## Spectral Densities - Introduction

> Spectral density $==$ function that provides a global representation of the spectrum of a Hermitian matrix
> Known in solid state physics as 'Density of States' (DOS)
$>$ Very useful in physics
$>$ Almost unknown (as a tool) in numerical linear algebra

## Density of States

$>$ Formally, the Density Of States (DOS) of a matrix $A$ is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

where: $-\delta$ is the Dirac $\delta$-function or Dirac distribution

- $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of $A$
$>$ DOS is also referred to as the spectral density
$>$ Note: number of eigenvalues in an interval $[a, b]$ is

$$
\mu_{[a, b]}=\int_{a}^{b} \sum_{j} \delta\left(t-\lambda_{j}\right) d t \equiv \int_{a}^{b} n \phi(t) d t
$$

## Issue: How to deal with distributions?

> Highly 'discontinuous', not easy to handle numerically
$>$ Solution for practical and theoretical purposes: replace $\phi$ by a regularized ('blurred') version $\phi_{\sigma}$ :

$$
\phi_{\sigma}(t)=\frac{1}{n} \sum_{j=1}^{n} h_{\sigma}\left(t-\lambda_{j}\right)
$$

Where, for example: $h_{\sigma}(t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{t^{2}}{2 \sigma^{2}}}$.
$>$ Smoothed $\phi(t)$ can be viewed as a probability distribution function for the spectrum

$>$ How to select smoothing parameter $\sigma$ ? Example for $S i_{2}$



$>$ Higher $\sigma \rightarrow$ smoother curve
> But loss of detail ..
$>$ Compromise: $\sigma=\frac{h}{2 \sqrt{2 \log (\kappa)}}$,
$>h=$ resolution, $\kappa=$ parameter $>1$


## Computing the DOS: The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
> Use trace estimator to get traces needed in calculations > Assume change of variable done so eigenvalues lie in $[-1,1]$.
$>$ To avoid weight function expand $\sqrt{1-t^{2}} \phi \rightarrow$

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right) .
$$

$>$ Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$. Question: $\mu_{k}=$ ??

Expansion coefficients $\mu_{k}$ are formally defined by:

$$
\begin{aligned}
\mu_{k} & =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \hat{\phi}(t) d t \\
& =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \sqrt{1-t^{2}} \phi(t) d t \\
& =\frac{2-\delta_{k 0}}{n \pi} \sum_{j=1}^{n} T_{k}\left(\lambda_{j}\right) .
\end{aligned}
$$

$>$ Here $2-\delta_{k 0}==1$ when $k=0$ and $==2$ otherwise.
$>$ Note: $\sum T_{k}\left(\lambda_{i}\right)=\operatorname{Trace}\left[T_{k}(A)\right] \longrightarrow$ Estimate this, e.g., via stochastic estimator
$>$ Generate random vectors $v^{(1)}, v^{(2)}, \cdots, v^{\left(n_{\text {vec }}\right)}$
$>$ Each vector is normalized so that $\left\|v^{(l)}\right\|=1, l=1, \ldots, n_{\text {vec }}$.
$>$ Estimate the trace of $T_{k}(A)$ with stochastisc estimator:

$$
\operatorname{Trace}\left(T_{k}(A)\right) \approx \frac{1}{n_{\text {vec }}} \sum_{l=1}^{n_{\text {vec }}}\left(\boldsymbol{v}^{(l)}\right)^{T} T_{k}(A) \boldsymbol{v}^{(l)} .
$$

> Will lead to the desired estimate:

$$
\mu_{k} \approx \frac{2-\delta_{k 0}}{n \pi n_{\mathrm{vec}}} \sum_{l=1}^{n_{\mathrm{vec}}}\left(v^{(l)}\right)^{T} T_{k}(A) v^{(l)} .
$$

$>$ To compute scalars of the form $\boldsymbol{v}^{T} T_{k}(A) v$, exploit 3-term recurrence of the Chebyshev polynomial: $T_{k+1}(A) v=2 A T_{k}(A) v-T_{k-1}(A) v$
$>$ If we let $\boldsymbol{v}_{k} \equiv T_{k}(A) v$, we have

$$
\boldsymbol{v}_{k+1}=2 A \boldsymbol{v}_{k}-v_{k-1}
$$

## An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene $n=8219$ nnz $=242669$
Degree $=40$ \# sample vectors $=10$ Elapsed time is 0.235189 seconds.



