Spectral densities: computations and applications in linear algebra

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

PASC17 – Lugano
June 28, 2017
Introduction

- 'Random Sampling' or 'probabilistic methods': use of random data to solve a given problem.
- Eigenvalues, eigenvalue counts, traces, ...
- Many well-known algorithms use a form of random sampling: The Lanczos algorithm
- Recent work: probabilistic methods - See [Halko, Martinsson, Tropp, 2010]
- Huge interest spurred by ‘big data’
- In this talk: Use of random sampling to obtain Eigenvalue counts, spectral densities, and approximate ranks
Important tool: Stochastic Trace Estimator

To estimate diagonal of $B = f(A)$ (e.g., $B = A^{-1}$), let:

- $d(B) = \text{diag}(B)$ [matlab notation]
- \odot and \oslash: Elementwise multiplication and division of vectors
- $\{v_j\}$: Sequence of s random vectors

Result:

$$d(B) \approx \left[\sum_{j=1}^{s} v_j \odot Bv_j \right] \oslash \left[\sum_{j=1}^{s} v_j \odot v_j \right]$$

C. Bekas, E. Kokiopoulou & YS ('05); C. Bekas, A. Curioni, I. Fedulova ’09; ...
Trace of a matrix

For the trace - take vectors of unit norm and

\[
\text{Trace}(B) \approx \frac{1}{s} \sum_{j=1}^{s} v_j^T B v_j
\]

Hutchinson’s estimator: take random vectors with components of the form \(\pm 1/\sqrt{n}\) [Rademacher vectors]

Extensively studied in literature. See e.g.: Hutchinson ’89; H. Avron and S. Toledo ’11; G.H. Golub & U. Von Matt ’97; Roosta-Khorasani & U. Ascher ’15; ...
Typical convergence curve for stochastic estimator

Estimating the diagonal of inverse of two sample matrices

![Graph showing convergence curve](image-url)
DENSITY OF STATES & APPLICATIONS
Formally, the Density Of States (DOS) of a matrix A is

$$\phi(t) = \frac{1}{n} \sum_{j=1}^{n} \delta(t - \lambda_j),$$

where

- δ is the Dirac δ-function or Dirac distribution
- $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the eigenvalues of A

Note: $\mu_{[ab]}$ can be obtained from ϕ

$\phi(t)$ is a probability distribution function == probability of finding eigenvalues of A in a given infinitesimal interval near t.

Also known as the spectral density

Very important uses in Solid-State physics
The Kernel Polynomial Method

- Used by Chemists to calculate the DOS – see Silver and Röder’94, Wang ’94, Drabold-Sankey’93, + others
- Basic idea: expand DOS into Chebyshev polynomials
- Coefficients γ_k lead to evaluating $\text{Tr} \left(T_k(A) \right)$
- Use trace estimators [discovered independently] to get traces

A few details:

- Assume change of variable done so eigenvalues lie in $[-1, 1]$.
- Include the weight function in the expansion so expand:

$$\hat{\phi}(t) = \sqrt{1 - t^2}\phi(t) = \sqrt{1 - t^2} \times \frac{1}{n} \sum_{j=1}^{n} \delta(t - \lambda_j).$$
Then, (full) expansion is: $\hat{\phi}(t) = \sum_{k=0}^{\infty} \mu_k T_k(t)$.

Expansion coefficients μ_k are formally defined by:

$$
\mu_k = \frac{2 - \delta_{k0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1 - t^2}} T_k(t) \hat{\phi}(t) dt
$$

$$
= \frac{2 - \delta_{k0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1 - t^2}} T_k(t) \sqrt{1 - t^2} \phi(t) dt
$$

$$
= \frac{2 - \delta_{k0}}{n \pi} \sum_{j=1}^{n} T_k(\lambda_j). \quad \text{with} \quad \delta_{ij} = \text{Dirac symbol}
$$

Note: $\sum T_k(\lambda_i) = \text{Trace}[T_k(A)]$

Estimate this, e.g., via stochastic estimator

$$
\text{Trace}(T_k(A)) \approx \frac{1}{n_{\text{vec}}} \sum_{l=1}^{n_{\text{vec}}} \left(\nu^{(l)}\right)^T T_k(A) \nu^{(l)}.
$$
To compute scalars of the form $v^T T_k(A)v$, exploit 3-term recurrence of the Chebyshev polynomial ...

