BACKGROUND ON GRAPHS I



Graphs — definitions & representations

» Graph theory is a fundamental tool in many areas

Definition. A graph G is defined as apairofsets G = (V, E)with E C V xV.
So G represents a binary relation. The graph is undirected if the binary
relation is symmetric. It is directed otherwise.

» V is the vertex set and E is the edge set
» A binary relation R in V can be represente by graph G = (V, E) where:

(u,v) e E<>uRv

Undirected graph <+ symmetric relation
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#| Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the
relations

R1: Either x < y or y divides =.
R2:. x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]
» |E| < |V For undirected graphs: |E| < |V|(|V]| + 1)/2.

» A sparse graph is one for which |E| <« |V|2.
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Basic Terminology & notation:

» If (u,v) € E, then vis adjacent to u. The edge (u,v) is incident to w
and v.

» |f the graph is directed, then (u,v) is an outgoing edge from » and
Incoming edge to v

» Adj(i) = {j|7 adjacentto ¢}

» The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge ¢ — i omitted)

» | S| is the cardinality of set S [so |Adj(i)| == deg( ) ]
» A subgraph G’ = (V’, E’) of G is a graph with V/ C V and E' C E.
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Representations of Graphs

» A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a 'sparse matrix without values’]

» For sparse graphs: use any of the sparse matrix storage formats - omit
the real values arrays.

Adjacency matrix Assume V =

{1,2,--- ,n}. Then the adjacency matrix  J1if@,g) ek
of G = (V, E) IS the n x n matrix, with @ij = 0 Otherwise
entries:
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Representations of Graphs (cont.)
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More terminology & notation

» Given' Y C X, the section graph of Y is the subgraph Gy = (Y, E(Y))
where E(Y) = {(xz,y) € Elx € Y, y inY}

» A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (— dense block in matrix)

» A path is a sequence of vertices wy, w1, ..., w, such that (w;, w;11) € E
fort =0,...,k — 1.

» The length of the path wq, w1, ..., w is k (# of edges in the path)
» A cycle is a closed path, i.e., a path with w;, = wsy.

» A graph is acyclic if it has no cycles.
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#| Find cycles in this graph: A path in an indirected grap

» A path wy, ..., w; is simple if the vertices wy, . .., w;, are distinct (except
that we may have wy, = wy, for cycles).

» An undirected graph is connected if there is path from every vertex to
every other vertex.

» A digraph with the same property is said to be strongly connected
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» The undirected (or symmetrized) form of a digraph = undirected graph
obtained by removing the directions of all edges

» A directed graph whose undirected form is connected is said to be weakly
connected or connected.

» Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected — Forest = a collection of trees
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GRAPH MODELS FOR SPARSE MATRICES I



Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n X n matrix A :

V = {]-aza 7N} E = {(ng)la'zg 7é O}

» G == undirected if A has a symmetric pattern

Example:
- - Q) > (2) - : @ ¢)
* x| |x
3 x| |x
x| |x x| |x
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#| Show the matrix pattern for the graph on
the right and give an interpretation of the path
v4, Va2, V3, Vs, 1 ON the maitrix

» A separator is a set Y of vertices such that the graph G x_y is discon-
nected.

Example: |Y = {vs,v4,vs} iS a separator in the above figure
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Example: | Adjacency graph of:

Example: | For any adjacency matrix A, what is the graph of A2? [inter-
pret in terms of paths in the graph of A]
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» Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

#| Are the following 3 graphs isomorphic? If yes find the mappings between
them.

: ®

)

» @Graphs are identical — labels are different

» Determinig graph isomorphism is a hard problem
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Bipartite graph representation

» Rows and columns are (both) represented by vertices;

» Relations only between rows and columns: Row < is connected to column
j If Qg ;é 0

* @) O

* @ O

Example: * * O
*x =

i * *_ O———O

» Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.




Interpretation of graphs of matrices

#| What is the graph of A + B (for two n X n matrices)?

#| What is the graph of AT ?

#| What is the graph of A.B?




Paths in graphs

#| What is the graph of A*?

Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for
k > 0 and vertices u and v of G, the number of paths of length k starting at

u and ending at v is equal to (A*),, ..

Proof: Proof is by induction.lli



If C = BA then ¢;; = 7 b;a;,. Take B = ARl
and use induction. Any path of length %
is formed as a path of length £ —1 to some
node [ completed by an edge from [ to j.
Because q;; is one for that last edge, ¢;; 1s
just the sum of all possible paths of length

k from 2 to j
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» Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

» Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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» No edges from C to
A or B. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n x n matrix A
has a real, positive eigenvalue \; such that:
() A1 Is a simple eigenvalue of A;
(il) A1 admits a positive eigenvector u, ; and
(i) |X;] < Ap for all other eigenvalues A\; where 7 > 1.