## Use of the Lanczos Algorithm

> Recall: The Lanczos algorithm generates an orthonormal basis $V_{m}=$ $\left[v_{1}, v_{2}, \cdots, v_{m}\right]$ for the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

> ... such that:
$V_{m}^{H} A V_{m}=T_{m}$ - with

$$
T_{m}=\left(\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \beta_{m} & \alpha_{m}
\end{array}\right)
$$

$>$ Lanczos process builds orthogonal polynomials wrt to dot product:

$$
\int p(t) q(t) d t \equiv\left(p(A) v_{1}, q(A) v_{1}\right)
$$

$>$ Let $\theta_{i}, i=1 \cdots, m$ be the eigenvalues of $T_{m}$ [Ritz values]
$>y_{i}$ 's associated eigenvectors; Ritz vectors: $\left\{V_{m} y_{i}\right\}_{i=1: m}$
> Ritz values approximate eigenvalues
$>$ Could compute $\theta_{i}$ 's then get approximate DOS from these
$>$ Problem: $\theta_{i}$ not good enough approximations - especially inside the spectrum.

Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

> See, e.g., Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Formula exact when $p$ is a polynomial of degree $\leq 2 m+1$
$>$ Consider now $\int p(t) d t=<p, 1>=$ (Stieljes) integral $\equiv$

$$
(p(A) v, v)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right) \equiv<\phi_{v}, p>
$$

$\rangle$ Then $\left\langle\phi_{v}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v} \approx \sum a_{i} \delta_{\theta_{i}}
$$

$>$ To mimick the effect of $\beta_{i}=1, \forall i$, use several vectors $v$ and average the result of the above formula over them..

- Approximating spectral densities of large matrices, Lin Lin, YS, and Chao Yang - SIAM Review '16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]


## Application 1: Eigenvalue counts

Problem: Given $\boldsymbol{A}$ (Hermitian) find an estimate of the number $\mu_{[a, b]}$ of eigenvalues of $A$ in $\left[\begin{array}{ll}a, & b\end{array}\right]$.

Standard method: Sylvester inertia theorem $\rightarrow$ expensive!
First alternative: integrate
the Spectral Density in $[a, b] . \quad \mu_{[a, b]} \approx n \sum_{k=0}^{m} \mu_{k}\left(\int_{a}^{b} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} d t\right)=\ldots$
Second method: Estimate trace of the related spectral projector $P$

$$
\left(\rightarrow u_{i} \text { 's = eigenvectors } \leftrightarrow \lambda_{i} \text { 's }\right)
$$

$$
\boldsymbol{P}=\sum_{\lambda_{i} \in[a b]} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{T} .
$$

$>$ It turns out that the 2 methods are identical.

## Application 3: Estimating the rank

> Very important problem in signal processing applications, machine learning, etc.
> Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.
> Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value..

## Approximate rank, Numerical rank

> Notion defined in various ways. A common one:

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\},
$$

$$
r_{\epsilon}=\text { Number of sing. values } \geq \epsilon
$$

> Two distinct problems:
$\begin{array}{ll}\text { 1. Get a good } \epsilon & \text { 2. Estimate number of sing. values } \geq \epsilon\end{array}$
$>$ We will need a cut-off value ('threshold') $\epsilon$.
$>$ Could use 'noise level' for $\epsilon$, but not always available

## Threshold selection

$>$ How to select a good threshold?
> Answer: Obtain it from the DOS function

(A)

(B)

(C)

Exact DOS plots for three different types of matrices.
$>$ To find: point immediatly following the initial sharp drop observed.
$>$ Simple idea: use derivative of DOS function $\phi$
$>$ For an $n \times n$ matrix with eigenvalues $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$ :

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1}, \phi^{\prime}(t)=0\right\} .
$$

> In practice replace by

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1},\left|\phi^{\prime}(t)\right| \geq \text { tol }\right\}
$$

## Experiment: estimated rank by Lanczos for matrix netz 4504.


(A) The DOS found by KPM. (B) Approximate rank estimation by Lanczos

## Tests with Matérn covariance matrices for grids

> Important in statistical applications
Approximate Rank Estimation of Matérn covariance matrices

| Type of Grid (dimension) | Matrix |  | $\# \lambda_{i}$ s | $r_{\epsilon}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Size | $\geq \epsilon$ | KPM | Lanczos |  |
| 1D regular Grid $(2048 \times 1)$ | 2048 | 16 | 16.75 | 15.80 |  |
| 1D no structure Grid $(2048 \times 1)$ | 2048 | 20 | 20.10 | 20.46 |  |
| 2D regular Grid $(64 \times 64)$ | 4096 | 72 | 72.71 | 72.90 |  |
| 2D no structure Grid $(64 \times 64)$ | 4096 | 70 | 69.20 | 71.23 |  |
| 2D deformed Grid $(64 \times 64)$ | 4096 | 69 | 68.11 | 69.45 |  |

$>$ For all test $M(\operatorname{deg})=50, n_{v}=30$

## Application 4: The LogDeterminant

Evaluate the Log-determinant of $A$ :

$$
\log \operatorname{det}(A)=\operatorname{Trace}(\log (A))=\sum_{i=1}^{n} \log \left(\lambda_{i}\right)
$$

## $\boldsymbol{A}$ is SPD.

$>$ Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A)=\log (A)$.
> Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.

