A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CRM Montreal - May 3, 2008
Outline

Part 1
- Sparse matrices and sparsity
- Basic iterative techniques
- Projection methods
- Krylov subspace methods

Part 2
- Preconditioned iterations
- Preconditioning techniques

Part 3
- Parallel implementations
- Multigrid methods

Part 4
- Eigenvalue problems
- Applications
PROJECTION METHODS
One-dimensional projection processes

Steepest descent – Problem: \(Ax = b \), with \(A \) SPD

Define: \(f(x) = \frac{1}{2} \| x - x^* \|_A^2 = \frac{1}{2}(A(x - x^*), (x - x^*)) \)

Note:
1. \(f(x) = \frac{1}{2}(Ax, x) - (b, x) + \text{constant} \)
2. \(\nabla f(x) = Ax - b \rightarrow \text{‘descent’ direction} = b - Ax \equiv r \)

Idea: take a step of the form \(x_{\text{new}} = x + \alpha r \) which minimizes \(f(x) \).

Best \(\alpha = (r, r)/(Ar, r) \).

Iteration:
\[
\begin{align*}
r &\leftarrow b - Ax, \\
\alpha &\leftarrow (r, r)/(Ar, r) \\
x &\leftarrow x + \alpha r
\end{align*}
\]

Can show: convergence guaranteed if \(A \) is SPD.
Residual norm steepest descent: Now A is arbitrary

- Minimize instead: $f(x) = \frac{1}{2} \| b - Ax \|_2^2$ in direction $-\nabla f$.

\[-\nabla f(x) = A^T(b - Ax) = A^T r.\]

Iteration:
\[
\begin{align*}
r &\leftarrow b - Ax, \quad d = A^T r \\
\alpha &\leftarrow \| d \|_2^2 / \| Ad \|_2^2 \\
x &\leftarrow x + \alpha d
\end{align*}
\]

- Important Note: equivalent to usual steepest descent applied to normal equations $A^T A x = A^T b$.

- Converges under the condition that A is nonsingular.

- But convergence can be very slow
Minimal residual iteration: Assume A is positive definite ($A + A^T$ is SPD).

- The objective function is still $\frac{1}{2} \| b - A x \|_2^2$, but the direction of search is $r = b - A x$ instead of $-\nabla f(x)$.

Iteration:

\[
\begin{align*}
r & \leftarrow b - A x, \\
\alpha & \leftarrow (Ar, r)/(Ar, Ar) \\
x & \leftarrow x + \alpha r
\end{align*}
\]

- Each step minimizes $f(x) = \| b - A x \|_2^2$ in direction r.

- Converges under the condition that $A + A^T$ is SPD.
Common feature of these techniques: \(x_{\text{new}} = x + \alpha d \), where \(d \) = a certain direction.

\(\alpha \) is defined to optimize a certain quadratic function.

Equivalent to determining \(\alpha \) by an orthogonality constraint.

Example

In MR:

\[x(\alpha) = x + \alpha d, \text{ with } d = b - Ax. \]

\[\min_{\alpha} \|b - Ax(\alpha)\|_2 \text{ reached iff } b - Ax(\alpha) \perp r \]

One-dimensional projection methods – can we generalize to \(m \)-dimensional techniques?
Initial Problem: \[b - Ax = 0 \]

Given two subspaces \(K \) and \(L \) of \(\mathbb{R}^N \) define the *approximate problem*:

Find \(\tilde{x} \in K \) such that \(b - A\tilde{x} \perp L \)

- Leads to a small linear system (‘projected problems’) This is a basic projection step. Typically: sequence of such steps are applied
With a nonzero initial guess x_0, the approximate problem is

Find $\tilde{x} \in x_0 + K$ such that $b - A\tilde{x} \perp L$

Write $\tilde{x} = x_0 + \delta$ and $r_0 = b - Ax_0$. Leads to a system for δ:

Find $\delta \in K$ such that $r_0 - A\delta \perp L$
Matrix representation:

Let

- \(V = [v_1, \ldots, v_m] \) a basis of \(K \)
- \(W = [w_1, \ldots, w_m] \) a basis of \(L \)

Then letting \(x \) be the approximate solution \(\tilde{x} = x_0 + \delta \equiv x_0 + Vy \)
where \(y \) is a vector of \(\mathbb{R}^m \), the Petrov-Galerkin condition yields,

\[
W^T(r_0 - AVy) = 0
\]

and therefore

\[
\tilde{x} = x_0 + V[W^TAV]^{-1}W^Tr_0
\]

Remark: In practice \(W^TAV \) is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]
Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces \(K \), and \(L \);

2. Choose bases \(V = [v_1, \ldots, v_m] \) for \(K \) and \(W = [w_1, \ldots, w_m] \) for \(L \).

3. Compute

\[
\begin{align*}
\mathbf{r} &\leftarrow b - Ax, \\
\mathbf{y} &\leftarrow (W^TAV)^{-1}W^Tr, \\
\mathbf{x} &\leftarrow \mathbf{x} + V\mathbf{y}.
\end{align*}
\]
Two important particular cases.

