Graphs - definitions \& representations

> Graph theory is a fundamental tool in many areas
Definition. A graph G is defined as a pair of sets $G=(\boldsymbol{V}, \boldsymbol{E})$ with $\boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V}$. So G represents a binary relation. The graph is undirected if the binary relation is symmetric. It is directed otherwise.
$>V$ is the vertex set and E is the edge set
$>$ A binary relation \boldsymbol{R} in V can be represente by graph $G=(\boldsymbol{V}, \boldsymbol{E})$ where:

$$
(u, v) \in E \leftrightarrow u R v
$$

Undirected graph \leftrightarrow symmetric relation

* Given the numbers $5,3,9,15,16$, show the two graphs representing the relations

R1: Either $x<y$ or y divides x.
R2: x and y are congruent modulo 3. $[\bmod (x, 3)=\bmod (y, 3)]$
$>|E| \leq|V|^{2}$. For undirected graphs: $|E| \leq|V|(|V|+1) / 2$.
$>$ A sparse graph is one for which $|E| \ll|V|^{2}$.

Basic Terminology \& notation:

$>$ If $(u, v) \in E$, then v is adjacent to u. The edge (u, v) is incident to u and v.
$>$ If the graph is directed, then (u, v) is an outgoing edge from u and incoming edge to v
$>\operatorname{Adj}(i)=\{j \mid j$ adjacent to $i\}$
$>$ The degree of a vertex v is the number of edges incident to v. Can also define the indegree and outdegree. (Sometimes self-edge $i \rightarrow i$ omitted)
$>|S|$ is the cardinality of set S [so $|\operatorname{Adj}(i)|==\operatorname{deg}(i)]$
$>$ A subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G is a graph with $V^{\prime} \subset V$ and $E^{\prime} \subset E$.

Representations of Graphs

> A graph is nothing but a collection of vertices (indices from 1 to n), each with a set of its adjacent vertices [in effect a 'sparse matrix without values']
> For sparse graphs: use any of the sparse matrix storage formats - omit the real values arrays.
Adjacency matrix Assume $V=$
$\{1,2, \cdots, n\}$. Then the adjacency matrix of $G=(V, E)$ is the $n \times n$ matrix, with entries:

$$
a_{i, j}=\left\{\begin{array}{l}
1 \text { if }(i, j) \in E \\
0 \text { Otherwise }
\end{array}\right.
$$

Representations of Graphs (cont.)

 Example:

More terminology \& notation

$>$ Given $\boldsymbol{Y} \subset \boldsymbol{X}$, the section graph of \boldsymbol{Y} is the subgraph $G_{Y}=(\boldsymbol{Y}, \boldsymbol{E}(\boldsymbol{Y}))$ where $E(Y)=\{(x, y) \in E \mid x \in Y, \quad y$ in $Y\}$
$>$ A section graph is a clique if all the nodes in the subgraph are pairwise adjacent (\rightarrow dense block in matrix)
$>$ A path is a sequence of vertices $w_{0}, w_{1}, \ldots, w_{k}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $i=0, \ldots, k-1$.
$>$ The length of the path $w_{0}, w_{1}, \ldots, w_{k}$ is k (\# of edges in the path)
$>$ A cycle is a closed path, i.e., a path with $w_{k}=w_{0}$.
$>$ A graph is acyclic if it has no cycles.

Find cycles in this graph:

A path in an indirected graph

$>$ A path w_{0}, \ldots, w_{k} is simple if the vertices w_{0}, \ldots, w_{k} are distinct (except that we may have $w_{0}=w_{k}$ for cycles).

- An undirected graph is connected if there is path from every vertex to every other vertex.
- A digraph with the same property is said to be strongly connected
$>$ The undirected (or symmetrized) form of a digraph = undirected graph obtained by removing the directions of all edges
- A directed graph whose undirected form is connected is said to be weakly connected or connected.
\geqslant Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic \& connected - Forest = a collection of trees

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ of an $n \times n$ matrix A :

$$
V=\{1,2, \ldots ., N\} \quad E=\left\{(i, j) \mid a_{i j} \neq 0\right\}
$$

$>G==$ undirected if \boldsymbol{A} has a symmetric pattern
Example:
$\left[\begin{array}{l|l|l|l} & \star & & \\ & \star & & \\ \hline & & \star & \\ \hline & \star & & \star \\ \hline \star & & & \end{array}\right]$

* Show the matrix pattern for the graph on the right and give an interpretation of the path $v_{4}, v_{2}, v_{3}, v_{5}, v_{1}$ on the matrix

$>$ A separator is a set \boldsymbol{Y} of vertices such that the graph G_{X-Y} is disconnected.

