
Numerical Linear Algebra: from Scientific
Computing to Data Science Applications

Yousef Saad
University of Minnesota

47th Annual Spring Lecture Series
University of Arkansas

May 4–6, 2022

This tutorial: Topics & Plan

ä Current state of advanced Numerical Linear Algebra including:

First part: Sparse large matrix problems, linear systems, eigenvalue prob-
lems

Second: data-related problems: graphs, dimension reduction, ...

Prerequisite: senior level course in numerical linear algebra

5 lectures + Matlab demos

All materials posted here:

2 Ark. 47th Spring Lect., May 4-6, 2022

Schedule

Wed. 8:00– 9:00 Historical Perspective; Background & Examples;
am Sparsity; Data structures; Relaxation methods

Wed. 1:00 – 2:00 Projection methods for lin. systems, Krylov methods
pm Eigenvalue Pbs; Proj. Methods; Subs. it.; Lanczos

Thu. 8:00– 9:00 Backround on Graphs; Graph representations; Graphs
am for Data; Networks & Centrality; Graph Laplaceans.

Thu. 1:00 – 2:00 Graph methods; Clustering; Segmentation; Graph
pm embedding; Dimension Reduction; Informtion retrieval.

Fri. 8:00– 9:00 Supervised Learning; Neural Networks; Coarsening
am in scientific computing & in Data Sciences

3 Ark. 47th Spring Lect., May 4-6, 2022

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra in early 50s:
direct methods, iterative methods, conditioning, precondition-
ing, The Conjugate Gradient, acceleration methods,

ä An amazing paper in which the author was urging researchers to start
looking at solving linear systems

4 Ark. 47th Spring Lect., May 4-6, 2022

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra in early 50s:
direct methods, iterative methods, conditioning, precondition-
ing, The Conjugate Gradient, acceleration methods,

ä An amazing paper in which the author was urging researchers to start
looking at solving linear systems

ä Nearly 70 years later – we can certainly state that:

“Linear Algebra problems in Machine Learning can be
interesting”

5 Ark. 47th Spring Lect., May 4-6, 2022

Focus of numerical linear algebra changes over time

ä Linear algebra took many direction changes in the past

1940s–1950s: Major issue: flutter problem in aerospace engineering
→ eigenvalue problem [cf. Olga Taussky Todd]→ LR, QR, .. → ‘EISPACK’

1960s: Problems related to the power grid promoted what we would call
today general sparse matrix techniques

1970s– Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)

Late 1980s: Thrust on parallel matrix computations .

Late 1990s: Spur of interest in “financial computing”

Current: Machine Learning

6 Ark. 47th Spring Lect., May 4-6, 2022

Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng.
(e.g. structures) major force behind numerical linear algebra algorithms in
the past few decades.

ä Strong new forces are now reshaping the field today: Applications related
to the use of “data”

ä Machine learning is appearing in unexpected places:

• design of materials

• machine learning in geophysics

• self-driving cars, ..

•

7 Ark. 47th Spring Lect., May 4-6, 2022

Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs

8 Ark. 47th Spring Lect., May 4-6, 2022

Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs

ä Old leaders - e.g., Mining; Car companies;
Aerospace; Manufacturing; offer little growth
– Some instances of renewal driven by new
technologies [e.g. Tesla]

ä Look at what you are doing under new lenses: DATA
9 Ark. 47th Spring Lect., May 4-6, 2022

H2 / HSS matrices

Ax=b
Graph
Partitioning

Model reduction λ

−∆ u = f

Sparse matrices
LARGE SYSTEMS

Preconditioning

A x = x
Decomposition

Domain

M
a
t
l
a
b
,
P
E
T
S
c
,
.
.

H2 / HSS matrices

Conquer

Divide &

Data Sparsity

PCA

Ax=b
Graph
Partitioning

Model reduction A x = xλ

−∆ u = f

TΣA = U V
Clustering

Semi−Supervised
Learning

Sparse matrices
LARGE SYSTEMS

Graph
Laplaceans

T
r
a
n

s
la

te

Preconditioning

Domain

Decomposition

Dimension
Reduction

LASSO

Regression

BIG DATA!

P
y
t
h
o
n
,
P
y
T
o
r
c
h

M
a
t
l
a
b
,
P
E
T
S
c
,
.
.

