
- Limitation: Often requires all \(n \) steps to converge
- One advantage: Lanczos is shift invariant – so can use this for many \(\omega \)'s
- Potential: Use as a direct method - exploiting sparsity
Goal: Find V_s such that (1) s is small and (2) V_s satisfies Proposition (rows i & j orthogonal for any nonzero b_{ij})

Difficulty: Can work only for sparse matrices but $B = A^{-1}$ is usually dense

- B can sometimes be approximated by a sparse matrix.

- Consider for some ϵ: $$(B_\epsilon)_{ij} = \begin{cases} b_{ij}, & |b_{ij}| > \epsilon \\ 0, & |b_{ij}| \leq \epsilon \end{cases}$$

- B_ϵ will be sparse under certain conditions, e.g., when A is diagonally dominant

- In what follows we assume B_ϵ is sparse and set $B := B_\epsilon$.

- Pattern will be required by standard probing methods.
Generic Probing Algorithm

ALGORITHM : 2. Probing

Input: A, s

Output: Matrix \(D(B) \)

Determine \(V_s := [v_1, v_2, \ldots, v_s] \)

for \(j \leftarrow 1 \) *to* \(s \)*

Solve \(Ax_j = v_j \)

end

Construct \(X_s := [x_1, x_2, \ldots, x_s] \)

Compute \(D(B) := D(X_s V_s^\top) D^{-1}(V_s V_s^\top) \)

Note: rows of \(V_s \) *are typically scaled to have unit 2-norm =1., so* \(D^{-1}(V_s V_s^\top) = I. \)
Standard probing (e.g. to compute a Jacobian)

» Several names for same method: “probing”; “CPR”, “Sparse Jacobian estimators”,

Basis of the method: can compute Jacobian if a coloring of the columns is known so that no two columns of the same color overlap.

All entries of same color can be computed with one matvec.

Example: For all blue entries multiply B by the blue vector on right.
What about \(\text{Diag}(\text{inv}(A)) \)?

- Define \(v_i \) - probing vector associated with color \(i \):

 \[
 [v_i]_k = \begin{cases}
 1 & \text{if } \text{color}(k) == i \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Standard probing satisfies requirement of Proposition but...

- ... this coloring is not what is needed! [It is an overkill]

Alternative:

- Color the graph of \(B \) in the standard graph coloring algorithm [Adjacency graph, not graph of column-overlaps]

Result: Graph coloring yields a valid set of probing vectors for \(\mathcal{D}(B) \).
Proof:

- Column v_c: one for each node i whose color is c, zero elsewhere.

- Row i of V_s: has a '1' in column c, where $c = \text{color}(i)$, zero elsewhere.

- If $b_{ij} \neq 0$ then in matrix V_s:
 - i-th row has a '1' in column $\text{color}(i)$, '0' elsewhere.
 - j-th row has a '1' in column $\text{color}(j)$, '0' elsewhere.

- The 2 rows are orthogonal.
Example:

- Two colors required for this graph → two probing vectors
- Standard method: 6 colors [graph of $B^T B$]
Recall that we are dealing with $B := B_\epsilon$ (‘pruned’ B)

Assume A diagonally dominant

Write $A = D - E$, with $D = D(A)$. Then:

$$A = D(I - F) \quad \text{with} \quad F \equiv D^{-1}E \quad \Rightarrow$$

$$A^{-1} \approx \left(I + F + F^2 + \cdots + F^k \right) D^{-1}$$

When A is D.D. $\|F^k\|$ decreases rapidly.

Can approximate pattern of B by that of $B^{(k)}$ for some k.

Interpretation in terms of paths of length k in graph of A.

"Next Issue: Guessing the pattern of $B"
Q: How to select \(k \)?

A: Inspect \(A^{-1}e_j \) for some \(j \)

- Values of solution outside pattern of \((A^k e_j) \) should be small.
- If during calculations we get larger than expected errors – then redo with larger \(k \), more colors, etc..
- Can we salvage what was done? Question still open.
Preliminary experiments

Problem Setup

- **DMFT**: Calculate the imaginary time Green's function
- **DMFT Parameters**: Set of physical parameters is provided
- **DMFT loop**: At most 10 outer iterations, each consisting of 62 inner iterations
- **Each inner iteration**: Find $\mathcal{D}(B)$
- **Each inner iteration**: Find $\mathcal{D}(B)$
- **Matrix**: Based on a five-point stencil with $a_{jj} = \mu + i\omega - V - s(j)$

Probing Setup

- **Probing tolerance**: $\epsilon = 10^{-10}$
- **GMRES tolerance**: $\delta = 10^{-12}$

Sparse Days 06/15/2010
Results

CPU times (sec) for one inner iteration of DMFT.

