OF MINNESOTA TWIN CITIES

Parallel Multilevel Low-Rank approximation preconditioners

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Modelling 2019 Olomouc, Sept. 18, 2019 Joint work with Yuanzhe Xi [to Join Emory University] ...

... and:

Ruipeng Li, Geoffrey Dillon, Vasilis Kalantzis, Tianshi Xu

Work supported by NSF-DMS

Preconditioners in 'algebraic' DD context

Common framework: Partition mesh, 'distribute' matrix, then exploit a form of Schwarz technique ...

... or a form of 'approximate' Schur complement technique

► In recent years: many researchers have discovered the importance of some form of 'low-rank correction'

> aka 'deflation', aka 'SA', ...

This talk: Our work in LR correction techniques

Schur complement + low-rank correction techniques

Recall: The global system

► Global matrix has the form $\begin{pmatrix} B & E \\ E^T & C \end{pmatrix}$

Schur Complement System

Background:

$$\begin{pmatrix} B & E \\ E^T & C \end{pmatrix} = \begin{pmatrix} I \\ E^T B^{-1} & I \end{pmatrix} \begin{pmatrix} B & E \\ S \end{pmatrix} \quad S = C - E^T B^{-1} E$$

 $S \in \mathbb{R}^{s \times s} ==$ 'Schur complement' matrix
Solution obtained from two solves with *B*, one with *S*

Next: Find approximate inverse of *S*.

- ► Assume *C* is SPD and let $C = LL^T$. Then: $S = L (I - L^{-1}E^TB^{-1}EL^{-T}) L^T \equiv L(I - H)L^T$.
- Define: $H = L^{-1}E^TB^{-1}EL^{-T}$ Can show: $\lambda_j(H) \in [0,1)$

Decay properties of $S^{-1} - C^{-1}$

> We have:
$$S^{-1} = L^{-T}(I - H)^{-1}L^{-1}$$

> Can we write: $S^{-1} = C^{-1} + Low$ rank correction ?

$$S^{-1} - C^{-1} = L^{-T}(I - (I - H)^{-1})L^{-1} \equiv L^{-T}XL^{-1}$$

> Thus,
$$S^{-1} = C^{-1} + L^{-T}XL^{-1}$$
. Note:

$$\lambda_k(X) = rac{\lambda_k(H)}{1-\lambda_k(H)}$$

 \succ Well separated when $\lambda_k
ightarrow 1$

Decay properties of $S^{-1} - C^{-1}$

- \blacktriangleright Example: 2-D Laplacian, $n_x=n_y=32,\,4$ subdomains
- ► $\Lambda(X)$ and $\Lambda(S^{-1} C^{-1}) = \Lambda(L^{-T}XL^{-1})$

Closed form analysis available for 2D Laplaceans

Low-rank approximation

• Preconditioner for A:

$$M = egin{pmatrix} I \ E^TB^{-1} \ I \end{pmatrix} egin{pmatrix} B \ E \ ilde{S} \end{pmatrix}$$

- ullet (n-s) of $\lambda_i(AM^{-1})=1$, the other $s o\lambda_i(S ilde{S}^{-1})$
- Eigendecomposition $H = U\Lambda U^T$. Replace Λ with $\tilde{\Lambda}$
- Recall $S^{-1} = L^{-T}(I H)^{-1}L^{-1}$, and rewrite

$$S^{-1} = L^{-T} U (I - \Lambda)^{-1} U^T L^{-1} \ ilde{S}^{-1} = L^{-T} U (I - ilde{\Lambda})^{-1} U^T L^{-1}$$

$$ullet$$
 Can show: $\lambda(S ilde{S}^{-1}) = rac{1-\lambda_i}{1- ilde{\lambda}_i}, \hspace{1em} i=1,\ldots,s$

Numerical Experiments

- Intel Xeon X5675 (12 MB Cache, 3.06 GHz, 6-core), Xeon X5560 (8 MB Cache, 2.8 GHz, 4-core) at MSI
- Written in C/C++, MKL; OpenMP parallelism
- Accelerators: CG, GMRES(40)
- Partitioning with METIS

SLR, indefinite model problems

• $-\Delta$ shifted by -sI. 2D: s = 0.01, 3D: s = 0.05

Grid	ILDLT-GMRES				RAS-GMRES			SLR-GMRES						
	fill	p-t	its	i-t	fill	p-t	its	i-t	nd	rk	fill	p-t	its	i-t
256^2	8.2	.17	F	-	6.3	.13	F	-	8	32	6.4	.21	33	.125
512^2	8.4	.70	F	-	8.4	.72	F	-	16	64	7.6	2.1	93	1.50
1024^2	13	5.1	F	-	19	22	F	-	8	128	11	25	50	4.81
40^{3}	6.9	.25	54	.54	6.7	.25	99	.30	64	32	6.7	.49	23	.123
64^3	9.0	1.4	F	-	11.8	2.2	F	-	128	64	9.1	3.9	45	1.16
100^{3}	15	11	F	-	12	15	F	-	128	180	15	63	88	13.9

'Non-standard' DD framework: HID ordering

Issue: Schur complement can become large (3D Pbs)

Remedy: Use Hierarchical Interface Decomposition (HID) -Henon and YS'05

Goal: Define a method that descends into interface variables in a hierarchical way \rightarrow need a hierarchy of 'interfaces'.

Ideas of this type in the Domain Decomposition context (PDEs) by Smith and Widlund (89) – ["Wirebasket" techniques]

The hierarchical decomposition of a graph - example

Graph

Matrix pattern

> C^1 = subdomain interiors; C^2 = sets of edges; C^3 = crosspoints

 \blacktriangleright Label by levels \rightarrow block-diagonal structure at each level

Easy way to get an HID: Nested Dissection ordering

Up: 3-level partition of a 2-D domain. An HID tree with connector level information.