1. \(L = AK \). then \(\| b - A\tilde{x} \|_{2} = \min_{z \in K} \| b - Az \|_{2} \)

 → class of minimal residual methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

2. \(L = K \) → class of Galerkin or orthogonal projection methods.

 When \(A \) is SPD then

 \[
 \| x^* - \tilde{x} \|_{A} = \min_{z \in K} \| x^* - z \|_{A}.
 \]
One-dimensional projection processes

\[K = \text{span}\{d\} \]

and

\[L = \text{span}\{e\} \]

Then \(\tilde{x} \leftarrow x + \alpha d \) and Petrov-Galerkin condition \(r - A\delta \perp e \) yields

\[\alpha = \frac{(r,e)}{(A d,e)} \]

(Ⅰ) Steepest descent: \(K = \text{span}(r), L = K \)

(Ⅱ) Residual norm steepest descent: \(K = \text{span}(A^T r), L = AK \)

(Ⅲ) Minimal residual iteration: \(K = \text{span}(r), L = AK \)
Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- probably the most important class of iterative methods.
- many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \). Let \(\mu = \text{deg. of minimal polynomial of } v \)

- \(K_m = \{p(A)v | p = \text{polynomial of degree } \leq m - 1\} \)
- \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
- \(\text{dim}(K_m) = m \iff \mu \geq m \).
Arnoldi’s Algorithm

- Goal: to compute an orthogonal basis of K_m.

- Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

For $j = 1, \ldots, m$ do

- Compute $w := Av_j$

- for $i = 1, \ldots, j$, do

 $\left\{
 \begin{align*}
 h_{i,j} &:= (w, v_i) \\
 w &:= w - h_{i,j}v_i
 \end{align*}
 \right.$

- $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w/h_{j+1,j}$
1. \(V_m = [v_1, v_2, \ldots, v_m] \) orthonormal basis of \(K_m \).

2. \(A V_m = V_{m+1} \overline{H}_m \)

3. \(V_m^T A V_m = H_m \equiv \overline{H}_m \) – last row.
Arnoldi’s Method \((L_m = K_m)\)

- Petrov-Galerkin condition when \(L_m = K_m\), shows:

\[
x_m = x_0 + V_m H_m^{-1} V_m^T r_0
\]

- Select \(v_1 = r_0 / \|r_0\|_2 \equiv r_0 / \beta\) in Arnoldi’s algorithm, then:

\[
x_m = x_0 + \beta V_m H_m^{-1} e_1
\]

Equivalent algorithms:
- FOM [YS, 1981] (above formulation)
- Young and Jea’s ORTHORES [1982].
- Axelsson’s projection method [1981].
Minimal residual methods \((L_m = AK_m)\)

- When \(L_m = AK_m\), we let \(W_m \equiv AV_m\) and obtain:

\[
x_m = x_0 + V_m [W_m^T AV_m]^{-1} W_m^T r_0
\]

- Use again \(v_1 := r_0 / (\beta := \|r_0\|_2)\) and:

\[
AV_m = V_{m+1} \bar{H}_m
\]

\[
x_m = x_0 + V_m [\bar{H}_m^T \bar{H}_m]^{-1} \bar{H}_m^T \beta e_1 = x_0 + V_m y_m
\]

where \(y_m\) minimizes \(\|\beta e_1 - \bar{H}_m y\|_2\) over \(y \in \mathbb{R}^m\). Hence, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

\[
x_m = x_0 + V_m y_m \quad \text{where} \quad y_m : \min_y \|\beta e_1 - \bar{H}_m y\|_2
\]

Equivalent methods:

- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR
Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1. Restarted GMRES (resp. Arnoldi)

1. **Start/Restart:** Compute $r_0 = b - Ax_0$, and $v_1 = r_0 / (\beta := \|r_0\|_2)$.
2. **Arnoldi Process:** generate \bar{H}_m and V_m.
3. **Compute** $y_m = H_m^{-1} \beta e_1$ (FOM), or $y_m = \text{argmin} \|\beta e_1 - \bar{H}_m y\|_2$ (GMRES)
4. $x_m = x_0 + V_m y_m$
5. **If** $\|r_m\|_2 \leq \epsilon \|r_0\|_2$ **stop else set** $x_0 := x_m$ **and go to 1.**
Second remedy: Truncate the orthogonalization

The formula for v_{j+1} is replaced by

$$h_{j+1,j}v_{j+1} = Av_j - \sum_{i=j-k+1}^{j} h_{ij}v_i$$

→ each v_j is made orthogonal to the previous k v_i’s.

