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Introduction & Background

ä Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...
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ä What is really needed is an invariant subspace of some large matrix A,
i.e., a subspace X such that :

AX ⊆ X or AY = Y C

Y = basis of subspace X of dim m, C ∈ Rm×m

ä Often ‘dominant’ invariant subspace needed [‘dimension reduction’]

ä Smallest eigenvalues needed in, e.g., electronic structure
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Problems: Approximate the subspace

Update it, e.g., when data changes

Estimate its dimension (inexpensively)

Exploit the subspace for certain calculations [e.g.,
model reduction]

Track subspace of a sequence of matrices

Find approximate common invariant subspace to a set
of matrices
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Rayleigh-Ritz projection

Question: How to extract good approximations to eigenvalues/ eigenvec-
tors from some subspace X = span{Q} with QHQ = I

Answer: Projection method. Set approximate eigenvector ũ = Qy + write:

QH(A− λ̃I)ũ = 0 → QHAQy = λ̃y

ALGORITHM : 1 [Xout, R] = Rayleigh-Ritz (A,X)

1. [Q,∼] = qr(X, 0) [Orthonormalize X into Q]
2. Compute C = QHAQ

3. [Y,R] = schur(C) [Schur: C = Y RY H]
4. Xout = QY .
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Subspace Iteration

Original idea: projection technique onto a subspace of the form Y = AkX

ä Also called just the:
“Power method”

ä In practice: Replace
Ak by suitable polynomial
[Chebyshev]

ALGORITHM : 2 [Xnew, D] = SubsIt(A,X)

1. Start: Select an initial system X = [x1, . . . , xm]

and an initial polynomial Ck.

2. Until convergence Do:

3. Compute X̂ = Ck(A)X. [Original: X̂ = AkX]

4. [Xnew, D] = Rayleigh-Ritz (A, X̂)

5. If convergence satisfied Return.

Else X := Xnew & select a new polynomial C′k′

6. EndDo
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Assumptions:

|λ1| ≥ |λ2| ≥ · · · ≥ |λm| > |λm+1| ≥ ...
P = eigenprojector (associated with λ1, · · · , λm)

L0 = span{x1, x2, . . . , xm}. Assume:

{Pxi}i=1,...,m linearly independent.

Pk =⊥ projector onto Lk = span{Xk}.

THEOREM: For each eigenvector ui ofA, i = 1, . . . ,m, there exists a unique
vector si in the subspace L0 such that Psi = ui. Moreover, the following
inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣λm+1

λi

∣∣∣∣+ εk

)k
,

where εk tends to zero as k tends to infinity.
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Q: What Chebychev polyno-
mial?
Typical scenario→

λ
n λ

λm

m+1

λ1

Unwanted wanted

Common thinking: shift and scale A to
B = (A− cI)/h:

c = λm+1+λn
2

, h = λm+1−λn
2

Then: pk(t) = Ck(t)/Ck(λ1)

ä Eigs of B in [−1, 1] are now the
‘unwanted’ eigenvalues
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Deg. 6 Cheb. polynom.  =1.2

ä Polynomial ‘optimal’ in some sense for each λi, i ≤ m individually - but
not for the invariant subspace as a whole.
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Quick background: Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

Km(A, v) = span{v,Av, · · · , Am−1v}

ä Arnoldi’s method [AH 6= A]

ä Lanczos [AH = A]
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Krylov vs. subspace iteration

ä From the perspective of computing invariant subspaces

Krylov-type methods

+ Fast

+ Optimal in a certain sense

+ Requires one starting vector

– Not easy to update

– Changes in A not allowed

Subspace iteration methods

+ Updates are easy

+ Geared toward subspaces [vs in-
dividual eigenvalues]

+ Tolerates changes in A

– Slower

Important note: both types of methods require only matrix-vector products.
Can get superior convergence with shift-and-invert [replace A with (A −
σI)−1 in Algorithms]. Issue: cost
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Example: subspace iteration for Kohm-Sham equation[
−∇2

2
+ Vion + VH + Vxc

]
Ψ(r) = EΨ(r) With:

• Hartree potential (local) ∇2VH = −4πρ(r)

• Vxc depends on functional. For LDA: Vxc = f(ρ(r))

• Vion = nonlocal – does not explicitly depend
on ρ

Vion = Vloc +
∑

aPa

• VH and Vxc depend nonlinearly on eigen-
vectors:

ρ(r) =
∑occup

i=1 |ψi(r)|2
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Initial Guess for V , V = Vat

