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Introduction & Background

ä Many applications require the computation of a few eigen-
values + associated eigenvectors of a matrix A

• Structural Engineering –
(Goal: frequency response)

• Electronic structure calcu-
lations [Schrödinger equa-
tion..] – Quantum chemistry

• Stability analysis [e.g., elec-
trical networks, mechanical
system,..]

• ...
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ä What is really needed is an invariant subspace of some
large matrix A, i.e., a subspace X such that :

AX ⊆ X or AY = Y C

Y = basis of subspace X of dim m, C ∈ Rm×m

ä Often ‘dominant’ invariant subspace needed [‘dimension
reduction’]

ä Smallest eigenvalues needed in, e.g., electronic structure
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Problems: Approximate the subspace
Update it, e.g., when data changes
Estimate its dimension (inexpensively)
Exploit the subspace for certain calculations
[e.g., model reduction]
Track subspace of a sequence of matrices
Find approximate common invariant sub-
space to a set of matrices
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Rayleigh-Ritz projection

Given: a subspaceX known to contain good approximations
to eigenvectors of A.
Question: How to extract good approximations to eigenval-
ues/ eigenvectors from this subspace?

Answer: Projection method

ä Let Q = [q1, . . . , qm] an orthonormal basis of X.

ä Express approximation as ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0 → QHAQy = λ̃y

ä Called Rayleigh Ritz process – Abbrev.: RR
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Subspace Iteration

Original idea: projection technique onto a subspace of the
form Y = AkX - Also called just the: “Power method”

ä In practice: ReplaceAk by suitable polynomial [Chebyshev]

ALGORITHM : 1 [Xnew, D] = SubsIt(A,X)
1. Start: Select an initial system X = [x1, . . . , xm]

and an initial polynomial Ck.
2. Until convergence Do:
3. Compute X̂ = Ck(A)X. [Original: X̂ = AkX]
4. [Xnew, D] = Rayleigh-Ritz (A, X̂)
5. If convergence satisfied Return.

Else X := Xnew & select a new polynomial C′k′
6. EndDo



Assumptions:

|λ1| ≥ |λ2| ≥ · · · ≥ |λm| > |λm+1| ≥ ...
P = eigenprojector (associated with λ1, · · · , λm)
L0 = span{x1, x2, . . . , xm}. Assume:
{Pxi}i=1,...,m linearly independent.
Pk =⊥ projector onto Lk = span{Xk}.

THEOREM: For each eigenvector ui ofA, i = 1, . . . ,m, there
exists a unique vector si in the subspace L0 such that Psi =
ui. Moreover, the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣λm+1

λi

∣∣∣∣+ εk

)k
,

where εk tends to zero as k tends to infinity.
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Q: What Chebychev
polynomial?
Typical scenario→

λ
n λ

λm

m+1

λ1

Unwanted wanted

Common thinking: shift and scale
A to B = (A− cI)/h:

c = λm+1+λn
2

, h = λm+1−λn
2

Then: pk(t) = Ck(t)/Ck(λ1)
ä Eigs of B in [−1, 1] are now
the ‘unwanted’ eigenvalues
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ä Polynomial ‘optimal’ in some sense for each λi, i ≤ m
individually - but not for the invariant subspace as a whole.
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Krylov vs. subspace iteration

ä From the perspective of computing invariant subspaces

Krylov-type methods

+ Fast

+ Optimal in a certain sense

+ Requires one starting
vector

– Not easy to update

– Changes inA not allowed

Subspace iteration methods

+ Updates are easy

+ Geared toward subspaces
[vs individual eigenvalues]

+ Tolerates changes in A

– Slower

Important note: both types of methods require only matrix-
vector products. Can get superior convergence with shift-and-
invert [replace A with (A− σI)−1 in Algorithms]. Issue: cost
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Example: subspace iteration for Kohm-Sham equation[
−∇2

2
+ Vion + VH + Vxc

]
Ψ(r) = EΨ(r) With:

• Hartree potential (local) ∇2VH = −4πρ(r)

• Vxc depends on functional. For
LDA:

Vxc = f(ρ(r))

• Vion = nonlocal – does not explicitly
depend on ρ

Vion = Vloc +
∑
aPa

• VH and Vxc depend nonlinearly on
eigenvectors:

ρ(r) =
∑occup
i=1 |ψi(r)|2
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Self-Consistent Iteration

Initial Guess for V , V = Vat

Solve (−1
2
∇2 + V )ψi = εiψi

Calculate new ρ(r) =
∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

V = Vnew

?

