OF MINNESOTA TWIN CITIES

Gradient-Type Subspace Iteration Methods for Symmetric Eigen-Problems Yousef Saad University of Minnesota

Foundations of Computational Mathematics Paris, June 21-23, 2023 > Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix A

- Structural Engineering (Goal: frequency response)
- Electronic structure calculations
 [Schrödinger equation..] –
 Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]

> What is really needed is an invariant subspace of some large matrix A, i.e., a subspace \mathcal{X} such that :

 $A\mathcal{X} \subseteq \mathcal{X}$ or AY = YC

 $Y = ext{basis of subspace } \mathcal{X} ext{ of dim } m, \, C \in \mathbb{R}^{m imes m}$

- Often 'dominant' invariant subspace needed ['dimension reduction']
- Smallest eigenvalues needed in, e.g., electronic structure

- Approximate the subspace
- Update it, e.g., when data changes
- Estimate its dimension (inexpensively)
- Exploit the subspace for certain calculations [e.g., model reduction]
- Track subspace of a sequence of matrices
- Find approximate common invariant subspace to a set of matrices

Rayleigh-Ritz projection

Question: How to extract good approximations to eigenvalues/ eigenvectors from some subspace $X = \text{span}\{Q\}$ with $Q^H Q = I$

Answer: Projection method. Set approximate eigenvector $\tilde{u} = Qy$ + write:

$$Q^H (A - ilde{\lambda} I) ilde{u} = 0 \ o \ Q^H A Q y = ilde{\lambda} y$$

ALGORITHM : 1 $[X_{out}, R]$ = Rayleigh-Ritz (A, X)

- 1. $[Q, \sim] = qr(X, 0)$ [Orthonormalize X into Q]
- 2. Compute $C = Q^H A Q$
- 3. [Y, R] = schur(C) [Schur: $C = YRY^H$]
- 4. $X_{out} = QY$.

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$

- Also called just the: "Power method"
- In practice: Replace A^k by suitable polynomial [Chebyshev]

 $ALGORITHM : 2 [X_{new}, D] = Subslt(A, X)$

1. Start: Select an initial system $X = [x_1, \ldots, x_m]$

and an initial polynomial C_k .

- 2. Until convergence **Do**:
- 3. Compute $\hat{X} = C_k(A)X$. [Original: $\hat{X} = A^kX$]
- 4. $[X_{new}, D] = Rayleigh-Ritz(A, \hat{X})$
- 5. If convergence satisfied Return.

Else $X := X_{new}$ & select a new polynomial $C'_{k'}$

6. EndDo

- $\bullet \ |\boldsymbol{\lambda}_1| \geq |\boldsymbol{\lambda}_2| \geq \cdots \geq |\boldsymbol{\lambda}_m| > |\boldsymbol{\lambda}_{m+1}| \geq ...$
- P = eigenprojector (associated with $\lambda_1, \dots, \lambda_m$)
- $\mathcal{L}_0 = span\{x_1, x_2, \dots, x_m\}$. Assume:
- $\{Px_i\}_{i=1,...,m}$ linearly independent.
- $\mathcal{P}_k = \perp$ projector onto $\mathcal{L}_k = span\{X_k\}$.

THEOREM: For each eigenvector u_i of A, i = 1, ..., m, there exists a unique vector s_i in the subspace \mathcal{L}_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I-\mathcal{P}_k)u_i\|_2 \leq \|u_i-s_i\|_2 \left(\left|rac{\lambda_{m+1}}{\lambda_i}
ight|+\epsilon_k
ight)^k,$$

where ϵ_k tends to zero as k tends to infinity.

7

Q: What Chebychev polynomial? Typical scenario \rightarrow

> Polynomial 'optimal' in some sense for each λ_i , $i \leq m$ individually - but not for the invariant subspace as a whole.

Quick background: Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v) = \operatorname{span}\{v, Av, \cdots, A^{m-1}v\}$$

- > Arnoldi's method $[A^H \neq A]$
- ► Lanczos $[A^H = A]$

Krylov vs. subspace iteration

From the perspective of computing invariant subspaces

Krylov-type methods

- + Fast
- + Optimal in a certain sense
- + Requires one starting vector
- Not easy to update
- Changes in A not allowed

Subspace iteration methods

- + Updates are easy
- + Geared toward subspaces [vs individual eigenvalues]
- + Tolerates changes in A

- Slower

Important note: both types of methods require only matrix-vector products. Can get superior convergence with shift-and-invert [replace A with $(A - \sigma I)^{-1}$ in Algorithms]. Issue: cost **Example:** subspace iteration for Kohm-Sham equation

$$\left[-rac{
abla^2}{2}+V_{ion}+V_H+V_{xc}
ight]\Psi(r)=E\Psi(r)$$

• Hartree potential (local)