Solve (−1
2
∇2 + V )ψi = εiψi

Calculate new ρ(r) =
∑occ

i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

V = Vnew
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The subspace filtering viewpoint

Given a basis [v1, . . . , vm],
’filter’ each vector as

v̂i = Pk(A)vi

ä pk = Low deg. polynomial [Chebyshev]

ä Filtering step not used to compute
eigenvectors accurately
ä SCF & diagonalization loops merged
ä Another viewpoint: nonlinear form of
subspace iteration −1 −0.5 0 0.5 1
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Deg. 8 Cheb. polynom., on interv.: [−11]

13 Focm23- Paris– June 22, 2023



N
ew

S
el

f-C
on

si
st

en
tI

te
ra

tio
n

Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) =
∑occ

i |ψi|2

Find new VH : −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

Filter basis {ψi} (with Hnew)+orth.

V = Vnew
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Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-Consistent-Field

Calculations with Chebyshev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p. 066704 (2006)

Si525H276 , Polynomial deg.
== 8. Single proc.

method # A ∗ x SCF CPU(s.)
ChebSI 124761 11 5946.69
ARPACK 142047 10 62026.37
TRLan 145909 10 26852.84

Si9041H1860 # PEs = 48; nH =2,992,832. Degree m = 8

nstate # A ∗ x # SCF total_eV
atom

1st CPU total CPU
19015 4804488 18 -92.00412 102.12 h. 294.36 h.
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The Grassmannian perspective

ä Recall: Stiefel manifold (‘compact’ Stiefel manifold):

St(p, n) = {Y ∈ Rn×p : Y TY = I}.

ä Grassmann manifold is the
quotient manifold

G(p, n) = S(p, n)/O(p)

where: O(p) ≡ orthogonal group of unitary p× p matrices.

ä Each point on G(p, n) ≡ a subspace of dimension p of Rn

ä Can be represented by a basis V ∈ St(p, n).
Notation: [V ], [it does not matter which basis V of is used]
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• A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with
orthogonality constraints, SIMAX, 20 (1999)

ä Tangent space of the Grassmann manifold at [Y ] is the set of matrices
∆ ∈ Rn×p s.t.:

Y T∆ = 0

ä The EAS paper (above) considers minimizing

φ(Y ) = 1
2
Tr [Y TAY ]

where Y TY = I by a Newton approach

ä The gradient of φ(Y ) on the
manifold at point [Y ] is

G = (I − Y Y T )AY
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ä For Newton: We need to solve Hess∆ = −G on manifold

ä Notation: Π = I − Y Y T , CY = Y TAY

ä Newton leads to Sylvester equation:

Π[A∆−∆CY ] = −ΠAY

ä Solution: ∆ = −Y + Z(Y TZ)−1 where Z solves

AZ − ZCY = Y
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A few other well-known references

1. P. -A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren “A Grassmann-Rayleigh Quotient
Iteration for Computing Invariant Subspaces”, SIAM Review, (2002)

2. P. A. Absil, R. Mahony and R. Sepulchre, Riemannian Geometry of Grassmann Manifolds with
a View on Algorithmic Computation, Acta Applicandae Mathematicae, 80 (2004)

3. G. W. Stewart, “Error and perturbation bounds for subspaces associated with certain eigen-
value problems” , SIAM Rev., 15 (1973)

4. J. W. Demmel, “Three methods for refining estimates of invariant subspaces”, Computing 38
(1987)

5. F. Chatelin, Simultaneous Newton’s iterations for the eigenproblem, Proc. Oberwolfach Con-
ference (1984)

6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.
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The Grassmannian perspective (continued)

ä Problem with these 2nd-order methods: Need to solve multiple systems
of equations or a Sylvester equation at each step

ä Can we use Grassmannian perspective without inversion?

ä Idea: Use a gradient - or conjugate gradient - approach

Recall: On G(p, n), gradient of objective function φ at [Y ] is

G = ∇φY = (I − Y Y T )AY ≡ AY − Y CY

with CY = Y TAY .
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Gradient approach

ä Next iterate is of the following form
(µ to be determined)

Ỹ = Y + µG,

ä Direction of gradient will increase
φ but iterates must stay on manifold

ä Could follow a geodesic (EAS pa-
per) ..