?

?

?

?

?

6

�

-
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The subspace filtering viewpoint

Given a basis [v1, . . . , vm],
’filter’ each vector as

v̂i = Pk(A)vi

ä pk = Low deg. polynomial [Chebyshev]

ä Filtering step not used to com-
pute eigenvectors accurately
ä SCF & diagonalization loops
merged
ä Another viewpoint: nonlinear
form of subspace iteration −1 −0.5 0 0.5 1
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Deg. 8 Cheb. polynom., on interv.: [−11]
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Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) =
∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

Filter basis {ψi} (with Hnew)+orth.

V = Vnew

?

?

?

?

?

?

?

6

�

-
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Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-Consistent-

Field Calculations with Chebyshev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p.

066704 (2006)

Si525H276 , Polynomial
deg. == 8. Single proc.

method # A ∗ x SCF CPU(s.)
ChebSI 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan 145909 10 26852.84

Si9041H1860 # PEs = 48; nH =2,992,832. Degree m = 8

nstate # A ∗ x # SCF total_eV
atom

1st CPU total CPU
19015 4804488 18 -92.00412 102.12 h. 294.36 h.
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The Grassmannian perspective

ä Recall: Stiefel manifold (‘compact’ Stiefel manifold):

St(p, n) = {Y ∈ Rn×p : Y TY = I}.

ä Set of matrices with p orthonormal columns

ä Grassmann manifold is the quotient manifold

G(p, n) = S(p, n)/O(p)

where O(p) ≡ orthogonal group of unitary p× p matrices.

ä Each point on G(p, n)≡ a subspace of dimension p of Rn

ä Can be represented by a basis V ∈ St(p, n).
Notation: [V ], [it does not matter which basis V of is used]
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• A. Edelman, T. A. Arias, and S. T. Smith, The geometry of
algorithms with orthogonality constraints, SIMAX, 20 (1999)

ä Tangent space of the Grassmann manifold at [Y ] is the set
of matrices ∆ ∈ Rn×p s.t.:

Y T∆ = 0

ä The EAS paper (above) considers minimizing

F (Y ) = 1
2
Tr [Y TAY ]

where Y TY = I by a Newton approach

ä The gradient of F (Y ) on
the manifold at point [Y ] is

G = (I − Y Y T)AY
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ä For Newton: We need to solve Hess∆ = −G on manifold

ä Notation: Π = I − Y Y T , CY = Y TAY

ä Newton leads to Sylvester equation:

Π[A∆−∆CY ] = −ΠAY

ä Solution: ∆ = −Y + Z(Y TZ)−1 where Z solves

AZ − ZCY = Y
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A few other well-known references

1. P. -A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren “A Grassmann-
Rayleigh Quotient Iteration for Computing Invariant Subspaces”, SIAM
Review, (2002)

2. P. A. Absil, R. Mahony and R. Sepulchre, Riemannian Geometry of
Grassmann Manifolds with a View on Algorithmic Computation, Acta
Applicandae Mathematicae, 80 (2004)

3. G. W. Stewart, “Error and perturbation bounds for subspaces associ-
ated with certain eigenvalue problems” , SIAM Rev., 15 (1973)

4. J. W. Demmel, “Three methods for refining estimates of invariant sub-
spaces”, Computing 38 (1987)

5. F. Chatelin, Simultaneous Newton’s iterations for the eigenproblem,
Proc. Oberwolfach Conference (1984)

6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.
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The Grassmannian perspective (continued)

ä Problem with these 2nd-order methods: Need to solve mul-
tiple systems of equations or a Sylvester equation at each step

ä Can we use Grassmannian perspective without inversion?

