
BACKGROUND ON GRAPHS



Graphs – definitions & representations

ä Graph theory is a fundamental tool in many areas

Definition. A graphG is defined as a pair of setsG = (V,E) withE ⊂ V ×V .
So G represents a binary relation. The graph is undirected if the binary
relation is symmetric. It is directed otherwise.

ä V is the vertex set and E is the edge set

ä A binary relation R in V can be represente by graph G = (V,E) where:

(u, v) ∈ E ↔ u R v

Undirected graph↔ symmetric relation
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- Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the
relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]

ä |E| ≤ |V |2. For undirected graphs: |E| ≤ |V |(|V |+ 1)/2.

ä A sparse graph is one for which |E| � |V |2.
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Basic Terminology & notation:

ä If (u, v) ∈ E, then v is adjacent to u. The edge (u, v) is incident to u
and v.

ä If the graph is directed, then (u, v) is an outgoing edge from u and
incoming edge to v

ä Adj(i) = {j|j adjacent to i}

ä The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge i→ i omitted)

ä |S| is the cardinality of set S [so |Adj(i)| == deg( i) ]

ä A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊂ V and E′ ⊂ E.
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Representations of Graphs

ä A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a ’sparse matrix without values’]

ä For sparse graphs: use any of the sparse matrix storage formats - omit
the real values arrays.

Adjacency matrix Assume V =

{1, 2, · · · , n}. Then the adjacency matrix
of G = (V,E) is the n × n matrix, with
entries:

ai,j =

{
1 if (i, j) ∈ E
0 Otherwise
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Representations of Graphs (cont.)

Example:
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More terminology & notation

ä Given Y ⊂ X, the section graph of Y is the subgraph GY = (Y,E(Y ))

where E(Y ) = {(x, y) ∈ E|x ∈ Y, y in Y }

ä A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (→ dense block in matrix)

ä A path is a sequence of vertices w0, w1, . . . , wk such that (wi, wi+1) ∈ E
for i = 0, . . . , k − 1.

ä The length of the path w0, w1, . . . , wk is k (# of edges in the path)

ä A cycle is a closed path, i.e., a path with wk = w0.

ä A graph is acyclic if it has no cycles.
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- Find cycles in this graph:
1

2

3

5

4

7 6

A path in an indirected graph
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ä A path w0, . . . , wk is simple if the vertices w0, . . . , wk are distinct (except
that we may have w0 = wk for cycles).

ä An undirected graph is connected if there is path from every vertex to
every other vertex.

ä A digraph with the same property is said to be strongly connected
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ä The undirected (or symmetrized) form of a digraph = undirected graph
obtained by removing the directions of all edges

ä A directed graph whose undirected form is connected is said to be weakly
connected or connected.

ä Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected – Forest = a collection of trees
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GRAPH MODELS FOR SPARSE MATRICES



Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2, ...., N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern

Example:
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- Show the matrix pattern for the graph on
the right and give an interpretation of the path
v4, v2, v3, v5, v1 on the matrix
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ä A separator is a set Y of vertices such that the graph GX−Y is discon-
nected.

Example: Y = {v3, v4, v5} is a separator in the above figure
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Example: Adjacency graph of:

A =
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.

Example: For any adjacency matrix A, what is the graph of A2? [inter-
pret in terms of paths in the graph of A]
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ä Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

- Are the following 3 graphs isomorphic? If yes find the mappings between
them.
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5
6 36

4 5

1 2
1

2 3

4 5
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ä Graphs are identical – labels are different

ä Determinig graph isomorphism is a hard problem
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Bipartite graph representation

ä Rows and columns are (both) represented by vertices;

ä Relations only between rows and columns: Row i is connected to column
j if aij 6= 0

Example:


?

?

? ?

? ?

? ?


ä Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.
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Interpretation of graphs of matrices

- What is the graph of A+B (for two n× n matrices)?

- What is the graph of AT ?

- What is the graph of A.B?
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Paths in graphs

- What is the graph of Ak?

Theorem Let A be the adjacency matrix of a graph G = (V,E). Then for
k ≥ 0 and vertices u and v of G, the number of paths of length k starting at
u and ending at v is equal to (Ak)u,v.

