Gradient-Type Subspace Iteration Methods for Symmetric Eigen-Problems

Yousef Saad
University of Minnesota

Foundations of Computational Mathematics Paris, June 21-23, 2023

Introduction \& Background

> Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix A

- Structural Engineering - (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]
- ...

What is really needed is an invariant subspace of some large matrix A, i.e., a subspace \mathcal{X} such that :

$$
A \mathcal{X} \subseteq \mathcal{X} \quad \text { or } \quad A Y=Y C
$$

$\boldsymbol{Y}=$ basis of subspace \mathcal{X} of $\operatorname{dim} m, C \in \mathbb{R}^{m \times m}$
$>$ Often 'dominant' invariant subspace needed ['dimension reduction']
$>$ Smallest eigenvalues needed in, e.g., electronic structure

Problems:

- Approximate the subspace
- Update it, e.g., when data changes
- Estimate its dimension (inexpensively)
- Exploit the subspace for certain calculations [e.g., model reduction]
- Track subspace of a sequence of matrices
- Find approximate common invariant subspace to a set of matrices

Rayleigh-Ritz projection

Question: How to extract good approximations to eigenvalues/ eigenvectors from some subspace $X=\operatorname{span}\{Q\}$ with $Q^{H} Q=I$

Answer: Projection method. Set approximate eigenvector $\tilde{u}=Q y+$ write:

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0 \rightarrow Q^{H} A Q y=\tilde{\lambda} y
$$

ALGORITHM : $1\left[\boldsymbol{X}_{\text {out }}, \boldsymbol{R}\right]=$ Rayleigh-Ritz $(\boldsymbol{A}, \boldsymbol{X})$

1. $[Q, \sim]=q r(X, 0)$ [Orthonormalize X into $Q]$
2. Compute $C=Q^{H} A Q$
3. $[\boldsymbol{Y}, R]=\operatorname{schur}(C) \quad\left[S c h u r: C=Y R Y^{H}\right]$
4. $X_{o u t}=Q Y$.

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y=A^{k} X$

ALGORITHM : $2\left[\boldsymbol{X}_{\text {new }}, \boldsymbol{D}\right]=\operatorname{Subsit}(\boldsymbol{A}, \boldsymbol{X})$

1. Start: Select an initial system $\boldsymbol{X}=\left[x_{1}, \ldots, x_{m}\right]$ and an initial polynomial C_{k}.
2. Until convergence Do:
3. Compute $\hat{\boldsymbol{X}}=\boldsymbol{C}_{k}(\boldsymbol{A}) \boldsymbol{X}$. [Original: $\hat{\boldsymbol{X}}=\boldsymbol{A}^{k} \boldsymbol{X}$]
4. $\left[\boldsymbol{X}_{\text {new }}, \boldsymbol{D}\right]=$ Rayleigh-Ritz $(\boldsymbol{A}, \hat{\boldsymbol{X}})$
5. If convergence satisfied Return.

Else $\boldsymbol{X}:=\boldsymbol{X}_{\text {new }}$ \& select a new polynomial $C_{k^{\prime}}^{\prime}$
6. EndDo
$\square\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right|>\left|\lambda_{m+1}\right| \geq \ldots$
■ $P=$ eigenprojector (associated with $\lambda_{1}, \cdots, \lambda_{m}$)

- $\mathcal{L}_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Assume:
- $\left\{P x_{i}\right\}_{i=1, \ldots, m}$ linearly independent.
- $\mathcal{P}_{k}=\perp$ projector onto $\mathcal{L}_{k}=\operatorname{span}\left\{\boldsymbol{X}_{k}\right\}$.

THEOREM: For each eigenvector u_{i} of $A, i=1, \ldots, m$, there exists a unique vector s_{i} in the subspace \mathcal{L}_{0} such that $P s_{i}=u_{i}$. Moreover, the following inequality is satisfied

$$
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k}
$$

where ϵ_{k} tends to zero as k tends to infinity.

Q: What Chebychev polynomial?
Typical scenario \rightarrow

Common thinking: shift and scale A to $B=(A-c I) / h$:

$$
c=\frac{\lambda_{m+1}+\lambda_{n}}{2}, \quad h=\frac{\lambda_{m+1}-\lambda_{n}}{2}
$$

Then: $p_{k}(t)=C_{k}(t) / C_{k}\left(\lambda_{1}\right)$
$>$ Eigs of B in $[-1,1]$ are now the ‘unwanted' eigenvalues

Deg. 6 Cheb. polynom. $\quad \gamma=1.2$

> Polynomial 'optimal' in some sense for each $\boldsymbol{\lambda}_{i}, i \leq m$ individually - but not for the invariant subspace as a whole.

