A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad
University of Minnesota
Computer Science and Engineering

CRM Montreal - April 30, 2008
Outline

Part 1
• Sparse matrices and sparsity
• Basic iterative techniques
• Projection methods
• Krylov subspace methods

Part 2
• Preconditioned iterations
• Preconditioning techniques

Part 3
• Parallel implementations
• Multigrid methods

Part 4
• Eigenvalue problems
• Applications
INTRODUCTION TO SPARSE MATRICES
Typical Problem:

Physical Model

Nonlinear PDEs

Discretization

Linearization (Newton)

Sequence of Sparse Linear Systems \(Ax = b \)
Problem considered: Linear systems

\[Ax = b \]

Can view the problem from somewhat different angles:

- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- Sometimes a system of equations where \(A \) is not explicitly available
General Purpose
Direct sparse Solvers
Iterative Methods
Preconditioned Krylov

A x = b
-\Delta u = f + bc

Fast Poisson Solvers
Multigrid Methods

Specialized

CRM April 30, 2008
Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving Robustness, developing more general preconditioners
A few observations

- Problems are getting harder for Sparse Direct methods
 (more 3-D models, much bigger problems,..)

- Problems are also getting difficult for iterative methods **Cause:**
 more complex models - away from Poisson

- Researchers in iterative methods are borrowing techniques from direct methods: → preconditioners

- The inverse is also happening: Direct methods are being adapted for use as preconditioners
What are sparse matrices?

Common definition: “..matrices that allow special techniques to take advantage of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).
Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk
PORES3: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP
Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)

Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires $O(nnz(A) + nnz(B))$ where $nnz(X) =$ number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.
Graph theory is a fundamental tool in sparse matrix techniques.

Graph $G = (V, E)$ of an $n \times n$ matrix A defined by

Vertices $V = \{1, 2, \ldots, N\}$.

Edges $E = \{(i, j) | a_{ij} \neq 0\}$.

Graph is undirected if matrix has symmetric structure: $a_{ij} \neq 0$ iff $a_{ji} \neq 0$.

CRM April 30, 2008
Example: Adjacency graph of:

\[
A = \begin{pmatrix}
\star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star & \star \\
\end{pmatrix}.
\]

Example: For any matrix \(A \), what is the graph of \(A^2 \)? [interpret in terms of paths in the graph of \(A \)]
Direct versus iterative methods

Background. Two types of methods:

- **Direct methods**: based on sparse Gaussian elimination, sparse Cholesky,..

- **Iterative methods**: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

- 40 years ago solving a system with \(n = 10,000 \) was a challenge

- Now you can solve this in \(< 1 \) sec. on a laptop.
Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.

3-D problems lead to more challenging systems [inherent to the underlying graph]

Problems with many unknowns per grid point similar to 3-D problems

Remarks:
- No robust ‘black-box’ iterative solvers.
- Robustness often conflicts with efficiency
- However, situation improved in last \(\approx \) decade
- Line between direct and iterative solvers blurring
Principle of sparse matrix techniques: Store only the nonzero elements of A. Try to minimize computations and (perhaps more importantly) storage.

Difficulty in Gaussian elimination: Fill-in

Trivial Example:

\[A = \begin{pmatrix}
+ & + & + & + & + & + \\
+ & + & & & & \\
+ & + & & & + & \\
+ & + & & + & & \\
+ & + & + & & & \\
+ & + & & & + & \\
\end{pmatrix} \]
Reorder equations and unknowns in order \(N, N - 1, \ldots, 1 \)

\[A = \begin{pmatrix} + & + & + \\ + & + & + \\ + & + & + \end{pmatrix} \]

\(A \) stays sparse during Gaussian elimination – i.e., no fill-in.

Finding the best ordering to minimize fill-in is NP-complete.

A number of heuristics developed. Among the best known:

- Minimum degree ordering (Tinney Scheme 2)
- Nested Dissection Ordering.
- Approximate Minimal Degree ...
Let \(\pi = \{i_1, \ldots, i_n\} \) a permutation

\[A_{\pi, *} = \{a_{\pi(i),j}\}_{i,j=1,...,n} \text{ = matrix } A \text{ with its } i\text{-th row replaced by row number } \pi(i). \]

\[A_{*, \pi} = \text{matrix } A \text{ with its } j\text{-th column replaced by column } \pi(j). \]

Define \(P_{\pi} = I_{\pi,*} \) = “Permutation matrix” – Then:

1. Each row (column) of \(P_{\pi} \) consists of zeros and exactly one “1”

2. \[A_{\pi, *} = P_{\pi} A \]

3. \[P_{\pi} P_{\pi}^T = I \]

4. \[A_{*, \pi} = A P_{\pi}^T \]
Consider now:

\[A' = A_{\pi,\pi} = P_{\pi} A P_{\pi}^T \]

- **Entry** \((i, j)\) in matrix \(A'\) is exactly entry in position \((\pi(i), \pi(j))\) in \(A\), i.e., \((a'_{ij} = a_{\pi(i),\pi(j)})\)

\[(i, j) \in E_{A'} \iff (\pi(i), \pi(j)) \in E_A\]

General picture:

![Diagram showing the relationship between \(i\), \(j\), \(\pi_i\), and \(\pi_j\)]
Example

A 9 × 9 ‘arrow’ matrix and its adjacency graph.
Graph and matrix after permuting the nodes in reverse order.
A class of reordering techniques proceeds by levels in the graph.

Related to Breadth First Search (BFS) traversal in graph theory.

Idea of BFS is to visit the nodes by ‘levels’. Level 0 = level of starting node.

Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...
Example:

BFS from node A:
Level 0: A
Level 1: B, C;
Level 2: E, D, H;
Level 3: I, K, E, F, G, H.
Algorithm \(BFS(G, v)\) – by level sets –

- Initialize \(S = \{v\}, \ seen = 1; \ Mark \ v;\)
- While \(seen < n\) Do
 - \(S_{new} = \emptyset;\)
 - For each node \(v\) in \(S\) do
 - For each unmarked \(w\) in \(\text{adj}(v)\) do
 - Add \(w\) to \(S_{new};\)
 - Mark \(w;\)
 - \(seen + +;\)
 - \(S := S_{new}\)
A few properties of Breadth-First-Search

- If G is a connected undirected graph then each vertex will be visited once each edge will be inspected at least once.

- Therefore, for a connected undirected graph, the cost of BFS is $O(|V| + |E|)$.

- Distance = level number; For each node v we have: $\min_{\text{dist}}(s, v) = \text{level_number}(v) = \text{depth}_T(v)$.

- Several reordering algorithms are based on variants of Breadth-First-Search.
Algorithm proceeds by levels. Same as BFS except: in each level, nodes are ordered by increasing degree.

Example

<table>
<thead>
<tr>
<th>Level</th>
<th>Nodes</th>
<th>Deg.</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B, C</td>
<td>4, 3</td>
<td>C, B</td>
</tr>
<tr>
<td>2</td>
<td>D, E, F</td>
<td>3, 4, 2</td>
<td>F, D, E</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>2</td>
<td>G</td>
</tr>
</tbody>
</table>
ALGORITHM 1. Cuthill Mc Kee ordering

0. Find an initial node for the traversal

1. Initialize $S = \{v\}$, $seen = 1$, $\pi(seen) = v$; Mark v;

2. While $seen < n$ Do

3. $S_{new} = \emptyset$;

4. For each node v, going from lowest to highest degree, Do:

5. $\pi(\,++\,seen) = v$;

6. For each unmarked w in $adj(v)$ do

7. Add w to S_{new};

8. Mark w;

9. EndDo

10. $S := S_{new}$

11. EndDo

12. EndWhile
Reverse Cuthill McKee ordering

The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):

Original matrix

CM ordering
Idea: Take the reverse ordering

Reverse Cuthill M Kee ordering (RCM).
The idea of divide and conquer – recursively divide graph in two using a separator.
Nested dissection for a small mesh

Original Grid

First dissection
Nested dissection: cost for a regular mesh

- In 2-D consider an $n \times n$ problem, $N = n^2$
- In 3-D consider an $n \times n \times n$ problem, $N = n^3$

<table>
<thead>
<tr>
<th></th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>space (fill)</td>
<td>$O(N \log N)$</td>
<td>$O(N^{4/3})$</td>
</tr>
<tr>
<td>time (flops)</td>
<td>$O(N^{3/2})$</td>
<td>$O(N^2)$</td>
</tr>
</tbody>
</table>

- Significant difference in complexity between 2-D and 3-D
In practice: Nested dissection (+ variants) is preferred for parallel processing.

Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/

Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.
BASIC RELAXATION METHODS
Basic Relaxation Schemes

Relaxation schemes: based on the decomposition

\[A = D - E - F \]

\(D = \text{diag}(A), \quad -E = \text{strict lower part of } A \) and \(-F \) its strict upper part.

Gauss-Seidel iteration for solving \(Ax = b \):

\[(D - E)x^{(k+1)} = Fx^{(k)} + b \]

→ idea: correct the \(j \)-th component of the current approximate solution, \(j = 1, 2, \ldots, n \), to zero the \(j \)-th component of residual.
Can also define a backward Gauss-Seidel iteration:

\[(D - F)x^{(k+1)} = Ex^{(k)} + b\]

and a Symmetric Gauss-Seidel iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

\[\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)\]

→ successive overrelaxation, (SOR):

\[(D - \omega E)x^{(k+1)} = [\omega F + (1 - \omega)D]x^{(k)} + \omega b\]
Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

\[x^{(k+1)} = M x^{(k)} + f \]

- \(M_{Jac} = D^{-1}(E + F^T) = I - D^{-1}A \)
- \(M_{GS}(A) = (D - E)^{-1}F = I - (D - E)^{-1}A \)
- \(M_{SOR}(A) = (D - \omega E)^{-1}(\omega F + (1 - \omega)D) = I - (\omega^{-1}D - E)^{-1}A \)
- \(M_{SSOR}(A) = I - (2\omega^{-1} - 1)(\omega^{-1}D - F)^{-1}D(\omega^{-1}D - E)^{-1}A \)
 \[= I - \omega(2\omega - 1)(D - \omega F)^{-1}D(D - \omega E)^{-1}A \]
Consider the iteration: \[x^{(k+1)} = Gx^{(k)} + f \]

(1) Assume that \(\rho(A) < 1 \). Then \(I - G \) is non-singular and \(G \) has a fixed point. Iteration converges to a fixed point for any \(f \) and \(x^{(0)} \).

(2) If iteration converges for any \(f \) and \(x^{(0)} \) then \(\rho(G) < 1 \).

Example: Richardson’s iteration

\[x^{(k+1)} = x^{(k)} + \alpha(b - A^{(k)}) \]

Assume \(\Lambda(A) \subset \mathbb{R} \). When does the iteration converge?

- Jacobi and Gauss-Seidel converge for diagonal dominant \(A \)
- SOR converges for \(0 < \omega < 2 \) for SPD matrices
The iteration \(x^{(k+1)} = Mx^{(k)} + f \) is attempting to solve \((I - M)x = f\). Since \(M \) is of the form \(M = I - P^{-1}A \) this system can be rewritten as

\[
P^{-1}Ax = P^{-1}b
\]

where for SSOR, we have

\[
P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)
\]

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme \(\Longleftrightarrow\) Preconditioned Fixed Point Iteration