
PROJECTION METHODS



Projection Methods

ä The main idea of projection methods is to extract an approximate solution
from a subspace.

ä We define a subspace of approximants of dimension m and a set of m
conditions to extract the solution

ä These conditions are typically expressed by orthogonality constraints.

ä This defines one basic step which is repeated until convergence (alterna-
tively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be
viewed as a projection step
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Background on projectors

ä A projector is a linear operator that
is idempotent:

P 2 = P

A few properties:

• P is a projector iff I − P is a projector

• x ∈ Ran(P ) iff x = Px iff x ∈ Null(I − P )

• This means that : Ran(P ) = Null(I − P ) .

• Any x ∈ Rn can be written (uniquely) as x = x1 + x2,
x1 = Px ∈ Ran(P ) x2 = (I − P )x ∈ Null(P ) - So:

Rn = Ran(P )⊕ Null(P )

46 Ark. 47th Spring Lect., May 4-6, 2022



Background on projectors (Continued)

Decomposition Rn = K ⊕ S defines a (unique) projector P :

• From x = x1 + x2, set Px = x1.

• For this P : Ran(P ) = K and Null(P ) = S.

• Note: dim(K) = m, dim(S) = n−m.

ä Pb: express mapping x→ u = Px in terms of K,S

ä Note u ∈ K, x− u ∈ S

ä Express 2nd part with m constraints: let L = S⊥, then

u = Px iff
{

u∈K
x−u⊥L

ä Projection onto K and or-
thogonally to L
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ä Illustration: P projects onto K and orthogonally to L

ä When L = K projector is orthogonal.

ä Note: Px = 0 iff x ⊥ L.
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Projection methods for linear systems

ä Initial Problem: b−Ax = 0

ä Given two subspaces K and L of RN of dimension m, define ...

Approximate problem: Find x̃ ∈ K such that b−Ax̃ ⊥ L︸ ︷︷ ︸
Petrov-Galerkin cond.

ä m degrees of freedom (K) + m constraints (L)→

ä To solve: A small linear system (‘projected problem’)

ä Basic projection step. Typically a sequence of such steps are applied
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ä With a nonzero initial guess x0, approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. → system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

- Formulate Gauss-Seidel as a projection method -

- Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’ of
coordinates span{ei, ei+1, ..., ei+p}
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Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

ä Write approximate solution as x̃ = x0 + δ ≡ x0 + V y where y ∈ Rm.
Then Petrov-Galerkin condition yields:

W T (r0 −AV y) = 0

ä Therefore,

x̃ = x0 + V [W TAV ]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a simple struc-
ture [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases:
V = [v1, . . . , vm] for K and
W = [w1, . . . , wm] for L.

3. Compute :
r ← b−Ax,
y ← (W TAV )−1W Tr,

x← x+ V y.
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Projection methods: Operator form representation

ä Let Π = the orthogonal projector onto K and
Q the (oblique) projector onto K and orthogonally to L.

Πx ∈ K, x−Πx ⊥ K
Qx ∈ K, x−Qx ⊥ L
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Π and Q projectors

Assumption: no vector of K is ⊥ to L
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In the case x0 = 0, approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form (solution is Πx)

Q(b−AΠx) = 0

Question: what accuracy can one expect?
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ä Let x∗ be the exact solution. Then

1) We cannot get better accuracy than ‖(I −Π)x∗‖2, i.e.,

‖x̃− x∗‖2 ≥ ‖(I −Π)x∗‖2

2) The residual of the exact solution for the approximate problem satisfies:

‖b−QAΠx∗‖2 ≤ ‖QA(I −Π)‖2‖(I −Π)x∗‖2
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Two Important Particular Cases.

1. L = K

ä When A is SPD then ‖x∗ − x̃‖A = minz∈K ‖x∗ − z‖A.

ä Class of Galerkin or Orthogonal projection methods

ä Important member of this class: Conjugate Gradient (CG) method

2. L = AK .

In this case ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

ä Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES,
CGNR, ...
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One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃ = x+ αd. Condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

ä Three popular choices:

(1) Steepest descent

(2) Minimal residual iteration

(3) Residual norm steepest descent
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1. Steepest descent.

A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Each step minimizes f(x) = ‖x − x∗‖2
A = (A(x − x∗), (x − x∗)) in

direction −∇f .

