UNIVERSITY
 OF Minnesota twin cities

Supspace Iteration and Variants, Revisited
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

Luminy
 Nov. 8-13, 2021

Introduction \& Background

> Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix \boldsymbol{A}

- Structural Engineering (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..] - Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]
- What is really needed is an invariant subspace of some large matrix \boldsymbol{A}, i.e., a subspace \mathcal{X} such that:

$$
A \mathcal{X} \subseteq \mathcal{X} \quad \text { or } \quad A Y=Y C
$$

$\boldsymbol{Y}=$ basis of subspace \mathcal{X} of $\operatorname{dim} m, C \in \mathbb{R}^{m \times m}$
> Often 'dominant' invariant subspace needed ['dimension reduction']
> Smallest eigenvalues needed in, e.g., electronic structure

- Approximate the subspace

■ Update it, e.g., when data changes

- Estimate its dimension (inexpensively)
- Exploit the subspace for certain calculations [e.g., model reduction]
- Track subspace of a sequence of matrices

■ Find approximate common invariant subspace to a set of matrices

Rayleigh-Ritz projection

Given: a subspace \boldsymbol{X} known to contain good approximations to eigenvectors of \boldsymbol{A}.
Question: How to extract good approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Projection method
$>$ Let $Q=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]$ an orthonormal basis of \boldsymbol{X}.
$>$ Express approximation as $\tilde{\boldsymbol{u}}=\boldsymbol{Q} \boldsymbol{y}$ and obtain \boldsymbol{y} by writing

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0 \rightarrow Q^{H} A Q y=\tilde{\lambda} y
$$

- Called Rayleigh Ritz process - Abbrev.: RR

Subspace Iteration

Original idea: projection technique onto a subspace of the form $\boldsymbol{Y}=\boldsymbol{A}^{k} \boldsymbol{X}$ - Also called just the: "Power method"
$>$ In practice: Replace \boldsymbol{A}^{k} by suitable polynomial [Chebyshev]

ALGORITHM : $1\left[\boldsymbol{X}_{\text {new }}, \boldsymbol{D}\right]=\operatorname{Subslt}(\boldsymbol{A}, \boldsymbol{X})$

1. Start: Select an initial system $\boldsymbol{X}=\left[x_{1}, \ldots, x_{m}\right]$ and an initial polynomial C_{k}.
2. Until convergence Do:
3. Compute $\hat{\boldsymbol{X}}=C_{k}(A) \boldsymbol{X}$. [Original: $\hat{\boldsymbol{X}}=A^{k} X$]
4. $\quad\left[\boldsymbol{X}_{n e w}, D\right]=$ Rayleigh-Ritz $(\boldsymbol{A}, \hat{\boldsymbol{X}})$
5. If convergence satisfied Return. Else $\boldsymbol{X}:=\boldsymbol{X}_{\text {new }}$ \& select a new polynomial $C_{k^{\prime}}^{\prime}$
6. EndDo

Assumptions:

- $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right|>\left|\lambda_{m+1}\right| \geq \ldots$
- $\boldsymbol{P}=$ eigenprojector (associated with $\lambda_{1}, \cdots, \boldsymbol{\lambda}_{m}$)
$\square \mathcal{L}_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Assume:
■ $\left\{\boldsymbol{P} \boldsymbol{x}_{i}\right\}_{i=1, \ldots, m}$ linearly independent.
$■ \mathcal{P}_{k}=\perp$ projector onto $\mathcal{L}_{k}=\operatorname{span}\left\{X_{k}\right\}$.
THEOREM: For each eigenvector u_{i} of $A, i=1, \ldots, m$, there exists a unique vector s_{i} in the subspace \mathcal{L}_{0} such that $\boldsymbol{P} s_{i}=$ \boldsymbol{u}_{i}. Moreover, the following inequality is satisfied

$$
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k}
$$

where ϵ_{k} tends to zero as \boldsymbol{k} tends to infinity.

Q: What Chebychev polynomial?
Typical scenario \rightarrow

Deg. 6 Cheb. polynom. $\quad \gamma=1.2$
Common thinking: shift and scale A to $B=(A-c I) / h$:

$$
c=\frac{\lambda_{m+1}+\lambda_{n}}{2}, \quad h=\frac{\lambda_{m+1}-\lambda_{n}}{2}
$$

Then: $p_{k}(t)=C_{k}(t) / C_{k}\left(\lambda_{1}\right)$
$>$ Eigs of B in $[-1,1]$ are now the 'unwanted' eigenvalues

> Polynomial 'optimal' in some sense for each $\lambda_{i}, i \leq m$ individually - but not for the invariant subspace as a whole.