Proof: Proof is by induction.
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ä Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

ä Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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A B C

ä No edges from C to
A orB. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n × n matrix A
has a real, positive eigenvalue λ1 such that:
(i) λ1 is a simple eigenvalue of A;
(ii) λ1 admits a positive eigenvector u1 ; and
(iii)|λi| ≤ λ1 for all other eigenvalues λi where i > 1.

ä The spectral radius is equal to the eigenvalue λ1
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ä Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue λ = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u1.
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Application: Markov Chains

ä Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/∼saad/eig book 2ndEd.pdf

ä Let π ≡ row vector of stationary probabilities
ä Then π satisfies the equation →

πP = π

ä P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
(i) pij ≥ 0 for all i, j
(ii)

∑n
j=1 pij = 1 for i = 1, · · · , n

(iii) No column of P is a zero column.
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ä Spectral radius is ≤ 1

- Why?

ä Assume P is irreducible. Then:

ä Perron Frobenius → ρ(P ) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

ä Probabilities are obtained by scaling π by its sum.

ä Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college
(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next
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To From Fr So. Ju. Sr. Grad lwd
Fr. .2 0 0 0 0 0
So. .6 .1 0 0 0 0
Ju. 0 .7 .1 0 0 0
Sr. 0 0 .8 .1 0 0
Grad 0 0 0 .75 1 0
lwd .2 .2 .1 .15 0 1

- What is P? Assume initial population is x0 = [10, 16, 12, 12, 0, 0] and do
a follow the population for a few years. What is the probability that a student
will graduate? What is the probability that s/he leaves without a degree?
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A few words on hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

ä Example: completely nonsymmetric patterns ...

ä .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data
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Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}
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net  e 

net  d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e
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A few words on computational graphs

ä Computational graphs: graphs where
nodes represent computations whose evalu-
ation depend on other (incoming) nodes.

a(x,y,z)   b(x,y,z)

f(x,y,z)

f(x,y,z) = g(a(x,y,z), b(x,y,z))

ä
Consider the following
expression:

g(x, y) = (x+ y − 2) ∗ (y + 1)

We can decompose this as


z = x+ y

v = y + 1

g = (z − 2) ∗ v
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ä Computational graph→
ä Given x, y we want:
(a) Evaluate the nodes and
(b) derivatives w.r.t x, y

x y

v = y+1
z = x+y 

g = (z−2)*v

(a) is trivial - just follow the graph up - starting from the leaves (that contain x
and y)

(b): Use the chain rule – here shown for x only
using previous setting

∂g
∂x

= ∂g
∂a
da
dx

+ ∂g
∂b
db
dx

- For the above example compute values and derivatives at all nodes when
x = −1, y = 2.
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Back-Propagation

ä Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

ä The derivatives can be calculated by going backward (or down the tree)

ä Here is a very simple example from Neural Networks
L = 1

2
(y − t)2

y = σ(z)

z = wx+ b

x

w

b

z y 
L

t

ä Note that t (desired output) and x (input) are constant.
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Back-Propagation: General computational graphs

Representation: a DAG

ä Last node (vn) is the target function. Let us rename it f .

ä Nodes vi, i = 1, · · · , e with indegree 0 are the variables

ä Want to compute ∂f/∂v1, ∂f/∂v2, · · · , ∂f/∂ve

ä Use the chain rule.
For vk(vj, vl, vm) −→

∂f

∂vk
=
∂f

∂vj

∂vj

∂vk
+
∂f

∂vl

∂vl

∂vk
+
∂f

∂vm

∂vm

∂vk
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ä Let δk = ∂f
∂vk

(called ‘errors’). Then

δk = δj
∂vj

∂vk
+ δl

∂vl

∂vk
+ δm

∂vm

∂vk

ä To compute the δk’s once the vj’s have
been computed (in a ‘forward’ propagation) –
proceed backward.
ä δj, δl, δm available and ∂vi/∂vk com-
putable. Nore δn ≡ 1.