Impact on what we teach...

ä My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]

... Has changed substantially in past 4-6 years

Before: —PDEs, solving linear systems, Sparse direct solvers, Iterative
methods, Krylov methods, Preconditioners, Multigrid,..

−→

Now: — a little of sparse direct methods + Applications of graphs, dimen-
sion reduction, Krylov methods.. Examples in: PCA, Information retrieval,
Segmentation, Clustering, ...

12 Ark. 47th Spring Lect., May 4-6, 2022

General Introduction and Background

ä This tutorial is about Numerical Linear Algebra – both the classical kind
and the new :

Standard matrix computations (e.g. solving linear systems, eigenvalue/SVD
problems, ...)

Graph algorithms and tools (Sparse graphs, graph coarsening, graphs
and sparse methods). ..

Dimension reduction methods; Graph embeddings;

Specific machine learning algorithms; unsupervised/ supervised learning;

Graph coarsening methods in scientific computing and machine learning

13 Ark. 47th Spring Lect., May 4-6, 2022

Example: Fluid flow

Physical Model
↓

Nonlinear PDEs
↓

Discretization
↓

Linearization (Newton)
↓

Sparse Linear Systems Ax = b
-1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

14 Ark. 47th Spring Lect., May 4-6, 2022

Example: Eigenvalue Problems

ä Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...

15 Ark. 47th Spring Lect., May 4-6, 2022

Example: Vibrations

ä Vibrations in mechanical systems. See:
www.cs.umn.edu/∼saad/eig book 2ndEd.pdf

Problem: Determine the vibration modes of the
mechanical system [to avoid resonance]. See
details in Chapter 10 (sec. 10.2) of above
reference.

jjjjj
jjjjj
m1

m2

l1

l2

k1

k2

ä Problem type: Eigenvalue Problem

16 Ark. 47th Spring Lect., May 4-6, 2022

www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Example: Google Rank (pagerank)

If one were to do a random walk
from web page to web page, fol-
lowing each link on a given web
page at random with equal likeli-
hood, which are the pages to be
encountered this way most often?

ä Problem type: (homogeneous) Linear system. Eigenvector problem.

17 Ark. 47th Spring Lect., May 4-6, 2022

Example: Power networks

ä Electrical circuits .. [Kirchhiff’s voltage Law]

1 Ω 1 Ω

1 Ω1 Ω

1 Ω

4 Ω

30 v 20v

5v

3 Ω

Ω4

Problem: Determine the loop currents in a an electrical circuit - using Kirch-
hoff’s Law (V = RI)

ä Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
18 Ark. 47th Spring Lect., May 4-6, 2022

Example: Economics/ Marketing/ Social Networks

ä Given: an influence graph G: gij = strength of influence of j over i
ä Goal: charge member i price pi in
order to maximize profit
ä Utility for member i: [xi = con-
sumption of i]

ui = axi − bx2
i +

∑
j 6=i

gijxj − pixi

• 1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption xi

Result : Optimal pricing proportional to Bonacich centrality:
(I − αG)−1 1 where α = 1

2b
[Candogan et al., 2012 + many refs.]

19 Ark. 47th Spring Lect., May 4-6, 2022

ä ’centrality’ defines a measure of importance of a node (or an edge) in a
graph

ä Many other ideas of centrality in graphs [degree centrality, betweenness
centrality, closeness centrality,

ä Important application: Social Network Analysis

20 Ark. 47th Spring Lect., May 4-6, 2022

Example: Method of least-squares

ä First use of least squares by Gauss, in early 1800’s:

A planet follows an elliptical orbit according to ay2+bxy+cx+dy+e = x2 in
cartesian coordinates. Given a set of noisy observations of (x, y) positions,
compute a, b, c, d, e, and use to predict future positions of the planet. This
least squares problem is nearly rank-deficient and hence very sensitive to
perturbations in the observations.

ä Problem type: Least-Squares system

Read Wikipedia’s article on planet ceres:
http://en.wikipedia.org/wiki/Ceres (dwarf planet)

21 Ark. 47th Spring Lect., May 4-6, 2022

http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

dy

dt
= Ay

Determine y(t) for t > 0, given y(0) [called ‘orbit’ of y]

ä Problem type: (Linear) system of ordinary differential equations.

