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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

» Survey of the state of the art linear algebra at that time: di-
rect methods, iterative methods, conditioning, preconditioning,
The Conjugate Gradient method, acceleration methods, ....

» An amazing paper in which the author was urging researchers
to start looking at solving linear systems
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

» Survey of the state of the art linear algebra at that time: di-
rect methods, iterative methods, conditioning, preconditioning,
The Conjugate Gradient method, acceleration methods, ....

» An amazing paper in which the author was urging researchers
to start looking at solving linear systems

» 66 years later — we can certainly state that:

“Linear Algebra problems in Machine Learn-
Ing can be interesting”
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Focus of numerical linear algebra changed many times over
the years

» This is because linear algebra is a key tool when solving
challenging new problems in various disciplines

1940s—1950s: Major issue: the flutter problem in aerospace
engineering — eigenvalue problem [cf. Olga Taussky Todd]

» Then came the discoveries of the LR and QR algorithms.
The package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
would call today general sparse matrix techniques

Late 1980s: Thrust on parallel matrix computations.

Late 1990s: Spur of interest in “financial computing”
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Solution of PDEs (e.g., Fluid Dynamics) and problems in me-
chanical eng. (e.g. structures) major force behind numerical
linear algebra algorithms in the past few decades.

» Strong new forces are now reshaping the field today: Appli-
cations related to the use of “data”

» Machine learning is appearing in unexpected places:
e design of materials
e machine learning in geophysics
e self-driving cars, ..
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Big impact on the economy

» New economy driven by Google,
Facebook, Netflix, Amazon, Twitter,
Ali-Baba, Tencent, ..., and even the
big department stores (Walmart, ...)

» Huge impact on Jobs
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Big impact on the economy

» New economy driven by Google,
Facebook, Netflix, Amazon, Twitter,
Ali-Baba, Tencent, ..., and even the
big department stores (Walmart, ...)
» Huge impact on Jobs

» In contrast: Old economy [driven
by Boeing, GM, Ford, Mining industry,
US Steel, Aerospatiale, ...] does not
have as much to offer...

» Look at what you are doing under new lenses: DATA
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Graph Preconditioning
[—A u= f] Partitioning

[Model reduction] AX=\A X | Domain
Declomposition

H2 / HSS matrices _
LARGE SYSTEMS Sparse matrices
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Impact on what we teach...

» My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]

... Has changed substantially in past 2—4 years

Before:

—PDEs, solving linear systems, Sparse direct solvers, lterative
methods, Krylov methods, Preconditioners, Multigrid, ..
—

Now:

— a little of sparse direct methods + Applications of graphs,
dimension reduction, Krylov methods.. Examples in: PCA, In-
formation retrieval, Segmentation, Clustering, ...
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Graph Laplaceans - Definition

» “Laplace-type” matri- i T
ces associated with gen- — [ = ?
eral undirected graphs —

» Given a graph G = (V, E) define

e A matrix W of weights w;; for each edge with:
Wi 4 > O, W;; = O, and W;j = Wy \V/(’I,, ])

e The diagonal matrix ' D = diag(d;) with d; = 5., w;;

» Corresponding graph Laplacean of G is:

L=D-W
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» (Gershgorin’s theorem — L is positive semidefinite.
» One eigenvalue equal to zero

» Simplest case:
wij:{llf(z,])EE&:z#J di = w;

0 else —
JF#1
Example: | Consider the graph
1 . (1 -1 0 0 0)
° —1 2 0 0 -1
L = O 0 1 0 -1
O 0 0 1 -1

\0 -1-1-1 3 |

N )
we
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Bsic results on graph Laplaceans

Proposition:

(1) L is symmetric semi-positive definite.

(i) L is singular with 1 as a null vector.

(iii) If G is connected, then Null(L) = span{ 1}

(iv) If G has k > 1 connected components G, Go, - - - , G,
then the nullity of L is k and Null(L) is spanned by the
vectors z9), j =1, ..., k defined by:

: 1ifz € G;
(7). — J
(27)i = {O if not.
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A few properties of graph Laplaceans

Define: oriented incidence maitrix H: (1)First orient the
edges ¢ ~ jinto+r — j3o0orj3 — 2. (2 Rows of H
indexed by vertices of G. Columns indexed by edges. (3)
For each (z,7) in E, define the corresponding column in H

as \/w(i,j)(ei — €;).