ä Idea: Use a gradient - or conjugate gradient - approach

Recall: OnG(p, n), gradient of objective function φ at [Y ] is

G = ∇φY = (I − Y Y T)AY ≡ AY − Y CY

with CY = Y TAY .
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Gradient approach

ä Next iterate is of the follow-
ing form (µ to be determined)

Ỹ = Y + µG,

ä Direction of gradient will in-
crease φ locally but new iterate
must stay on manifold.

Tangent space

[Y]
Grad

ä Could follow a geodesic (EAS paper) ..

ä Or follow a path along G but implicitly re-project each Y +
µG on manifold, i.e., consider [Y + µG]
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ä Can show

φ(Ỹ ) = φ(Y ) + µ‖G‖2
F + µ2

2
Tr [AY ]TΠAΠ[AY ]

ä ... and because Y TG = 0 we have:

Ỹ T Ỹ = [Y + µG]T [Y + µG] = I + µ2GTG.

ä Let: GTG = UDβU
T ≡ spectral decomposition of GTG

ä Want: To orthonormalize Ỹ without changing its span

ä Sol: Right-multiply Ỹ by UD−1
µ , i.e., define new Y as:

Y (µ) = Ỹ UD−1
µ = (Y + µG)UD−1

µ .

where: Dµ ≡ [I + µ2Dβ]
1/2
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Set:
Yu = Y U

αi = (Y T
u AYu)ii

Dα = Diag(αi);

Gu = GU

γi = (GT
uAGu)ii

Dγ = Diag(γi);

Then:

φ(Y (µ)) = 1
2
Tr
[
I + µ2Dβ

]−1 [
Dα + 2µDβ + µ2Dγ

]

This is a ratio-
nal function→

φ(Y (µ)) =
1

2

m∑
i=1

αi + 2βiµ+ γiµ
2

1 + βiµ2

Derivative of
Y (µ)→

dY (µ)

dµ
=

m∑
i=1

βi + (γi − αi βi)µ− β2
iµ

2

(1 + βiµ2)2
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ä Each numerator is an inverted parabola: ↗ then ↘

ä Easy to devise procedures to optimize φ(Y (µ))

Z Careful in case βi’s are small !

ALGORITHM : 2 Gradient Ascent algorithm
0. Start: Select initial Y such that Y TY = I.
1. Compute G = AY − Y CY
2. While‖G‖F > tol
3. Compute and Diagonalize GTG as GTG = UDβU

T

4. Compute Dα, Dγ

5. Call get_mu to approximately maximize φ(Y (µ))
6. Set Y := (Y + µG)U [I + µ2Dβ]

−1/2

7. Compute G = AY − Y CY
8. EndWhile
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Use of Conjugate Gradients [work in progress (!)]

Can’t use perspective of linear CG [obj. function not quadratic]
Also we are maximizing a function [φ(Y )]
An approach based on a Polak-Ribiere formulation works
quite well. New Conj. Direction P :

Pnew = P + βGnew where β = 〈Gnew−G,Gnew〉
〈G,G〉

But we will also project new P on tangent space:

Pnew ← (I − Y Y T)Pnew

Since Y T
newP = 0 formulas similar to Grad. case available

[Slightly more expensive]
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Conjugate Gradients – Polak-Ribiere

ALGORITHM : 3 Conjugate Gradient Ascent algorithm
0. Start: Select initial Y such that Y TY = I.
1. Compute G = AY − Y CY ; Set P := G
2. While‖G‖F > tol
3. Call get_mu to approximately maximize φ(Y (µ))
4. Set [Y,R] = qr(Y + µP, 0) [Matlab]
5. Compute Gnew = AY − Y CY
6. Compute β = 〈Gnew−G,Gnew〉

〈G,G〉 and set:
7. Pnew := Gnew + βP and G := Gnew

8. Pnew := (I − Y Y T)Pnew
9. EndWhile
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A few numerical tests

Test cases:
1) Finite Difference Laplacean on
35× 40 grid (n = 1, 400)
2) Matrix Ukerbe1 from
SuiteSParse collection→
ä All tests: m = Subsp. dim. ≡ 8
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nz = 15704

0
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ä For Standard Subspace iteration – we apply optimal shift so
A→ A− σI [where σ = (λn + λ9)/2 ]

ä Tests: 1) Standard subspace iteration 2) Manifold Gradient
method and 3) Conj. Gradient version of manifold SubsitMf, 4)
Chebyshev subspace iteration
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Small Laplacean [35× 40 grid, n = 1400, nnz = 6850]
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Matrix Ukerbe1 [n = 5, 981, nnz = 15704]
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JOINT DIAGONALIZATION



Application: Joint Diagonalization

ä Current joint work with Karim Seghouane

Standard Orthogonal Joint Diagonalization (OJD): given p
matrices A1, · · · , Ap find a unitary matrix Q such that each
QTAiQ is close to a diagonal.