→ x_m still computed as $x_m = x_0 + V_mH_m^{-1}\beta e_1$.

→ It can be shown that this is again an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or ‘incomplete’) orthogonalization.
The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_mU_m$ we get

$$x_m = x_0 + V_m U_m^{-1} L_m^{-1} \beta e_1 \equiv x_0 + P_m z_m$$

Structure of L_m, U_m when $k = 3$

$$L_m = \begin{pmatrix}
1 & x & 1 \\
x & 1 & x \\
x & x & 1 \\
x & x & x
\end{pmatrix} \quad U_m = \begin{pmatrix}
x & x & x \\
x & x & x \\
x & x & x \\
x & x & x
\end{pmatrix}$$

$$p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i] \quad z_m = \begin{bmatrix}
z_{m-1} \\
\zeta_m
\end{bmatrix}$$
Result: Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix

- CG-like formulation of IOM called DIOM [Saad, 1982]
- ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, ’77] uses LQ factorization of H_m.
- Can add partial pivoting to LU factorization of H_m
The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

THEOREM. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal.

In other words:

1) $h_{ij} = 0$ for $|i - j| > 1$

2) $h_{j,j+1} = h_{j+1,j}$, $j = 1, \ldots, m$
We can write

\[
H_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
\beta_3 & \alpha_3 & \beta_4 \\
\vdots & \vdots & \vdots \\
\beta_m & \alpha_m
\end{pmatrix}
\]

(1)

The \(v_i\)'s satisfy a three-term recurrence [Lanczos Algorithm]:

\[
\beta_{j+1}v_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}
\]

\rightarrow\text{ simplified version of Arnoldi’s algorithm for sym. systems.}

\text{Symmetric matrix + Arnoldi} \rightarrow \text{Symmetric Lanczos}
ALGORITHM : 2. *Lanczos*

1. **Choose an initial vector** v_1 **of norm unity.**

 Set $\beta_1 \equiv 0$, $v_0 \equiv 0$

2. **For** $j = 1, 2, \ldots, m$ **Do:**

3. $w_j := Av_j - \beta_j v_{j-1}$

4. $\alpha_j := (w_j, v_j)$

5. $w_j := w_j - \alpha_j v_j$

6. $\beta_{j+1} := \|w_j\|_2$. **If** $\beta_{j+1} = 0$ **then Stop**

7. $v_{j+1} := w_j / \beta_{j+1}$

8. **EndDo**
Lanczos algorithm for linear systems

Usual orthogonal projection method setting:

- \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)

- Basis \(V_m = [v_1, \ldots, v_m] \) of \(K_m \) generated by the Lanczos algorithm

Three different possible implementations.

1. Arnoldi-like; 2. Exploit tridiagonal nature of \(H_m \) (DIOM); 3. Conjugate gradient.

.... following what was done for DIOM..
The Conjugate Gradient Algorithm (A S.P.D.)

- Note: the p_i’s are A-orthogonal

- The r_i’s are orthogonal.

- And we have $x_m = x_{m-1} + \xi_m p_m$

So there must be an update of the form:

1. $p_m = r_{m-1} + \beta_m p_{m-1}$
2. $x_m = x_{m-1} + \xi_m p_m$
3. $r_m = r_{m-1} - \xi_m A p_m$
ALGORITHM : 3. Conjugate Gradient

Start: \(r_0 := b - Ax_0, p_0 := r_0. \)

Iterate: Until convergence do,

\[
\alpha_j := \frac{(r_j, r_j)}{(Ap_j, p_j)}
\]

\[
x_{j+1} := x_j + \alpha_j p_j
\]

\[
r_{j+1} := r_j - \alpha_j Ap_j
\]

\[
\beta_j := \frac{(r_{j+1}, r_{j+1})}{(r_j, r_j)}
\]

\[
p_{j+1} := r_{j+1} + \beta_j p_j
\]

EndDo

\[\Rightarrow r_j = scaling \times v_{j+1}. \text{The } r_j \text{'s are orthogonal.}\]

\[\Rightarrow \text{The } p_j \text{'s are } A\text{-conjugate, i.e., } (Ap_i, p_j) = 0 \text{ for } i \neq j.\]
METHODS BASED ON LANCZOS BIORTHOGONALIZATION
Algorithm : 4. Lanczos Bi-Orthogonalization

1. **Choose two vectors** v_1, w_1 **such that** $(v_1, w_1) = 1$.
2. **Set** $\beta_1 = \delta_1 = 0$, $w_0 = v_0 = 0$
3. **For** $j = 1, 2, \ldots, m$ **Do:**
 4. $\alpha_j = (Av_j, w_j)$
 5. $\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$
 6. $\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1}$
 7. $\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$. **If** $\delta_{j+1} = 0$ **Stop**
 8. $\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1}$
 9. $w_{j+1} = \hat{w}_{j+1}/\beta_{j+1}$
 10. $v_{j+1} = \hat{v}_{j+1}/\delta_{j+1}$
11. **EndDo**
Extension of the symmetric Lanczos algorithm

Builds a pair of biorthogonal bases for the two subspaces

\[\mathcal{K}_m(A, v_1) \text{ and } \mathcal{K}_m(A^T, w_1) \]

Different ways to choose \(\delta_{j+1}, \beta_{j+1} \) in lines 7 and 8.