Solution: y(t) = etAy(0)

ä Involves exponential of A [think Taylor series], i.e., a matrix function

22 Ark. 47th Spring Lect., May 4-6, 2022

ä This is the simplest form of dynamical systems (linear).

ä Consider the slightly more complex system:

dy

dt
= A(y)y

ä Nonlinear. Requires ‘integration scheme’.

ä Next: a little digression into our interesting times...

23 Ark. 47th Spring Lect., May 4-6, 2022

Example: The SIR model in epidemiology

A population of N individuals, with N = S + I +R where:

S Susceptible population. These are susecptible to being contaminated by
others (not immune).

I Infectious population: will contaminate susceptible individuals.

R ‘Removed’ population: either deceased or recovered. These will no
longer contaminate others.

Three
equations:

dS
dt

= −βIS; dI
dt

= (βS − µ)I; dR
dt

= µI

1/µ = infection period; β = µR0/N ; R0 = reproduction number.

24 Ark. 47th Spring Lect., May 4-6, 2022

ä The importance of reducing R0 (a.k.a. “social distancing”):

0 10 20 30 40 50 60 70 80

Days

0

0.5

1

1.5

2

2.5

3

3.5

N
u
m

b
e
r

in
fe

c
te

d
 (

I)

10 4

R0=3.0

R0=1.6

R0=1.2

R0=1.0

ä See the latest on this (R0 ≈ 8.2 for variant BA.1 and ≈ 12 for BA.2 !!)

ä ... and keep away from each other

25 Ark. 47th Spring Lect., May 4-6, 2022

https://www.pharmatimes.com/news/omicron_ba.2_variant_triggers_covid-19_surge_in_england_1389089

Problems in Numerical Linear Algebra

Linear systems: Ax = b. Often: A is large and sparse

Least-squares problems min ‖b−Ax‖2

Eigenvalue problem Ax = λx. Several variations -

SVD .. and

... Low-rank approximation

Tensors and low-rank tensor approximation

Matrix equations: Sylvester, Lyapunov, Riccati, ..

Nonlinear equations – acceleration methods

Matrix functions and applications

Many many more ...

26 Ark. 47th Spring Lect., May 4-6, 2022

SPARSE MATRICES ; DATA STRUCTURES

What are sparse matrices?

Vague definition: “..matrices that allow special techniques to take advantage
of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir
simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factorization
may be reasonably sparse (if a good technique is used).

28 Ark. 47th Spring Lect., May 4-6, 2022

Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

29 Ark. 47th Spring Lect., May 4-6, 2022

Sparse matrices in Matlab

- Explore the scripts Lap2D, mark (provided in matlab suite) for generat-
ing sparse matrices

- Explore the command spy

- Explore the command sparse

- Run the demos titled demo sparse0 and demo sparse1

- Load the matrix can 256.mat from the SuiteSparse collection. Show its
pattern

30 Ark. 47th Spring Lect., May 4-6, 2022

Sparse matrices - continued

ä Main goal of Sparse Matrix Techniques: To perform standard matrix com-
putations economically, i.e., without storing the zeros

ä Example: To add two square dense matrices of size n requires O(n2)

operations. To add two sparse matrices A and B requires O(nnz(A) +

nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

31 Ark. 47th Spring Lect., May 4-6, 2022

Data structures: The coordinate format (COO)

A =

1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.

ä Also known as ‘triplet format’
ä Simple data structure - Often used as ’entry’ format in
packages
ä Variant used in matlab
ä Note: order of entries is arbitrary [in matlab: sorted by
columns]

AA JR JC
12. 5 5

9. 3 5
7. 3 3
5. 2 4
1. 1 1
2. 1 4

11. 4 4
3. 2 1
6. 3 1
4. 2 2
8. 3 4

10. 4 3

32 Ark. 47th Spring Lect., May 4-6, 2022

Compressed Sparse Row (CSR) format

A =

12. 0. 0. 11. 0.

10. 9. 0. 8. 0.

7. 0. 6. 5. 4.

0. 0. 3. 2. 0.

0. 0. 0. 0. 1.

ä IA(j) points to beginning or row j in arrays AA, JA

ä Related: Compressed Sparse Column format,
Modified Sparse Row format (MSR).