Numerical example: A graph Laplacian california of size $9664 \times 9664$, $n z \approx 10^{5}$ from the Univ. of Florida collection.

Rel. error vs degree

- 3 methods: Taylor Series, Chebyshev expansion, SLQ
- \# starting vectors $n v=100$ in all three cases.


> Many more applications!


## Supervised learning

> We now have data that is 'labeled'
Examples: Health Sciences ('malignant'- 'non malignant') ; Materials ('photovoltaic', 'hard', 'conductor', ...) ; Digit Recognition ('0', '1', ...., '9')


## Supervised learning

> We now have data that is 'labeled'
Examples: Health Sciences ('malignant'- 'non malignant') ; Materials ('photovoltaic', 'hard', 'conductor', ...) ; Digit Recognition ('0', '1', ...., '9')


## Supervised learning: classification

> Best illustration: written digits recognition example

Given: set of labeled samples (training set), and an (unlabeled) test image $x$. Problem: label of $x=$ ?
> Roughly speaking: we seek dimension reduction so that recognition is 'more effective' in low-dim. space

## Basic method: K-nearest neighbors (KNN) classification

> Idea of a voting system: get distances between test sample and training samples
$>$ Get the $k$ nearest neighbors (here $k=8)$
$>$ Predominant class among these $k$
 ("*" here)

## Supervised learning: Linear classification

Linear classifiers: Find a hyperplane which best separates the data in classes A and B .
$>$ Example of application: Distinguish between SPAM and non-SPAM e-mails


Linear
classifier
> Note: The world in non-linear. Often this is combined with Kernels amounts to changing the inner product

## A harder case:


> Use kernels to transform


# Transformed data with a Gaussian Kernel 

## Simple linear classifiers

$>$ Let $X=\left[x_{1}, \cdots, x_{n}\right]$ be the data matrix.
$>$ and $L=\left[l_{1}, \cdots, l_{n}\right]==$ labels. $l_{i}= \pm 1$
$>$ 1st Solution: Find a vector $u$ such that $u^{T} x_{i}$ close to $l_{i}, \forall i$
$>$ Common solution: SVD to reduce dimension of data [e.g. 2-D] then do comparison in this space. e.g.

$$
\mathrm{A}: u^{T} x_{i} \geq 0, \mathrm{~B}: u^{T} x_{i}<0
$$

[For clarity: principal axis $u$ drawn below where it should be]

## Fisher's Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can 'discriminate' well between classes
> Define "between scatter": a measure of how well separated two distinct classes are.

Define "within scatter": a measure of how well clustered items of the same class are.
> Objective: make "between scatter" measure large and "within scatter" small.

Idea: Find projector that maximizes the ratio of the "between scatter" measure over "within scatter" measure

$$
\begin{aligned}
S_{B} & =\sum_{k=1}^{c} n_{k}\left(\mu^{(k)}-\mu\right)\left(\mu^{(k)}-\mu\right)^{T} \\
S_{W} & =\sum_{k=1}^{c} \sum_{x_{i} \in X_{k}}\left(x_{i}-\mu^{(k)}\right)\left(x_{i}-\mu^{(k)}\right)^{T}
\end{aligned}
$$

- $\boldsymbol{\mu}=\operatorname{mean}(\boldsymbol{X})$
- $\mu^{(k)}=\operatorname{mean}\left(X_{k}\right)$
where:
- $X_{k}=k$-th class
- $n_{k}=\left|X_{k}\right|$

> Consider 2nd moments for a vector $a$ :

$$
\begin{aligned}
a^{T} S_{B} a & =\sum_{i=1}^{c} n_{k}\left|a^{T}\left(\mu^{(k)}-\mu\right)\right|^{2} \\
a^{T} S_{W} a & =\sum_{k=1}^{c} \sum_{x_{i} \in X_{k}}\left|a^{T}\left(x_{i}-\mu^{(k)}\right)\right|^{2}
\end{aligned}
$$