ä Convergence guaranteed if A is SPD.

- As is formulated, the above algorithm requires 2 ‘matvecs’ per step.
Reformulate it so only one is needed.
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Convergence based on the Kantorovitch inequality: Let B be an SPD
matrix, λmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤

(λmax + λmin)
2

4 λmaxλmin
, ∀x 6= 0.

ä This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors dk = x∗−xk
generated by steepest descent satisfy:

‖dk+1‖A ≤
λmax − λmin
λmax + λmin

‖dk‖A

ä Algorithm converges for any initial guess x0.
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Proof: Observe ‖dk+1‖2
A = (Adk+1, dk+1) = (rk+1, dk+1)

ä by substitution,
‖dk+1‖2

A = (rk+1, dk − αkrk)

ä By construction rk+1 ⊥ rk so we get ‖dk+1‖2
A = (rk+1, dk). Now:

‖dk+1‖2
A = (rk − αkArk, dk)

= (rk, A
−1rk)− αk(rk, rk)

= ‖dk‖2
A

(
1−

(rk, rk)

(rk, Ark)
×

(rk, rk)

(rk, A−1rk)

)
.

Result follows by applying the Kantorovich inequality.
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2. Minimal residual iteration.

A positive definite (A+AT is SPD). Take at each step d = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction r.

ä Converges under the condition that A+AT is SPD.

- As is formulated, the above algorithm would require 2 ’matvecs’ at each
step. Reformulate it so that only one matvec is required
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Convergence

Let A be a real positive definite matrix, and let

µ = λmin(A+AT )/2, σ = ‖A‖2.

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

‖rk+1‖2 ≤
(

1−
µ2

σ2

)1/2

‖rk‖2

ä In this case Min. Res. converges for any initial guess x0.
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Proof: Similar to steepest descent. Start with

‖rk+1‖2
2 = (rk+1, rk − αkArk)

= (rk+1, rk)− αk(rk+1, Ark).

By construction, rk+1 = rk − αkArk is ⊥ Ark, so:
‖rk+1‖2

2 = (rk+1, rk) = (rk − αkArk, rk). Then:

‖rk+1‖2
2 = (rk, rk)− αk(Ark, rk)

= ‖rk‖2
2

(
1−

(Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)
= ‖rk‖2

2

(
1−

(Ark, rk)
2

(rk, rk)2

‖rk‖2
2

‖Ark‖2
2

)
.

Result follows from the inequalities (Ax, x)/(x, x) ≥ µ > 0 and ‖Ark‖2 ≤
‖A‖2 ‖rk‖2.
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3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step d = ATr and e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖2

2/‖Ad‖2
2

x← x+ αd

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction −∇f .

ä Important Note: equivalent to usual steepest descent applied to normal
equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.
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KRYLOV SUBSPACE METHODS



Motivation

ä One-dimensional
projection techniques:

xnew = x+ αd where d = a certain di-
rection.

ä α is defined to optimize a certain function.

ä Equivalently: determine α by an orthogonality constraint

Example
In MR:
x(α) = x+ αd, with d = b−Ax.
minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods are greedy methods. They are
‘short-sighted’.
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Example:

Recall in Steepest Descent: New direction of
search r̃ is ⊥ to old direction of search r.

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

Question: can we do better by combining successive iterates?

ä Yes: Krylov subspace methods..
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Krylov subspace methods: Introduction

ä Consider MR (or steepest de-
scent). At each iteration:

rk+1 = b−A(x(k) + αkrk)

= rk − αkArk
= (I − αkA)rk

ä In the end: rk+1 = (I − αkA)(I − αk−1A) · · · (I − α0A)r0 = pk+1(A)r0

where pk+1(t) is a polynomial of degree k + 1 of the form

pk+1(t) = 1− tqk(t)

- Show that: x(k+1) = x(0) + qk(A)r0 , with deg (qk) = k

ä Krylov subspace methods: iterations of this form that are ‘optimal’ [from
m-dimensional projection methods]
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km [µ ≡ deg. of minimal polynomial of v1.]