<table>
<thead>
<tr>
<th>n →</th>
<th>21^2</th>
<th>41^2</th>
<th>61^2</th>
<th>81^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAPACK</td>
<td>0.5</td>
<td>26</td>
<td>282</td>
<td>>1000</td>
</tr>
<tr>
<td>Lanczos</td>
<td>0.2</td>
<td>9.9</td>
<td>115</td>
<td>838</td>
</tr>
<tr>
<td>Probing</td>
<td>0.02</td>
<td>0.19</td>
<td>0.79</td>
<td>2.0</td>
</tr>
</tbody>
</table>

A few statistics for case $n = 81$
Challenge: The indefinite case

- The DMFT code deals with a separate case which uses a “real axis” sampling.
- Matrix A is no longer diagonally dominant – Far from it.
- This is a much more challenging case.
- One option: solve $Ax_j = e_j$ FOR ALL j’s - with the ARMS solver using ddPQ ordering + exploit multiple right-hand sides.
- More appealing: DD-type approaches.
Divided & Conquer approach

Let \(A \) == a 5-point matrix (2-D problem) split roughly in two:

\[
A = \begin{pmatrix}
A_1 & -I & & \cdots & & -I \\
-I & A_2 & -I & \cdots & \cdots & \cdots \\
& \cdots & \cdots & \cdots & \cdots & \cdots \\
& \cdots & -I & A_k & -I \\
& \cdots & \cdots & -I & A_{k+1} & -I \\
& \cdots & \cdots & \cdots & -I & A_{n_y-1} & -I \\
& \cdots & \cdots & \cdots & \cdots & -I & A_{n_y}
\end{pmatrix}
\]

where \(\{A_j\} \) = tridiag. Write:

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \\ A_{22} \end{pmatrix} + \begin{pmatrix} A_{12} \\ A_{21} \end{pmatrix},
\]

with \(A_{11} \in \mathbb{C}^{m \times m} \) and \(A_{22} \in \mathbb{C}^{(n-m) \times (n-m)} \).
Observation:

\[A = \begin{pmatrix} A_{11} + E_1 E_1^T \\ A_{22} + E_2 E_2^T \end{pmatrix} - \begin{pmatrix} E_1 E_1^T & E_1 E_2^T \\ E_2 E_1^T & E_2 E_2^T \end{pmatrix}. \]

where \(E_1, E_2 \) are (relatively) small rank matrices:

\[E_1 := \begin{pmatrix} I \\ I \end{pmatrix} \in \mathbb{C}^{m \times n}, \quad E_2 := \begin{pmatrix} I \end{pmatrix} \in \mathbb{C}^{(n-m) \times n}, \]

Of the form

\[A = C - E E^T, \quad C := \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \quad E := \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \]

\[A^{-1} = C^{-1} + UG^{-1}U^T, \quad \text{with:} \]
\[U = C^{-1}E \in \mathbb{C}^{n \times n_x} \quad G = I_{n_x} - E^T U \in \mathbb{C}^{n_x \times n_x}, \]

\[\mathcal{D}(A^{-1}) \] can be found from
\[\mathcal{D}(A^{-1}) = \left(\mathcal{D}(C_1^{-1}) \right) \underbrace{\mathcal{D}(C_2^{-1})}_{\text{recursion}} + \mathcal{D}(UG^{-1}U^T). \]

- **U**: solve \(CU = E \), or \(\begin{cases} C_1 U_1 = E_1, \\ C_2 U_2 = E_2 \end{cases} \) \text{Solve iteratively}

- **G**: \(G = I_{n_x} - E^T U = I_{n_x} - E_1^T U_1 - E_2^T U_2 \)
Domain Decomposition approach

Domain decomposition with $p = 3$ subdomains

Under usual ordering [interior points then interface points]:

$$A = \begin{pmatrix} B_1 & B_2 & \ldots & F_1 \\ \vdots & \ddots & \vdots & \vdots \\ F_1^T & F_2^T & \ldots & F_p^T \end{pmatrix} \equiv \begin{pmatrix} B & F \\ F^T & C \end{pmatrix},$$
Example of matrix A based on a DDM ordering with $p = 4$ subdomains. ($n = 25^2$)

Inverse of A [Assuming both B and S nonsingular]

$$A^{-1} = \begin{pmatrix}
B^{-1} + B^{-1}FS^{-1}F^TB^{-1} - B^{-1}FS^{-1} \\
-S^{-1}F^TB^{-1}
\end{pmatrix}
\begin{pmatrix} S^{-1} & \\
S^{-1} & S^{-1}
\end{pmatrix}$$

$$S = C - F^TB^{-1}F,$$
\[\mathcal{D}(A^{-1}) = \begin{pmatrix} \mathcal{D}(B^{-1}) + \mathcal{D}(B^{-1}FS^{-1}F^T B^{-1}) & \mathcal{D}(S^{-1}) \\ \mathcal{D}(S^{-1}) & \mathcal{D}(S^{-1}) \end{pmatrix} \]

- Note: each diagonal block decouples from others:

Inverse of \(A \) in \(i \)-th block (domain)

\[(A^{-1})_{ii} = \mathcal{D}(B_i^{-1}) + \mathcal{D}(H_iS^{-1}H_i^T)\]

\[H_i = B_i^{-1}F_i\]

- Note: only nonzero columns of \(F_i \) are those related to interface vertices.

- Approach similar to Divide and Conquer but not recursive..
DMFT experiment

Times (in seconds) for direct inversion (INV), divide-and-conquer (D&C), and domain decomposition (DD) methods.

- $p = 4$ subd. for DD
- Various sizes - 2-D problems
- Times: seconds in matlab

<table>
<thead>
<tr>
<th>\sqrt{n}</th>
<th>INV</th>
<th>D&C</th>
<th>DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>.3</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>51</td>
<td>12</td>
<td>1.4</td>
<td>.7</td>
</tr>
<tr>
<td>81</td>
<td>88</td>
<td>7.1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

NOTE: work still in progress
Conclusion

- Dom. Dec. methods can be a bridge between the two cases
- Approach [specifically for DMFT problem] :
 - Use direct methods in strongly Diag. Dom. case
 - Use DD-type methods in nearly Diag. Dom. case
 - Use direct methods in all other cases [until we find better means :-)]