Krylov vs. subspace iteration

> From the perspective of computing invariant subspaces

```
Krylov-type methods
+ Fast
+ Optimal in a certain sense
+ Requires one starting
    vector
- Not easy to update
- Changes in A not allowed
```

Subspace iteration methods

+ Updates are easy
+ Geared toward subspaces
[vs individual eigenvalues]
+ Tolerates changes in \boldsymbol{A}
- Slower

Important note: both types of methods require only matrixvector products. Can get superior convergence with shift-andinvert [replace A with $(A-\sigma I)^{-1}$ in Algorithms]. Issue: cost

Example: subspace iteration for Kohm-Sham equation

$$
\left[-\frac{\nabla^{2}}{2}+V_{i o n}+V_{H}+V_{x c}\right] \Psi(r)=E \Psi(r) \quad \text { With: }
$$

- Hartree potential (local)

$$
\nabla^{2} V_{H}=-4 \pi \rho(r)
$$

- $\boldsymbol{V}_{x c}$ depends on functional. For

$$
V_{x c}=f(\rho(r))
$$ LDA:

$$
V_{i o n}=V_{l o c}+\sum_{a} \boldsymbol{P}_{a}
$$ depend on ρ

- $\boldsymbol{V}_{\boldsymbol{H}}$ and $\boldsymbol{V}_{\boldsymbol{x} \boldsymbol{c}}$ depend nonlinearly on eigenvectors:

$$
\rho(r)=\sum_{i=1}^{o c c u p}\left|\psi_{i}(r)\right|^{2}
$$

Self-Consistent Iteration

The subspace filtering viewpoint

Given a basis $\left[v_{1}, \ldots, v_{m}\right]$, 'filter' each vector as

$$
\hat{\boldsymbol{v}}_{i}=P_{k}(A) v_{i}
$$

$>\boldsymbol{p}_{\boldsymbol{k}}=$ Low deg. polynomial [Chebyshev]
> Filtering step not used to compute eigenvectors accurately
> SCF \& diagonalization loops merged
> Another viewpoint: nonlinear form of subspace iteration

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-ConsistentField Calculations with Chebyshev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p. 066704 (2006)

	method	$\# \boldsymbol{A} * \boldsymbol{x}$	SCF	CPU(s.)
$\boldsymbol{S} \boldsymbol{i}_{525} \boldsymbol{H}_{276}$, Polynomial	ChebSI	124761	11	5946.69
deg. $==$ 8. Single proc.	ARPACK	142047	10	62026.37
	TRLan	145909	10	26852.84

$S i_{9041} H_{1860}$ \# PEs $=48 ; \boldsymbol{n}_{\boldsymbol{H}}=2,992,832$. Degree $m=8$

$\boldsymbol{n}_{\text {state }}$	$\# \boldsymbol{A} * \boldsymbol{x}$	\# SCF	$\frac{\text { total_eV }}{\text { atom }}$	1st CPU	total CPU
19015	4804488	18	-92.00412	102.12 h.	294.36 h.

The Grassmannian perspective

> Recall: Stiefel manifold ('compact' Stiefel manifold):

$$
S t(p, n)=\left\{Y \in \mathbb{R}^{n \times p}: Y^{T} Y=I\right\} .
$$

> Set of matrices with p orthonormal columns
> Grassmann manifold is the quotient manifold

$$
G(p, n)=S(p, n) / O(p)
$$

where $O(p) \equiv$ orthogonal group of unitary $p \times p$ matrices.
> Each point on $G(p, n) \equiv$ a subspace of dimension p of \mathbb{R}^{n}
> Can be represented by a basis $V \in S t(p, n)$.
Notation: [\boldsymbol{V}], [it does not matter which basis V of is used]