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 1 Arnoldi

1: for j = 1, ...,m do
2: Compute w := Avj

3: for i = 1, . . . , j do
4: hi,j := (w, vi)

5: w := w − hi,jvi
6: end for
7: Compute: hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

8: end for
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Result of orthogonalization process (Arnoldi):

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm =

@
@
@
@
@
@
@

@
@
@
@
@
@
@

O
Hm =

Vm+1 = [Vm, vm+1]

AVm = Vm+1Hm
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Arnoldi’s Method for linear systems (Lm = Km)

From Petrov-Galerkin condition when
Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in
Arnoldi’s. Then

xm = x0 + βVmH
−1
m e1

- What is the residual vector rm = b−Axm?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s ORTHORES
[1982], Axelsson’s projection method [1981],..

* Also Conjugate Gradient method [see later]
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Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain relation

xm = x0 + Vm[W T
mAVm]−1W T

mr0

= x0 + Vm[(AVm)TAVm]−1(AVm)Tr0.

ä Use again v1 := r0/(β := ‖r0‖2) and the relation

AVm = Vm+1Hm

ä xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm.
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ä Gives the Generalized Minimal Residual method (GMRES) ([YS-Schultz,’86]):

xm = x0 + Vmym where
ym = min

y
‖βe1 − H̄my‖2

ä Several Mathematically equivalent methods:

• Axelsson’s CGLS • Orthomin (1980)
• Orthodir • GCR
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The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix
then the matrix Hm is symmetric tridiagonal:

hij = 0 1 ≤ i < j − 1; and
hj,j+1 = hj+1,j, j = 1, . . . ,m
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ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


(1)

The vi’s satisfy a 3-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos
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The Lanczos algorithm

ALGORITHM : 2 Lanczos

1. Choose an initial vector v1, s.t. ‖v1‖2 = 1

Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo
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Lanczos algorithm for linear systems

ä Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos algorithm

ä Three different possible implementations.

(1) Arnoldi-like;

(2) Exploit tridiagonal nature of Hm (DIOM);

(3) Conjugate gradient (CG) - derived from (2)

We will skip details and show the CG algorithm
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The Conjugate Gradient Algorithm (A S.P.D.)

ALGORITHM : 3 Conjugate Gradient Method

1: Start: r0 := b−Ax0, p0 := r0.
2: while (xj Not-converged) do
3: αj := (rj, rj)/(Apj, pj)

4: xj+1 := xj + αjpj

5: rj+1 := rj − αjApj
6: βj := (rj+1, rj+1)/(rj, rj)

7: pj+1 := rj+1 + βjpj

8: end while

rj = scaling × vj+1 → the rj’s are orthogonal.

The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.
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A bit of history. From the 1952 CG article:

“The method of conjugate gradients was developed independently by
E. Stiefel of the Institute of Applied Mathematics at Zurich and by M.
R. Hestenes with the cooperation of J. B. Rosser, G. Forsythe, and
L. Paige of the Institute for Numerical Analysis, National Bureau of
Standards. (...) The first papers on this method were given by E.
Stiefel [1952] and by M. R. Hestenes [1951]. Reports on this method
were given by E. Stiefel and J. B. Rosser at a Symposium on August
23-25, 1951. Recently, C. Lanczos [1952] developed a closely related
routine based on his earlier paper on eigenvalue problem [1950].
Examples and numerical tests of the method have been by R. Hayes,
U. Hoschstrasser, and M. Stein.”
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SOLUTION OF EIGENVALUE PROBLEMS



Background. Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu] (Goal: frequency response)

• Electronic structure calculations [Schrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

ä Large eigenvalue problems in quantum chemistry use up biggest portion
of the time in supercomputer centers
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Background. New applications in data analytics

ä Machine learning problems often require a (partial) Singular Value De-
composition -

ä Somewhat different issues in this case:

• Very large matrices, update the SVD

• Compute dominant singular values/vectors

• Many problems of approximating a matrix (or a tensor) by one of lower
rank (Dimension reduction, ...)