Example: $Y=\left\{v_{3}, v_{4}, v_{5}\right\}$ is a separator in the above figure

Example: Adjacency graph of:

$$
A=\left[\begin{array}{llllll}
& \star & & \star & & \\
\star & & \star & & & \\
& \star & & \star & \star & \star \\
\star & & \star & & & \\
& & \star & & & \star \\
& & \star & & \star &
\end{array}\right]
$$

Example: For any adjacency matrix \boldsymbol{A}, what is the graph of \boldsymbol{A}^{2} ? [interpret in terms of paths in the graph of A]
$>$ Two graphs are isomorphic is there is a mapping between the vertices of the two graphs that preserves adjacency.
© Are the following 3 graphs isomorphic? If yes find the mappings between them.

> Graphs are identical - labels are different
> Determinig graph isomorphism is a hard problem

Bipartite graph representation

$>$ Rows and columns are (both) represented by vertices;
Relations only between rows and columns: Row i is connected to column j if $a_{i j} \neq 0$

Example:

> Bipartite models used only for specific cases [e.g. rectangular matrices, ...] - By default we use the standard definition of graphs.

Interpretation of graphs of matrices

What is the graph of $A+B$ (for two $n \times n$ matrices)?
囪 What is the graph of \boldsymbol{A}^{T} ?
(4) What is the graph of $A . B$?

Paths in graphs

What is the graph of A^{k} ?
Theorem Let \boldsymbol{A} be the adjacency matrix of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$. Then for $k \geq 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $\left(A^{k}\right)_{u, v}$.

Proof: Proof is by induction.

If $C=B A$ then $c_{i j}=\Sigma_{l} b_{i l} a_{l j}$. Take $B=A^{k-1}$ and use induction. Any path of length k is formed as a path of length $k-1$ to some node l completed by an edge from l to j. Because $a_{l j}$ is one for that last edge, $c_{i j}$ is just the sum of all possible paths of length k from i to j
$>$ Recall (definition): A matrix is reducible if it can be permuted into a block upper triangular matrix.
> Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

$>$ No edges from C to A or B. No edges from B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix A has a real, positive eigenvalue λ_{1} such that:
(i) λ_{1} is a simple eigenvalue of A;
(ii) λ_{1} admits a positive eigenvector u_{1}; and
(iii) $\left|\lambda_{i}\right| \leq \lambda_{1}$ for all other eigenvalues λ_{i} where $i>1$.
$>$ The spectral radius is equal to the eigenvalue λ_{1}

Definition : a graph is d regular if each vertex has the same degree d.
Proposition: The spectral radius of a d regular graph is equal to d.
Proof: The vector e of all ones is an eigenvector of \boldsymbol{A} associated with the eigenvalue $\boldsymbol{\lambda}=\boldsymbol{d}$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_{1}. \square

Application: Markov Chains

> Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book 2ndEd.pdf
$>$ Let $\pi \equiv$ row vector of stationary probabilities
> Then π satisfies the equation

$$
\pi P=\pi
$$

$>\boldsymbol{P}$ is the probabilty transition matrix and it is 'stochastic':
A matrix P is said to be stochastic if :
(i) $p_{i j} \geq 0$ for all i, j
(ii) $\sum_{j=1}^{n} p_{i j}=1$ for $i=1, \cdots, n$
(iii) No column of \boldsymbol{P} is a zero column.
$>$ Spectral radius is ≤ 1
Why?
> Assume P is irreducible. Then:
$>$ Perron Frobenius $\rightarrow \rho(P)=1$ is an eigenvalue and associated eigenvector has positive entries.
> Probabilities are obtained by scaling π by its sum.
> Example: One of the 2 models used for page rank.
Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

To From	Fr	So.	Ju.	Sr.	Grad	Iwd
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
Iwd	.2	.2	.1	.15	0	1

(a) What is P ? Assume initial population is $x_{0}=[10,16,12,12,0,0]$ and do a follow the population for a few years. What is the probability that a student will graduate? What is the probability that s / he leaves without a degree?

