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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

ä Survey of the state of the art linear algebra at that time: di-
rect methods, iterative methods, conditioning, preconditioning,
The Conjugate Gradient method, acceleration methods, ....

ä An amazing paper in which the author was urging researchers
to start looking at solving linear systems
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

ä Survey of the state of the art linear algebra at that time: di-
rect methods, iterative methods, conditioning, preconditioning,
The Conjugate Gradient method, acceleration methods, ....

ä An amazing paper in which the author was urging researchers
to start looking at solving linear systems

ä 66 years later – we can certainly state that:

“Linear Algebra problems in Machine Learn-
ing can be interesting”
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Focus of numerical linear algebra changed many times over
the years

ä This is because linear algebra is a key tool when solving
challenging new problems in various disciplines

1940s–1950s: Major issue: the flutter problem in aerospace
engineering→ eigenvalue problem [cf. Olga Taussky Todd]

ä Then came the discoveries of the LR and QR algorithms.
The package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
would call today general sparse matrix techniques

Late 1980s: Thrust on parallel matrix computations.

Late 1990s: Spur of interest in “financial computing”
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Solution of PDEs (e.g., Fluid Dynamics) and problems in me-
chanical eng. (e.g. structures) major force behind numerical
linear algebra algorithms in the past few decades.

ä Strong new forces are now reshaping the field today: Appli-
cations related to the use of “data”

ä Machine learning is appearing in unexpected places:

• design of materials

• machine learning in geophysics

• self-driving cars, ..

• ....
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Big impact on the economy

ä New economy driven by Google,
Facebook, Netflix, Amazon, Twitter,
Ali-Baba, Tencent, ..., and even the
big department stores (Walmart, ...)
ä Huge impact on Jobs
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Big impact on the economy

ä New economy driven by Google,
Facebook, Netflix, Amazon, Twitter,
Ali-Baba, Tencent, ..., and even the
big department stores (Walmart, ...)
ä Huge impact on Jobs

ä In contrast: Old economy [driven
by Boeing, GM, Ford, Mining industry,
US Steel, Aerospatiale, ...] does not
have as much to offer...

ä Look at what you are doing under new lenses: DATA
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LARGE SYSTEMS
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Impact on what we teach...

ä My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]

... Has changed substantially in past 2–4 years

Before:

—PDEs, solving linear systems, Sparse direct solvers, Iterative
methods, Krylov methods, Preconditioners, Multigrid,..

−→

Now:

— a little of sparse direct methods + Applications of graphs,
dimension reduction, Krylov methods.. Examples in: PCA, In-
formation retrieval, Segmentation, Clustering, ...
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INTRODUCTION: GRAPH LAPLACEANS



Graph Laplaceans - Definition

ä “Laplace-type” matri-
ces associated with gen-
eral undirected graphs –
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
ä Given a graph G = (V,E) define

• A matrix W of weights wij for each edge with:
wij ≥ 0, wii = 0, and wij = wji ∀(i, j)

• The diagonal matrix D = diag(di) with di =
∑
j 6=iwij

ä Corresponding graph Laplacean of G is:

L = D −W
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ä Gershgorin’s theorem→ L is positive semidefinite.

ä One eigenvalue equal to zero

ä Simplest case:

wij =

{
1 if (i, j) ∈ E & i 6= j
0 else di =

∑
j 6=i

wij

Example: Consider the graph
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34
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L =


1 −1 0 0 0
−1 2 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 −1 −1 −1 3


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Bsic results on graph Laplaceans

Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) IfG has k > 1 connected componentsG1, G2, · · · , Gk,
then the nullity of L is k and Null(L) is spanned by the
vectors z(j), j = 1, · · · , k defined by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H : (1)First orient the
edges i ∼ j into i → j or j → i. (2) Rows of H
indexed by vertices of G. Columns indexed by edges. (3)
For each (i, j) in E, define the corresponding column in H
as
√
w(i, j)(ei − ej).

Example: In previous ex-
ample, orient i → j so
that j > i [lower triangular
matrix representation].
Then matrix H is: −→

H =


1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1


Property 1 L = HHT

Rabat Apr. 6, 2019 p. 15



A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and
local distances between entries of x

ä Let L = any graph Laplacean

Then:

Property 2: for any x ∈ Rn :

x>Lx =
∑
j>i

wij|xi − xj|2

Rabat Apr. 6, 2019 p. 16



Property 3: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
∑
j>i

wij‖yi − yj‖2

ä Note: yj = j-th colunm of Y . Usually d < n. Each column
can represent a data sample.