11

- V_{xc} depends on functional. For LDA:
- V_{ion} = nonlocal does not explicitly depend on ρ
- V_H and V_{xc} depend nonlinearly on eigenvectors:

$$abla^2 V_H = -4\pi
ho(r)$$

With:

$$V_{xc}=f(
ho(r))$$

$$V_{ion} = V_{loc} + \sum_a P_a$$

$$ho(r) = \sum_{i=1}^{occup} |\psi_i(r)|^2$$

The subspace filtering viewpoint

Given a basis $[v_1, \ldots, v_m]$, 'filter' each vector as

> p_k = Low deg. polynomial [Chebyshev]

► Filtering step not used to compute eigenvectors accurately

SCF & diagonalization loops merged
 Another viewpoint: nonlinear form of subspace iteration

$$\hat{v}_i = P_k(A)v_i$$

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky, Parallel Self-Consistent-Field Calculations with Chebyshev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p. 066704 (2006)

 $Si_{525}H_{276}$, Polynomial deg. == 8. Single proc.

method	# A * x	SCF	CPU(s.)
ChebSI	124761	11	5946.69
ARPACK	142047	10	62026.37
TRLan	145909	10	26852.84

 $Si_{9041}H_{1860}$ # PEs = 48; n_H =2,992,832. Degree m = 8

n	l _{state}	# A * x	# SCF	$rac{total_eV}{atom}$	1st CPU	total CPU
19	9015	4804488	18	-92.00412	102.12 h.	294.36 h.

The Grassmannian perspective

Recall: Stiefel manifold ('compact' Stiefel manifold):

$$St(p,n)=\{Y \in \mathbb{R}^{n imes p} \ : \ Y^TY=I\}.$$

$$G(p,n)=S(p,n)/O(p)$$

where: $O(p) \equiv$ orthogonal group of unitary $p \times p$ matrices.

- ▶ Each point on $G(p, n) \equiv$ a subspace of dimension p of \mathbb{R}^n
- Can be represented by a basis $V \in St(p, n)$. *Notation:* [V], [it does not matter which basis V of is used]

• A. Edelman, T. A. Arias, and S. T. Smith, *The geometry of algorithms with orthogonality constraints*, SIMAX, 20 (1999)

Tangent space of the Grassmann manifold at [Y] is the set of matrices $\Delta \in \mathbb{R}^{n \times p}$ s.t.:

$$Y^T\Delta=0$$

The EAS paper (above) considers minimizing

$$\phi(Y) = rac{1}{2} {
m Tr} \left[Y^T A Y
ight]$$

where $Y^T Y = I$ by a Newton approach

The gradient of $\phi(Y)$ on the manifold at point [Y] is

$$G = (I - YY^T)AY$$

Focm23- Paris– June 22, 2023

17

For Newton: We need to solve $\text{Hess}\Delta = -G$ on manifold

$$\blacktriangleright$$
 Notation: $\Pi = I - YY^T$, $C_Y = Y^T AY$

Newton leads to Sylvester equation:

$$\Pi[A\Delta - \Delta C_Y] = -\Pi AY$$

Solution: $\Delta = -Y + Z(Y^TZ)^{-1}$ where Z solves

$$AZ - ZC_Y = Y$$

A few other well-known references

- 1. P. -A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren "A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces", SIAM Review, (2002)
- 2. P. A. Absil, R. Mahony and R. Sepulchre, *Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation*, Acta Applicandae Mathematicae, 80 (2004)
- 3. G. W. Stewart, "Error and perturbation bounds for subspaces associated with certain eigenvalue problems", SIAM Rev., 15 (1973)
- 4. J. W. Demmel, "Three methods for refining estimates of invariant subspaces", Computing 38 (1987)
- 5. F. Chatelin, Simultaneous Newton's iterations for the eigenproblem, Proc. Oberwolfach Conference (1984)
- 6. A. Sameh, J. Wisniewski, The TraceMin algorithm, 1982.

The Grassmannian perspective (continued)

Problem with these 2nd-order methods: Need to solve multiple systems of equations or a Sylvester equation at each step

- Can we use Grassmannian perspective without inversion?
- Idea: Use a gradient or conjugate gradient approach

Recall: On G(p, n), gradient of objective function ϕ at [Y] is

$$G = \nabla \phi_Y = (I - YY^T)AY \equiv AY - YC_Y$$

with $C_Y = Y^T A Y$.

Gradient approach

Next iterate is of the following form $(\mu \text{ to be determined})$

- Direction of gradient will increase \$\phi\$ but iterates must stay on manifold
- Could follow a geodesic (EAS paper) ..