ä Main applications: Blind Source Separation, ICA, ...

Typical formal formulation:
(Off(X) ≡ X−Diag(X))

min
Q∈On

p∑
i=1

‖Off(QTAiQ)‖2
F

ä Deals with the case where each Ai is dense.
ä Well-known algorithm: A Jacobi-like method [Cardoso &
Souloumiac, ’96]. Cost: O(pn3)
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Large matrices: Use a subspace approach

ä Previous criterion and obj. function do not work

ä Roughly: Seek an n× k matrix (k� n) such that

1) AiQ−QDi small for some diagonal Di [Invariance]
2) Q near dominant invariant subspace for each Ai

New objective function:

f(Q,D1, ..., Dp) =

p∑
i=1

‖AiQ−QDi‖2
F .

ä Does not specify which invariant subspace is selected [we
let algorithm take care of this]
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ALGORITHM : 4 Subspace iteration for partial JOD
Start : select initial Q such QTQ = I
While { Not converged }

For j = 1, · · · , p
Compute Xj = AjQ

EndFor
Let X = [X1, · · · , Xp]
Compute X = QΣV T the SVD of X
Define Q := Q(:, 1 : k) [Matlab notation used]

EndWhile

ä Alternative: Similar algorithm to Grassmann gradient ascent
- but uses combined objective function (to maximize)

ψ(Y ) = 1
2

∑p
i=1 Tr [Y TAiY ] − η

∑p
i=1 ‖AiQ−QCQ,i‖2

F
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Updating the SVD (E. Vecharynski and YS’13)

Problem Given partial SVD ofX, to get partial SVD ofXnew

ä Example: In information retrieval, updates of the form
Xnew = [X,D] (documents added) where D ∈ Rn×p

ä Assume X≈Xk ≡ UkΣkV
T
k

ä Compute Dk = (I − UkUT
k )D and its QR factorization:

[Ûp, R] = qr(Dk, 0), R ∈ Rp×p, Ûp ∈ Rn×p →

[Xk, D] = [Uk, Ûp]HD

[
Vk 0
0 Ip

]T
; HD ≡

[
Σk U

T
kD

0 R

]
Zha–Simon (’99): Compute SVD ofHD & get approximate SVD
from above→ This is a Rayleigh-Ritz projection method for the
SVD [E. Vecharynski & YS 2013]



ä When the number of updates is large ZS becomes costly.

ä Idea: Replace Ûp by a low dimensional approximation:

ä Use Ū of the form Ū = [Uk, Zl] instead of Ū = [Uk, Ûp]

ä Zl == rank-l approximation of Dk = (I − UkUT
k )D

ä Details of Experiments skipped but: we get slightly improved
precision at a much lower cost.
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RANK ESTIMATION



What dimension to use in dimension reduction?

ä Important problem in signal processing applications, ma-
chine learning, ...

ä Often: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

ä k = intrinsic rank of data. Can we estimate it?

ä Recall: Numerical rank :

ε-rank = number k of sing. values > ε
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Determining rank by eigenvalue counts

ä Idea: count eigenvalues of ATA (or AAT ) that are > ε2.

ä LetA be a Hermitian matrix with eigenpairs (λi, ui), where

λ1 ≤ λ2 ≤ · · · ≤ λn

ä Given: a, b such that λ1 ≤ a ≤ b ≤ λn.

ä Want: µ[a,b] = number of λi
′s ∈ [a, b].

ä Standard method: Use Sylvester inertia theorem. Requires
two LDLT factorizations→ expensive!
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ä Alternative: Exploit trace of
the eigen-projector:

P =
∑

λi ∈ [a b]

uiu
T
i .