- A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIMAX, 20 (1999)
$>$ Tangent space of the Grassmann manifold at $[\boldsymbol{Y}]$ is the set of matrices $\Delta \in \mathbb{R}^{n \times p}$ s.t.:

$$
Y^{T} \Delta=0
$$

> The EAS paper (above) considers minimizing

$$
F(\boldsymbol{Y})=\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{Y}\right]
$$

where $\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{Y}=\boldsymbol{I}$ by a Newton approach
$>$ The gradient of $\boldsymbol{F}(\boldsymbol{Y})$ on the manifold at point $[\boldsymbol{Y}]$ is

$$
G=\left(I-Y Y^{T}\right) A Y
$$

> For Newton: We need to solve Hess $\Delta=-G$ on manifold
$>$ Notation: $\Pi=I-Y Y^{T}, C_{Y}=Y^{T} \boldsymbol{A} \boldsymbol{Y}$
$>$ Newton leads to Sylvester equation:

$$
\Pi\left[A \Delta-\Delta C_{Y}\right]=-\Pi A Y
$$

> Solution: $\Delta=-\boldsymbol{Y}+Z\left(\boldsymbol{Y}^{T} Z\right)^{-1}$ where Z solves

$$
A Z-Z C_{Y}=Y
$$

A few other well-known references

1. P. -A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren "A GrassmannRayleigh Quotient Iteration for Computing Invariant Subspaces", SIAM Review, (2002)
2. P. A. Absil, R. Mahony and R. Sepulchre, Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation, Acta Applicandae Mathematicae, 80 (2004)
3. G. W. Stewart, "Error and perturbation bounds for subspaces associated with certain eigenvalue problems", SIAM Rev., 15 (1973)
4. J. W. Demmel, "Three methods for refining estimates of invariant subspaces", Computing 38 (1987)
5. F. Chatelin, Simultaneous Newton's iterations for the eigenproblem, Proc. Oberwolfach Conference (1984)
6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.

The Grassmannian perspective (continued)

> Problem with these 2nd-order methods: Need to solve multiple systems of equations or a Sylvester equation at each step
> Can we use Grassmannian perspective without inversion?
> Idea: Use a gradient - or conjugate gradient - approach
Recall: On $\boldsymbol{G}(\boldsymbol{p}, \boldsymbol{n})$, gradient of objective function ϕ at $[\boldsymbol{Y}]$ is

$$
G=\nabla \phi_{Y}=\left(I-Y Y^{T}\right) A Y \equiv A Y-Y C_{Y}
$$

with $C_{Y}=Y^{T} A \boldsymbol{Y}$.

Gradient approach

> Next iterate is of the following form ($\boldsymbol{\mu}$ to be determined)

$$
\tilde{Y}=Y+\mu G
$$

> Direction of gradient will increase ϕ locally but new iterate must stay on manifold.

> Could follow a geodesic (EAS paper) ..
$>$ Or follow a path along G but implicitly re-project each $\boldsymbol{Y}+$ μG on manifold, i.e., consider $[Y+\mu G]$

- Can show

$$
\phi(\tilde{Y})=\phi(Y)+\mu\|G\|_{F}^{2}+\frac{\mu^{2}}{2} \operatorname{Tr}[A Y]^{T} \Pi A \Pi[A Y]
$$

$>\ldots$ and because $Y^{T} G=0$ we have:

$$
\tilde{\boldsymbol{Y}}^{T} \tilde{\boldsymbol{Y}}=[\boldsymbol{Y}+\mu G]^{T}[\boldsymbol{Y}+\mu G]=I+\mu^{2} G^{T} G
$$

$>$ Let: $G^{T} G=\boldsymbol{U} D_{\beta} U^{T} \equiv$ spectral decomposition of $G^{T} G$
> Want: To orthonormalize $\tilde{\boldsymbol{Y}}$ without changing its span
> Sol: Right-multiply \tilde{Y} by $U D_{\mu}^{-1}$, i.e., define new Y as:

$$
\boldsymbol{Y}(\mu)=\tilde{\boldsymbol{Y}} U D_{\mu}^{-1}=(\boldsymbol{Y}+\mu G) U D_{\mu}^{-1} .
$$

where:

$$
D_{\mu} \equiv\left[I+\mu^{2} D_{\beta}\right]^{1 / 2}
$$

$$
\phi(Y(\mu))=\frac{1}{2} \operatorname{Tr}\left[I+\mu^{2} D_{\beta}\right]^{-1}\left[D_{\alpha}+2 \mu D_{\beta}+\mu^{2} D_{\gamma}\right]
$$

This is a rational function \rightarrow

$$
\phi(Y(\mu))=\frac{1}{2} \sum_{i=1}^{m} \frac{\alpha_{i}+2 \beta_{i} \mu+\gamma_{i} \mu^{2}}{1+\beta_{i} \mu^{2}}
$$