ä However: cannot just do this in any order. Must follow a topological order
in order to obey dependencies.
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Example:
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GRAPH CENTRALITY



Centrality in graphs

ä Goal: measure importance of a node, edge, subgraph, .. in a graph

ä Many measures introduced over the years

ä Early Work: Freeman ’77 [introduced 3 measures] – based on ‘paths in
graph’

ä Many different ways of defininf centrality! We will just see a few
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Degree centrality: (simplest) ‘Nodes
with high degree are important’

CD(v) = deg(v)
n−1

(note: scaling n− 1 is unimportant)

Closeness centrality: ‘Nodes that are
close to many other nodes are important’

CC(v) = n−1∑
w 6=v d(v,w)

Betweenness centrality:
(Freeman ’77)

CB(v) =
∑

u 6=v,w 6=v
σuw(v)
σuw

• σuw = total # shortest paths from u to w

• σuw(v) = total # shortest paths from u to w passing through v

ä ’Nodes that are on many shortest paths are important’
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Example: Find CD(v); CC(v); CB(v) when v = C

A  B

E F C

D

(u,w) σuw(v) σuw / (u,w) σuw(v) σuw /
(A,B) 0 1 0 (B,E) 0 1 0
(A,D) 0 1 0 (B,F) 1 1 1
(A,E) 0 1 0 (D,E) 1 2 .5
(A,F) 0 1 0 (D,F) 1 1 1
(B,D) 0 1 0 (E,F) 0 1 0

ä CD(v) = 3/5 = 0.6 ;

ä CC(v) = 5/[dCA + dCB + dCD + dCE + dCF ]

= 5/[2 + 1 + 1 + 2 + 1] = 5/7

ä CB(v) = 2.5 (add all ratios in table)

- Redo this for v = B
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Eigenvector centrality:

ä Supppose we have n nodes vj, j = 1, · · · , n– each with a measure of
importance (’prestige’) pj

ä Principle: prestige of i depends on that of its neighbors.

ä Prestige xi = multiple of sum of pres-
tiges of neighbors pointing to it λxi =

∑
j ∈ N (i)

xj =

n∑
j=1

ajixj

ä xi = component of eigenvector associated with λ.

ä Perron Frobenius theorem at play again: take largest eigenvalue→ xi’s
nonnegative
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Page-rank

ä Can be viewed as a variant of Eigenvector centrality

Main point: A page is important if it is pointed to by other important pages.

ä Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it. [→ same as EV centrality]

ä Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

ä Imagine many tokens doing a random walk on this graph:
• (δ/n) chance to follow one of the n links on a page,
• (1− δ) chance to jump to a random page.
•What’s the chance a token will land on each page?
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Page-Rank - definitions

If T1, ..., Tn point to page Ti then

ρ(Ti) = 1− δ + δ

[
ρ(T1)

|T1|
+
ρ(T2)

|T2|
+ · · ·

ρ(Tn)

|Tn|

]
ä |Tj| = count of links going out of Page Ti. So the ’vote’ ρ(Tj) is spread
evenly among |Tj| links.

ä Sum of all PageRanks == 1: ΣTρ(T ) = 1

ä δ is a ’damping’ parameter close to 1 – e.g. 0.85

ä Defines a (possibly huge) Hy-
perlink matrix H

hij =

{
1
|Ti|

if i points to j
0 otherwise
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- 4 Nodes

A points to B and D

B points to A, C, and D

C points to A and B

D points to C

1) What is the H matrix?

2) the graph?
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A
B

C

D

A B C D

A 1/2 1/2

B 1/3 1/3 1/3

C 1/2 1/2

D 1

ä Row- sums of H are = 1.

ä Sum of all PageRanks will be
one:

∑
All-PagesA

ρ(A) = 1.

ä H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm (PageRank)

1. Select initial row vector v (v ≥ 0)
2. For i=1:maxitr
3 v := (1− δ)eT + δvH

4. end

- Do a few steps of this algorithm for previous example with δ = 0.85.

ä This is a row iteration..

v = (1− δ)eT + v . δH
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A few properties:

ä v will remain ≥ 0. [combines non-negative vectors]

ä More general iteration is of the form

v := v[(1− δ)E + δH︸ ︷︷ ︸
G

] with E = ezT

where z is a probability vector eTz = 1 [Ex. z = 1
n
e]

ä A variant of the power method.

ä e is a right-eigenvector of G associated with λ = 1. We are interested in
the left eigenvector.
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Kleinberg’s Hubs and Authorities

ä Idea is to put order into the web by ranking pages by their degree of
Authority or ”Hubness”.

ä An Authority is a page pointed to by many important pages.
• Authority Weight = sum of Hub Weights from In-Links.

ä A Hub is a page that points to many important pages:
• Hub Weight = sum of Authority Weights from Out-Links.

ä Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf

162 Ark. 47th Spring Lect., May 4-6, 2022

http://www.cs.cornell.edu/home/kleinber/auth.pdf


Computation of Hubs and Authorities

ä Simplify computation by forcing sum of squares of weights
to be 1.

