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APPLICATION OF GMRES/ANDERSON IN ML & FILTERING METHODS
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Minimax Optimization

➤ Minimax optimization:

argmin
x∈X

argmax
y∈Y

f(x, y)
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➤ Generative Adversarial Networks (GANs)

➤ Reinforcement Learning (RL)
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Difficulty of solving minimax optimization

(a) Cycling Behavoir (b) Diverging Behavoir (c) Converging to a non-optima

Figure 1: Left:f(x, y) = (4x2 − (y − 3x + 0.05x3)2 − 0.1y4)e−0.01(x2+y2). Middle: −3x2 − y2 + 4xy. Right: f(x, y) = 2x2 + y2 + 4xy +
4
3
y3 − 1

4
y4. We can observe that baseline methods fail to converge to a local minimax, whereas the proposed Krylov subspace method always exhibits

desirable behaviors.
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Gradient Descent Ascent as a fixed point iteration

➤ Recall
argmin

x∈X
argmax

y∈Y
f(x, y)

➤ Simultaneous GDA (SimGDA):

xt+1 = xt − η∇xf(xt, yt), yt+1 = yt + η∇yf(xt, yt)

➤ Alternating GDA (AltGDA):

xt+1 = xt − η∇xf(xt, yt), yt+1 = yt + η∇yf(xt+1, yt)
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GDA as a fixed point iteration

➤ Both SimGDA and AltGDA can be rewritten as a fixed
point iteration wt+1 = G(wt)

➤ SimGDA updates:

wt+1 = G(Sim)
η (wt) ≜ wt − ηV (wt)

with

w =

[
x
y

]
, V (w) =

[
∇xf(x, y)
−∇yf(x, y)

]
➤ AltGDA updates:

wt+1 = G(Alt)
η (wt)
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Anderson mixing [Anderson, 1965]

➤ Anderson mixing

xt+1 =
∑p

i=0 βixt−p+i, yt+1 =
∑p

i=0 βiyt−p+i

xt; yt GDA xt+1; yt+1
AM xt+1; yt+1

➤ Ft = [ft−p, . . . , ft], fi = G(wi) − wi

➤ β = (β0, . . . , βp)
T is obtained by solving

minβ ∥Ftβ∥2 , s. t.
∑p

i=0 βi = 1
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Zero-sum bilinear games

➤ Assume A is full rank

minx∈Rn maxy∈Rn f(x, y) = xTAy + bTx + cTy

➤ Nash equilibrium is given by

(x∗, y∗) = (−A−Tc,−A−1b)
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➤ SimGDA can be written as:[
xt+1

yt+1

]
=

[
I −ηA

ηAT I

]
︸ ︷︷ ︸

G(Sim)

[
xt

yt

]
︸︷︷︸
w

(Sim)
t

−η

[
b
c

]
︸︷︷︸
b(Sim)

.

➤ AltGDA can be written as:[
xt+1

yt+1

]
=

[
I −ηA

ηAT I − η2ATA

]
︸ ︷︷ ︸

G(Alt)

[
xt

yt

]
︸︷︷︸
w

(Alt)
t

−η

[
b
c

]
︸︷︷︸
b(Alt)

.

➤ Convergence of GDA-AM can be studied via the
convergence of GMRES [Walker, Na, SINUM, 2011]

(I − G(·))w = b(·), with w0 = w
(·)
0
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Global convergence for SimGDA-AM on bilinear problems

➤ p: as the restart dimension

➤ N(k+1)p = ∥w∗ − w(k+1)p∥

➤ Tp: Chebyshev polynomial of first kind of degree p

N2
(k+1)p ≤ ρ(A)N2

kp (1)

where ρ(A) = ( 1
Tp(1+

2

κ(ATA)−1
)
)2.
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➤ Comparison between SimGDA-AM and EG for different
condition numbers and fixed table size p = 10, 20, 50.
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➤ Comparison between SimGDA-AM and EG for increas-
ing table size on a matrix A with condition number 100.
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Convergence for AltGDA-AM on bilinear problem

➤ p: as the restart dimension

➤ N(k+1)p = ∥w∗ − w(k+1)p∥

Assume A is normalized such that its largest singular value
is equal to 1. Then when the learning rate η is less than 2

N2
(k+1)p ≤

√
1 +

2η

2 − η
(
r

c
)pN2

kp (2)

where c and r are the center and radius of a disk D(c, r)
which includes all the eigenvalues of G. Especially, r

c
< 1.
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minxmaxy f(x, y) = xTAy + bTx + cTy

Figure 2: n=500 Figure 3: n=1000
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minxmaxy f(x, y) = xTAy + bTx + cTy

Figure 4: n=500 Figure 5: n=1000
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Empirical performance on GANs

WGAN-GP(ResNet) SNGAN(ResNet)
CIFAR10 CelebA CIFAR10

Method IS ↑ FID ↓ FID IS FID
Adam 7.76 ±.11 22.45 ±.65 8.43 ±.05 8.21 ±.05 20.81 ±.16
EG 7.83 ±.08 20.73 ±.22 8.15 ±.06 8.15 ±.07 21.12 ±.19

GDA-AM 8.05 ±.06 19.32 ±.16 7.82 ±.06 8.38 ±.04 18.84 ±.13

(a) WGAN-GP (ResNet) (b) SNGAN (ResNet)
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Generated Images for CIFAR10 and CelebA

(a) Generated images for CIFAR10 (b) Generated images for CelebA
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Polynomial preconditioning

➤ Starting from a initial guess x0 and initial residual r0 =
b − Ax0

➤ The approximated solution x̃ at a specific iteration is
x̃ = x0 + p(A)r0 where p is a polynomial

➤ The residual is

r̃ = b − A = (I − Ap(A))r0 = r(A)r0

where r(z) is the residual polynomial r(z) = 1 − zp(z)
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➤ Goal: r̃ = r(A)r0 close to zero

➤ Assume A is close to be normal

➤ Small |r(λ)| on eigenvalues λ → small ∥r(A)∥

➤ By maximum modulus principle, |r(z)| be small on Γ
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Optimal polynomial filter

➤ A “good” polynomial p can be solved from the minimax
problem

minr∈P0
m
maxz∈Γ |r(z)| or minp∈Pm−1

maxz∈Γ |1 − zp(z)|

• Pm−1 is the polynomial space of degree ≤ m − 1

• P0
m = {p ∈ Pm|p(0) = 1}

Chebyshev approximation problem in function approxima-
tion theory.