$\underset{\boldsymbol{Y}(\mu) \rightarrow}{\text { Derivative of }} \quad \frac{d \boldsymbol{Y}(\mu)}{d \mu}=\sum_{i=1}^{m} \frac{\boldsymbol{\beta}_{i}+\left(\gamma_{i}-\alpha_{i} \beta_{i}\right) \mu-\boldsymbol{\beta}_{i}^{2} \mu^{2}}{\left(1+\boldsymbol{\beta}_{i} \mu^{2}\right)^{2}}$
> Each numerator is an inverted parabola:
$>$ Easy to devise procedures to optimize $\phi(\boldsymbol{Y}(\boldsymbol{\mu}))$
Z Careful in case $\boldsymbol{\beta}_{i}$'s are small!

ALGORITHM : 2 Gradient Ascent algorithm

0. Start: Select initial \boldsymbol{Y} such that $\boldsymbol{Y}^{T} \boldsymbol{Y}=I$.
1. Compute $G=A Y-Y C_{Y}$
2. While $\|G\|_{F}>$ tol
3. Compute and Diagonalize $G^{T} G$ as $G^{T} G=U D_{\beta} U^{T}$
4. Compute $\boldsymbol{D}_{\alpha}, \boldsymbol{D}_{\gamma}$
5. Call get_mu to approximately maximize $\phi(\boldsymbol{Y}(\boldsymbol{\mu}))$
6. $\quad \operatorname{Set} \boldsymbol{Y}:=(\boldsymbol{Y}+\mu G) U\left[I+\mu^{2} D_{\beta}\right]^{-1 / 2}$
7. Compute $G=\boldsymbol{A} \boldsymbol{Y}-\boldsymbol{Y} C_{Y}$
8. EndWhile

Use of Conjugate Gradients [work in progress (!)]

- Can’t use perspective of linear CG [obj. function not quadratic]
- Also we are maximizing a function [$\phi(\boldsymbol{Y})$]
- An approach based on a Polak-Ribiere formulation works quite well. New Conj. Direction \boldsymbol{P} :

$$
P_{\text {new }}=P+\beta G_{\text {new }} \quad \text { where } \quad \beta=\frac{\left\langle G_{\text {new }}-G, G_{\text {new }}\right\rangle}{\langle G, G\rangle}
$$

- But we will also project new \boldsymbol{P} on tangent space:

$$
P_{n e w} \leftarrow\left(I-Y Y^{T}\right) P_{n e w}
$$

- Since $\boldsymbol{Y}_{n e w}^{\boldsymbol{T}} \boldsymbol{P}=0$ formulas similar to Grad. case available [Slightly more expensive]

Conjugate Gradients - Polak-Ribiere

ALGORITHM : 3 Conjugate Gradient Ascent algorithm

0. Start: Select initial Y such that $Y^{T} \boldsymbol{Y}=I$.
1. Compute $G=A Y-Y C_{Y}$; Set $P:=G$
2. While $\|G\|_{F}>$ tol
3. Call get_mu to approximately maximize $\phi(\boldsymbol{Y}(\boldsymbol{\mu}))$
4. $\operatorname{Set}[\boldsymbol{Y}, \boldsymbol{R}]=\boldsymbol{q r}(\boldsymbol{Y}+\boldsymbol{\mu} \boldsymbol{P}, \mathbf{0})$ [Matlab]
5. \quad Compute $G_{n e w}=A Y-Y C_{Y}$
6. Compute $\beta=\frac{\left\langle G_{\text {new }}-G, G_{\text {new }}\right\rangle}{\langle G, G\rangle}$ and set:
7. $\quad P_{\text {new }}:=G_{n e w}+\beta P$ and $G:=G_{\text {new }}$
8. $\quad P_{n e w}:=\left(I-Y Y^{T}\right) P_{\text {new }}$
9. EndWhile

A few numerical tests

Test cases:

1) Finite Difference Laplacean on 35×40 grid ($n=1,400$)
2) Matrix Ukerbe1 from

SuiteSParse collection \rightarrow

- All tests: $m=$ Subsp. dim. $\equiv 8$

> For Standard Subspace iteration - we apply optimal shift so $A \rightarrow A-\sigma I$ [where $\sigma=\left(\lambda_{n}+\lambda_{9}\right) / 2$]
$>$ Tests: 1) Standard subspace iteration 2) Manifold Gradient method and 3) Conj. Gradient version of manifold SubsitMf, 4) Chebyshev subspace iteration