ä But: Methods for computing SVD often based on those for standard
eigenvalue problems
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Background. The Problem (s)

ä Standard eigenvalue problem:

Ax = λx

Often: A is symmetric real (or Hermitian complex)

ä Generalized problem Ax = λBx Often: B is symmetric positive
definite, A is symmetric or nonsymmetric

ä Quadratic problems: (A+ λB + λ2C)u = 0

ä Nonlinear eigenvalue
problems (NEVP)

[
A0 + λB0 +

n∑
i=1

fi(λ)Ai

]
u = 0
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ä General form of NEVP A(λ)x = 0

ä Nonlinear eigenvector problems:

[A+ λB + F (u1, u2, · · · , uk)]u = 0

What to compute:

• A few λi ’s with smallest or largest real parts;

• All λi’s in a certain region of C;

• A few of the dominant eigenvalues;

• All λi’s (rare).
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Large eigenvalue problems in applications

ä Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

ä Density Functional Theory in electronic structure calculations: ‘ground
states’

ä Excited states involve transitions and invariably lead to much more com-
plex computations. → Large matrices, *many* eigen-pairs to compute
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Background: The main tools

Projection process: Rayleigh-Ritz

(a) Build a ‘good’ subspace K = span(V );

(b) get approximate eigenpairs by a Rayleigh-Ritz process:

Find λ̃ ∈ C, ũ ∈ K such that: (A− λ̃I)ũ ⊥ K

ä Will revisit this shortly
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The main tools: Shift-and-invert:

ä If we want eigenvalues near σ, replace A by (A− σI)−1.

Example: power method: vj = Avj−1/scaling replaced by

vj =
(A−σI)−1vj−1

scaling

ä Works well for computing a few eigenvalues near σ/

ä Used in commercial package NASTRAN (for decades!)

ä Requires factoring (A − σI) (or (A − σB) in generalized case.) But
convergence will be much faster.

ä A solve each time - Factorization done once (ideally).
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The main tools: Deflation / Restarting

Deflation: ä Once eigenvectors converge remove them from the picture
(e.g., with power method, second largest becomes largest eigenvalue after
deflation).

Restarting Strategies:

ä Restart projection process by using information gathered in previous steps

ä ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-invert (op-
tion).]
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Current state-of-the art in eigensolvers

ä Eigenvalues at one end of the spectrum:

• Subspace iteration + filtering [e.g. FEAST, Cheb,...]

• Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..),
e.g., ARPACK code, PRIMME.

• Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]

• + Many others - more or less related to above

ä ‘Interior’ eigenvalue problems (middle of spectrum):

• Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g.,
NASTRAN

• Rational filtering [FEAST, Sakurai et al.,.. ]
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Projection Methods for Eigenvalue Problems

General formulation:

ä Projection method onto K orthogonal to L

ä Given: Two subspaces K and L of same dimension.

ä Find: λ̃, ũ such that: λ̃ ∈ C, ũ ∈ K; (λ̃I −A)ũ ⊥ L

Two types of methods:

ä Orthogonal projection methods: situation when L = K.

ä Oblique projection methods: When L 6= K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvec-
tors of A.
Question: How to extract good approximations to eigenvalues/ eigenvec-
tors from this subspace?

Answer: Rayleigh Ritz process.

LetQ = [q1, . . . , qm] an orthonormal basis ofX. Then write an approximation
in the form ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0 ä QHAQy = λ̃y
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Procedure:
1. Obtain an orthonormal basis of X
2. Compute C = QHAQ (an m×m matrix)
3. Obtain Schur factorization of C, C = Y RY H

4. Compute Ũ = QY

Property: if X is (exactly) invariant, then procedure will yield exact eigen-
values and eigenvectors.

Proof: Since X is invariant, (A − λ̃I)u = Qz for a certain z. QHQz = 0

implies z = 0 and therefore (A− λ̃I)u = 0.

ä Can use this procedure in conjunction with the subspace obtained from
subspace iteration algorithm
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Subspace Iteration

ä Original idea: projection technique onto a subspace if the form Y = AkX

ä In practice: Replace Ak by suitable polynomial [Chebyshev]

Advantages:
• Easy to implement (in symmetric case);
• Easy to analyze;

Disadvantage: Slow.

ä Often used with polynomial acceleration: AkX replaced by Ck(A)X.
Typically Ck = Chebyshev polynomial.
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Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [x0, . . . , xm]

and an initial polynomial Ck.

2. Iterate: Until convergence do:

(a) Compute Ẑ = Ck(A)Xold.
(b) Orthonormalize Ẑ into Z.
(c) Compute B = ZHAZ and use the QR algorithm to

compute the Schur vectors Y = [y1, . . . , ym] of B.
(d) Compute Xnew = ZY .
(e) Test for convergence. If satisfied stop. Else select a new

polynomial C′k′ and continue.