$>a^{T} S_{B} a \equiv$ weighted variance of projected $\mu_{j}$ 's
$>a^{T} S_{W} a \equiv \mathrm{w}$. sum of variances of projected classes $X_{j}$ 's
> LDA projects the data so as to maximize the ratio of these two numbers:

$$
\max _{a} \frac{a^{T} S_{B} a}{a^{T} S_{W} a}
$$

$>$ Optimal $a=$ eigenvector associated with top eigenvalue of:

$$
S_{B} u_{i}=\lambda_{i} S_{W} u_{i} .
$$

## LDA - Extension to arbitrary dimensions

> Criterion: maximize the ratio of two traces:
$>$ Constraint: $U^{T} U=I$ (orthogonal projector).
> Reduced dimension data: $\boldsymbol{Y}=\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{X}$.
Common viewpoint: hard to maximize, therefore ...
> ... alternative: Solve instead the ('easier') problem:

$$
\max _{U^{T} S_{W} U=I} \operatorname{Trace}\left[\boldsymbol{U}^{T} S_{B} U\right]
$$

$>$ Solution: largest eigenvectors of $S_{B} u_{i}=\lambda_{i} S_{W} u_{i}$.

## In Brief: Support Vector Machines (SVM)

> Similar in spirit to LDA. Formally, SVM finds a hyperplane that best separates two training sets belonging to two classes.
$>$ If the hyperplane is:

$$
w^{T} x+b=0
$$

$>$ Then the classifier is $f(x)=\operatorname{sign}\left(w^{T} x+b\right)$ : assigns $y=+1$ to one class and $y=-1$ to other
$>$ Normalize parameters $w, b$ by looking for hyperplanes of the form $\boldsymbol{w}^{T} x+$ $b \geq 1$ to include one set and $w^{T} x+b \leq-1$ to include the other.
$>$ With $y_{i}=+1$ for one class and $y_{i}=-1$ for the other, we can write the constraints as $y_{i}\left(w^{T} x_{i}+b\right) \geq 1$.
> The margin is the maximum distance between two such planes: goal find $w, b$ to maximize margin.
> Maximize margin subject to the constraint $y_{i}\left(\boldsymbol{w}^{T} x_{i}+b\right) \geq 1$.

$>$ As it turns out the margin is equal to: $\gamma=\frac{2}{\|w\|_{2}}$

- Prove it.
$>$ Need to solve the constrained quadratic programming problem:
$\min _{w . b} \frac{1}{2}\|w\|_{2}^{2}$
s.t. $\quad y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall x_{i}$.

Modification 1: Soft margin. Consider hinge loss: $\max \left\{0,1-\boldsymbol{y}_{i}\left[\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}_{i}+b\right]\right\}$
$>$ Zero if constraint satisfied for pair $x_{i}, \boldsymbol{y}_{i}$. Otherwise proportional to distance from corresponding hyperplane. Hence we can minimize

$$
\lambda\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left[w^{T} x_{i}+b\right]\right\}
$$

© Suppose $y_{i}=+1$ and let $d_{i}=1-y_{i}\left[w^{T} x_{i}+b\right]$. Show that the distance between $x_{i}$ and hyperplane $\boldsymbol{w}^{T} x_{i}+b=+1$ is $d_{i} /\|w\|$.

Modification 2 : Use in combination with a Kernel to improve separability

## A few words on Deep Neural Networks (DNNs)

> Ideas of neural networks goes back to the 1960s - were popularized in early 1990s - then laid dormant until recently.
> Two reasons for the come-back:

- DNN are remarkably effective in some applications
- big progress made in hardware [ $\rightarrow$ affordable 'training cost']

Training a neural network can be viewed as a problem of approximating a function $\phi$ which is defined via sets of parameters:


Problem: find sets of parameters such that $\phi(x) \approx y$

Input: $x$, Output: $y$
Set: $z_{0}=x$
For $l=1: \mathrm{L}+1$ Do:

$$
z_{l}=\sigma\left(W_{l}^{T} z_{l-1}+b_{l}\right)
$$

End
Set: $y=\phi(x):=z_{L+1}$

- layer \# 0 = input layer
- layer \# $(L+1)=$ output layer
$>$ A matrix $W_{l}$ is associated with layers $1,2, L+1$.
> Problem:
Find $\phi$ (i.e., matrices $W_{l}$ ) s.t. $\phi(x) \approx y$


## DNN (continued)

> Problem is not convex, highly parameterized, ...,
> .. Main method used: Stochastic gradient descent [basic]
> It all looks like alchemy... but it works well for certain applications
> Training is still quite expensive - GPUs can help
> *Very* active area of research

GRAPH COARSENING

## Graph coarsening

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$, goal of graph coarsening is to find a smaller graph $G_{c}=\left(V_{c}, E_{c}\right)$ with $n_{c}$ nodes and $m_{c}$ edges, where $n_{c}<n$, which is a faithful approximation of $G$ in some sense.