Small Laplacean $[35 \times 40$ grid, $n=1400, n n z=6850]$

Trace of C_{Y} vs. its

Invariance Meas. vs. its

Performance measures: 1) Trace; 2) Invariance $\left\|A Y-Y C_{Y}\right\|_{1}$

Matrix Ukerbe1 [$n=5,981, n n z=15704]$

Trace of C_{Y} vs. its

Invariance Meas. vs. its

JOINT DIAGONALIZATION

Application: Joint Diagonalization

> Current joint work with Karim Seghouane
Standard Orthogonal Joint Diagonalization (OJD): given p matrices A_{1}, \cdots, A_{p} find a unitary matrix Q such that each $Q^{T} A_{i} Q$ is close to a diagonal.
> Main applications: Blind Source Separation, ICA, ...
Typical formal formulation: ($\mathrm{Off}(\boldsymbol{X}) \equiv \boldsymbol{X}-\operatorname{Diag}(\boldsymbol{X})$)

$$
\min _{Q \in O_{n}} \sum_{i=1}^{p}\left\|\operatorname{Off}\left(Q^{T} A_{i} Q\right)\right\|_{F}^{2}
$$

$>$ Deals with the case where each A_{i} is dense.

- Well-known algorithm: A Jacobi-like method [Cardoso \& Souloumiac, '96]. Cost: $\boldsymbol{O}\left(p n^{3}\right)$

Large matrices: Use a subspace approach

> Previous criterion and obj. function do not work
> Roughly: Seek an $\boldsymbol{n} \times \boldsymbol{k}$ matrix $(\boldsymbol{k} \ll \boldsymbol{n})$ such that

1) $\boldsymbol{A}_{i} Q-Q D_{i}$ small for some diagonal D_{i} [Invariance] 2) Q near dominant invariant subspace for each \boldsymbol{A}_{i}

New objective function:

$$
f\left(Q, D_{1}, \ldots, D_{p}\right)=\sum_{i=1}^{p}\left\|A_{i} Q-Q D_{i}\right\|_{F}^{2}
$$

$>$ Does not specify which invariant subspace is selected [we let algorithm take care of this]

ALGORITHM : 4 Subspace iteration for partial JOD

Start : select initial Q such $Q^{T} Q=I$
While \{ Not converged \}
For $j=1, \cdots, p$
Compute $X_{j}=A_{j} Q$
EndFor
Let $\boldsymbol{X}=\left[\boldsymbol{X}_{1}, \cdots, \boldsymbol{X}_{p}\right]$
Compute $\boldsymbol{X}=\boldsymbol{Q} \Sigma \boldsymbol{V}^{T}$ the SVD of \boldsymbol{X}
Define $Q:=Q(:, 1: k)$ [Matlab notation used]

EndWhile

> Alternative: Similar algorithm to Grassmann gradient ascent - but uses combined objective function (to maximize)

$$
\psi(\boldsymbol{Y})=\frac{1}{2} \sum_{i=1}^{p} \operatorname{Tr}\left[\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{A}_{i} \boldsymbol{Y}\right]-\eta \sum_{i=1}^{p}\left\|\boldsymbol{A}_{i} \boldsymbol{Q}-Q C_{Q, i}\right\|_{F}^{2}
$$

Updating the SVD (E. Vecharynski and YS'13)

Problem Given partial SVD of \boldsymbol{X}, to get partial SVD of $\boldsymbol{X}_{\text {new }}$

- Example: In information retrieval, updates of the form $\boldsymbol{X}_{\text {new }}=[\boldsymbol{X}, D]$ (documents added) where $D \in \mathbb{R}^{n \times p}$
$>$ Assume $X \approx X_{k} \equiv U_{k} \Sigma_{k} V_{k}^{T}$
$>$ Compute $D_{k}=\left(I-U_{k} U_{k}^{T}\right) D$ and its QR factorization:

$$
\begin{gathered}
{\left[\hat{U}_{p}, \boldsymbol{R}\right]=q r\left(D_{k}, 0\right), R \in \mathbb{R}^{p \times p}, \quad \hat{U}_{p} \in \mathbb{R}^{n \times p} \quad \rightarrow} \\
{\left[\boldsymbol{X}_{k}, D\right]=\left[U_{k}, \hat{U}_{p}\right] \boldsymbol{H}_{D}\left[\begin{array}{cc}
V_{k} & 0 \\
0 & I_{p}
\end{array}\right]^{T} ; \quad \boldsymbol{H}_{D} \equiv\left[\begin{array}{cc}
\Sigma_{k} & U_{k}^{T} D \\
0 & \boldsymbol{R}
\end{array}\right]}
\end{gathered}
$$