Use Jackson smoothing for Gibbs oscillations
An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.
Use of the Lanczos Algorithm

- Background: The Lanczos algorithm generates an orthonormal basis \(V_m = [v_1, v_2, \cdots, v_m] \) for the Krylov subspace:

\[
\text{span}\{v_1, Av_1, \cdots, A^{m-1}v_1\}
\]

- ... such that:

\[
V_m^H A V_m = T_m - \text{with } T_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
\beta_3 & \alpha_3 & \beta_4 \\
\vdots & \vdots & \vdots \\
\beta_m & \alpha_m
\end{pmatrix}
\]
Lanczos process builds orthogonal polynomials wrt to dot product:

\[\int p(t)q(t)dt \equiv (p(A)v_1, q(A)v_1) \]

Let \(\theta_i, \ i = 1 \cdots m \) be the eigenvalues of \(T_m \) [Ritz values]

\(y_i \)'s associated eigenvectors; Ritz vectors: \(\{ V_m y_i \}_{i=1}^m \)

Ritz values approximate eigenvalues

Could compute \(\theta_i \)'s then get approximate DOS from these

Problem: \(\theta_i \) not good enough approximations – especially inside the spectrum.
Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

\[
\int p(t) \, dt \approx \sum_{i=1}^{m} a_i p(\theta_i) \quad a_i = [e_1^T y_i]^2
\]

- See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub and Welsch ’69.
- Formula exact when \(p \) is a polynomial of degree \(\leq 2m + 1 \)
Consider now \(\int p(t) dt = \langle p, 1 \rangle \) = (Stieljes) integral \(\equiv \)

\[
(p(A)v, v) = \sum \beta_i^2 p(\lambda_i) \equiv \langle \phi_v, p \rangle
\]

Then \(\langle \phi_v, p \rangle \approx \sum a_i p(\theta_i) = \sum a_i \langle \delta_{\theta_i}, p \rangle \rightarrow \)

\[
\phi_v \approx \sum a_i \delta_{\theta_i}
\]

To mimic the effect of \(\beta_i = 1, \forall i \), use several vectors \(v \) and average the result of the above formula over them..
Other methods

- The Lanczos spectroscopic approach: A sort of signal processing approach to detect peaks using Fourier analysis

- The Delta-Chebyshev approach: Smooth ϕ with Gaussians, then expand Gaussians using Legendre polynomials

- Haydock’s method: interesting ’classic’ approach in physics - uses Lanczos to unravel ‘near-poles’ of $(A - \epsilon i I)^{-1}$

For details see:

What about matrix pencils?

- DOS for generalized eigenvalue problems

- Assume: A is symmetric and B is SPD.

- In principle: can just apply methods to $B^{-1}Ax = \lambda x$, using B - inner products.

- Requires factoring B. Too expensive [Think 3D Pbs]

★ **Observe:** B is usually very *strongly* diagonally dominant.

- Especially true after Left+Right Diag. scaling:

$$\tilde{B} = S^{-1}BS^{-1} \quad S = \text{diag}(B)^{1/2}$$
General observation for FEM mass matrices [See, e.g., Wathen’87, Wathen Rees ’08]:
* Conforming tetrahedral (P1) elements in 3D $\rightarrow \kappa(\tilde{B}) \leq 5$
* Rectangular bilinear (Q1) elements in 2D $\rightarrow \kappa(\tilde{B}) \leq 9$.

Example: Matrix pair K_{uu}, M_{uu} from Suite Sparse collection.

- Matrices A and B have dimension $n = 7, 102$. $\text{nnz}(A) = 340, 200$ $\text{nnz}(B) = 170, 134$.
- After scaling by diagonals to have diag. entries equal to one, all eigenvalues of B are in interval $[0.6254, 1.5899]$.
Approximation theory to the rescue.

★ Idea: Compute the DOS for the standard problem

\[B^{-1/2} A B^{-1/2} u = \lambda u \]

- Use a very low degree polynomial to approximate \(B^{-1/2} \).
- We use Chebyshev expansions.
- Degree \(k \) determined automatically by enforcing

\[\| t^{-1/2} - p_k(t) \|_\infty < \text{tol} \]

- Theoretical results establish convergence that is exponential with respect to degree.
Example: Results for Kuu-Muu example

- Using polynomials of degree 3 (!) to approximate $B^{-1/2}$
- Krylov subspace of dim. 30 (== deg. of polynomial in KPM)
- 10 Sample vectors used

![Diagram](image)

- Lanczos
- KPM-Chebyshev
- KPM-Legendre
APPLICATIONS
Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number $\mu_{[a,b]}$ of eigenvalues of A in $[a, b]$.

Standard method: Sylvester inertia theorem \rightarrow expensive!

First alternative: integrate the Spectral Density in $[a, b]$.

$$
\mu_{[a,b]} \approx n \left(\int_a^b \phi(t) dt \right) = n \sum_{k=0}^m \mu_k \left(\int_a^b \frac{T_k(t)}{\sqrt{1-t^2}} dt \right) = \ldots
$$

Second method: Estimate trace of the related spectral projector P

($\rightarrow u_i$'s = eigenvectors $\leftrightarrow \lambda_i$'s)

$$
P = \sum_{\lambda_i \in [a \ b]} u_i u_i^T.
$$

It turns out that the 2 methods are identical.
Application 2: “Spectrum Slicing”

- Situation: very large number of eigenvalues to be computed
- Goal: compute spectrum by slices by applying filtering
- Apply Lanczos or Subspace iteration to problem:

\[\phi(A)u = \mu u \]

\(\phi(t) \equiv \) polynomial or rational filter

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other \(\rightarrow\) reduced orthogonalization costs
How do I slice my spectrum?