Copper Mountain 2022. 03-31-2022 p. 19

19



Discretized version

➤ Let Γn = {z1, z2, . . . , zn} be a discretization of Γ,
instead we consider a discrete minimax problem

min
r∈P0

m

max
z∈Γn

|r(z)| or min
p∈Pm−1

max
z∈Γn

|1 − zp(z)|

➤ With a basis for Pm−1, the problem can be rewritten
in matrix form

min
α

∥e − Fα∥∞

➤ This is not a numerical stable approach for nonsymmet-
ric problems and high degree polynomials!
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Implicit representation of p

➤ Represent polynomial p by [p(z1), p(z2), . . . , p(zn)]
T

➤ Define an inner product of two polynomials p1 and p2

by

⟨p1, p2⟩ =

n∑
i=1

p1(zi)p2(zi)

and denote by ∥ · ∥w

➤ Define the objective function by sum of squares

min
r∈P0

m

∥r∥2
w or min

r∈P0
m

∑
z∈Γn

|r(z)|2
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Arnoldi process in polynomial space

1. set q1 = 1/∥1∥w

2. for j = 1, 2, . . . ,m
3. compute q := zqj
4. for i = 1, 2, . . . , j do
5. compute hij = ⟨q, qi⟩
6. compute q = q − hijqi
7. end for
8. compute hj+1,j = ∥q∥w

9. compute qj+1 = q/hj+1,j

10.end for

This process generates an orthonormal basis {q1, q2, . . . , qm}
for the polynomial space Pm−1 under the norm ∥ · ∥w.
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➤ compute q1 = [1, 1, . . . , 1]T/
√
n

➤ the polynomial z = [z1, z2, . . . , zn]
T

➤ polynomial multiplication ⇒ entry-wise multiplication
of vectors

➤ inner product/norm of polynomial ⇒ standard dot
product in vector space

➤ addition/subtraction/scalar multiplication⇒ correspond-
ing operations in vector space

➤ orthonormal polynomial basis {q1, q2, . . . , qm} ⇒ or-
thogonal matrix Qm = [q1, q2, . . . , qm]
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Application of preconditioner

➤ Apply p(A) to a vector v note that

M−1v = p(A)v =

m∑
i=1

αiqi(A)v :=

m∑
i=1

αivi

➤ The vi’s can be computed recursively

vi+1 =
1

hi+1,i

Avi −
i∑

j=1

hjivj

 , 1 ≤ i ≤ m − 1
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GMRES in polynomial space

➤ Assume p =
∑m

j=1αjqj = Qmα

zp =

m∑
i=1

αi (zqi) =

m∑
i=1

αi

i+1∑
j=1

hjiqj = Qm+1Hmα

➤ The minimization problem can be solved as

min
p∈Pm−1

∥1−zp∥2
w =⇒ min

α
∥βe1 − Hmα∥2

2
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Short-term recurrence

➤ Replace full orthogonalization by partial one:

tj+1,jq̂j+1 = zq̂j −
j∑

i=j−k+1

tijq̂i, 1 ≤ j ≤ m,

➤ Fast application of M−1 = p̂(A)

vi+1 =
1

ti+1,i

Avi −
i∑

j=i−k+1

tjivj

 .

O(mkN) operations and O(kN) storage
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➤ Conditioning of Q̂m generated with k-term recurrence
from Helmohltz problem
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➤ The approximate boundaries of the spectrum and the
approximate eigenvalues obtained from 60 steps of the
Arnoldi algorithm for the 2, 000 × 2, 000 diagonal matrix.
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Figure 9: Approximate boundary
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Figure 10: Contour maps of |1 − zp(z)| in log scale with different choice of
Γ for the 2, 000 × 2, 000 diagonal matrix.
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➤ Convergence results of GMRES(50) for the 2, 000 ×
2, 000 diagonal matrix test with tolerance τ = 10−12

p-t i-t its mv
no precond. \ 0.6525 237 237

with precond.
exact boundary 0.0045 0.5366 8 240

approx. boundary 0.0040 0.5238 8 240
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➤ 3D Helmholtz equation

−∆u −
ω2

c2(x)
u = s

where ω is the angular frequency and c(x) is the wavespeed.

➤ PML boundary conditions + 7-point stencil FD

➤ Matrix size 106 × 106

Preconditioner type p-t i-t its mv

no preconditioner \ \ F \
ILUT F \ \ \

ILUT with diagonal shift σ = −0.4i 220.96 \ F \
single polynomial of degree 600 − 1 3.49 1484.87 16 9, 600

compound polynomial of degree 60 × 10 − 1 0.05 906.41 18 10, 800
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Preconditioner type p-t i-t its mv

SLR preconditioner 86.94 \ F \
SLR with polynomial of degree 30 − 1 145.85 308.03 29 870
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(a) Exact and approximate eigenvalues of AM−1
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(b) Contour map of |1 − zp(z)| in log scale
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(c) Eigenvalues of the final preconditioned matrix
A1p(A1)
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