THEOREM: Let S0 = span{x1, x2, . . . , xm} and assume that S0 is such that
the vectors {Pxi}i=1,...,m are linearly independent where P is the spectral
projector associated with λ1, . . . , λm. Let Pk the orthogonal projector onto
the subspace Sk = span{Xk}. Then for each eigenvector ui of A, i =

1, . . . ,m, there exists a unique vector si in the subspace S0 such that Psi =

ui. Moreover, the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣λm+1

λi

∣∣∣∣+ εk

)k
, (2)

where εk tends to zero as k tends to infinity.
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km [µ ≡ deg. of minimal polynomial of v1.]

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
97 Ark. 47th Spring Lect., May 4-6, 2022



Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 4 Arnoldi’s procedure

For j = 1, ...,m do
Compute w := Avj

For i = 1, . . . , j, do

{
hi,j := (w, vi)

w := w − hi,jvi
hj+1,j = ‖w‖2; vj+1 = w/hj+1,j

End
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Result of Arnoldi’s algorithm

Let

Hm =



x x x x x

x x x x x

x x x x

x x x

x x

x


; Hm = Hm(1 : m, 1 : m)

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.
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Appliaction to eigenvalue problems

ä Write approximate eigenvector as ũ = Vmy + Galerkin condition

(A− λ̃I)Vmy ⊥ Km→ V H
m (A− λ̃I)Vmy = 0

ä Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

Associated approximate eigenvectors are

ũj = Vmyj

Typically a few of the outermost eigenvalues will converge first.
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary

ä Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM : 5 Restarted Arnoldi

1. Start: Choose an initial vector v1 and a dimension m.
2. Iterate: Perform m steps of Arnoldi’s algorithm.
3. Restart: Compute the approximate eigenvector u(m)

1

4. associated with the rightmost eigenvalue λ(m)
1 .

5. If satisfied stop, else set v1 ≡ u(m)
1 and goto 2.

101 Ark. 47th Spring Lect., May 4-6, 2022



Deflation

ä Very useful in practice.

ä Different forms: locking (subspace iteration), selective orthogonalization
(Lanczos), Schur deflation, ...

A little background Consider Schur canonical form A = URUH

where U is a (complex) upper triangular matrix.

ä Vector columns u1, . . . , un called Schur vectors.

ä Note: Schur vectors are not unique. In particular, they depend on the
order of the eigenvalues
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Wiedlandt Deflation: Assume we have computed a right eigenpair λ1, u1.
Wielandt deflation considers eigenvalues of

A1 = A− σu1v
H

Note:
Λ(A1) = {λ1 − σ, λ2, . . . , λn}

Wielandt deflation preserves u1 as an eigenvector as well all the left
eigenvectors not associated with λ1.

ä An interesting choice for v is to take simply v = u1. In this case Wielandt
deflation preserves Schur vectors as well.

ä Can apply above procedure successively.
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ALGORITHM : 6 Explicit Deflation

1. A0 = A

2. For j = 0 . . . µ− 1 Do:
3. Compute a dominant eigenvector of Aj

4. Define Aj+1 = Aj − σjujuHj
5. End

ä Computed u1, u2., .. form a set of Schur vectors for A.

ä In Arnoldi: Accumulate each new converged eigenvector in columns 1, 2,
3, ... [‘locked’ set of eigenvectors.] + maintain orthogonality

ä Alternative: implicit deflation (within a procedure such as Arnoldi).
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Deflated Arnoldi

For k = 1, . . . .NEV do: /* Eigenvalue loop */

1. For j = k, k + 1, ...,m do: /* Arnoldi loop*/

• Compute w := Avj.
• Orthonormalize w against v1, v2, . . . , vj → vj+1

2. Compute next approximate eigenpair λ̃, ũ.

3. Orthonormalize ũ against v1, . . . , vj ä Result = s̃ = approximate
Schur vector.

4. Define vk := s̃.

5. If approximation not satisfactory go to 1.

6. Else define hi,k = (Avk, vi) , i = 1, .., k,
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Thus, for k = 2: Vm =

[
v1, v2︸ ︷︷ ︸
Locked

,
active︷ ︸︸ ︷

v3, . . . , vm

]

Hm =



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗



ä Similar techniques in Subspace iteration [G. Stewart’s SRRIT]
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Hermitian case: The Lanczos Algorithm

ä The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m −→

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


Consequence:
3-term recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

Hermitian matrix + Arnoldi→ Hermitian Lanczos
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ALGORITHM : 7 Lanczos

1. Choose v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä However: in practice severe loss of orthogonality;
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Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the
first eigenpair converges. It indicates loss of linear indedependence of the
vis. When orthogonality is lost, then several copies of the same eigenvalue
start appearing.