Right: Non-zero pattern of the reordered matrix.

Recursive preconditioner

 $A_l = egin{pmatrix} B_l & E_l \ E_l^T & C_l \end{pmatrix}$ and $C_l = A_{l+1}$ for l=0:L-1,

 $A_0 ==$ HID-reordered matrix A

 $A_l == ext{matrix } C_{l-1} ext{ for } l = 1, 2, \cdots, L$

 $A_L ==$ submatrix associated with the top-level connector.

 \blacktriangleright Each leading block B_l in A_l has a block-diagonal structure

Explore multilevel strategies to approximate the factorization of A_l

$$egin{aligned} A_l &= egin{pmatrix} I & I \ E_l^T B_l^{-1} & I \end{pmatrix} egin{pmatrix} B_l & O \ S_l \end{pmatrix} egin{pmatrix} I & B_l^{-1} E_l \ I \end{pmatrix} S_l &= C_l - E_l^T B_l^{-1} E_l \end{aligned}$$

Main Observation: $S_l^{-1} - C_l^{-1}$ nearly small rank

Rank bounded by number of cross-points (connectors at level *l* that intersect with connectors of higher levels)..

Idea: Write $A_{l}^{-1} = \begin{pmatrix} I & -B_{l}^{-1}E_{l} \\ I \end{pmatrix} \begin{pmatrix} B_{l}^{-1} \\ S_{l}^{-1} \end{pmatrix} \begin{pmatrix} I \\ -E_{l}^{T}B_{l}^{-1} & I \end{pmatrix}.$ > Approximate S_{l}^{-1} as $S_{l}^{-1} \approx C_{l}^{-1} - W_{l}H_{l}W_{l}^{T}$ > Next: set $C_{l} = A_{l+1}$ \rightarrow exploit recursivity

- Last level: use (incomplete) Cholesky.
- Next: illustration for 3 levels.

> At levels l = 0, 1, 2 express A_l^{-1} as :

$$A_l^{-1} = \begin{pmatrix} I & -B_l^{-1}E_l \\ I \end{pmatrix} \begin{pmatrix} B_l^{-1} & \\ & S_l^{-1} \end{pmatrix} \begin{pmatrix} I \\ -E_l^TB_l^{-1} & I \end{pmatrix}.$$

 > S_l⁻¹ needed → Approximate as S_l⁻¹ ≈ C_l⁻¹ + W_lH_lW_l^T

 > C_l⁻¹ needed → if l == 2 get C₂ ≈ L₂L₂^T, else set A_{l+1} = C_l & go to next level

Modelling-2019. 09-18-2019 p. 18

Computing the low-rank correction

► Let
$$C = LL^T$$
 and define

$$G = L^{-1}(C - S)L^{-T} = L^{-1}(E^TB^{-1}E)L$$

We have
$$S = L(I - G)L^T \rightarrow$$

 $S^{-1} - C^{-1} = L^{-T} \left[(I - G)^{-1} - I \right] L^{-1}$
 $= L^{-T} \left[G(I - G)^{-1} \right] L^{-1}.$

Use Lanczos algorithm to get a few of the largest eigenvalues of G with associated eigenvectors:

$$[W_l, \Sigma_l] = ext{eigs}(C_l^{-1}E_l^TB_l^{-1}E_l, k)
ightarrow$$

 $S_l^{-1} - C_l^{-1} pprox W_l H_l W_l^T$, with $H_l = \Sigma_l (I - \Sigma_l)^{-1}$.

• Need to solve with $C_l \rightarrow$ exploit recursivity

Current work: extension to nonsymmetric case – GeMSLR

- Use Arnoldi instead of Lanczos.
- Parallel code called GeMSLR developed in C++
- Complex version available
- Details skipped.

Strong Scaling Result

- Recursive K-way + GeMSLR + FGMRES.
- 128*128*128 7pt Laplacian using rank = 20.

	Time (s	sec.)	Speed-up			
np	Precond	Solve	Precond	Solve		
1	30.52	50.00	1.00	1.00		
2	12.02	23.19	2.03	2.16		
4	7.67	11.67	3.98	4.28		
8	4.30	6.39	7.10	7.82		
16	2.65	4.27	11.52	11.71		
32	1.50	2.50	20.35	20.00		
64	0.88	1.42	34.68	35.21		

Strong Scaling Result

- Recursive K-way + GeMSLR + FGMRES.
- 256*256*256 7pt Laplacian with rank = 20.

	Time (s	sec.)	Speed-up			
np	Precond	Solve	Precond	Solve		
16	40.33	62.26	1.00	1.00		
32	22.48	33.92	1.79	1.84		
64	13.07	18.71	3.08	3.33		
128	7.73	10.50	5.22	5.93		
256	4.86	6.22	8.30	10.01		

GPU-acceleration

• Solve $C^{-1}(I - WHW^H)x$.

Laplacean with rank = 100. Haswell Xeon E5-2680 v3 nodes + NVidia Tesla K40m GPUs

Conclusion

New Mantra: Seek "rank-sparsity" or "spectral sparsity" instead of regular sparsity

Current work: (1) Good HID partitioniers; (2) General purpose code (in prog.) (3) *Very* highly indefinite problems

Advantages of Multilevel Low-Rank preconditioners:

(1) Approximate inverses \rightarrow less sensitive to indefiniteness; (2) Exploit dense computations; (3) Easy to update.