A few words on hypergraphs

> Hypergraphs are very general.. Ideas borrowed from VLSI work
> Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
> Hypergraphs can better express complex graph partitioning problems and provide better solutions.
> Example: completely nonsymmetric patterns ...
> .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for text data

Example: $V=\{1, \ldots, 9\}$ and $E=\{a, \ldots, e\}$ with

$$
\begin{array}{ll}
a=\{1,2,3,4\}, & b=\{3,5,6,7\}, \\
d=\{6,7,8\}, & \text { and } e=\{4,7,8,9\}, \\
d 2,9\}
\end{array}
$$

A few words on computational graphs

$$
f(x, y, z)=g(a(x, y, z), b(x, y, z))
$$

> Computational graphs: graphs where nodes represent computations whose evaluation depend on other (incoming) nodes.

Consider the following expression:

$$
g(x, y)=(x+y-2) *(y+1)
$$

We can decompose this as $\left\{\begin{array}{l}z=x+y \\ v=y+1 \\ g=(z-2) * v\end{array}\right.$

(a) is trivial - just follow the graph up - starting from the leaves (that contain x and y)
(b): Use the chain rule - here shown for x only using previous setting

$$
\frac{\partial g}{\partial x}=\frac{\partial g}{\partial a} \frac{d a}{d x}+\frac{\partial g}{\partial b} \frac{d b}{d x}
$$

* For the above example compute values and derivatives at all nodes when $x=-1, y=2$.

Back-Propagation

> Often we want to compute the gradient of the function at the root, once the nodes have been evaluated
$>$ The derivatives can be calculated by going backward (or down the tree)
$>$ Here is a very simple example from Neural Networks

$$
\left\{\begin{array}{l}
L=\frac{1}{2}(y-t)^{2} \\
y=\sigma(z) \\
z=w x+b
\end{array}\right.
$$

$>$ Note that t (desired output) and x (input) are constant.

Back-Propagation: General computational graphs

Representation: a DAG
$>$ Last node $\left(v_{n}\right)$ is the target function. Let us rename it f.
$>$ Nodes $v_{i}, i=1, \cdots, e$ with indegree 0 are the variables
$>$ Want to compute $\partial f / \partial v_{1}, \partial f / \partial v_{2}, \cdots, \partial f / \partial v_{e}$
$>$ Use the chain rule.
For $\boldsymbol{v}_{k}\left(\boldsymbol{v}_{j}, \boldsymbol{v}_{l}, \boldsymbol{v}_{m}\right) \longrightarrow$

$$
\frac{\partial f}{\partial v_{k}}=\frac{\partial f}{\partial v_{j}} \frac{\partial v_{j}}{\partial v_{k}}+\frac{\partial f}{\partial v_{l}} \frac{\partial v_{l}}{\partial v_{k}}+\frac{\partial f}{\partial v_{m}} \frac{\partial v_{m}}{\partial v_{k}}
$$

$>$ Let $\delta_{k}=\frac{\partial f}{\partial v_{k}}$ (called 'errors'). Then

$$
\delta_{k}=\delta_{j} \frac{\partial v_{j}}{\partial v_{k}}+\delta_{l} \frac{\partial v_{l}}{\partial v_{k}}+\delta_{m} \frac{\partial v_{m}}{\partial v_{k}}
$$

$>$ To compute the δ_{k} 's once the v_{j} 's have been computed (in a 'forward' propagation) proceed backward.
$>\delta_{j}, \delta_{l}, \delta_{m}$ available and $\partial v_{i} / \partial v_{k}$ computable. Nore $\delta_{n} \equiv 1$.

> However: cannot just do this in any order. Must follow a topological order in order to obey dependencies.