ä We know that: Tr (P ) = µ[a,b]
Goal now: approxi-
mate : Tr (P )

P not avail-
able but: P = h(A) where h(t) =

{
1 if t ∈ [a b]
0 otherwise

ä Can approximate h(t) by a polynomial ψ

ä Then use statistical estimator for approximating Tr (ψ(A))

ä Details: [E. Di Napoli, E. Polizzi, and Y.S., 2013]
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Alternative: ‘Density of States’ (DOS)

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where: δ is the Dirac δ-function or Dirac distribution

ä Term used by mathematicians: Spectral Density

ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä Many uses in Solid-State physics

ä Survey paper: [Lin-Lin, YS, Chao Yang], SIAM review, 2016.
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The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimators [discovered independently] to get traces
needed in calculations

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).
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An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene n =8219 nnz = 242669
Degree = 40 # sample vectors = 10
Elapsed time is 0.235189 seconds.
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Integrating to get eigenvalue counts

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a
nφ(t)dt .

ä If we use KPM to approximate φ(t) = φ̂(t)/
√

1− t2 then

µ[a,b] ≈
m∑
k=0

µk

∫ b

a

Tk(t)√
1− t2

dt

ä A little calculation shows that the result obtained in this way
is identical with that of the eigenvalue count by Cheb expansion
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Use of the Lanczos Algorithm

ä Lanczos process builds orthogonal polynomials wrt to:

〈p, q〉 =

∫
p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä Let θi, yi i = 1 · · · ,m be the eigenvalues / eigenvectors
of tridiagonal matrix Tm [Ritz values]

Idea: exploit relation of Lanczos with (discrete) orthogonal
polynomials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä Formula exact when p is a polynomial of degree≤ 2m+ 1
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See: Golub & Meurant ’93, and also Gautschi’81, Golub and Welsch ’69.

ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

where v =
∑
βiui = eigen -expansion of v, φv =

∑
β2
i δλi

ä Note: Ideal case βi = 1/
√
n yieds φv ≡ φ

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä Statistically produce choice βi ≡ 1/
√
n,∀i , average re-

sults over several vectors v with ‖v‖2 = 1.
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Back to estimating the rank: Threshold selection

ä Recall: numerical rank = # sing. values≥ ε

Q: How to select ε?

A: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop
observed.

ä Simple idea: use derivative of DOS function φ

ä For an n×nmatrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn:

ε = min{t : λ1 ≤ t ≤ λn, φ′(t) = 0}.

ä In practice replace by

ε = min{t : λ1 ≤ t ≤ λn, |φ′(t)| ≥ tol}
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Experiments
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(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for
the example netz4504.
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Approximate Rank Estimation of various matrices

lpi_ceria3d (linear programming) 3, 576
S80PI_n1 (model reduction prbm.) 4, 028
ukerbe1 (2D finite elem. prbm.) 5, 981
Erdos992 (collaboration network) 6, 100
Geom (computl. geometry) 7, 343
California (web search) 9, 664
C-40 (non-linear optimization) 9, 941



Matrices Threshold Eigencount M=100, nv=30
ε above ε rε -KPM rε -Lanczos

lpi_ceria3d 28.19 78 78.69 78.74
S80PI_n1 1.76 2157 2154.04 2156.48
ukerbe1 0.169 4030 4030.84 4031.39
Erdos992 3.96 716 711.20 708.00
Geom 90 240 325.30 240.042
California 0.02 1646 5600.78 1646.66
C-40 48160.4 53 57.16 52.05

ä Details: S. Ubaru, Y. S. and A. Seghouane, "Fast Estima-
tion of Approximate Matrix Ranks Using Spectral Densities," in
Neural Computation, vol. 29, 2017.
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Concluding remarks

ä Many tasks in applications deal with invariant subspaces

ä Beneficial to explore algorithms that treat invariant sub-
spaces as Grassmannian objects

ä Krylov subspace methods not best choice for types of prob-
lems that arise in some applications ...

ä ... but they are amazingly powerful for other tasks [e.g.
Spectral densities]
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