Example: |In previous ex- ( 1 0 0 O \
ample, orient ¢ — j soO —1 1 0 O
that 3 > < [lower triangular H=|0 0 1 o0
matrix representation]. O 0 0 1
Then matrix H is: — \ 0 —1 —1 —1)

Property 1 |L = HHT

Rabat Apr. 6, 2019 o. 15



A few properties of graph Laplaceans

Strong relation between x!'Lx and
local distances between entries of x

» Let L = any graph Laplacean

Then:
Property 2: forany x € R™:

—|— — o o . . 2
x' Lx = E w;j|T; — ;
J>1
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Property 3: (generalization) forany Y € R2*x" .

TIYLY '] =) willyi — y;l°
i>i

» Note: y; = g-th colunm of Y. Usually d < m. Each column
can represent a data sample.
Property 4: For the particular L =1 — =117

XLX'" = XX " == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 —=ones (n, 1)
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Property 6: (Graph partitioning) Consider situation when w;; €
{0, 1}. If x is a vector of signs (£1) then

x' Lr = 4 X (‘number of edge cuts’)

... where edge-cut = pair (2, 5) with x; # x;

» (Consequence: Can be used
to partition graphs....

» ..by minimizing (Lx,x) subjectto x € {—1,1}" and
12 = 0 [balanced sets]
: (Lz, )
Imin

ze{—1,1}7 1Tz=0 (x,T)

» This problem is hard [combinatorial] —
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» Instead we solve a relaxed form of this problem :

; (L, x)
min

. (Lz, )
N min
xe{—1,1}7; 'ﬂTwzﬂ (CB, JI)

rER"™; 'ﬂTsz (CB, w)

» Define v = uy then lab = sign(v — med(v))
Background:

» (Consider any symmetric (real) matrix A with eigenvalues
A< A < ... < A, and eigenvectors uq, s - ¢ 5 Uy

» Recall that: . (Az,xz)
1min

(Min reached for = = u,) zeR" (x,x)

1



e A :
» |n addition: min( T, T) — X

(Min reached for & = wu») zlui (x, @)

» For a graph Laplacean u; = 1 = vector of all ones and

» ..vector u, Is called the Fiedler vector. It solves the relaxed
optimization problem -
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2
based on Fielder vector

3 Partition largest sub-
graph in two recursively ...

4 .. Until the de-
sired number of partitions is
reached

Rabat Apr. 6, 2019
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» Problem: we are given n data items: xi, X2, , x,.
Would like to ‘cluster’ them, i.e., group them so that each group
or cluster contains items that are similar in some sense.

» Example: materials » Example: Digits
Superhard Photovoltaic PCA - digits : 5 — 7
Superconductors
O% Ferromagnetic

a0

3F : . o
1’; : :.: .. o0 " .. :.'.
o . . * o, . . .’.'. :
* . o o

=1 o % ° *

Q Q | | 003, °

° )
-3t cod °
. 0 ©
Catalytic °

N . . -4r 003 o * 6
Multi-ferroics Thermo-electric o ° .

~
oL

» Refer to each group as a ‘cluster’ or a ‘class’

» ‘Unsupervised learning’ : Methods do not exploit labeled
data
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Example: Community Detection

» Communities modeled by an ‘affinity’ graph [e.g., 'user A
sends frequent e-mails to user B’]
» Adjacency Graph represented by a sparse matrix

S IR RS matrix
S e ¥ [Goalt Find
'.,_:, :.-;'.,:. :_'I-..;.: °'..:,~l.;.-.“.,!l§'?: ..::ﬁ: Ordering SO

7.'. ..‘.'5:'.' ..l!....‘ ®o @ %y 4% 0 c.: ..:l". {

I .;.is: ..‘:'.;i ;:."::.;.:-o::}:° .;.:._‘:;.;E zi’.:::.’i bIOCkS are
.: : f -..".:.:'"'.t" :‘.‘ -.": l:'ft:: ::.-’ % t::.

o ::..l.. .:u#" ° .-..o :. ?:‘..'.:'. ‘.'....1‘.}.'.':.:?: ..; aS de nse aS
TR MR yoa I ..,3.}.':.3.,.&.:, e .