Quick background: Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

$$
K_{m}(A, v)=\operatorname{span}\left\{v, A v, \cdots, A^{m-1} v\right\}
$$

$>$ Arnoldi's method $\left[A^{H} \neq A\right]$
$>$ Lanczos $\left[A^{H}=A\right]$

Krylov vs. subspace iteration

> From the perspective of computing invariant subspaces

Krylov-type methods

+ Fast
+ Optimal in a certain sense
+ Requires one starting vector
- Not easy to update
- Changes in A not allowed

Subspace iteration methods

+ Updates are easy
+ Geared toward subspaces [vs individual eigenvalues]
+ Tolerates changes in A
- Slower

Important note: both types of methods require only matrix-vector products. Can get superior convergence with shift-and-invert [replace \boldsymbol{A} with ($\boldsymbol{A}-$ $\sigma I)^{-1}$ in Algorithms]. Issue: cost

Example: subspace iteration for Kohm-Sham equation

$$
\left[-\frac{\nabla^{2}}{2}+V_{i o n}+V_{H}+V_{x c}\right] \Psi(r)=E \Psi(r)
$$

With:

- Hartree potential (local)

$$
\nabla^{2} V_{H}=-4 \pi \rho(r)
$$

- $V_{x c}$ depends on functional. For LDA:

$$
V_{x c}=f(\rho(r))
$$

- $V_{i o n}=$ nonlocal - does not explicitly depend on ρ

$$
V_{i o n}=V_{l o c}+\sum_{a} P_{a}
$$

- V_{H} and $V_{x c}$ depend nonlinearly on eigenvectors:

$$
\rho(r)=\sum_{i=1}^{o c c u p}\left|\psi_{i}(r)\right|^{2}
$$

The subspace filtering viewpoint

Given a basis $\left[v_{1}, \ldots, v_{m}\right]$,
'filter' each vector as

$$
\hat{v}_{i}=P_{k}(A) v_{i}
$$

$>\boldsymbol{p}_{k}=$ Low deg. polynomial [Chebyshev]
> Filtering step not used to compute eigenvectors accurately
> SCF \& diagonalization loops merged
> Another viewpoint: nonlinear form of subspace iteration

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-Consistent-Field Calculations with Chebyshev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p. 066704 (2006)

	method	\# A * x	SCF	CPU(s.)
$\mathrm{Si}_{525} \mathrm{H}_{276}$, Polynomial deg.	ChebSI	124761	11	5946.69
$==8$. Single proc.	ARPACK	142047	10	62026.37
	TRLan	145909	10	26852.84

$S i_{9041} H_{1860}$ \# PEs $=48 ; n_{H}=2,992,832$. Degree $m=8$

$n_{\text {state }}$	$\# \boldsymbol{A} * \boldsymbol{x}$	\# SCF	$\frac{\text { total } \text { eV }}{\text { atom }}$	1st CPU	total CPU
19015	4804488	18	-92.00412	102.12 h.	294.36 h.

The Grassmannian perspective

> Recall: Stiefel manifold ('compact' Stiefel manifold):

$$
S t(p, n)=\left\{Y \in \mathbb{R}^{n \times p}: Y^{T} Y=I\right\} .
$$

> Grassmann manifold is the quotient manifold

$$
G(p, n)=S(p, n) / O(p)
$$

where: $O(p) \equiv$ orthogonal group of unitary $p \times p$ matrices.
$>$ Each point on $G(p, n) \equiv$ a subspace of dimension p of \mathbb{R}^{n}
$>$ Can be represented by a basis $V \in S t(p, n)$.
Notation: [\boldsymbol{V}], [it does not matter which basis V of is used]

- A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIMAX, 20 (1999)
> Tangent space of the Grassmann manifold at $[Y]$ is the set of matrices $\Delta \in \mathbb{R}^{n \times p}$ s.t.:

$$
Y^{T} \Delta=0
$$

> The EAS paper (above) considers minimizing

$$
\phi(\boldsymbol{Y})=\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{Y}\right]
$$

where $\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{Y}=\boldsymbol{I}$ by a Newton approach
$>$ The gradient of $\phi(\boldsymbol{Y})$ on the manifold at point $[Y]$ is

$$
G=\left(I-Y Y^{T}\right) A Y
$$

$>$ For Newton: We need to solve Hess $\Delta=-G$ on manifold
$>$ Notation: $\Pi=I-Y Y^{T}, C_{Y}=Y^{T} A Y$
$>$ Newton leads to Sylvester equation:

$$
\Pi\left[A \Delta-\Delta C_{Y}\right]=-\Pi A Y
$$

$>$ Solution: $\Delta=-Y+Z\left(Y^{T} Z\right)^{-1}$ where Z solves

$$
A Z-Z C_{Y}=Y
$$

A few other well-known references

1. P. -A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren "A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces", SIAM Review, (2002)
2. P. A. Absil, R. Mahony and R. Sepulchre, Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation, Acta Applicandae Mathematicae, 80 (2004)
3. G. W. Stewart, "Error and perturbation bounds for subspaces associated with certain eigenvalue problems", SIAM Rev., 15 (1973)
4. J. W. Demmel, "Three methods for refining estimates of invariant subspaces", Computing 38 (1987)
5. F. Chatelin, Simultaneous Newton's iterations for the eigenproblem, Proc. Oberwolfach Conference (1984)
6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.

The Grassmannian perspective (continued)

> Problem with these 2nd-order methods: Need to solve multiple systems of equations or a Sylvester equation at each step
> Can we use Grassmannian perspective without inversion?
> Idea: Use a gradient - or conjugate gradient - approach
Recall: On $G(p, n)$, gradient of objective function ϕ at $[\boldsymbol{Y}]$ is

$$
G=\nabla \phi_{Y}=\left(I-Y Y^{T}\right) A Y \equiv A Y-Y C_{Y}
$$

with $C_{Y}=Y^{T} A Y$.

Gradient approach

$>$ Next iterate is of the following form (μ to be determined)

$$
\tilde{Y}=Y+\mu G,
$$

Direction of gradient will increase ϕ but iterates must stay on manifold
> Could follow a geodesic (EAS paper) ..

> Or follow a path along G but implicitly re-project each $Y+\mu G$ on manifold, i.e., consider $[Y+\mu G]$

Can show

$$
\phi(\tilde{\boldsymbol{Y}})=\phi(\boldsymbol{Y})+\mu\|G\|_{F}^{2}+\frac{\mu^{2}}{2} \operatorname{Tr}[A Y]^{T} \Pi A \Pi[A Y]
$$

$>\ldots$ and because $\boldsymbol{Y}^{T} G=0$ we have:

$$
\tilde{\boldsymbol{Y}}^{T} \tilde{\boldsymbol{Y}}=[Y+\mu G]^{T}[Y+\mu G]=I+\mu^{2} G^{T} G .
$$

> Let: $G^{T} G=U D_{\beta} U^{T} \equiv$ spectral decomposition of $G^{T} G$
> Want: To orthonormalize $\tilde{\boldsymbol{Y}}$ without changing its span
$>$ Sol: Right-multiply $\tilde{\boldsymbol{Y}}$ by $U D_{\mu}^{-1}$, i.e., define new Y as:

$$
\boldsymbol{Y}(\mu)=\tilde{Y} U D_{\mu}^{-1}=(Y+\mu G) U D_{\mu}^{-1}
$$

where:

$$
D_{\mu} \equiv\left[I+\mu^{2} D_{\beta}\right]^{1 / 2}
$$

Set: $\begin{aligned} \boldsymbol{Y}_{u} & =\boldsymbol{Y} \boldsymbol{U} \\ \alpha_{i} & =\left(\boldsymbol{Y}_{u}^{T} \boldsymbol{A} \boldsymbol{Y}_{u}\right)_{i i} \\ \boldsymbol{D}_{\alpha} & =\operatorname{Diag}\left(\alpha_{i}\right) ;\end{aligned}$

$$
\begin{aligned}
\boldsymbol{G}_{u} & =\boldsymbol{G U} \\
\gamma_{i} & =\left(\boldsymbol{G}_{u}^{T} A G_{u}\right)_{i i} \\
D_{\gamma} & =\operatorname{Diag}\left(\gamma_{i}\right) ;
\end{aligned}
$$

$$
\phi(Y(\mu))=\frac{1}{2} \operatorname{Tr}\left[I+\mu^{2} D_{\beta}\right]^{-1}\left[D_{\alpha}+2 \mu D_{\beta}+\mu^{2} D_{\gamma}\right]
$$

This is a rational function \rightarrow

$$
\phi(Y(\mu))=\frac{1}{2} \sum_{i=1}^{m} \frac{\alpha_{i}+2 \beta_{i} \mu+\gamma_{i} \mu^{2}}{1+\beta_{i} \mu^{2}}
$$

Derivative of
$Y(\mu) \rightarrow$

$$
\frac{d Y(\mu)}{d \mu}=\sum_{i=1}^{m} \frac{\beta_{i}+\left(\gamma_{i}-\alpha_{i} \beta_{i}\right) \mu-\beta_{i}^{2} \mu^{2}}{\left(1+\beta_{i} \mu^{2}\right)^{2}}
$$

$>$ Each numerator is an inverted parabola:
> Easy to devise procedures to optimize $\phi(\boldsymbol{Y}(\mu))$
Z Careful in case $\boldsymbol{\beta}_{i}$'s are small!