» The spectral radius is equal to the eigenvalue A,
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» Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue A = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector w;. []
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Application: Markov Chains

» Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf

» Let w = row vector of stationary probabilities

e _ P =7
» Then = satisfies the equation —

» P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
() pi; > 0foralli,j

(i) Z?lez-j =1fori=1,---,n

(iif) No column of P is a zero column.
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» Spectral radiusis < 1

#| Why?

» Assume P is irreducible. Then:

» Perron Frobenius — p(P) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

» Probabilities are obtained by scaling = by its sum.

» Example: One of the 2 models used for page rank.

Example:

A college Fraternity has 50 students at various stages of college

(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next
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To From | Fr | So. |Ju.| Sr. | Grad | lwd
Fr. 2 000 O 0
So. 6 .10 0 O 0
JU. o .7 10 0 0
Sr. 0| 0 | .8].1 0 0
Grad O/l 0 0 |.75 1 0
lwd 2/ 21115 0 1

| What is P? Assume initial population is o = [10,16,12,12,0,0] and do
a follow the population for a few years. What is the probability that a student
will graduate? What is the probability that s/he leaves without a degree?
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A few words on hypergraphs

» Hypergraphs are very general.. Ideas borrowed from VLS| work

»  Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

» Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

» Example: completely nonsymmetric patterns ...

» .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data
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Example: |V ={1,...,9}and E = {a,...,e} with
a=1{1,2,3,4}, b= {3,5,6,7}, c = {4,7,8,9},
d={6,7,8}, ande={2,9}

123
SN SVAVE 11 1 a
/ 1 111 b
e. : A= 1 111
d
g 111 d
/\ net d 1 1e
D9
net e 8
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A few words on computational graphs

f(x,y,2) = g(a(x,y,2), b(x,y,2))

»  Computational graphs: graphs where

nodes represent computations whose evalu-

ation depend on other (incoming) nodes. \

Consider the following

> | g(z,y) = (x+y—2)*(y+1)
expression:
)
=Tty
We can decompose thisas { v = y +1
g = (z—2)xv
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» Computational graph — e
» Given x, y we want:
(a) Evaluate the nodes and @ m

(b) derivatives w.r.t z, y
(a) is trivial - just follow the graph up - starting from the leaves (that contain «
and y)

(b): Use the chain rule — here shown for = only 89 _ dgda | 0gdb
: . . ox OJadx obdx
using previous setting

#| For the above example compute values and derivatives at all nodes when
r=—1,y = 2.
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Back-Propagation

» Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

» The derivatives can be calculated by going backward (or down the tree)

» Here is a very simple example from Neural Networks

2

L = 3(y—t)? ' |
)y = o(2) S~ \
& wx + b b/

» Note that ¢ (desired output) and x (input) are constant.
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Back-Propagation: General computational graphs

“a .- Up—3

o Representation: a DAG
» Last node (v,,) is the target function. Let us rename it f.
» Nodes v;,i = 1,--- ,e with indegree 0 are the variables

» Want to compute df/0v,,0f/Ova,--- ,0f /v,

» Use the chain rule. of O0f0ov; Of0v  Of Ovn
— = +———+
For vy, (v, vy, v) — Ovi,  Ov;0vy  Ov 0vy  Ovy, Oy
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> Let 6, = 5L (called ‘errors’). Then

5 — & 0v; ny oy 45 ov,,
b Jc‘?vk la’vk ma’vk

» To compute the 4,’'s once the v;'s have ~
been computed (in a ‘forward’ propagation) — U} /Ul

proceed backward. 4—0‘{
»  §;,0,,90, available and 0Ov;/0v;, com- RN

putable. Nore §,, = 1.

» However: cannot just do this in any order. Must follow a topological order
In order to obey dependencies.
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Example:

EB(z%)
\ > 1"*
. .
T 1 N 57 = o(a;)
, -z = o(q;) ) 71
Li 5 : a; = W;o2
a} = w?lzr |
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GRAPH CENTRALITY I



Centrality in graphs

» Goal: measure importance of a node, edge, subgraph, .. in a graph
» Many measures introduced over the years

» Early Work: Freeman 77 [introduced 3 measures] — based on ‘paths in
graph’

» Many different ways of defininf centrality! We will just see a few




Degree centrality:  (simplest) ‘Nodes Cp(v) = 929
with high degree are important’ nl
(note: scaling n — 1 is unimportant)

Closeness centrality: ‘Nodes that are C _ n—1

. , C(v) Y d(v,w)
close to many other nodes are important S
Betweenn ntrality: T (V
SUTEESS GEE) Cgp(v) = Zu;ﬁv,w#v O'ufu)