## Notation:

- $\boldsymbol{A}_{\boldsymbol{c}}=$ adjacency matrix of $G_{c}$;
- $L_{c}=$ graph Laplacian of $G_{c}$



## Graph Coarsening in scientific computing

> Goal : exploit coarse representation of problem to solve linear systems

> Fewer nodes so: cheaper
> Can be used recursively


## Graph coarsening in scientific computing: (A) MG

Algebraic multigrid Main idea: generalize the interpolation and restriction operations of standard MG.
> For each fine node select a set of nearest neighbors from the coarse set
> Then express a fine node $i$ as a linear combination of a selected number of nearest neighbors that form a set $C_{i}$ :

Fine nodes: ■. Coarse: - In coarsening: central fine node is expressed as a combination of its coarse neighbors.

> Classical Ruge-Stüben strategy: selection based on ‘strong connections’ of node ( $i$ and $j$ are strongly connected if $a_{i j}$ has a large magnitude relative to others)
$>$ Let $\boldsymbol{C}==$ set of coarse nodes; $\boldsymbol{F}==$ set of fine nodes
> Can define 'interpolation operator' $P$ :

$$
[P x]_{i}= \begin{cases}x_{i} & \text { if } i \in C, \\ \sum_{j \in C_{i}} p_{i j} x_{j} & \text { otherwise }\end{cases}
$$

> Expand into a multilevel framework by repeating the process on the graph of coarse set.
$>$ Let $G_{0} \equiv G$ (orig.) and $G_{1}, G_{2}, \ldots, G_{h}$ be sequence of coarse graphs:
$\boldsymbol{G}_{\ell}=\left(V_{\ell}, E_{\ell}\right)$ is obtained by coarsening on $\boldsymbol{G}_{\ell-1}$ for $1 \leq \ell<\boldsymbol{L}$.
$>$ Let $\boldsymbol{A}^{(0)} \equiv A$ and $A^{(\ell)} \equiv$ matrix associated of $\ell$-th level.
$>$ Linear system at the $\ell$-th level, can be reordered as:

$$
\boldsymbol{A}^{(\ell)}=\left[\begin{array}{cc}
\boldsymbol{A}_{C C}^{(\ell)} & A_{C F}^{(\ell)} \\
\boldsymbol{A}_{F C}^{(\ell)} & \boldsymbol{A}_{F F}^{(\ell)}
\end{array}\right], \quad \boldsymbol{f}^{(\ell)}=\left[\begin{array}{c}
f_{C}^{(\ell)} \\
f_{F}^{(\ell)}
\end{array}\right] .
$$

> AMG: exploit different levels to building approximate solution. An AMG scheme depends entirely on defining a sequence of interpolation operators $P_{\ell}$ for $\ell=0,1, \ldots$
$>$ Once the $P_{\ell}$ 's are defined, one can design various 'cycles' : processes of going back and forth between levels

## Multilevel ILU preconditioner based on coarsening

> Method: find a good ordering for ILU preconditioner
$>$ Example: technique presented in [D. Osei-Kuffuor et al, '06]:
> Ingredient: ordering based on coarsening + apply recursively
$>$ Matrix is ordered in block form - then $A_{22}^{(0)}$ is in turn reordered:

$$
\left[\begin{array}{cc}
A_{11}^{(0)} & A_{12}^{(0)} \\
A_{21}^{(0)} & A_{22}^{(0)}
\end{array}\right] \rightarrow\left[\begin{array}{c|c}
\boldsymbol{A}_{11}^{(0)} & A_{12}^{(0)} \\
\hline \boldsymbol{A}_{21}^{(0)} & A_{11}^{(1)} \\
\hline & A_{12}^{(1)} \\
A_{21}^{(1)} & A_{22}^{(1)}
\end{array}\right] .
$$

$>$ Repeat with $\boldsymbol{A}_{22}^{(1)}$ and further down for a few levels.
> Do ILU factorization of the resulting reordered system.

## Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, '15]

Goal: Form of ILU preconditioning with improved robustness
$>$ Traverse edges $(i, j) \in N z(A)$ in decreasing order of the weights:

$$
\begin{aligned}
w_{i j} & =\min \left\{\frac{\left|a_{i j}\right|}{\delta_{r}(i)}, \frac{\left|a_{i j}\right|}{\delta_{c}(j)}\right\} \text { where: } \\
\delta_{r}(i) & =\frac{\left\|A_{i,:}\right\|_{1}}{n z\left(A_{i,:}\right)} \text { and } \delta_{c}(j)=\frac{\left\|A_{:, j}\right\|_{1}}{n z\left(A_{i, j}\right)}
\end{aligned}
$$


$>$ Select $i$ as 'coarse' if $\sigma_{i}>\sigma_{j}$ and $j$ otherwise, where $\rightarrow$

$$
\sigma_{k}=\frac{\left|a_{k k}\right|}{\delta_{r}(k) \delta_{c}(k)}
$$

$>$ Goal: to put large entries in the blocks $\left(A_{C F}^{(\ell)}\right)$ and $\left(A_{F C}^{(\ell)}\right)$

$$
\left[\begin{array}{ll}
A_{C C}^{(\ell)} & A_{C F}^{(\ell)} \\
A_{F C}^{(\ell)} & A_{F F}^{(\ell)}
\end{array}\right]
$$

> Model: very rough approximation of Gaussian Elimination.
> Next: (Matlab) Test with matrix Raefsky3
$>4$ levels of coarsening. Then reorder matrix and:
> Solve with ILUT- GMRES(50) or BSOR - GMRES(50)

SparseSuite collection. $n=21,200, n n z \approx 1,5 M$, Turbulence model.


Left: The matrix Raefsky3 after the reordering obtained from four levels of coarsening. Right: Performance of various coarsening based preconditioners for solving a linear system with the matrix.

## Coarsening by matching: Pairwise aggregation

> Strategy: coalesce (collapse) two adjacent nodes in a graph into a single node, based on some measure of nearness or similarity.
> A matching of a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ is a set of edges $\widetilde{\boldsymbol{E}}, \widetilde{\boldsymbol{E}} \subseteq \boldsymbol{E}$, such that no two edges in $\widetilde{E}$ have a node in common.
> Matching is maximal if it cant be augmented by additional edges
> Edge collapsing: usually selected using maximal matching
> Such edge matching techniques are common in AMG literature
$>$ For each node $i$, build a set $S_{i}$ of nodes that are 'strongly connected' to $i$
$>$ Traverse graph nodes in a certain order of preference
$>$ Next unmarked node in this order, say $j$, selected as a coarse node.
> Priority measure of traversal updated after each insertion of a coarse node

Heavy-edge matching (HEM) : matches a node $i$ with its largest off-diagonal neighbor $j_{\max }$;

$$
\left|a_{i j_{\max } \mid}\right|=\max _{j \in \operatorname{adj}(i), j \neq i}\left|a_{i j}\right|
$$

> There will be left-over nodes - called 'singletons'

## Heavy Edge Matching (HEM)



1. Visit edges $(i, j)$ in decreasing value of their weight $w_{i, j}$
2. If both $i$ and $j$ have no parents yet (left), create a new coarse node ('new'). Set parents of $i$ and $j$ to be new.
3. At completion of traversal: deal with unassigned nodes: Either (middle) add as a coarse nodes if disconnected ("singleton") or (right) lump as a child to an existing coarse node

## ALGORITHM : 9. Heavy Edge Matching (HEM)

Input: Weighted graph $G=(\boldsymbol{V}, \boldsymbol{E}, \boldsymbol{A})$
Output: Coarse nodes; Prnt list
Init: $\operatorname{Prnt}(i)=0 \forall i \in V ; n e w=0$
for max to min edge $(i, j)$ do
if $\operatorname{Prnt}(i)==0, \operatorname{Prnt}(j)==0$ then
new $=$ new +1
$\operatorname{Prnt}(i)=\operatorname{Prnt}(j)=n e w$
end if
end for
for Node $v$ with $\operatorname{Prnt}(v)==0$ do
if $v$ has no neighbor then

$$
n e w=n e w+1 ; \operatorname{Prnt}(v)=n e w
$$

else

$$
\operatorname{Prnt}(v)=\operatorname{Prnt}(j) \text { where } j=\operatorname{argmax}_{i}\left(a_{i v}\right)
$$

end if
end for

## Coarsening by independent sets

Recall: Independent set: $\mathcal{S} \subseteq V$ is a set of vertices that are not adjacent to each other: $i, j \in \mathcal{S} \Longrightarrow a_{i j}=0$. It is maximal if it can't be augmented
$>$ Can take $V_{c}=\mathcal{S}$ as a coarse set. Need to define edges.
$>$ Let $L=$ reordered graph Laplacian ( $n_{c}$ vertices of $V_{c}$ listed first): (note: $D_{c}$ is diagonal)

$$
L=\left(\begin{array}{cc}
D_{c} & -\boldsymbol{F} \\
-\boldsymbol{F}^{T} & B
\end{array}\right)
$$