ALGORITHM : 3 Gradient Ascent algorithm

0. Start: Select initial \boldsymbol{Y} such that $\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{Y}=\boldsymbol{I}$.
1. Compute $G=A Y-Y C_{Y}$
2. While $\|G\|_{F}>$ tol
3. Compute and Diagonalize $G^{T} G$ as $G^{T} G=U D_{\beta} U^{T}$
4. Compute D_{α}, D_{γ}
5. Call get_mu to approximately maximize $\phi(\boldsymbol{Y}(\boldsymbol{\mu}))$
6. $\operatorname{Set} \boldsymbol{Y}:=(\boldsymbol{Y}+\mu G) U\left[\boldsymbol{I}+\mu^{2} D_{\beta}\right]^{-1 / 2}$
7. Compute $G=A Y-Y C_{Y}$
8. EndWhile

Use of Conjugate Gradients [work in progress (!)]

- Can't use perspective of linear CG [obj. function not quadratic]
- Also we are maximizing a function $[\phi(\boldsymbol{Y})]$
- An approach based on a Polak-Ribiere formulation works quite well. New Conj. Direction P:

$$
P_{\text {new }}=P+\beta G_{\text {new }} \quad \text { where } \quad \beta=\frac{\left\langle G_{\text {new }}-G, G_{\text {new }}\right\rangle}{\langle G, G\rangle}
$$

- But we will also project new P on tangent space:

$$
P_{\text {new }} \leftarrow\left(I-Y Y^{T}\right) P_{\text {new }}
$$

- Since $Y_{\text {new }}^{T} P=0$ formulas similar to Grad. case available [Slightly more expensive]

Conjugate Gradients - Polak-Ribiere

ALGORITHM : 4 Conjugate Gradient Ascent algorithm

0. Start: Select initial \boldsymbol{Y} such that $\boldsymbol{Y}^{T} \boldsymbol{Y}=\boldsymbol{I}$.
1. Compute $G=A \boldsymbol{Y}-\boldsymbol{Y} C_{Y}$; Set $\boldsymbol{P}:=G$
2. While $\|G\|_{F}>t o l$
3. Call get_mu to approximately maximize $\phi(\boldsymbol{Y}(\boldsymbol{\mu}))$
4. $\operatorname{Set}[\boldsymbol{Y}, \boldsymbol{R}]=\boldsymbol{q r}(\boldsymbol{Y}+\mu \boldsymbol{P}, 0)$ [Matlab]
5. Compute $G_{\text {new }}=A Y-Y C_{Y}$
6. Compute $\beta=\frac{\left\langle G_{\text {new }}-G, G_{\text {new }}\right\rangle}{\langle G, G\rangle}$ and set:
7. $\quad P_{\text {new }}:=G_{\text {new }}+\beta P$ and $G:=G_{\text {new }}$
8. $\quad P_{\text {new }}:=\left(I-Y Y^{T}\right) P_{\text {new }}$
9. EndWhile

A few numerical tests. Laplacean example

- Small Finite Difference Laplacean on 35×40 grid ($n=1,400$)
$>$ All tests: $m=$ Subsp. dim. $\equiv 8$
$>$ For Standard Subspace iteration - we apply optimal shift so $A \rightarrow A-\sigma I$ [where $\sigma=\left(\lambda_{n}+\lambda_{9}\right) / 2$]
> Tests: 1) Standard (shifted) subspace iteration (SI) 2) Riemmann Gradient Descent 3) Chebyshev SI with Optimal pol. ; 4) Alternate Chebyshev SI 5) Riemman. Conj. Gradient

Small Laplacean $[35 \times 40$ grid, $n=1400, n n z=6850]$

Trace of C_{Y} vs. its

Invariance Meas. vs. its

Performance measures: 1) Trace; 2) Invariance $\left\|\boldsymbol{A} \boldsymbol{Y}-\boldsymbol{Y} \boldsymbol{C}_{Y}\right\|_{1}$

Matrix nasa4704[n=4,704,nnz=104,756]

Matrix Pre. Poisson $[n=14,822, n n z=715,804]$

Concluding remarks

> Many tasks in applications deal with invariant subspaces
> Beneficial to explore algorithms that treat invariant subspaces as Grassmannian objects

- Krylov subspace methods not best choice for types of problems that arise in some applications ...
> ... but they are amazingly powerful for other tasks [e.g. Spectral densities]