Example:

Centrality in graphs

> Goal: measure importance of a node, edge, subgraph, .. in a graph
> Many measures introduced over the years
> Early Work: Freeman '77 [introduced 3 measures] - based on 'paths in graph'
> Many different ways of defininf centrality! We will just see a few

Degree centrality: (simplest) 'Nodes with high degree are important'
 $C_{D}(v)=\frac{\operatorname{deg}(v)}{n-1}$

 (note: scaling $n-1$ is unimportant)Closeness centrality: 'Nodes that are close to many other nodes are important'

$$
C_{C}(v)=\frac{n-1}{\sum_{w \neq v} d(v, w)}
$$

Betweenness centrality:

(Freeman '77)

$$
C_{B}(v)=\sum_{u \neq v, w \neq v} \frac{\sigma_{u v}(v)}{\sigma_{u w}}
$$

- $\sigma_{u w}=$ total \# shortest paths from u to w
- $\sigma_{u w}(v)=$ total \# shortest paths from u to w passing through v
$>$ 'Nodes that are on many shortest paths are important'

Example: Find $C_{D}(v) ; C_{C}(v) ; C_{B}(v)$ when $v=C$

(u, w)	$\sigma_{u w}(\boldsymbol{v})$	$\sigma_{u w}$	$/$	(U, W)	$\sigma_{u w}(v)$	$\sigma_{u w}$	$/$
(A, B)	0	1	0	$(\mathrm{~B}, \mathrm{E})$	0	1	0
$(\mathrm{~A}, \mathrm{D})$	0	1	0	$(\mathrm{~B}, \mathrm{~F})$	1	1	1
$(\mathrm{~A}, \mathrm{E})$	0	1	0	(D, E)	1	2	.5
$(\mathrm{~A}, \mathrm{~F})$	0	1	0	(D, F)	1	1	1
$(\mathrm{~B}, \mathrm{D})$	0	1	0	(E, F)	0	1	0

$>C_{D}(v)=3 / 5=0.6 ;$
$>C_{C}(v)=5 /\left[d_{C A}+d_{C B}+d_{C D}+d_{C E}+d_{C F}\right]$

$$
=5 /[2+1+1+2+1]=5 / 7
$$

$>C_{B}(v)=2.5$ (add all ratios in table)
Redo this for $v=B$

Eigenvector centrality:

$>$ Supppose we have n nodes $v_{j}, j=1, \cdots, n$ - each with a measure of importance ('prestige') p_{j}
$>$ Principle: prestige of i depends on that of its neighbors.
$>$ Prestige $x_{i}=$ multiple of sum of prestiges of neighbors pointing to it

$$
\lambda x_{i}=\sum_{j \in \mathcal{N}(i)} x_{j}=\sum_{j=1}^{n} a_{j i} x_{j}
$$

$>x_{i}=$ component of eigenvector associated with λ.
$>$ Perron Frobenius theorem at play again: take largest eigenvalue $\rightarrow x_{i}$'s nonnegative

Page-rank

> Can be viewed as a variant of Eigenvector centrality

Main point: |A page is important if it is pointed to by other important pages.

> Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it. [\rightarrow same as EV centrality]
> Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.
$>$ Imagine many tokens doing a random walk on this graph:

- ($\delta / n)$ chance to follow one of the n links on a page,
- $(1-\delta)$ chance to jump to a random page.
- What's the chance a token will land on each page?

Page-Rank - definitions

If T_{1}, \ldots, T_{n} point to page T_{i} then

$$
\rho\left(T_{i}\right)=1-\delta+\delta\left[\frac{\rho\left(T_{1}\right)}{\left|T_{1}\right|}+\frac{\rho\left(T_{2}\right)}{\left|T_{2}\right|}+\cdots \frac{\rho\left(T_{n}\right)}{\left|T_{n}\right|}\right]
$$

$>\left|T_{j}\right|=$ count of links going out of Page T_{i}. So the 'vote' $\rho\left(T_{j}\right)$ is spread evenly among $\left|T_{j}\right|$ links.
$>$ Sum of all PageRanks $==1: \Sigma_{T} \rho(T)=1$
$>\delta$ is a 'damping' parameter close to 1 - e.g. 0.85
> Defines a (possibly huge) Hyperlink matrix H

$$
h_{i j}= \begin{cases}\frac{1}{\left|T_{i}\right|} & \text { if } i \text { points to } j \\ 0 & \text { otherwise }\end{cases}
$$

A points to B and D
B points to A, C, and D
C points to A and B
D points to C

1) What is the H matrix?
2) the graph?