:{o:.'.o’ y .‘“o' ."-':ﬁ'. g.. -.o‘o o°... ...;
HapgdagEimty i possible —

1

» Use ‘blocking’ techniques for sparse matrices
» Advantage of this viewpoint: need not know # of clusters.

[data: www-personal .umich.edu/~mejn/netdata/]
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Example of application | Data set from :

http://www—personal.umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orienta-
tions [2004 US presidentual election]

» ‘Communities’; liberal vs. conservative

» QGraph: 1,490 vertices (blogs) : first 758: liberal, rest:
conservative.

» Edge: 1 — 7 : a citation between blogs z and 3

» Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = |E|/|V|%.]

» Smaller subgraph: conservative blogs, larger one: liberals
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A basic clustering method: K-means (Background)

» A basic algorithm that uses Euclidean distance

1 Select p initial centers: ¢y,c2,...,c, for classes
19 27 Y £

2 Foreach x; do: determine class of x; as argming || xz; —cx||
3 Redefine each ¢, to be the centroid of class &

4 Repeat until convergence

C1

. ¢ ,.: : » Simple algorithm
° .. »  Works well (gives good
e Y o ° 0o results) but can be slow
c2 * ¢ » Performance depends on
N ® . initialization
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Methods based on similarity graphs

» Perform clustering by exploiting a graph that describes the
similarities between any two items in the data.

» Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair
of nodes.

Example: | For text data: Can decide that any columns ¢ and
7 with a cosine greater than 0.95 are ‘similar’ and assign that
cosine value to w;;
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First task: build a ‘similarity’ graph

Need: a similarity graph, i.e., a graph that captures the simi-
larity between any two items

Data —

» For each data item find a small number of its nearest neigh-
bors
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» Two techniques are often used:
e-graph: Edges consist of pairs (x;, ;) such that
p(wia wj) S €

kNN graph: Nodes adjacent to x; are those nodes x, with
the k with smallest distances p(x;, x¢).

» e-graph is undirected and is geometrically motivated. Is-
sues: 1) may result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» KkNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’ |

Define weight between 2 and 3 as:

)
— |2 — |2

wi; = fij X € x|l — x| <
0 If not

\

» Note ||x; — x,;|| could be any measure of distance...

» fi; = optional = some measure of similarity - other than
distance

» Only nearby points kepit.

» Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

» Assume now that we have built a ‘similarity graph’
» Setting is identical with that of graph partitioning.

» Need a Graph Laplacean: L = D — W with w;; =
O,w;; > 0and D = diag(W =x ones(n,1)) [in matlab
notation]

» Partition vertex set V in two sets A and B with
AUB=V, ANB=10

» Define CUt(Aa B) — Z w(uv ’U)
u EAVEB
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» First (naive) approach: use this measure to partition graph,

l.e.,
... Find A and B that minimize cut(A, B).

» lIssue: Small sets, isolated nodes, big imbalances,

oo ® " @ Min-cut 1
©e® ¢ o
® o
® ! ®
®e09  ©
® o® L, °
® I ! Min-cut 2
® (T X i
Better cut

Rabat Apr. 6, 2019
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» Standard Graph Partitioning: Find A, B by solving

Minimize cut(A, B), subjectto |A| = |B]|

» Condition |A| = |B| not too meaningful in some applica-
tions - too restrictive in others.

» Minimum Ratio Cut approach. Find A, B by solving:

cut(A,B)
|Al.|B|

Minimize

» Difficult to find solution (original paper [Wei-Cheng '91] pro-
poses several heuristics) » Approximate solution : specitral

» |dea: use eigenvector associated with A5 to determine par-
tition with heuristics,
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Normalized cuts [Shi-Malik,2000]

» Recall notation w(X,Y) = >  .x.cy w(z,y) - then

. Wye
define:

neut(A, B) = T + S

» Goal is to avoid small sets A, B

» Let a be an indicator vector:

_[lifieA
Yi=l0ificB

> Recallthat: ‘&"Le = > ; g wij|e; — x;|* (note: each
edge counted once)
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35— w(A,V)  z'Di
> Let - w(B,V) (1—x)TD1
y=z—0B(1—x)
T
L
» Then we need to min J =Y
: y; {0,—8} yT Dy
solve: | .
Subjectto y" D1 =20

» + Relax — need to solve Generalized eigenvalue problem

Ly = ADy

» 1y, = 1 Is eigenvector associated with eigenvalue Ay = 0

» gy, associated with second eigenvalue solves problem.
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Spectral clustering: General approach

1 Given: Collection of data samples {x1, 2, , .}

2 Build a similarity graph between
items

3 Compute (smallest) eigenvector (s) of resulting graph
Laplacean

4 Use k-means on eigenvector (s) of Laplacean

» For Normalized cuts solve generalized eigen problem.
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Application: Image segmentation

» First task: obtain a weighted graph from pixels.

» Common idea: use “Heat kernels”

» Let F; = feature value (e.g., brightness), and Let X; =
spatial position.

Then define

( 2
—||Fi_Fj||2 —[1X; =Xl

w;=e 1 x e & XXl <r
\ 0 else
» Sparsity depends on parameters
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Graph embeddings

» We have seen how to build a graph to represent data
» @Graph embedding does the opposite: maps a graph to data
Given: a graph that models some data (e.g., a kNN graph)

— Data: Y = [y1, Y2, ,Yn] in R4

» Trivial use: visualize a graph (d = 2)

» Wish: mapping should preserve similarities in graph.
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» Many applications [clustering, finding missing link, semi-
supervised learning, community detection, ...]

» Graph captures similarities, close-
ness, ..., in data

Objective: Build a mapping of each
vertex ¢ to a data point y; € R4

» Many methods do this

» Eigenmaps and LLE are two of the best known
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» Eigenmaps uses the graph Laplacean

» Recall: Graph Laplacean is a matrix defined by :

L=D-W

with Adj (z2) = neighborhood of ¢ (excludes ¢)

» Remember that vertex @ represents data item x;. We will
use z or x; to refer to the vertex.

» We will find the y;’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’'01] *minimizes*

n

.’F(Y) — Z wwllyz — yj||2 subject to YDYT = 1

1,7=1

Motivation:  if ||x; — ;|| is small
(orig. data), we want ||y; — y;|| to be
also small (low-Dim. data)
» Data used indirectly through graph
» QObijective function leads to a trace
and yields a sparse eigenvalue prob-
lem

Rabat Apr. 6, 2019
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» Problem translates to:

min Ty {Y(D - W)YT} .
Y E Ran
YDYT =1

» Solution (sort eigenvalues increasingly):

(D —W)u; =A\Du;; yi=u; t=1,---,d

» Ann X n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I — W)u; = Aju ; yz:u;ra 1 =1,---,d
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a
convex combination of its k nearest
neighbors:

Xr; ~ E’wija:j, ZjENi W;; — 1
» Optimal weights computed (‘local
calculation’) by minimizing

||£BZ — Ewme” for 2 = l,:--,m
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2. Mapping:

The y;’s should obey the same ’affinity’ as x;'s ~~
Minimize:

Z Yi — Z W;i;Y; subjectto: Y1=0, YY' =1
J

)

Solution:

» (I —WT")(I—W) replaces the graph Laplacean of eigen-
maps
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More recent methods

» Quite a bit of recent work - methods: node2vec, DeepWalk,
GraRep, ..... Papers, see e.qg.,:

[1] W. L. Hamilton, R. Ying, and J. Leskovec Representation
Learning on Graphs: Methods and Applications arXiv: 17009.
05584v3 (2018)

2] S. Cao, W. Lu, and Q. Xu GraRep: Learning Graph Repre-
sentations with Global Structural Information, CIKM, ACM Conf.
on Inform. and Knowledge Managt, 24 (2015)

[3] A. Ahmed, N. Shervashidze, and S. Narayanamurthy, Dis-
tributed Large-scale Natural Graph Factorization [Proc. WWW
2013, May 13-17, 2013, Rio de Janeiro, Brazil]
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Example: Graph factorization