$>$ Replace $B$ by $D_{f}=\boldsymbol{F}^{T}$ 亿 and define $G_{c}=$ graph of $S_{c} \rightarrow$

$$
S_{c}=D_{c}-F D_{f}^{-1} F^{T}
$$

Property: $S_{c}=$ Graph Laplacian of coarse graph $G_{c}$

## Coarsening by 'algebraic distance'

> Motivated by "bootstrap algebraic multigrid" (BAMG) [Brandt'01]
> In BAMG notion of closeness (used for coarsening) defined from a few steps of Gauss-Seidel for solving $A x=0$
> Speed of convergence of the iterate determines an 'algebraic distance' between variables.
> Exploited to aggregate the unknowns and define restriction and interpolation operators. Analysis in [Chen-Safro'11]

## Coarsening by 'kron' decomposition

> Kron reduction of networks proposed back in 1939 by Kron
> Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

## Main idea:

- Select a coarse set $V_{1}$ : Shuman-al use eigenvectors
- Reorder matrix so that nodes of $V_{1}$ come 1st.

Laplacean becomes $\rightarrow$

$$
L=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{12}^{T} & L_{22}
\end{array}\right]
$$

- Kron reduction of $L$ defined as the Schur complement:

$$
L\left(V_{1}\right)=L_{11}-L_{12} L_{22}^{-1} L_{12}^{T}
$$

Property $L\left(V_{1}\right)==$ graph Laplacian of $V_{1}$ [Dorfler-Bullo]

## Example:



Kron coarsening
Independent set coarsening

Two ways of using independent sets for coarsening.

| $D_{I}$ | $-F$ |
| :---: | :---: |
| $-F^{T}$ | $B$ |
| $\downarrow$ |  |$\longrightarrow$| $D_{I}$ | $-F$ |
| :---: | :---: |
| $-F^{T}$ | $D_{f}$ |

$$
L_{c}=D_{I}-F B^{-1} F^{T}
$$

$$
L_{c}=D_{I}-F D_{f}^{-1} F^{T}
$$

Q. 1: How to deal with 'denser' graph?

A Sparsify - using spectral sparsificaition
Q. 2: How to select $V_{1}$ ?

A Use signs of largest eigenvector of original Laplacian $L$
$>$ If $u_{1}=\left[\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right]^{T}=$ the largest eigenvector.
$>$ Define $V_{+}=\left\{i \mid \xi_{i} \geq 0\right\}$ and $V_{-}=\left\{i \mid \xi_{i}<0\right\}$
$>$ Then select one of $V_{+}, V_{-}$as $V_{1}$.
$>$ Opposite of what is done in spectral graph partitioning


Left side: spectral graph partitioning. Right: Coarsening withlargest eigenvector
$>$ Easy to show: (under mild condition on eigenvector) Each node of $V_{+}$ (resp. $\boldsymbol{V}_{-}$) must have at least one nearest neighbor node from $\boldsymbol{V}_{-}$(resp. $\boldsymbol{V}_{+}$).

GRAPH COARSENING IN MACHINE LEARNING

## Multilevel Dimension Reduction

## Idea:

Coarsen for a few levels. Use resulting data set $\hat{\boldsymbol{X}}$ to find a projector $P$ from $\mathbb{R}^{m}$ to $\mathbb{R}^{d}$. Use this $P$ to project data items.

> Gain: Dimension reduction is done with a much smaller set.
> Wish: not much loss compared to using whole data

## Multilevel Dimension Reduction (for sparse data- e.g., text)

> Use Hypergraph Coarsening with column matching - similar to a common one used in graph partitioning
$>$ Compute the non-zero inner product $\left\langle a^{(i)}, a^{(j)}\right\rangle$ between two vertices $i$ and $j$, i.e., the $i$ th and $j$ th columns of $\boldsymbol{A}$.
$>$ Note: $\left\langle a^{(i)}, a^{(j)}\right\rangle=\left\|a^{(i)}\right\|\left\|a^{(j)}\right\| \cos \theta_{i j}$
Modif. 1: Parameter: $0<\epsilon<1$. Match columns $i$

$$
\tan \theta_{i j} \leq \epsilon
$$ \& $j$ only if angle satisfies:

Modif. 2: Re-Scale. If $i$ and $j$ match and $\left\|\boldsymbol{a}^{(i)}\right\|_{0} \geq\left\|\boldsymbol{a}^{(j)}\right\|_{0}$ replace $\boldsymbol{a}^{(i)}$ and

$$
c^{(\ell)}=\left(1+\cos ^{2} \theta_{i j}\right)^{\frac{1}{2}} a^{(i)}
$$ $a^{(j)}$ by