Let

\[T_m = \begin{pmatrix} \alpha_1 & \beta_2 \\ \delta_2 & \alpha_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ \delta_{m-1} & \alpha_{m-1} & \beta_m \\ \delta_m & \alpha_m \end{pmatrix} \]

\(v_i \in \mathcal{K}_m(A, v_1) \text{ and } w_j \in \mathcal{K}_m(A^T, w_1). \)
If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_j, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j, w_i) = \delta_{ij} \quad 1 \leq i, j \leq m.$$

Moreover, $\{v_i\}_{i=1,2,\ldots,m}$ is a basis of $\mathcal{K}_m(A, v_1)$ and $\{w_i\}_{i=1,2,\ldots,m}$ is a basis of $\mathcal{K}_m(A^T, w_1)$ and

$$AV_m = V_m T_m + \delta_{m+1} v_{m+1} e_m^T,$$

$$A^T W_m = W_m T_m^T + \beta_{m+1} w_{m+1} e_m^T,$$

$$W_m^T A V_m = T_m.$$
ALGORITHM : 5

Lanczos Alg. for Linear Systems

1. **Compute** $r_0 = b - Ax_0$ and $\beta := ||r_0||_2$

2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,

3. **Start with** $v_1 := r_0/\beta$, and any w_1 such that

 $$(v_1, w_1) = 1$$

4. **Generate the pair of Lanczos vectors** v_1, \ldots, v_m, and w_1, \ldots, w_m

5. **and the tridiagonal matrix** T_m from Algorithm ??

6. **Compute** $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.

BCG can be derived from the Lanczos Algorithm similarly to CG
ALGORITHM: 6. *BiConjugate Gradient (BCG)*

1. **Compute** $r_0 := b - Ax_0$.

2. **Choose** r_0^* such that $(r_0, r_0^*) \neq 0$;

 Set $p_0 := r_0$, $p_0^* := r_0^*$

3. **For** $j = 0, 1, \ldots, \text{until convergence} \text{ Do:}

4. $\alpha_j := (r_j, r_j^*)/(Ap_j, p_j^*)$

5. $x_{j+1} := x_j + \alpha_j p_j$

6. $r_{j+1} := r_j - \alpha_j Ap_j$

7. $r_{j+1}^* := r_j^* - \alpha_j A^T p_j^*$

8. $\beta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$

9. $p_{j+1} := r_{j+1} + \beta_j p_j$

10. $p_{j+1}^* := r_{j+1}^* + \beta_j p_j^*$

11. **EndDo**
Recall relation from the Lanczos algorithm: \(AV_m = V_{m+1} \bar{T}_m \) with
\[\bar{T}_m = (m + 1) \times m \text{ tridiagonal matrix } \bar{T}_m = \begin{pmatrix}
T_m \\
\delta_{m+1} e_m^T
\end{pmatrix}. \]

Let \(v_1 \equiv \beta r_0 \) and \(x = x_0 + V_m y \). Residual norm \(\| b - Ax \|_2 \) equals
\[\| r_0 - AV_m y \|_2 = \| \beta v_1 - V_{m+1} \bar{T}_m y \|_2 = \| V_{m+1} (\beta e_1 - \bar{T}_m y) \|_2 \]

Column-vectors of \(V_{m+1} \) are not \(\perp \) (\(\neq \) GMRES).

But: reasonable idea to minimize the function \(J(y) \equiv \| \beta e_1 - \bar{T}_m y \|_2 \)

Quasi-Minimal Residual Algorithm (Freund, 1990).
BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m. They allow to determine the scalars (α_j and β_j in BCG).

QUESTION: is it possible to bypass the use of A^T?

Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = \frac{F(u_k + \epsilon v) - F(u_k)}{\epsilon}.$$
Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i = \rho_i(A)r_0$$

where $\rho_i = \text{polynomial of degree } i$.