Property 4: For the particular L = I − 1
n

1 1>

XLX> = X̄X̄> == n× Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones(n,1)
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Property 6: (Graph partitioning) Consider situation whenwij ∈
{0, 1}. If x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

... where edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used
to partition graphs....

+1

−1

ä ...by minimizing (Lx, x) subject to x ∈ {−1, 1}n and
1Tx = 0 [balanced sets]

min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x)

ä This problem is hard [combinatorial]→
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ä Instead we solve a relaxed form of this problem :

min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x)
→ min

x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))

Background:

ä Consider any symmetric (real) matrix A with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1



ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves the relaxed
optimization problem -
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2

based on Fielder vector
3 Partition largest sub-

graph in two recursively ...
4 ... Until the de-

sired number of partitions is
reached
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CLUSTERING



Clustering

ä Problem: we are given n data items: x1, x2, · · · , xn.
Would like to ‘cluster’ them, i.e., group them so that each group
or cluster contains items that are similar in some sense.

ä Example: materials
Superhard

Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Example: Digits
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PCA − digits : 5 −− 7

 

 

5
6
7

ä Refer to each group as a ‘cluster’ or a ‘class’

ä ‘Unsupervised learning’ : Methods do not exploit labeled
data
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Example: Community Detection

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A
sends frequent e-mails to user B’]
ä Adjacency Graph represented by a sparse matrix

← Original
matrix
Goal: Find

ordering so
blocks are
as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
[data: www-personal.umich.edu/~mejn/netdata/]
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Example of application Data set from :

http://www-personal.umich.edu/~mejn/netdata/

ä Network connecting bloggers of different political orienta-
tions [2004 US presidentual election]

ä ‘Communities’: liberal vs. conservative

ä Graph: 1, 490 vertices (blogs) : first 758: liberal, rest:
conservative.

ä Edge: i→ j : a citation between blogs i and j

ä Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = |E|/|V |2.]

ä Smaller subgraph: conservative blogs, larger one: liberals
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A basic clustering method: K-means (Background)

ä A basic algorithm that uses Euclidean distance

1 Select p initial centers: c1, c2, ..., cp for classes
1, 2, · · · , p
2 For each xi do: determine class of xi as argmink‖xi−ck‖
3 Redefine each ck to be the centroid of class k
4 Repeat until convergence
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ä Simple algorithm
ä Works well (gives good
results) but can be slow
ä Performance depends on
initialization
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Methods based on similarity graphs

ä Perform clustering by exploiting a graph that describes the
similarities between any two items in the data.

ä Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair
of nodes.

Example: For text data: Can decide that any columns i and
j with a cosine greater than 0.95 are ‘similar’ and assign that
cosine value to wij
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First task: build a ‘similarity’ graph

Need: a similarity graph, i.e., a graph that captures the simi-
larity between any two items

GraphData

w  = ?
ij

i

j

ä For each data item find a small number of its nearest neigh-
bors
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ä Two techniques are often used:

ε-graph: Edges consist of pairs (xi, xj) such that
ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with
the k with smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Is-
sues: 1) may result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’

Define weight between i and j as:

wij = fij ×

 e
−‖xi−xj‖

2

σ2
X if ‖xi − xj‖ < r

0 if not

ä Note ‖xi − xj‖ could be any measure of distance...

ä fij = optional = some measure of similarity - other than
distance

ä Only nearby points kept.

ä Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

ä Assume now that we have built a ‘similarity graph’

ä Setting is identical with that of graph partitioning.

ä Need a Graph Laplacean: L = D − W with wii =
0, wij ≥ 0 and D = diag(W ∗ ones(n, 1)) [in matlab
notation]

ä Partition vertex set V in two sets A and B with

A ∪B = V, A ∩B = ∅

ä Define cut(A,B) =
∑

u ∈A,v∈B
w(u, v)
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ä First (naive) approach: use this measure to partition graph,
i.e.,

... Find A and B that minimize cut(A,B).

ä Issue: Small sets, isolated nodes, big imbalances,
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Better cut 

Min−cut 2

Min−cut 1
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Ratio-cuts

ä Standard Graph Partitioning: Find A,B by solving

Minimize cut(A,B), subject to |A| = |B|

ä Condition |A| = |B| not too meaningful in some applica-
tions - too restrictive in others.