Forms of Re-orthogonalization
Full – reorthogonalize vj+1 against all previous vi’s every time.

Partial – reorthogonalize vj+1 against all previous vi’s only when needed

Selective – reorthogonalize vj+1 against computed eigenvectors

None – Do not reorthogonalize - but take measures to deal with ’spurious’
eigenvalues.
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The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly λ1 ≤ λ2 ≤ · · · ≤ λn

ä Orthogonal projection method onto Km;

ä To derive error bounds, use the Courant characterization

λ̃1 = min
u ∈ K, u6=0

(Au, u)

(u, u)
=

(Aũ1, ũ1)

(ũ1, ũ1)

λ̃j = min{
u ∈ K, u 6=0
u ⊥ũ1,...,ũj−1

(Au, u)

(u, u)
=

(Aũj, ũj)

(ũj, ũj)
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ä Bounds for λ1 easy to find – similar to linear systems.

ä Ritz values approximate eigenvalues of A inside out:

λ1 λ2

λ̃1 λ̃2

λn−1 λn

λ̃n−1 λ̃n
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A-priori error bounds

Theorem [Kaniel, 1966]: Let γ1 = λ2−λ1

λN−λ2
; Then:

0 ≤ λ(m)
1 − λ1 ≤ (λN − λ1)

[
tan∠(v1, u1)

Tm−1(1 + 2γ1)

]2

Theorem [Kaniel, Paige, YS]. Let γi =
λi+1−λi
λN−λi+1

, κ
(m)
i =

∏
j<i

λ
(m)
j −λN
λ
(m)
j −λi

Then:

0 ≤ λ(m)
i − λi ≤ (λN − λ1)

[
κ

(m)
i

tan∠(vi, ui)

Tm−i(1 + 2γi)

]2
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The Lanczos biorthogonalization (AH 6= A)
ALGORITHM : 8 Lanczos bi-orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.
2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:
4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11.EndDo
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ä Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AH, w1)

ä Many choices for δj+1, βj+1 in lines 7 and 8. Only constraint:

δj+1βj+1 = (v̂j+1, ŵj+1)

Let

Tm =


α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm

 .

ä vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).
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If the algorithm does not break down before stepm, then the
vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are biortho-
gonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and
{wi}i=1,2,...,m is a basis of Km(AH, w1) and

AVm = VmTm + δm+1vm+1e
H
m,

AHWm = WmT
H
m + β̄m+1wm+1e

H
m,

WH
mAVm = Tm .
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ä If θj, yj, zj are, respectively an eigenvalue of Tm, with associated right and
left eigenvectors yj and zj respectively, then corresponding approximations
for A are

Ritz value Right Ritz vector Left Ritz vector
θj Vmyj Wmzj

[Note: terminology is abused slightly - Ritz values and vectors normally refer
to Hermitian cases.]
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Advantages and disadvantages

Advantages:

ä Nice three-term recurrence – requires little storage in theory.

ä Computes left and a right eigenvectors at the same time

Disadvantages:

ä Algorithm can break down or nearly break down.

ä Convergence not too well understood. Erratic behavior

ä Not easy to take advantage of the tridiagonal form of Tm.
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Look-ahead Lanczos

Algorithm breaks down when:

(v̂j+1, ŵj+1) = 0

Three distinct situations.

ä ‘lucky breakdown’ when either v̂j+1 or ŵj+1 is zero. In this case, eigenval-
ues of Tm are eigenvalues of A.

ä (v̂j+1, ŵj+1) = 0 but of v̂j+1 6= 0, ŵj+1 6= 0 → serious breakdown. Often
possible to bypass the step (+ a few more) and continue the algorithm. If
this is not possible then we get an ...

ä ... Incurable break-down. [very rare]
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