 $ilde{Y} = Y + \mu G,$

> Or follow a path along *G* but implicitly re-project each $Y + \mu G$ on manifold, i.e., consider $[Y + \mu G]$

$$\phi(ilde{Y}) = \phi(Y) \ + \ \mu \|G\|_F^2 \ + \ rac{\mu^2}{2} ext{Tr} [AY]^T \Pi A \Pi [AY]$$

> ... and because $Y^T G = 0$ we have:

$$ilde{Y}^T ilde{Y} = [Y+\mu G]^T[Y+\mu G] = I+\mu^2 G^T G.$$

► Let: $G^T G = U D_\beta U^T \equiv$ spectral decomposition of $G^T G$

- > Want: To orthonormalize \tilde{Y} without changing its span
- > Sol: Right-multiply \tilde{Y} by UD_{μ}^{-1} , i.e., define new Y as:

$$Y(\mu) = ilde{Y} U D_{\mu}^{-1} = (Y + \mu G) U D_{\mu}^{-1}.$$

where:

$$D_\mu \equiv [I+\mu^2 D_eta]^{1/2}$$

$$\begin{array}{l} Y_u = YU \\ \alpha_i = (Y_u^T A Y_u)_{ii} \\ D_\alpha = \mathsf{Diag}(\alpha_i); \end{array} \begin{array}{l} G_u = GU \\ \gamma_i = (G_u^T A G_u)_{ii} \\ D_\gamma = \mathsf{Diag}(\gamma_i); \end{array} \end{array} \text{Then:} \\ \phi(Y(\mu)) = \frac{1}{2} \mathsf{Tr} \left[I + \mu^2 D_\beta \right]^{-1} \left[D_\alpha + 2\mu D_\beta + \mu^2 D_\gamma \right] \end{array}$$

This is a rational function \rightarrow

$$\phi(Y(\mu))=rac{1}{2}\sum_{i=1}^mrac{lpha_i\ +2eta_i\mu+\gamma_i\mu^2}{1+eta_i\mu^2}$$

Derivative of $Y(\mu)
ightarrow$

$$rac{dY(\mu)}{d\mu} = \sum_{i=1}^m \; rac{eta_i \; + (\gamma_i \; - lpha_i \, eta_i) \mu - eta_i^2 \mu^2}{(1+eta_i \mu^2)^2}$$

Each numerator is an inverted parabola: then

Easy to devise procedures to optimize $\phi(Y(\mu))$

Z Careful in case β_i 's are small !

ALGORITHM : 3 Gradient Ascent algorithm

- 0. Start: Select initial Y such that $Y^T Y = I$.
- 1. Compute $G = AY YC_Y$
- 2. While $||G||_F > tol$
- 3. Compute and Diagonalize $G^T G$ as $G^T G = U D_{\beta} U^T$
- 4. Compute D_{α}, D_{γ}
- 5. Call get_mu to approximately maximize $\phi(Y(\mu))$
- 6. Set $Y := (Y + \mu G)U[I + \mu^2 D_\beta]^{-1/2}$
- 7. Compute $G = AY YC_Y$
- 8. EndWhile

Use of Conjugate Gradients [work in progress (!)]

- Can't use perspective of linear CG [obj. function not quadratic]
- Also we are maximizing a function $[\phi(Y)]$
- An approach based on a Polak-Ribiere formulation works quite well. New Conj. Direction P:

$$P_{new} = P + eta G_{new}$$
 where $eta = rac{\langle G_{new} - G, G_{new}
angle}{\langle G, G
angle}$

But we will also project new *P* on tangent space:

$$P_{new} \leftarrow (I - YY^T)P_{new}$$

Since $Y_{new}^T P = 0$ formulas similar to Grad. case available [Slightly more expensive]

Conjugate Gradients – Polak-Ribiere

ALGORITHM : 4 Conjugate Gradient Ascent algorithm

- 0. Start: Select initial Y such that $Y^TY = I$.
- 1. Compute $G = AY YC_Y$; Set P := G
- 2. While $||G||_F > tol$
- 3. Call get_mu to approximately maximize $\phi(Y(\mu))$
- 4. Set $[Y, R] = qr(Y + \mu P, 0)$ [Matlab]
- 5. Compute $G_{new} = AY YC_Y$
- 6. Compute $\beta = \frac{\langle G_{new} G, G_{new} \rangle}{\langle G, G \rangle}$ and set:
- 7. $P_{new} := G_{new} + \beta P$ and $G := G_{new}$
- $8. \qquad P_{new} := (I YY^T)P_{new}$

9. EndWhile

A few numerical tests. Laplacean example

- Small Finite Difference Laplacean on 35×40 grid (n = 1, 400)
- > All tests: m =Subsp. dim. $\equiv 8$

For Standard Subspace iteration – we apply optimal shift so $A \to A - \sigma I$ [where $\sigma = (\lambda_n + \lambda_9)/2$]

Tests: 1) Standard (shifted) subspace iteration (SI) 2) Riemmann Gradient Descent 3) Chebyshev SI with Optimal pol. ; 4) Alternate Chebyshev SI 5) Riemman. Conj. Gradient

Small Laplacean [35×40 grid, n = 1400, nnz = 6850]

Performance measures: 1) Trace; 2) Invariance $||AY - YC_Y||_1$

Matrix nasa4704 [n = 4,704, nnz = 104,756]

Matrix Pre. Poisson [n = 14, 822, nnz = 715, 804]

Concluding remarks

- Many tasks in applications deal with invariant subspaces
- Beneficial to explore algorithms that treat invariant subspaces as Grassmannian objects
- Krylov subspace methods not best choice for types of problems that arise in some applications ...
- > ... but they are amazingly powerful for other tasks [e.g. Spectral densities]