(Freeman ’77)

e o, = total # shortest paths from u to w
e 0., (v) = total # shortest paths from « to w passing through v

» ’'Nodes that are on many shortest paths are important’
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Example: |Find Cp(v); Cc(v); Cp(v) whenv = C

(UW) ouw(v) ouw |/ | (UW) Ouw(v) ouw | /
(a) (8) (o) (AB) 0 1 0®BE 0 1 0
AD) 0 1 0 @®BF 1 1 f1
AE) 0 1 0®E 1 2 5
AF) 0 1 0DOF 1 1 f1
O O O BD) 0 1 0((EF 0 1 0

» Cp(v) =3/5=0.6;

» Cc(v) =5/|dca+ des + dep + dee + der]
—5/[24+14+14+2+1]=5/7

» Cp(v) = 2.5 (add all ratios in table)

#| Redo this forv = B

Ark. 47th Spring Lect., May 4-6, 2022



Eigenvector centrality:

» Supppose we have n nodes v;, j = 1,--- ,n— each with a measure of
importance (‘prestige’) p,

» Principle: prestige of « depends on that of its neighbors.

» Prestige x; = multiple of sum of pres-

tiges of neighbors pointing to it AT; = Z i = Z Ajid;
j € N(i) j=1

» x; = component of eigenvector associated with .

» Perron Frobenius theorem at play again: take largest eigenvalue — x;’s
nonnegative
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» (Can be viewed as a variant of Eigenvector centrality

Main point: |A page is important if it is pointed to by other important pages.

» Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it. [+ same as EV centrality]

» Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

» Imagine many tokens doing a random walk on this graph:
e (6/n) chance to follow one of the n links on a page,
e (1 — J) chance to jump to a random page.
e What's the chance a token will land on each page?
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Page-Rank - definitions

It Ty, ..., T,, point to page T; then

p(T1) p(T3) . P(Tn)]

_I_
|| | T | T

p(T;) = 1—5+5[

» |Tj| = count of links going out of Page T;. So the 'vote’ p(T;) is spread
evenly among |T;| links.

» Sum of all PageRanks == 1: X7p(T) = 1
» ¢ is a 'damping’ parameter close to 1 —e.g. 0.85

» Defines a (possibly huge) Hy-
perlink matrix H

ij =

ﬁ if ¢ points to j
0 otherwise
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#| 4 Nodes

A pointstoBand D

B points to A, C, and D
C points to A and B

D points to C

1) What is the H matrix?
2) the graph?
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A B C D
A 1/2 1/2
/ @/ B|1/3 1/3 1/3
@/ C1/2 1/2
D 1
» Row- sums of H are = 1.
> Sum of all PageRanks will be > p(4)=1.
one: All-Pagesa

» H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm | (PageRank)

1.

3
4.

fa)

Select initial row vector v (v > 0)
2. For i=1:maxitr
v:=(1—908)el +6vH

end

Do a few steps of this algorithm for previous example with § = 0.85.

» This is a row iteration..

(1 —46)el

0H
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A few properties: |

» v will remain > 0. [combines non-negative vectors]

» More general iteration is of the form

v i= fv[\(l —0)FE + 5}{] with E = ez?

G

where z is a probability vector ez = 1 [Ex. z = >€]
» A variant of the power method.

» e Is a right-eigenvector of G associated with A = 1. We are interested in
the left eigenvector.
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Kleinberg’s Hubs and Authorities

» lIdea is to put order into the web by ranking pages by their degree of
Authority or "Hubness”.

» An Authority is a page pointed to by many important pages.
e Authority Weight = sum of Hub Weights from In-Links.

» A Hub is a page that points to many important pages:
e Hub Weight = sum of Authority Weights from Out-Links.

» Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf
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Computation of Hubs and Authorities

»  Simplify computation by forcing sum of squares of weights
to be 1.

Authj = @ = ) ;. j)cEages HUD:-

Hub; = y; = Zj:(i,j)eEdgeS Auth;.

Let A = Adjacency matrix: a;; = 1 if (¢,5) € Edges.
y = Ax, x = ATly.

lterate . .. to leading eigenvectors of ATA & AAT.

Y Y Y VY Y'Y

Answer: Leading Singular Vectors!