In CGS:

$$r_i = \rho_i^2(A)r_0$$

Define:

$$r_j = \phi_j(A)r_0,$$

$$p_j = \pi_j(A)r_0,$$
\[r_j^* = \phi_j(A^T)r_0^*, \]
\[p_j^* = \pi_j(A^T)r_0^* \]

Scalar \(\alpha_j \) in BCG is given by

\[\alpha_j = \frac{\langle \phi_j(A)r_0, \phi_j(A^T)r_0^* \rangle}{\langle A\pi_j(A)r_0, \pi_j(A^T)r_0^* \rangle} = \frac{\langle \phi_j^2(A)r_0, r_0^* \rangle}{\langle A\pi_j^2(A)r_0, r_0^* \rangle} \]

Possible to get a recursion for the \(\phi_j^2(A)r_0 \) and \(\pi_j^2(A)r_0 \)?

\[\phi_{j+1}(t) = \phi_j(t) - \alpha_j t \pi_j(t), \]
\[\pi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \pi_j(t) \]

Square these equalities

\[\phi_{j+1}^2(t) = \phi_j^2(t) - 2\alpha_j t \pi_j(t) \phi_j(t) + \alpha_j^2 t^2 \pi_j^2(t), \]
\[\pi_{j+1}^2(t) = \phi_{j+1}^2(t) + 2\beta_j \phi_{j+1}(t) \pi_j(t) + \beta_j^2 \pi_j(t)^2. \]

Problem: ...

.. Cross terms
Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence.

For $\pi_j(t)\phi_j(t)$, note:

$$\phi_j(t)\pi_j(t) = \phi_j(t)(\phi_j(t) + \beta_{j-1}\pi_{j-1}(t))$$

$$= \phi_j^2(t) + \beta_{j-1}\phi_j(t)\pi_{j-1}(t).$$

Result:

$$\phi_{j+1}^2 = \phi_j^2 - \alpha_j t \left(2\phi_j^2 + 2\beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2\right)$$

$$\phi_{j+1}\pi_j = \phi_j^2 + \beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2$$

$$\pi_{j+1}^2 = \phi_{j+1}^2 + 2\beta_j\phi_{j+1}\pi_j + \beta_j^2\pi_j^2.$$

Define:

$$r_j = \phi_j^2(A)r_0, \quad p_j = \pi_j^2(A)r_0, \quad q_j = \phi_{j+1}(A)\pi_j(A)r_0$$
Recurrences become:

\[r_{j+1} = r_j - \alpha_j A (2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j) , \]

\[q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j A p_j , \]

\[p_{j+1} = r_{j+1} + 2\beta_j q_j + \beta_j^2 p_j . \]

Define auxiliary vector \(d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j \)

- **Sequence of operations to compute the approximate solution,**
 starting with \(r_0 := b - Ax_0, p_0 := r_0, q_0 := 0, \beta_0 := 0. \)

1. \(\alpha_j = (r_j, r_0^*) / (Ap_j, r_0^*) \)
2. \(d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j \)
3. \(q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j A p_j \)
4. \(x_{j+1} = x_j + \alpha_j d_j \)
5. \(r_{j+1} = r_j - \alpha_j A d_j \)
6. \(\beta_j = (r_{j+1}, r_0^*) / (r_j, r_0^*) \)
7. \(p_{j+1} = r_{j+1} + \beta_j (2q_j + \beta_j p_j) . \)
one more auxiliary vector, \(u_j = r_j + \beta_{j-1}q_{j-1} \). So

\[
d_j = u_j + q_j,
\]

\[
q_j = u_j - \alpha_j A p_j,
\]

\[
p_{j+1} = u_{j+1} + \beta_j (q_j + \beta_j p_j),
\]

vector \(d_j \) is no longer needed.
ALGORITHM : 7. Conjugate Gradient Squared

1. **Compute** $r_0 := b - Ax_0$; r_0^* arbitrary.
2. **Set** $p_0 := u_0 := r_0$.
3. **For** $j = 0, 1, 2 \ldots$, **until convergence** **Do:**
 4. $\alpha_j = (r_j, r_0^*)/(Ap_j, r_0^*)$
 5. $q_j = u_j - \alpha_j Ap_j$
 6. $x_{j+1} = x_j + \alpha_j(u_j + q_j)$
 7. $r_{j+1} = r_j - \alpha_j A(u_j + q_j)$
 8. $\beta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$
 9. $u_{j+1} = r_{j+1} + \beta_j q_j$
 10. $p_{j+1} = u_{j+1} + \beta_j (q_j + \beta_j p_j)$
11. **EndDo**
Note: no matrix-by-vector products with A^T but two matrix-by-vector products with A, at each step.

Vector: \leftrightarrow Polynomial in BCG:

- $q_i \leftrightarrow \bar{r}_i(t)\bar{p}_{i-1}(t)$
- $u_i \leftrightarrow \bar{p}_i^2(t)$
- $r_i \leftrightarrow \bar{r}_i^2(t)$

where $\bar{r}_i(t) = \text{residual polynomial at step } i \text{ for BCG}, \text{i.e., } r_i = \bar{r}_i(A)r_0$, and $\bar{p}_i(t) = \text{conjugate direction polynomial at step } i, \text{i.e., } p_i = \bar{p}_i(A)r_0$.
BCGSTAB (van der Vorst, 1992)

- In CGS: residual polynomial of BCG is squared. ➤ bad behavior in case of irregular convergence.

- Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. ➤ Derivation similar to CGS.

- Residuals in BCGSTAB are of the form,
 \[r'_j = \psi_j(A)\phi_j(A)r_0 \]

 in which, \(\phi_j(t) = \) BCG residual polynomial, and ..

- .. \(\psi_j(t) = \) a new polynomial defined recursively as
 \[\psi_{j+1}(t) = (1 - \omega_j t)\psi_j(t) \]

 \(\omega_i \) chosen to ‘smooth’ convergence [steepest descent step]
ALGORITHM : 8 • BCGSTAB

1. Compute \(r_0 := b - Ax_0; r_0^* \) arbitrary;

2. \(p_0 := r_0. \)

3. For \(j = 0, 1, \ldots, \) until convergence Do:

4. \(\alpha_j := (r_j, r_0^*)/(Ap_j, r_0^*) \)

5. \(s_j := r_j - \alpha_j Ap_j \)

6. \(\omega_j := (As_j, s_j)/(As_j, As_j) \)

7. \(x_{j+1} := x_j + \alpha_j p_j + \omega_j s_j \)

8. \(r_{j+1} := s_j - \omega_j As_j \)

9. \(\beta_j := \frac{(r_{j+1}, r_0^*)}{(r_j, r_0^*)} \times \frac{\alpha_j}{\omega_j} \)

10. \(p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j Ap_j) \)

11. EndDo
PRECONDITIONING
Basic idea is to use the Krylov subspace method on a modified system such as

\[M^{-1}Ax = M^{-1}b. \]

- The matrix \(M^{-1}A \) need not be formed explicitly; only need to solve \(Mw = v \) whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute \(M^{-1}v \) for an arbitrary vector \(v \).
Left, Right, and Split preconditioning

Left preconditioning: \(M^{-1}Ax = M^{-1}b \)

Right preconditioning: \(AM^{-1}u = b, \text{ with } x = M^{-1}u \)

Split preconditioning: \(M_L^{-1}AM_R^{-1}u = M_L^{-1}b, \text{ with } x = M_R^{-1}u \)

[Assume \(M \) is factored: \(M = M_LM_R \).]
Assume: A and M are both SPD.

Applying CG directly to $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$

won’t work because coefficient matrices are not symmetric.

Alternative: when $M = LL^T$ use split preconditioner option

Second alternative: Observe that $M^{-1}A$ is self-adjoint wrt M

inner product:

$$(M^{-1}Ax, y)_M = (Ax, y) = (x, Ay) = (x, M^{-1}Ay)_M$$
Preconditioned CG (PCG)

ALGORITHM : 9 Preconditioned Conjugate Gradient

1. Compute $r_0 := b - Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$

2. For $j = 0, 1, \ldots$, until convergence Do:

3. $\alpha_j := (r_j, z_j)/(Ap_j, p_j)$

4. $x_{j+1} := x_j + \alpha_j p_j$

5. $r_{j+1} := r_j - \alpha_j Ap_j$

6. $z_{j+1} := M^{-1}r_{j+1}$

7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$

8. $p_{j+1} := z_{j+1} + \beta_j p_j$

9. EndDo
Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax, y)_A = (AM^{-1}Ax, y) = (x, AM^{-1}Ay) = (x, M^{-1}Ay)_A$$

- Can obtain a similar algorithm
- Assume that $M = \text{Cholesky product } M = LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b, \text{ with } x = L^Tu$$

- Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by $\hat{\cdot}$.
1. **Compute** $r_0 := b - Ax_0; \hat{r}_0 = L^{-1}r_0; \text{and } p_0 := L^{-T}\hat{r}_0.$

2. **For** $j = 0, 1, \ldots, \text{until convergence Do:}$$
 3. \quad \alpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j)$
 4. \quad $x_{j+1} := x_j + \alpha_j p_j$
 5. \quad $\hat{r}_{j+1} := \hat{r}_j - \alpha_j L^{-1}Ap_j$
 6. \quad $\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$
 7. \quad $p_{j+1} := L^{-T}\hat{r}_{j+1} + \beta_j p_j$
 8. **EndDo**

➢ The x_j’s produced by the above algorithm and PCG are identical (if same initial guess is used).
Flexible accelerators

Question: What can we do in case M is defined only approximately? i.e., if it can vary from one step to the other?