Zha-Simon ('99): Compute SVD of \boldsymbol{H}_{D} \& get approximate SVD from above \rightarrow This is a Rayleigh-Ritz projection method for the SVD [E. Vecharynski \& YS 2013]
> When the number of updates is large ZS becomes costly.
$>$ Idea: Replace \hat{U}_{p} by a low dimensional approximation:
$>$ Use \bar{U} of the form $\bar{U}=\left[U_{k}, Z_{l}\right]$ instead of $\bar{U}=\left[U_{k}, \hat{U}_{p}\right]$
$>Z_{l}==$ rank-l approximation of $D_{k}=\left(I-U_{k} U_{k}^{T}\right) D$
$>$ Details of Experiments skipped but: we get slightly improved precision at a much lower cost.

RANK ESTIMATION

What dimension to use in dimension reduction?

> Important problem in signal processing applications, machine learning, ...
$>$ Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.
$>\boldsymbol{k}=$ intrinsic rank of data. Can we estimate it?
> Recall: Numerical rank:

$$
\epsilon \text {-rank }=\text { number } k \text { of sing. values }>\epsilon
$$

Determining rank by eigenvalue counts

$>$ Idea: count eigenvalues of $A^{T} A$ (or $A A^{T}$) that are $>\epsilon^{2}$.
$>$ Let \boldsymbol{A} be a Hermitian matrix with eigenpairs $\left(\lambda_{i}, u_{i}\right)$, where

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

$>$ Given: a, b such that $\lambda_{1} \leq a \leq b \leq \lambda_{n}$.
$>$ Want: $\quad \mu_{[a, b]}=$ number of $\lambda_{i}{ }^{\prime} s \in[a, b]$.
> Standard method: Use Sylvester inertia theorem. Requires two $L D L^{T}$ factorizations \rightarrow expensive!
> Alternative: Exploit trace of the eigen-projector:

$$
\boldsymbol{P}=\sum_{\lambda_{i} \in[a b]} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{T} .
$$

> We know that: $\operatorname{Tr}(\boldsymbol{P})=\boldsymbol{\mu}_{[a, b]}$

Goal now: approximate : $\operatorname{Tr}(\boldsymbol{P})$

$$
\begin{aligned}
& P \text { not avail- } \quad P=h(A) \text { where } h(t)= \begin{cases}1 & \text { if } t \in[a b] \\
\text { able but: } & \text { otherwise }\end{cases} \\
& \hline
\end{aligned}
$$

> Can approximate $h(t)$ by a polynomial ψ
> Then use statistical estimator for approximating $\operatorname{Tr}(\boldsymbol{\psi}(\boldsymbol{A}))$
> Details: [E. Di Napoli, E. Polizzi, and Y.S., 2013]

Alternative: 'Density of States' (DOS)

$>$ Formally, the Density Of States (DOS) of a matrix \boldsymbol{A} is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

where: δ is the Dirac δ-function or Dirac distribution
> Term used by mathematicians: Spectral Density
$>\phi(t)==$ a probability distribution function == probability of finding eigenvalues of \boldsymbol{A} in a given infinitesimal interval near t.
> Many uses in Solid-State physics
> Survey paper: [Lin-Lin, YS, Chao Yang], SIAM review, 2016.

The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
> Use trace estimators [discovered independently] to get traces needed in calculations
> Assume change of variable done so eigenvalues lie in $[-1,1]$.
> Include the weight function in the expansion so expand:

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \phi(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$.