GRAPH LAPLACEANS AND THEIR APPLICATIONS |



Graph Laplaceans - Definition

» “Laplace-type” matrices associated with general undirected graphs —
useful in many applications

» Given a graph G = (V, E) define
A matrix W of weights w;; for each edge
Assume w;; > 0,, w;; = 0, and w;; = wj; V(2, J)
The diagonal matrix D = diag(d;) with d; = } _,_,; w;;

» Corresponding graph Laplacean of G is: L=D-W

» (Gershgorin’s theorem — L is positive semidefinite.
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» Simplest case:

wz-j:{l f(.4) € BRit o g 4= w,

0 else _ &

Example: ] ]
Consider the graph 1 -1 0 o0 O
. 2 -1 2 0 o0 -1

L =10 0 1 0 -1

0 0 0 1 -1

o . 0 -1 -1 -1 3|

4 5 3
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#9

Define the graph Laplacean for the graph

associated with the simple mesh shown next.
[use the simple weights of 0 or 1]. What is
the difference with the discretization of the
Laplace operator for case when mesh is the
same as this graph?

® ® ®
10 11 12
@ ® ®
6 7 8
@ ® @
2 3 4

Ark. 47th Spring Lect., May 4-6, 2022



Proposition:

1) L is symmetric semi-positive definite.

i) L is singular with 1 as a null vector.

i) If G is connected, then Null(L) = span{ 1}

iv) If G has k& > 1 connected components G, G, - - - , G, then the nullity
of L is k and Null(L) is spanned by the vectors 24, j = 1,... , k defined

by:

(
(
(
(

0 if not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly v = 1 is a null vector
for L. The vector D~'/2y is an eigenvector for the matrix D~Y/2LD~1/? =
I — D~'/2W D~'/2? associated with the smallest eigenvalue. It is also an
eigenvector for D—/2W D~1/2 associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices

for Gy, -+ ,Gy.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges i ~ j into
1 — j or 3 — i. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (¢,7) in E, define the corresponding column in H

as v/w(i, j)(e; — e;).

Example: |In previous example 10 0 O
. : : -1 1 0 0
(4 p. back) orient ¢ — j so that " — | o 0 1 0
j > 1 [lower triangular matrix repre- 0 0 O 1
sentation]. Then matrix H is: 0o -1 -1 -1

Property 1 L=HHT

#| Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

Strong relation between 'Lz and local dis-
tances between entries of x

» Let L =any matrix s.t. L = D — W, with
D = diag(d;) and

Property 2: forany € R™ :

1
' Lx = 2 E wij|z; — x|

t,J
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Property 3: (generalization) for any Y € Réx" :

1
-
Tr[YLY '] = §sz’j|lyi — y,I?
t,]

» Note: y; = j-th colunm of Y. Usually d < n. Each column can represent

a data sample.
Property 4: For the particular L =T — 11"

n

XLX'" = XX'" == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones (n, 1)
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Property 6: (Graph partitioning) Consider situation when w;; € {0,1}. If
x 1S a vector of signs (£1) then

x' Lx = 4 x (‘number of edge cuts’)
edge-cut = pair (¢, 5) with x; # «;

» (Consequence: Can be used to partition graphs
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» Would like to minimize (Lz,x) subjectto x € {—1,1}* and efx = 0
[balanced sets]

» WII solve a relaxed form of this problem

| What if we replace x« by a vector of ones (representing one partition) and
zeros (representing the other)?

#| Let x be any vectorand y = x + « 1 and L a graph Laplacean. Compare
(Lx, x) with (Ly, y).
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» (Consider any symmetric (real) matrix A with eigenvalues A\; < Ay <
... < A\, and eigenvectors u, -+ ,u,

» Recall that: . (Az,z)
min = )\

(Min reached for z = u,) zeR" (x, )

» |n addition: . (Az,z)
min = Ao

(Min reached for = w.) zlu (T, T)

» For a graph Laplacean u; = 1 = vector of all ones and

» ..vector u, is called the Fiedler vector. It solves a relaxed form of the
problem -
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min —(La:, %) min —(Lw, z)
%
336{—1,1}”; lﬂT:L‘ZO (CB, w) wER"; lﬂT;c:O (w’ w)

» Define v = us then lab = sign(v — med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based on
Fielder vector

3 Partition largest subgraph in
two recursively ...

4 ... Until the desired number of
partitions is reached

177

L O
goas
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques — multilevel,... [use graph, but no coordinates]

e Currently best known technique is Metis (multi-level algorithm)

e Simplest idea: Recursive Graph Bisection; Nested dissection (George &
Liu, 1980; Liu 1992]

e Advantages: simplicity — no coordinates required
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Example of a graph theory approach

» Level Set Expansion Algorithm

» Given: p nodes ‘uniformly’ spread in the graph (roughly same distance
from one another).

» Method: Perform a level-set traversal (BFS) from each node simultane-
ously.

» Best described for an example on a 15 x 15 five — point Finite Difference
grid.

» See [Goehring-YS 94, See Cai-YS '95]

» Approach also known under the name ‘bubble’ algorithm and imple-

mented in some packages [Party, DibaP]
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