	A	B	C	D
A		$1 / 2$		$1 / 2$
B	$1 / 3$		$1 / 3$	$1 / 3$
C	$1 / 2$	$1 / 2$		
D			1	

$>$ Row- sums of H are $=1$.
$>$ Sum of all PageRanks will be one:

$$
\sum_{I-\text { Pages }_{A}} \rho(A)=1
$$

$>\boldsymbol{H}$ is a stochastic matrix [actually it is forced to be by changing zero rows]

Algorithm
 (PageRank)

1. Select initial row vector $v(v \geq 0)$
2. For $\mathrm{i}=1$:maxitr
$3 \quad v:=(1-\delta) e^{T}+\delta v H$
3. end
« Do a few steps of this algorithm for previous example with $\delta=0.85$.
$>$ This is a row iteration..
$\bar{v}=(1-\delta) e^{T}+\square$

A few properties:

$>v$ will remain ≥ 0. [combines non-negative vectors]
$>$ More general iteration is of the form

$$
v:=v[\underbrace{(1-\delta) E+\delta H}_{G}] \text { with } E=e z^{T}
$$

where z is a probability vector $e^{T} z=1$ [Ex. $z=\frac{1}{n} e$]
$>$ A variant of the power method.
$>e$ is a right-eigenvector of G associated with $\boldsymbol{\lambda}=1$. We are interested in the left eigenvector.

Kleinberg's Hubs and Authorities

> Idea is to put order into the web by ranking pages by their degree of Authority or "Hubness".
> An Authority is a page pointed to by many important pages.

- Authority Weight = sum of Hub Weights from In-Links.
> A Hub is a page that points to many important pages:
- Hub Weight = sum of Authority Weights from Out-Links.
> Source:
http://www.cs.cornell.edu/home/kleinber/auth.pdf

Computation of Hubs and Authorities

> Simplify computation by forcing sum of squares of weights to be 1 .
$>$ Auth $_{j}=x_{j}=\sum_{i:(i, j) \in \text { Edges }}$ Hub $_{i}$.
$>\operatorname{Hub}_{i}=\boldsymbol{y}_{i}=\sum_{j:(i, j) \in \text { Edges }}$ Auth $_{j}$.
$>$ Let $A=$ Adjacency matrix: $a_{i j}=1$ if $(i, j) \in$ Edges.
$>\mathrm{y}=A \mathrm{x}, \mathrm{x}=A^{T} \mathrm{y}$.
$>$ Iterate... to leading eigenvectors of $A^{T} A \& A A^{T}$.
> Answer: Leading Singular Vectors!

GRAPH LAPLACEANS AND THEIR APPLICATIONS

Graph Laplaceans - Definition

"Laplace-type" matrices associated with general undirected graphs useful in many applications
$>$ Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ define

- A matrix W of weights $w_{i j}$ for each edge
- Assume $w_{i j} \geq 0, w_{i i}=0$, and $w_{i j}=w_{j i} \forall(i, j)$
\square The diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ with $d_{i}=\sum_{j \neq i} w_{i j}$
> Corresponding graph Laplacean of G is: $\quad L=\boldsymbol{D}-\boldsymbol{W}$
$>$ Gershgorin's theorem $\rightarrow L$ is positive semidefinite.
$>$ Simplest case:

$$
w_{i j}=\left\{\begin{array}{l}
1 \text { if }(i, j) \in E \& i \neq j \quad D=\operatorname{diag}\left[d_{i}=\sum_{j \neq i} w_{i j}\right] \\
0 \quad \text { else }
\end{array}\right.
$$

Example:

$$
L=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & -1 & -1 & -1 & 3
\end{array}\right]
$$

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

Proposition:

(i) L is symmetric semi-positive definite.
(ii) L is singular with \uparrow as a null vector.
(iii) If G is connected, then $\operatorname{Null}(L)=\operatorname{span}\{1\}$
(iv) If G has $k>1$ connected components $G_{1}, G_{2}, \cdots, G_{k}$, then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}, j=1, \cdots, k$ defined by:

$$
\left(z^{(j)}\right)_{i}=\left\{\begin{array}{l}
1 \text { if } i \in G_{j} \\
0 \text { if not. }
\end{array}\right.
$$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly $u=\mathfrak{1}$ is a null vector for L. The vector $\boldsymbol{D}^{-1 / 2} \boldsymbol{u}$ is an eigenvector for the matrix $\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2}=$ $I-D^{-1 / 2} W D^{-1 / 2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1 / 2} W D^{-1 / 2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_{1}, \cdots, G_{k}. \square

A few properties of graph Laplaceans

Define: oriented incidence matrix \boldsymbol{H} : (1)First orient the edges $i \sim j$ into $i \rightarrow j$ or $j \rightarrow i$. (2) Rows of \boldsymbol{H} indexed by vertices of \boldsymbol{G}. Columns indexed by edges. (3) For each (i, j) in \boldsymbol{E}, define the corresponding column in \boldsymbol{H} as $\sqrt{w(i, j)}\left(e_{i}-e_{j}\right)$.