An example: The Benzene matrix

```
>> TestKpmDos
    Matrix Benzene n =8219 nnz = 242669
Degree = 40 # sample vectors = 10
Elapsed time is 0.235189 seconds.
```


Integrating to get eigenvalue counts

$>$ Note: number of eigenvalues in an interval $[a, b]$ is

$$
\mu_{[a, b]}=\int_{a}^{b} \sum_{j} \delta\left(t-\lambda_{j}\right) d t \equiv \int_{a}^{b} n \phi(t) d t
$$

$>$ If we use KPM to approximate $\phi(t)=\hat{\phi}(t) / \sqrt{1-t^{2}}$ then

$$
\mu_{[a, b]} \approx \sum_{k=0}^{m} \mu_{k} \int_{a}^{b} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} d t
$$

- A little calculation shows that the result obtained in this way is identical with that of the eigenvalue count by Cheb expansion

Use of the Lanczos Algorithm

> Lanczos process builds orthogonal polynomials wrt to:

$$
\langle p, q\rangle=\int p(t) q(t) d t \equiv\left(p(A) v_{1}, q(A) v_{1}\right)
$$

$>$ Let $\boldsymbol{\theta}_{i}, \boldsymbol{y}_{i} \boldsymbol{i}=1 \cdots, m$ be the eigenvalues / eigenvectors of tridiagonal matrix \boldsymbol{T}_{m} [Ritz values]

Idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

$>$ Formula exact when p is a polynomial of degree $\leq 2 m+1$

See: Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Consider now $\int p(t) d t=<p, 1>=($ Stieljes $)$ integral \equiv

$$
(p(A) v, v)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right) \equiv<\phi_{v}, p>
$$

where $\boldsymbol{v}=\sum \boldsymbol{\beta}_{i} \boldsymbol{u}_{i}=$ eigen -expansion of $\boldsymbol{v}, \phi_{v}=\sum \beta_{i}^{2} \delta_{\lambda_{i}}$
$>$ Note: Ideal case $\beta_{i}=1 / \sqrt{n}$ yieds $\phi_{v} \equiv \phi$
$>$ Then $\left\langle\phi_{v}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v} \approx \sum a_{i} \delta_{\theta_{i}}
$$

Statistically produce choice $\beta_{i} \equiv 1 / \sqrt{n}, \forall i$
sults over several vectors v with $\|v\|_{2}=1$.

Back to estimating the rank: Threshold selection

> Recall: numerical rank $=$ \# sing. values $\geq \epsilon$
Q: How to select ϵ ?
A: Obtain it from the DOS function

(A)

(B)

(C)

Exact DOS plots for three different types of matrices.
> To find: point immediatly following the initial sharp drop observed.

- Simple idea: use derivative of DOS function ϕ
$>$ For an $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$:

$$
\epsilon=\min \left\{t: \lambda_{1} \leq t \leq \lambda_{n}, \phi^{\prime}(t)=0\right\}
$$

> In practice replace by

$$
\epsilon=\min \left\{t: \lambda_{1} \leq t \leq \lambda_{n},\left|\phi^{\prime}(t)\right| \geq \text { tol }\right\}
$$

Experiments

(A)

(B)
(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for the example netz4504.

Approximate Rank Estimation of various matrices

lpi_ceria3d (linear programming)	3,576
S80PI_n1 (model reduction prbm.)	4,028
ukerbe1 (2D finite elem. prbm.)	5,981
Erdos992 (collaboration network)	6,100
Geom (computl. geometry)	7,343
California (web search)	9,664
C-40 (non-linear optimization)	9,941

Matrices	Threshold	Eigencount	$\boldsymbol{M}=100, \boldsymbol{n}_{\boldsymbol{v}}=30$	
	ϵ	above $\boldsymbol{\epsilon}$	$\boldsymbol{r}_{\boldsymbol{\epsilon}}$-KPM	$\boldsymbol{r}_{\boldsymbol{\epsilon}}$-Lanczos
lpi_ceria3d	28.19	78	78.69	78.74
S80PI_n1	1.76	2157	2154.04	2156.48
ukerbe1	0.169	4030	4030.84	4031.39
Erdos992	3.96	716	711.20	708.00
Geom	90	240	325.30	240.042
California	0.02	1646	5600.78	1646.66
C-40	48160.4	53	57.16	52.05

> Details: S. Ubaru, Y. S. and A. Seghouane, "Fast Estimation of Approximate Matrix Ranks Using Spectral Densities," in Neural Computation, vol. 29, 2017.

Concluding remarks

> Many tasks in applications deal with invariant subspaces
> Beneficial to explore algorithms that treat invariant subspaces as Grassmannian objects
> Krylov subspace methods not best choice for types of problems that arise in some applications ...
> ... but they are amazingly powerful for other tasks [e.g. Spectral densities]