» Line of work in Papers [1] and [3] above + others

» Instead of minimizing > w;;|ly; — y,l|5 as before

... try to minimize Z [wij — y;ryj|2

» In other words solve: = miny |W — YTV |2

» Referred to as Graph factorization

» Common in |[knowledge graphs
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Major tool of Data Mining: Dimension reduction

» Eigenmaps and LLE are a form of dimension reduction:

Data in R™ — graph — Data in R¢

Dimenson reduction: |Given: X =[xy, ,x,] € R™X™

find a low-dimens. representation Y = [y1,--- ,y,] € R*™
of X

» Achievedbyamapping @®:2x € R™ — y € RY so:

¢(mz):yza t=1,---,n
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: '... .0 ..... 0:0 .o. :. ..
L °°.°°..: .. m X x
5 AN \/

B R al Y il

n

» P maybelinear: y; = W'z, Vj,on Y = W'X

» ... or nonlinear (implicit).

» Mapping @ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Basics: Principal Component Analysis (PCA)

In * Principal Component Analysis W is computed to maxi-
mize variance of projected data:

-
max E Yi — — E Y. Yy, = W ' x;.
W ERmXd; W TW =1 ol | ’

i=1 j=1

» Leads to maximizing
T (WX —pe" ) (X —pe”)TW], p= 3"

» Solution W = { dominant eigenvectors } of the covariance
matrix = Set of left singular vectors of X = X — pe'
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SVD:

X=UXVT, U'U=1, V'V =1, ¥ = Diag

» Optimal W = U,; = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

Y o flws — WW || =) |l — Wy

» In some methods recentering to zero is not done, i.e., X
replaced by X.
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Example: Digit images (a random sample of 30)

10

X
vl

20
5 10 15 5 10 15

10

w

20

W)

5 10 15

10

Eﬂ

a1
=
o

15

=
o

N

N
o

a1
=
o

15
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2-D ‘reductions’:

PCA - digits: 0 —— 4

LLE - digits : 0 —— 4

6 0.15¢
x + 0
4t x 1| 0.1}
O 2505}
2t A 3
4| Or
O L
-0.05}
_2 L
-0.1}
d -0.15}
-6 : ' -0.2 ' . .
-10 -5 0 5 10 ~0.2 -0.1 0 0.1 0.2
K-PCA - digits : 0 —— 4 ONPP - digits: 0 —— 4
0.2 0.1¢
X X + 0
015 3% « 1] 005}
% XX %
0.1} XX HEX o 2| ol
xR A 3
0.05} 4|-0.05}
Or i 0.1}
-0.051 -0.15}
-0.1} -0.2} x
X
-0.15 ' ' ' ' -0.25 ' ' X%
0.07 0071 0072 0073  0.074 ~54341 -5.4341 -54341 -54341 -5.4341
-3
x 10
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Graph-based dimension reduction

» A class of methods that exploit graphs to perform Dimen-
sionality reduction

General Approach:
([ e o
1) Build sim. graph o

DatainR " |

. Mapping
L | Y
2) Embed graph

Datain R ‘
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» Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)

Want: | Perform a projection which pre-
serves the graph in some sense

» Define a graph Laplacean:

L=D—-W
_[1ifg e Adj(e) L B
e.g., w”_{O olse D = diag dm—;wm
L Jz -

with Adj (2) = neighborhood of ¢ (excluding z)
» We have two methods: Eigenmaps and LLE
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Explicit (linear) vs. Implicit (nonlinear) mappings:

» In PCA the mapping ® from high-dimensional space (R™)
to low-dimensional space (R?) is explicitly known:

y=®(x) =Vig

» In Eigenmaps and LLE we only know
Yi = ¢(wz)9z =1,---,1n

» Mapping ¢ is now implicit: Very difficult to compute ¢(x)
for an x that is not in the sample (i.e., not one of the x;’s)

» |nconvenient for classification. Thus is known as the “The
out-of-sample extension” problem
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Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting: m X x \
WantV e Rm*x¢ Yy = V'IX m
dI A Y yi |4 Id

» Starts with the same neighborhood graph as Eigenmaps:
L = D — W = graph ‘Laplacean’; with D = diag({X;wi;}).
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»  Optimization problem is to solve

1 s e — an T
YeRdxl"r’?ngYT:I i, Wi ly: yJ” , Y =V X.