Example: In previous example (4 p. back) orient $i \rightarrow j$ so that $j>i$ [lower triangular matrix representation]. Then matrix H is:

$$
H=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & -1 & -1
\end{array}\right]
$$

Property $1 \quad L=\boldsymbol{H} \boldsymbol{H}^{T}$

Re-prove part (iv) of previous proposition by using this property.

A few properties of graph Laplaceans

Strong relation between $x^{T} L x$ and local distances between entries of x
$>$ Let $L=$ any matrix s.t. $L=D-W$, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 2: for any $x \in \mathbb{R}^{n}$:

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

Property 3: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[\boldsymbol{Y} L Y^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

$>$ Note: $\boldsymbol{y}_{j}=j$-th colunm of \boldsymbol{Y}. Usually $d<n$. Each column can represent a data sample.

Property 4: For the particular $L=I-\frac{1}{n}$ i i $^{\top}$

$$
X L X^{\top}=\bar{X} \bar{X}^{\top}==n \times \text { Covariance matrix }
$$

Property 5: L is singular and admits the null vector 1 $=$ ones ($\mathrm{n}, 1$)

Property 6: (Graph partitioning) Consider situation when $w_{i j} \in\{0,1\}$. If x is a vector of signs (± 1) then

$$
x^{\top} \boldsymbol{L} x=4 \times \text { ('number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used to partition graphs

$>$ Would like to minimize $(\boldsymbol{L} x, x)$ subject to $x \in\{-1,1\}^{n}$ and $e^{T} x=0$ [balanced sets]

- WII solve a relaxed form of this problem
(What if we replace x by a vector of ones (representing one partition) and zeros (representing the other)?
\& Let x be any vector and $y=x+\alpha$ 亿 and L a graph Laplacean. Compare ($L x, x$) with $(L y, y)$.

Consider any symmetric (real) matrix A with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}$ and eigenvectors u_{1}, \cdots, u_{n}
> Recall that:
(Min reached for $x=u_{1}$)

$$
\min _{x \in \mathbb{R}^{n}} \frac{(A x, x)}{(x, x)}=\lambda_{1}
$$

> In addition:
(Min reached for $x=u_{2}$)

$$
\min _{x \perp u_{1}} \frac{(A x, x)}{(x, x)}=\lambda_{2}
$$

$>$ For a graph Laplacean $u_{1}=1=$ vector of all ones and
$>$...vector u_{2} is called the Fiedler vector. It solves a relaxed form of the problem -

$$
\min _{x \in\{-1,1\}^{n} ;\left\{\left\{^{T}{ }_{x=0}\right.\right.} \frac{(L x, x)}{(x, x)} \quad \rightarrow \quad \min _{x \in \mathbb{R}^{n} ;\left\{^{T}{ }_{x=0}\right.} \frac{(L x, x)}{(x, x)}
$$

$>$ Define $v=u_{2}$ then $l a b=\operatorname{sign}(v-\operatorname{med}(v))$

Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on Fielder vector
3 Partition largest subgraph in two recursively ...
4 ... Until the desired number of partitions is reached

Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.
2. Geometric techniques. Coordinates are required. [Houstis \& Rice et al., Miller, Vavasis, Teng et al.]
3. Graph Theory techniques - multilevel,... [use graph, but no coordinates]

- Currently best known technique is Metis (multi-level algorithm)
- Simplest idea: Recursive Graph Bisection; Nested dissection (George \& Liu, 1980; Liu 1992]
- Advantages: simplicity - no coordinates required

Example of a graph theory approach

> Level Set Expansion Algorithm
> Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).
> Method: Perform a level-set traversal (BFS) from each node simultaneously.
$>$ Best described for an example on a 15×15 five - point Finite Difference grid.
> See [Goehring-YS '94, See Cai-YS '95]
> Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]