ä Authj = xj =
∑

i:(i,j)∈Edges Hubi.

ä Hubi = yi =
∑

j:(i,j)∈Edges Authj.

ä Let A = Adjacency matrix: aij = 1 if (i, j) ∈ Edges.

ä y = Ax, x = ATy.

ä Iterate . . . to leading eigenvectors of ATA & AAT .

ä Answer: Leading Singular Vectors!
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GRAPH LAPLACEANS AND THEIR APPLICATIONS



Graph Laplaceans - Definition

ä “Laplace-type” matrices associated with general undirected graphs –
useful in many applications

ä Given a graph G = (V,E) define

A matrix W of weights wij for each edge

Assume wij ≥ 0,, wii = 0, and wij = wji ∀(i, j)
The diagonal matrix D = diag(di) with di =

∑
j 6=iwij

ä Corresponding graph Laplacean of G is: L = D −W

ä Gershgorin’s theorem→ L is positive semidefinite.
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ä Simplest case:

wij =

{
1 if (i, j) ∈ E&i 6= j

0 else
D = diag

di =
∑
j 6=i

wij


Example:

Consider the graph

●

●● ●

5

2

34

1

●

L =


1 −1 0 0 0

−1 2 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

0 −1 −1 −1 3
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- Define the graph Laplacean for the graph
associated with the simple mesh shown next.
[use the simple weights of 0 or 1]. What is
the difference with the discretization of the
Laplace operator for case when mesh is the
same as this graph? 1 2 3

6 8

109 11 12

4

5 7
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Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) If G has k > 1 connected components G1, G2, · · · , Gk, then the nullity
of L is k and Null(L) is spanned by the vectors z(j), j = 1, · · · , k defined
by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.

168 Ark. 47th Spring Lect., May 4-6, 2022



Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is a null vector
for L. The vector D−1/2u is an eigenvector for the matrix D−1/2LD−1/2 =

I − D−1/2WD−1/2 associated with the smallest eigenvalue. It is also an
eigenvector for D−1/2WD−1/2 associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices
for G1, · · · , Gk.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges i ∼ j into
i→ j or j → i. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (i, j) in E, define the corresponding column in H
as
√
w(i, j)(ei − ej).

Example: In previous example
(4 p. back) orient i → j so that
j > i [lower triangular matrix repre-
sentation]. Then matrix H is:

H =


1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1


Property 1 L = HHT

- Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and local dis-
tances between entries of x
ä Let L = any matrix s.t. L = D −W , with
D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 2: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2
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Property 3: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2

ä Note: yj = j-th colunm of Y . Usually d < n. Each column can represent
a data sample.

Property 4: For the particular L = I − 1
n

1 1>

XLX> = X̄X̄> == n× Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones(n,1)
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Property 6: (Graph partitioning) Consider situation when wij ∈ {0, 1}. If
x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used to partition graphs

+1

−1
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ä Would like to minimize (Lx, x) subject to x ∈ {−1, 1}n and eTx = 0

[balanced sets]

ä Wll solve a relaxed form of this problem

- What if we replace x by a vector of ones (representing one partition) and
zeros (representing the other)?

- Let x be any vector and y = x+α 1 and L a graph Laplacean. Compare
(Lx, x) with (Ly, y).
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ä Consider any symmetric (real) matrix A with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1

ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves a relaxed form of the
problem -
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min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x) → min
x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on

Fielder vector
3 Partition largest subgraph in

two recursively ...
4 ... Until the desired number of

partitions is reached
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques – multilevel,... [use graph, but no coordinates]

• Currently best known technique is Metis (multi-level algorithm)
• Simplest idea: Recursive Graph Bisection; Nested dissection (George &

Liu, 1980; Liu 1992]
• Advantages: simplicity – no coordinates required
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Example of a graph theory approach

ä Level Set Expansion Algorithm

ä Given: p nodes ‘uniformly’ spread in the graph (roughly same distance
from one another).

ä Method: Perform a level-set traversal (BFS) from each node simultane-
ously.

ä Best described for an example on a 15× 15 five – point Finite Difference
grid.

ä See [Goehring-YS ’94, See Cai-YS ’95]

ä Approach also known under the name ‘bubble’ algorithm and imple-
mented in some packages [Party, DibaP]
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