Call $C$ the coarsened matrix obtained from $\boldsymbol{A}$ using the approach just described

Lemma: Let $C \in \mathbb{R}^{m \times c}$ be the coarsened matrix of $A$ obtained by one level of coarsening of $A \in \mathbb{R}^{m \times n}$, with columns $a^{(i)}$ and $a^{(j)}$ matched if $\tan \theta_{i} \leq \epsilon$. Then

$$
\left|x^{T} A A^{T} x-x^{T} C C^{T} x\right| \leq 3 \epsilon\|A\|_{F}^{2},
$$

for any $x \in \mathbb{R}^{m}$ with $\|x\|_{2}=1$.
$>$ Very simple bound for Rayleigh quotients for any $x$.
> Implies some bounds on singular values and norms - skipped.
$>$ See details + experiments in [Ubaru-YS '19]

## Graph coarsening for graph embeddings: HARP and MILE

$>$ Recall Vertex embedding: Given $G=(\boldsymbol{V}, \boldsymbol{E})$ find mapping $\Phi$ :

$$
\Phi: v \in V \longrightarrow \Phi(v) \in \mathbb{R}^{d}
$$

$$
d \text { is small: } d \ll n
$$

Hierarchical Representation Learning for Networks (HARP): (Chen et al. '18) coarsen for a few levels. Find embedding $\Phi^{(\ell)}$ for coarsest graph (level $\ell$ ). Then a succession of expansions to higher level + refinement.

> Gain: Embedding done with a much smaller set.
$>$ MILE approach [Liang et al. '18] very similar (difference in refinement).
Experiment to evaluate the effectiveness of HARP.
> Baseline. Three embedding algorithms: DeepWalk [Perozzi-al'14], LINE [Tang-al'15] and Node2vec [Grover-Leskovec'16]
> Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) - variant of HEM

## Coarsening with eigenvectors

- It is possible to coarsen a graph with the goal of exactly preserving a few eigenvectors.
- This has turned out not to be too useful in practice.
- Instead we use eigenvectors to define 'importance of nodes' for the graph traversal


## Leverage Scores

$>A=U \Sigma V^{T}(\operatorname{ran}(A)=\operatorname{ran}(U))$
$>$ Leverage score of $i$-th row $\rightarrow$

$$
\eta_{i}=\left\|U_{i,:}\right\|_{2}^{2}
$$

- Used to measure importance of row $i$ in random sampling methods [e.g. El-Aloui \& Mahonney '15]
- Let $\boldsymbol{A}$ now be a graph Laplacian and $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$ with $\boldsymbol{\lambda}_{1} \leq \boldsymbol{\lambda}_{2} \leq \cdots \leq \boldsymbol{\lambda}_{n}$ In Leverage-score coarsening (LESC) we dampen lower sing. vectors $\rightarrow$

$$
\boldsymbol{\eta}_{i}=\sum_{k=1}^{r}\left(e^{-\tau \lambda_{k}} \boldsymbol{U}_{i k}\right)^{2}
$$

- Use $\eta_{i}$ to decide order of traversal in coarsening algorithm

Note: Consider case when $r=n$ (or simply $r$ is large)

$$
\eta_{i}=\sum_{k=1}^{n}\left(e^{-\tau \lambda_{k}} U_{i k}\right)^{2}=\sum_{k=1}^{n} e^{-2 \tau \lambda_{k}}\left|U_{i k}\right|^{2}=e_{i}^{T} e^{-2 \tau L} e_{i} .
$$

$>\eta_{i}$ equals the $i$-th diagonal entry of the matrix $H \equiv \exp (-2 \tau L)$

- Next: visualization with 5 different coarsening methods on a graph with $n=312$ nodes and $n e=761$ edges


## Final words

> *Many* interesting new matrix problems in areas that involve the effective exploitation of data
> Unlike in Forsythe's time: change happens fast - because we are better connected
> In particular: many many resources available online.
> Huge potential for making a good impact by looking at a topic from new perspective
> To a researcher in computational linear algebra : Tsunami of change on types or problems, algorithms, frameworks, culture,..
> My favorite quote. Alexander Graham Bell (1847-1922) said:
When one door closes, another opens; but we often look so long and so regretfully upon the closed door that we do not see the one which has opened for us.
> Visit my web-site at www.cs.umn.edu/~saad
> More complete version of this material will available in course csci-8314 (S23) - notes (and more) are open to all.

## Thank you!