ä Minimum Ratio Cut approach. Find A,B by solving:

Minimize cut(A,B)
|A|.|B|

ä Difficult to find solution (original paper [Wei-Cheng ’91] pro-
poses several heuristics) ä Approximate solution : spectral

ä Idea: use eigenvector associated with λ2 to determine par-
tition with heuristics,
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Normalized cuts [Shi-Malik,2000]

ä Recall notation w(X,Y ) =
∑
x∈X,y∈Y w(x, y) - then

define:

ncut(A,B) = cut(A,B)
w(A,V )

+ cut(A,B)
w(B,V )

ä Goal is to avoid small sets A, B

ä Let x be an indicator vector:

xi =

{
1 if i ∈ A
0 if i ∈ B

ä Recall that: xTLx =
∑

(i,j)∈E wij|xi − xj|2 (note: each
edge counted once)
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ä Let β =
w(A, V )

w(B, V )
=

xTD 1

( 1− x)TD 1
y = x− β( 1− x)

ä Then we need to
solve:

min
yi {0,−β}

yTLy

yTDy
Subject to yTD 1 = 0

ä + Relax→ need to solve Generalized eigenvalue problem

Ly = λDy

ä y1 = 1 is eigenvector associated with eigenvalue λ1 = 0

ä y2 associated with second eigenvalue solves problem.
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Spectral clustering: General approach

1 Given: Collection of data samples {x1, x2, · · · , xn}

2 Build a similarity graph between
items

●

●

●

●

●

●

●

i

j

w(i,j)=?

3 Compute (smallest) eigenvector (s) of resulting graph
Laplacean

4 Use k-means on eigenvector (s) of Laplacean

ä For Normalized cuts solve generalized eigen problem.
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Application: Image segmentation

ä First task: obtain a weighted graph from pixels.

ä Common idea: use “Heat kernels”

ä Let Fj = feature value (e.g., brightness), and Let Xj =
spatial position.

Then define

wij = e
−‖Fi−Fj‖

2

σ2
I ×

 e
−‖Xi−Xj‖

2

σ2
X if‖Xi −Xj‖ < r

0 else
ä Sparsity depends on parameters
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GRAPH EMBEDDINGS



Graph embeddings

ä We have seen how to build a graph to represent data

ä Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)
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● −→ Data: Y = [y1, y2, · · · , yn] in Rd

ä Trivial use: visualize a graph (d = 2)

ä Wish: mapping should preserve similarities in graph.
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ä Many applications [clustering, finding missing link, semi-
supervised learning, community detection, ...]

ä Graph captures similarities, close-
ness, ..., in data
Objective: Build a mapping of each

vertex i to a data point yi ∈ Rd

x

x
j

i

y
i

y
j

ä Many methods do this

ä Eigenmaps and LLE are two of the best known
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ä Eigenmaps uses the graph Laplacean

ä Recall: Graph Laplacean is a matrix defined by :

L = D −W

{
wij ≥ 0 if j ∈ Adj(i)
wij = 0 else D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excludes i)

ä Remember that vertex i represents data item xi. We will
use i or xi to refer to the vertex.

ä We will find the yi’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-Dim. data)
ä Data used indirectly through graph
ä Objective function leads to a trace
and yields a sparse eigenvalue prob-
lem

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n
Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a
convex combination of its k nearest
neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1
ä Optimal weights computed (’local
calculation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i

Rabat Apr. 6, 2019 p. 44



2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W )ui = λiui; yi = u>i .

ä (I−W>)(I−W ) replaces the graph Laplacean of eigen-
maps
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More recent methods

ä Quite a bit of recent work - methods: node2vec, DeepWalk,
GraRep, ..... Papers, see e.g.,:

[1] W. L. Hamilton, R. Ying, and J. Leskovec Representation
Learning on Graphs: Methods and Applications arXiv: 1709.
05584v3 (2018)

[2] S. Cao, W. Lu, and Q. Xu GraRep: Learning Graph Repre-
sentations with Global Structural Information, CIKM, ACM Conf.
on Inform. and Knowledge Managt, 24 (2015)

[3] A. Ahmed, N. Shervashidze, and S. Narayanamurthy , Dis-
tributed Large-scale Natural Graph Factorization [Proc. WWW
2013, May 13-17, 2013, Rio de Janeiro, Brazil]
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Example: Graph factorization

ä Line of work in Papers [1] and [3] above + others

ä Instead of minimizing
∑
wij‖yi − yj‖2

2 as before

... try to minimize
∑
ij

|wij − yTi yj|
2

ä In other words solve: minY ‖W − Y TY ‖2
F

ä Referred to as Graph factorization

ä Common in knowledge graphs
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DIMENSION REDUCTION



Major tool of Data Mining: Dimension reduction

ä Eigenmaps and LLE are a form of dimension reduction:

Data in Rm→ graph→ Data in Rd

Dimenson reduction: Given: X = [x1, · · · , xn] ∈ Rm×n,
find a low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n
of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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m

n

X

Y

x

y

i

id

n

ä Φ may be linear : yj = W>xj, ∀j, or, Y = W>X

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Basics: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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Graph-based dimension reduction

ä A class of methods that exploit graphs to perform Dimen-
sionality reduction

General Approach:

i

j

Data in R

Data in R

m

d

Mapping

1) Build sim. graph

2) Embed graph
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ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)
Want: Perform a projection which pre-

serves the graph in some sense

ä Define a graph Laplacean:

L = D −W

x

x
j

i

e.g.,: wij =

{
1 if j ∈ Adj(i)
0 else D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excluding i)
ä We have two methods: Eigenmaps and LLE
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Explicit (linear) vs. Implicit (nonlinear) mappings:

ä In PCA the mapping Φ from high-dimensional space (Rm)
to low-dimensional space (Rd) is explicitly known:

y = Φ(x) ≡ V Tx

ä In Eigenmaps and LLE we only know

yi = φ(xi), i = 1, · · · , n

ä Mapping φ is now implicit: Very difficult to compute φ(x)
for an x that is not in the sample (i.e., not one of the xi’s)

ä Inconvenient for classification. Thus is known as the “The
out-of-sample extension” problem
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Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps:
L ≡ D−W = graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is a projection of X data

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called
‘weighted PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y
in the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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Application: Information Retrieval

ä Given: collection of doc-
uments (columns of a matrix
A) and a query vector q.
ä Representation: m × n
term by document matrix

ä A query q is a (sparse) vector in Rm (‘pseudo-document’)

Problem: find a column of A that best matches q

ä Vector space model: use cos〈(A(:, j), q), j = 1 : n

ä Requires the computation of ATq

ä Literal Matching→ ineffective
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Common approach: Dimension reduction (SVD)

ä LSI: replace A by a low rank approximation [from SVD]

A = UΣV T → Ak = UkΣkV
T
k

ä Replace similarity vector: s = ATq by sk = AT
kq

ä Main issues: 1) computational cost 2) Updates

Idea: ReplaceAk byAφ(ATA), where φ == a filter function

Consider the step-
function (Heaviside):

φ(x) =

{
0, 0 ≤ x ≤ σ2

k

1, σ2
k ≤ x ≤ σ2

1

ä Would yield the same result as TSVD but not practical
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SUPERVISED LEARNING



Supervised learning

ä We now have data that is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

• Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’

c

e

f

d

a b g
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Supervised learning

We now have data that is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

• Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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A few words on Deep Neural Networks (DNNs)

ä Ideas of neural networks goes back to the 1960s - were
popularized in early 1990s – then laid dormant until recently.

ä Two reasons for the come-back:

• DNN are remarkably effective in some applications

• big progress made in hardware [→ affordable ‘training cost’]
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ä Training a neural network can be viewed as a problem
of approximating a function φ which is defined via sets of
parameters:

φ(  )x

1st s
et o

f p
arameters

2nd set o
f p

arameters

4th set o
f p

arameters

3rd
 set o

f p
arameters

y

1

2

y

x

x

x1

2

n

.

.

my

.

.

.

Problem: find sets of parameters such that φ(x) ≈ y
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Input: x, Output: y
Set: z0 = x
For l = 1 : L+1 Do:

zl = σ(W T
l zl−1 + bl)

End
Set: y = φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+1) = output layer

Layer

Input

Layer

OutputHidden

Layer

ä A matrix Wl is associated with layers 1,2, L+ 1.

ä Problem: Find φ (i.e., matrices Wl) s.t. φ(x) ≈ y
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DNN (continued)

ä Problem is not convex, highly parameterized, ...,

ä .. Main method used: Stochastic gradient descent [basic]

ä It all looks like alchemy... but it works well for certain appli-
cations

ä Training is still quite expensive – GPUs can help

ä *Very* active area of research
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Conclusion

ä *Many* interesting new matrix problems in areas that involve
the effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

ä Many online resources available

ä Huge potential in areas like materials science though inertia
has to be overcome

ä To a researcher in computational linear algebra : Tsunami of
change on types or problems, algorithms, frameworks, culture,..

ä But change should be welcome :



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

ä In the words of “Who Moved My Cheese?” [ Spencer John-
son, 2002]

“If you do not change, you can become extinct!”

ä In the words of Einstein:

“Life is like riding a bicycle. To keep your balance you need to
keep moving”

Thank you !

ä Visit my web-site at www.cs.umn.edu/~saad
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