Tangent space

[Y]
Grad

ä Or follow a path alongG but implicitly re-project each Y +µG on manifold,
i.e., consider [Y + µG]
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ä Can show

φ(Ỹ ) = φ(Y ) + µ‖G‖2
F + µ2

2
Tr [AY ]TΠAΠ[AY ]

ä ... and because Y TG = 0 we have:

Ỹ T Ỹ = [Y + µG]T [Y + µG] = I + µ2GTG.

ä Let: GTG = UDβU
T ≡ spectral decomposition of GTG

ä Want: To orthonormalize Ỹ without changing its span

ä Sol: Right-multiply Ỹ by UD−1
µ , i.e., define new Y as:

Y (µ) = Ỹ UD−1
µ = (Y + µG)UD−1

µ .

where: Dµ ≡ [I + µ2Dβ]
1/2
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Set:
Yu = Y U

αi = (Y T
u AYu)ii

Dα = Diag(αi);

Gu = GU

γi = (GT
uAGu)ii

Dγ = Diag(γi);

Then:

φ(Y (µ)) = 1
2
Tr
[
I + µ2Dβ

]−1 [
Dα + 2µDβ + µ2Dγ

]

This is a rational
function→

φ(Y (µ)) =
1

2

m∑
i=1

αi + 2βiµ+ γiµ
2

1 + βiµ2

Derivative of
Y (µ)→

dY (µ)

dµ
=

m∑
i=1

βi + (γi − αi βi)µ− β2
iµ

2

(1 + βiµ2)2
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ä Each numerator is an inverted parabola: ↗ then ↘

ä Easy to devise procedures to optimize φ(Y (µ))

Z Careful in case βi’s are small !

ALGORITHM : 3 Gradient Ascent algorithm

0. Start: Select initial Y such that Y TY = I.

1. Compute G = AY − Y CY

2. While‖G‖F > tol

3. Compute and Diagonalize GTG as GTG = UDβU
T

4. Compute Dα, Dγ

5. Call get_mu to approximately maximize φ(Y (µ))

6. Set Y := (Y + µG)U [I + µ2Dβ]
−1/2

7. Compute G = AY − Y CY

8. EndWhile
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Use of Conjugate Gradients [work in progress (!)]

Can’t use perspective of linear CG [obj. function not quadratic]

Also we are maximizing a function [φ(Y )]

An approach based on a Polak-Ribiere formulation works quite well. New
Conj. Direction P :

Pnew = P + βGnew where β = 〈Gnew−G,Gnew〉
〈G,G〉

But we will also project new P on tangent space:

Pnew ← (I − Y Y T )Pnew

Since Y T
newP = 0 formulas similar to Grad. case available [Slightly more

expensive]
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Conjugate Gradients – Polak-Ribiere

ALGORITHM : 4 Conjugate Gradient Ascent algorithm
0. Start: Select initial Y such that Y TY = I.
1. Compute G = AY − Y CY ; Set P := G

2. While‖G‖F > tol

3. Call get_mu to approximately maximize φ(Y (µ))

4. Set [Y,R] = qr(Y + µP, 0) [Matlab]
5. Compute Gnew = AY − Y CY
6. Compute β = 〈Gnew−G,Gnew〉

〈G,G〉 and set:
7. Pnew := Gnew + βP and G := Gnew

8. Pnew := (I − Y Y T )Pnew

9. EndWhile
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A few numerical tests. Laplacean example

• Small Finite Difference Laplacean on 35× 40 grid (n = 1, 400)

ä All tests: m = Subsp. dim. ≡ 8

ä For Standard Subspace iteration – we apply optimal shift so A→ A−σI
[where σ = (λn + λ9)/2 ]

ä Tests: 1) Standard (shifted) subspace iteration (SI) 2) Riemmann Gradient
Descent 3) Chebyshev SI with Optimal pol. ; 4) Alternate Chebyshev SI 5)
Riemman. Conj. Gradient
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Small Laplacean [35× 40 grid, n = 1400, nnz = 6850]
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Performance measures: 1) Trace; 2) Invariance ‖AY − Y CY ‖1
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Matrix nasa4704 [n = 4, 704, nnz = 104, 756]
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Matrix Pre. Poisson [n = 14, 822, nnz = 715, 804]
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Concluding remarks

ä Many tasks in applications deal with invariant subspaces

ä Beneficial to explore algorithms that treat invariant subspaces as Grass-
mannian objects

ä Krylov subspace methods not best choice for types of problems that arise
in some applications ...

ä ... but they are amazingly powerful for other tasks [e.g. Spectral densities]
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