Applications:

- Iterative techniques as preconditioners: Block-SOR, SSOR, Multi-grid, etc..
- Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)
- Mixing Preconditioners – mixing coarse mesh / fine mesh preconditioners.
ALGORITHM : 11 GMRES – No preconditioning

1. Start: Choose x_0 and a dimension m of the Krylov subspaces.
2. Arnoldi process:
 - **Compute** $r_0 = b - Ax_0$, $\beta = \|r_0\|_2$ and $v_1 = r_0/\beta$.
 - For $j = 1, \ldots, m$ do
 - **Compute** $w := Av_j$
 - for $i = 1, \ldots, j$, do $\left\{ h_{i,j} := (w, v_i) \right\}$
 - $h_{j+1,1} = \|w\|_2$; $v_{j+1} = \frac{w}{h_{j+1,1}}$
 - **Define** $V_m := [v_1, \ldots, v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.
3. Form the approximate solution: **Compute** $x_m = x_0 + V_m y_m$ where $y_m = \arg\min_y \|\beta e_1 - \bar{H}_m y\|_2$ and $e_1 = [1, 0, \ldots, 0]^T$.
4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.
ALGORITHM : 12 ■ GMRES – (right) Preconditioning

1. Start: Choose \(x_0 \) and a dimension \(m \)
2. Arnoldi process:
 - **Compute** \(r_0 = b - Ax_0, \beta = \|r_0\|_2 \) and \(v_1 = r_0 / \beta \).
 - **For** \(j = 1, \ldots, m \) **do**
 - **Compute** \(z_j := M^{-1}v_j \)
 - **Compute** \(w := Az_j \)
 - for \(i = 1, \ldots, j \), do:
 - \(h_{i,j} := (w, v_i) \)
 - \(w := w - h_{i,j}v_i \)
 - \(h_{j+1,1} = \|w\|_2; v_{j+1} = w / h_{j+1,1} \)
 - **Define** \(V_m := [v_1, \ldots, v_m] \) and \(\bar{H}_m = \{h_{i,j}\} \).
3. Form the approximate solution: \(x_m = x_0 + M^{-1}V_my_m \) where \(y_m = \arg\min_y \|\beta e_1 - \bar{H}_my\|_2 \) and \(e_1 = [1, 0, \ldots, 0]^T \).
4. Restart: If satisfied stop, else set \(x_0 \leftarrow x_m \) and goto 2.
ALGORITHM: GMRES – variable preconditioner

1. Start: Choose x_0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:
 - Compute $r_0 = b - Ax_0$, $\beta = \|r_0\|_2$ and $v_1 = r_0/\beta$.
 - For $j = 1, \ldots, m$ do
 - Compute $z_j := M_j^{-1}v_j$; Compute $w := Az_j$;
 - for $i = 1, \ldots, j$, do: $h_{i,j} := (w, v_i)$, $w := w - h_{i,j}v_i$;
 - $h_{j+1,1} = \|w\|_2$; $v_{j+1} = w/h_{j+1,1}$
 - Define $Z_m := [z_1, \ldots, z_m]$ and $H_m = \{h_{i,j}\}$.

3. Form the approximate solution: Compute $x_m = x_0 + Z_my_m$ where $y_m = \arg\min_y \|\beta e_1 - H_my\|_2$ and $e_1 = [1, 0, \ldots, 0]^T$.

4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.
Properties

• x_m minimizes $b - Ax_m$ over $\text{Span}\{Z_m\}$.

• If $Az_j = v_j$ (i.e., if preconditioning is ‘exact’ at step j) then approximation x_j is exact.

• If M_j is constant then method is \equiv to Right-Preconditioned GM-RES.

Additional Costs:

• Arithmetic: none.

• Memory: Must save the additional set of vectors $\{z_j\}_{j=1,\ldots,m}$

Advantage: Flexibility
Standard preconditioners

- Simplest preconditioner: $M = \text{Diag}(A)$ ➤ poor convergence.
- Next to simplest: SSOR $M = (D - \omega E)D^{-1}(D - \omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) – ILU with level of fill p – more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multi-grid, M-level ILU, ..
Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel, SOR, SSOR, ...

These are iterations of the form \(x^{(k+1)} = Mx^{(k)} + f \) where \(M \) is of the form \(M = I - P^{-1}A \). For example for SSOR,

\[
P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)
\]
SSOR attempts to solve the equivalent system

\[P^{-1}Ax = P^{-1}b \]

where \(P \equiv P_{SSOR} \) by the fixed point iteration

\[x^{(k+1)} = (I - \underbrace{P^{-1}A}_{M})x^{(k)} + P^{-1}b \quad \text{instead of} \quad x^{(k+1)} = (I - A)x^{(k)} + b \]

In other words:

Relaxation Scheme \iff Preconditioned Fixed Point Iteration
The SOR/SSOR preconditioner

- **SOR preconditioing**

\[
M_{\text{SOR}} = (D - \omega E)
\]

- **SSOR preconditioing**

\[
M_{\text{SSOR}} = (D - \omega E)D^{-1}(D - \omega F)
\]