» Difference with eigenmaps: Y is a projection of X data
» Solution (sort eigenvalues increasingly)

XLX"v;=XMXDX v, y;,.,=v/X

» Note: essentially same method in [Koren-Carmel’'04] called
‘weighted PCA'’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS °05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y
intheformY =V 'X

» Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraintY = V' X

» Problem solved to obtain mapping:

1
st VIV =1

minTr |[VIX(I - WT)(I - W)X V]|

» InLLEreplace V' X by Y
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Application: Information Retrieval

» Given: collection of doc- .o Lo o ollo
uments (columns of a matrix e . % %e e e
A) and a query vector q. T e e’ o "
» Representation: m X n e, °° °® ©° o ql
term by document matrix ° ° ¢ o o °

» A query q is a (sparse) vector in R™ (‘pseudo-document’)
Problem: find a column of A that best matches q

» Vector space model: use cos{((A(:,7),q), 7 =1:n

» Requires the computation of Alq

» Literal Matching — ineffective
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Common approach: Dimension reduction (SVD)

» LSI: replace A by a low rank approximation [from SVD]
A=UvT A = UkaVkT

> Replace similarity vector: s = A'q by sp= Algq
» Main issues: 1) computational cost 2) Updates

ldea: Replace A;, by Ap(AT A), where ¢ == a filter function

Consider the step- Sla) = 0, O <z< ak
function (Heaviside): 1,0 <x< o7

» Would yield the same result as TSVD but not practical
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Supervised learning

» We now have data that is ‘labeled’
e Example: (health sciences) ‘malignant’- 'non malignant’
e Example: (materials) ‘photovoltaic’, 'hard’, ‘conductor, ...

e Example: D|g|t recognition) Digits 0", '1°, ...., 9’
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Supervised learning: classification

» Best illustration: written digits recognition example

Digit 0
" Digfit 1
' Digit 2

Given: a set of

Digit 9
1 Digit ??

labeled samples mEm

(training set), and| ||/l 11 11— 5
an (unlabeled) test] | ||| 2
image. Training data Test data :
Problem: find -
label of test image : § 3 S

Digit 9
Digit ??

0000000000 - - - UDDD |

» Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space

Rabat Apr. 6, 2019 o. 66



A few words on Deep Neural Networks (DNNs)

» l|deas of neural networks goes back to the 1960s - were
popularized in early 1990s — then laid dormant until recently.

» Two reasons for the come-back:

e DNN are remarkably effective in some applications
e big progress made in hardware [— affordable ‘training cost’]
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» Training a neural network can be viewed as a problem
of approximating a function ¢ which is defined via sets of
parameters:

O00000

Ym

000 A

Problem: |find sets of parameters such that ¢(x) =~ y
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Input: =, Output: y N

Set: zo =« \}\}’«//'}‘%(

Forl=1:1+1 Do:
z1=o(Wlzi_1 + by)

End
Set: y = ¢(x) := zL 41

e layer # 0 = input layer
o Iayer # (L -+ ]_) = Ou’[put |ayer ® Input ® I:iaclyc::rn ® Output

Layer

» A matrix W is associated with layers 1,2, L + 1.

> Problem: Find ¢ (i.e., matrices W)) s.t. ¢(x) = y
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DNN (continued)

» Problem is not convex, highly parameterized, ...,

» .. Main method used: Stochastic gradient descent [basic]

» |t all looks like alchemy... but it works well for certain appli-
cations

» Training is still quite expensive — GPUs can help

» *Very* active area of research
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Conclusion

» *Many” interesting new matrix problems in areas that involve
the effective mining of data

» Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

» Many online resources available

» Huge potential in areas like materials science though inertia
has to be overcome

» To aresearcher in computational linear algebra : Tsunami of
change on types or problems, algorithms, frameworks, culture,..

» But change should be welcome :



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

» In the words of “Who Moved My Cheese?” [ Spencer John-
son, 2002]

“If you do not change, you can become extinct!”
» In the words of Einstein:

“Life is like riding a bicycle. To keep your balance you need to

keep moving”
Thank you ! |

» Visit my web-site at www. cs.umn.edu/~saad
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