1

4

1

2

4

1

3

4

5

3

4

5

10

12

13

 3

 1

 6

AA JA IA

12

10

 8

 7

 2

 3

 4

 6

 5

 9

 1

11

ä Used predominantly in Fortran & portable codes [e.g. Metis] – what about
C?
33 Ark. 47th Spring Lect., May 4-6, 2022

CSR (CSC) format - C-style

* CSR: Collection of pointers of rows & array of row lengths

typedef struct SpaFmt {
/*---
| C-style CSR format - used internally
| for all matrices in CSR/CSC format
|---*/

int n; /* size of matrix */
int *nzcount; /* length of each row */
int **ja; /* to store column indices */
double **ma; /* to store nonzero entries */

} SparMat;

aa[i][*] == entries of i-th row (col.);
ja[i][*] == col. (row) indices,
nzcount[i] == number of nonzero elmts in row (col.) i

34 Ark. 47th Spring Lect., May 4-6, 2022

Data structure used in Csparse [T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{/* matrix in compressed-column or triplet form */
int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size n+1) or

col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix,

-1 for compressed-col */
} cs ;

ä Can be used for CSR, CSC, and COO (triplet) storage

ä Easy to use from Fortran
35 Ark. 47th Spring Lect., May 4-6, 2022

Computing y = Ax; row and column storage

Row-form:
Dot product of A(i, :) and x
gives yi

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

Column-form:
Linear combination of
columns A(:, j) with
coefficients xj yields y

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

36 Ark. 47th Spring Lect., May 4-6, 2022

Matvec – row version

void matvec(csptr mata, double *x, double *y)
{

int i, k, *ki;
double *kr;
for (i=0; i<mata->n; i++) {

y[i] = 0.0;
kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[i] += kr[k] * x[ki[k]];
}

}

ä Uses sparse dot products (sparse SDOTS)

- Operation count

37 Ark. 47th Spring Lect., May 4-6, 2022

Matvec – Column version

void matvecC(csptr mata, double *x, double *y)
{

int n = mata->n, i, k, *ki;
double *kr;
for (i=0; i<n; i++)

y[i] = 0.0;
for (i=0; i<n; i++) {

kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[ki[k]] += kr[k] * x[i];
}

}

ä Uses sparse vector combinations (sparse SAXPY)

- Operation count
38 Ark. 47th Spring Lect., May 4-6, 2022

ä Using the CS data structure from Suite-Sparse:

int cs_gaxpy (cs *A, double *x, double *y) {
int p, j, n, *Ap, *Ai;
n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
for (j=0; j<n; j++) {

for (p=Ap[j]; p<Ap[j+1];p++)
y[Ai[p]] += Ax[p]*x[j];

}
return(1)
}

39 Ark. 47th Spring Lect., May 4-6, 2022

BASIC RELAXATION METHODS

Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A = D − E − F

D

−F

−E

D = diag(A), −E = strict lower part of A and −F its
strict upper part.
ä For example, Gauss-Seidel iteration :

(D − E)x(k+1) = Fx(k) + b

ä Most common techniques 60 years ago.

ä Now: used as smoothers in Multigrid or as preconditioners

Note: If ρ(k)
i = ith component of

current residual b−Ax then relaxation
version of GS is:

ξ
(k+1)
i = ξ

(k)
i +

ρ
(k)
i

aii

for i = 1, · · · , n

41 Ark. 47th Spring Lect., May 4-6, 2022

Iteration matrices

ä Jacobi, Gauss-Seidel, SOR, &
SSOR iterations are of the form

x(k+1) = Mx(k) + f

• MJac = D−1(E + F) = I −D−1A

• MGS(A) = (D − E)−1F = I − (D − E)−1A

SOR relaxation: ξ
(k+1)
i = ωξ

(GS,k+1)
i + (1− ω)ξ

(k)
i

• MSOR(A) = (D − ωE)−1(ωF + (1− ω)D)

= I − (ω−1D − E)−1A

- Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

42 Ark. 47th Spring Lect., May 4-6, 2022

An observation & Introduction to Preconditioning

ä The iteration x(k+1) = Mx(k) + f is attempting to solve (I −M)x = f .
Since M is of the form M = I − P−1A this system can be rewritten as

P−1Ax = P−1b

where for SSOR, we have

PSSOR = (D − ωE)D−1(D − ωF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration

43 Ark. 47th Spring Lect., May 4-6, 2022