Answer: Use the DOS.

We must have:

\[
\int_{t_i}^{t_{i+1}} \phi(t)\,dt = \frac{1}{n_{\text{slices}}} \int_{a}^{b} \phi(t)\,dt
\]
Application 3: Estimating the rank

- Very important problem in signal processing applications, machine learning, etc.
- Often: a certain rank is selected ad-hoc. Dimension reduction is application with this “guessed” rank.
- Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value.
Approximate rank, Numerical rank

- Notion defined in various ways. A common one:

$$r_\epsilon = \min\{\text{rank}(B) : B \in \mathbb{R}^{m \times n}, \|A - B\|_2 \leq \epsilon\},$$

$$r_\epsilon = \text{Number of sing. values } \geq \epsilon$$

- Two distinct problems:

1. Get a good ϵ
2. Estimate number of sing. values $\geq \epsilon$

- We will need a cut-off value (’threshold’) ϵ.

- Could use ‘noise level’ for ϵ, but not always available.
Threshold selection

- How to select a good threshold?
- **Answer:** Obtain it from the DOS function

![Exact DOS plots for three different types of matrices.](image)

(A) (B) (C)
To find: point immediately following the initial sharp drop observed.

Simple idea: use derivative of DOS function ϕ

For an $n \times n$ matrix with eigenvalues $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$:

$$\epsilon = \min\{t : \lambda_n \leq t \leq \lambda_1, \phi'(t) = 0\}.$$

In practice replace by

$$\epsilon = \min\{t : \lambda_n \leq t \leq \lambda_1, |\phi'(t)| \geq \text{tol}\}.$$
Experiments

(A) The DOS found by KPM.

(B) Approximate rank estimation by the Lanczos method for the example netz4504.
Tests with Matérn covariance matrices for grids

- Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

<table>
<thead>
<tr>
<th>Type of Grid (dimension)</th>
<th>Matrix Size</th>
<th># λ_i’s $\geq \epsilon$</th>
<th>r_ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D regular Grid (2048×1)</td>
<td>2048</td>
<td>16</td>
<td>16.75</td>
</tr>
<tr>
<td>1D no structure Grid (2048×1)</td>
<td>2048</td>
<td>20</td>
<td>20.10</td>
</tr>
<tr>
<td>2D regular Grid (64×64)</td>
<td>4096</td>
<td>72</td>
<td>72.71</td>
</tr>
<tr>
<td>2D no structure Grid (64×64)</td>
<td>4096</td>
<td>70</td>
<td>69.20</td>
</tr>
<tr>
<td>2D deformed Grid (64×64)</td>
<td>4096</td>
<td>69</td>
<td>68.11</td>
</tr>
</tbody>
</table>

- For all test $M(deg) = 50$, $n_v=30$
Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

$$\log \det(A) = \text{Trace}(\log(A)) = \sum_{i=1}^{n} \log(\lambda_i).$$

A is SPD.

- Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A) = \log(A)$.

- Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.
Numerical example: A graph Laplacian \textit{california} of size 9664×9664, $nz \approx 10^5$ from the Univ. of Florida collection.

Rel. error vs degree

- 3 methods: Taylor Series, Chebyshev expansion, SLQ
- # starting vectors $nv = 100$ in all three cases.
Runtime comparisons
Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes

- Objective is to maximize the log-likelihood function with respect to a ‘hyperparameter’ vector ξ

$$\log p(z \mid \xi) = -\frac{1}{2} [z^\top S(\xi)^{-1}z + \log \det S(\xi) + \text{cst}]$$

where z = data vector and $S(\xi)$ == covariance matrix parameterized by ξ

- Can use the same Lanczos runs to estimate $z^\top S(\xi)^{-1}z$ and logDet term simultaneously.
Application 7: calculating nuclear norm

- \(\| X \|_* = \sum \sigma_i(X) = \sum \sqrt{\lambda_i(X^T X)} \)
- Generalization: Schatten \(p \)-norms
 \[\| X \|_{*,p} = \left[\sum \sigma_i(X)^p \right]^{1/p} \]

- See:
Conclusion

- Estimating traces & Spectral densities are key ingredients in many algorithms
- Physics, machine learning, matrix algorithms, ..
- .. many new problems related to ‘data analysis’ and ’statistics’, and in signal processing,
- A good instance of a method from physics finding its way in numerical linear algebra

Q: Can we do better than standard random sampling?