- \(M_{\text{SSOR}} = LU\), where \(L\) is the lower unit matrix, and \(U\) is the upper triangular. One solve with \(M_{\text{SSOR}} \approx\) same cost as a MAT-VEC.
k-step SOR (resp. SSOR) preconditioning:

\[k \text{ steps of SOR (resp. SSOR)} \]

Questions: Best ω? For preconditioning can take $\omega = 1$

\[M = (D - E)D^{-1}(D - F) \]

Observe: \[M = LU + R \text{ with } R = ED^{-1}F. \]

Best k? $k = 1$ is rarely the best. Substantial difference in performance.
Iteration times versus k for SOR(k) preconditioned GMRES
ILU(0) and IC(0) preconditioners

- **Notation:**
 \[NZ(X) = \{(i, j) \mid X_{i,j} \neq 0\} \]

- **Formal definition of ILU(0):**
 \[
 A = LU + R \\
 NZ(L) \cup NZ(U) = NZ(A) \\
 r_{ij} = 0 \text{ for } (i, j) \in NZ(A)
 \]

- **This does not define ILU(0) in a unique way.**

Constructive definition: Compute the LU factorization of \(A \) but drop any fill-in in \(L \) and \(U \) outside of \(\text{Struct}(A) \).

- **ILU factorizations are often based on \(i, k, j \) version of GE.**
What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJI, KJI

IJK
IKJ

JKI
ALGORITHM : 14. *Gaussian Elimination – IKJ Variant*

1. For \(i = 2, \ldots, n \) Do:

2. For \(k = 1, \ldots, i - 1 \) Do:

3. \(a_{ik} := a_{ik}/a_{kk} \)

4. For \(j = k + 1, \ldots, n \) Do:

5. \(a_{ij} := a_{ij} - a_{ik} \ast a_{kj} \)

6. EndDo

7. EndDo

8. EndDo
ILU(0) – zero-fill ILU

ALGORITHM : 15 • ILU(0)

For \(i = 1, \ldots, N \) Do:

For \(k = 1, \ldots, i - 1 \) and if \((i, k) \in NZ(A)\) Do:

Compute \(a_{ik} := a_{ik}/a_{kj} \)

For \(j = k + 1, \ldots \) and if \((i, j) \in NZ(A)\), Do:

compute \(a_{ij} := a_{ij} - a_{ik}a_{k,j} \).

EndFor

EndFor

- When \(A \) is SPD then the ILU factorization = Incomplete Cholesky factorization – IC(0). Meijerink and Van der Vorst [1977].
Typical eigenvalue distribution of preconditioned matrix
Pattern of ILU(0) for 5-point matrix
Stencils of A and the L and U parts of A:

Stencils of A:

Stencils of L:

Stencils of U:

- Fill-ins
Higher order ILU factorization

- Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows p additional diagonals in L.

- Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

- Initially $\text{Lev}_{ij} = \begin{cases} 0 & \text{for } a_{ij} \neq 0 \\ \infty & \text{for } a_{ij} = 0 \end{cases}$

- At a given step i of Gaussian elimination:

$$\text{Lev}_{kj} = \min\{\text{Lev}_{kj}; \text{Lev}_{ki} + \text{Lev}_{ij} + 1\}$$
ILU(p) Strategy = drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU and...

* ...typically in fewer steps and fewer arithmetic operations.
ALGORITHM : 16. \textit{ILU}(p)

For $i = 2, N$ Do

For each $k = 1, \ldots, i - 1$ and if $a_{ij} \neq 0$ do

Compute $a_{ik} := a_{ik} / a_{jj}$

Compute $a_{i,*} := a_{i,*} - a_{ik} a_{k,*}$.

Update the levels of $a_{i,*}$

Replace any element in row i with $lev(a_{ij}) > p$ by zero.

EndFor

EndFor

\textbf{The algorithm can be split into a symbolic and a numerical phase. Level-of-fill in Symbolic phase}
ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numerical values ➤ potential problems for non M-matrices.

➤ One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard (?), Osterby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...]
Second approach: [derived from ‘iterative solvers’ viewpoint]

1. use a (row or column) version of the \((i, k, j)\) version of GE;
2. apply a drop strategy for the element \(l_{ik}\) as it is computed;
3. perform the linear combinations to get \(a_{i\ast}\). Use full row expansion of \(a_{i\ast}\);
4. apply a drop strategy to fill-ins.
ILU with threshold: ILUT(\(k, \varepsilon \))

- Do the \(i, k, j \) version of Gaussian Elimination (GE).
- During each \(i \)-th step in GE, discard any pivot or fill-in whose value is below \(\varepsilon \|row_i(A)\| \).
- Once the \(i \)-th row of \(L + U \), (L-part + U-part) is computed retain only the \(k \) largest elements in both parts.

- Easy to implement –
- Can be made quite inexpensive.