Numerical Linear Algebra: from Scientific Computing to Data Science Applications Yousef Saad
University of Minnesota

47th Annual Spring Lecture Series University of Arkansas

$$
\text { May 4-6, } 2022
$$

This tutorial: Topics \& Plan

> Current state of advanced Numerical Linear Algebra including:

- First part: Sparse large matrix problems, linear systems, eigenvalue problems
- Second: data-related problems: graphs, dimension reduction, ...
- Prerequisite: senior level course in numerical linear algebra
- 5 lectures + Matlab demos
- All materials posted here:

Schedule

Wed.	$8: 00-9: 00$ am	Historical Perspective; Background \& Examples; Sparsity; Data structures; Relaxation methods
Wed.	$1: 00-2: 00$ pm	Projection methods for lin. systems, Krylov methods Eigenvalue Pbs; Proj. Methods; Subs. it.; Lanczos
Thu.	8:00-9:00 am	Backround on Graphs; Graph representations; Graphs for Data; Networks \& Centrality; Graph Laplaceans.
Thu.	$1: 00-2: 00$ pm	Graph methods; Clustering; Segmentation; Graph embedding; Dimension Reduction; Informtion retrieval.
Fri.	8:00-9:00 am	Supervised Learning; Neural Networks; Coarsening in scientific computing \& in Data Sciences

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
"Solving linear systems can be interesting".

- Survey of the state of the art linear algebra in early 50s: direct methods, iterative methods, conditioning, preconditioning, The Conjugate Gradient, acceleration methods,
> An amazing paper in which the author was urging researchers to start looking at solving linear systems

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
"Solving linear systems can be interesting".

- Survey of the state of the art linear algebra in early 50s: direct methods, iterative methods, conditioning, preconditioning, The Conjugate Gradient, acceleration methods,
> An amazing paper in which the author was urging researchers to start looking at solving linear systems
> Nearly 70 years later - we can certainly state that:
"Linear Algebra problems in Machine Learning can be interesting"

Focus of numerical linear algebra changes over time

> Linear algebra took many direction changes in the past
1940s-1950s: Major issue: flutter problem in aerospace engineering \rightarrow eigenvalue problem [cf. Olga Taussky Todd] \rightarrow LR, QR, .. \rightarrow 'EISPACK'

1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques
1970s- Automotive, Aerospace, ..: Computational Fluid Dynamics (CFD)
Late 1980s: Thrust on parallel matrix computations.
Late 1990s: Spur of interest in "financial computing"
Current: Machine Learning

Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades.
> Strong new forces are now reshaping the field today: Applications related to the use of "data"
> Machine learning is appearing in unexpected places:

- design of materials
- machine learning in geophysics
- self-driving cars, ..
-

Big impact on the economy

> New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)
$>$ Huge impact on Jobs

Big impact on the economy

> New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)
$>$ Huge impact on Jobs
> Old leaders - e.g., Mining; Car companies; Aerospace; Manufacturing; offer little growth - Some instances of renewal driven by new technologies [e.g. Tesla]

$>$ Look at what you are doing under new lenses: DATA

Impact on what we teach...

> My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]
... Has changed substantially in past 4-6 years
Before: —PDEs, solving linear systems, Sparse direct solvers, Iterative methods, Krylov methods, Preconditioners, Multigrid,..

Now: - a little of sparse direct methods + Applications of graphs, dimension reduction, Krylov methods.. Examples in: PCA, Information retrieval, Segmentation, Clustering, ...

General Introduction and Background

> This tutorial is about Numerical Linear Algebra - both the classical kind and the new:

- Standard matrix computations (e.g. solving linear systems, eigenvalue/SVD problems, ...)
■ Graph algorithms and tools (Sparse graphs, graph coarsening, graphs and sparse methods). ..

■ Dimension reduction methods; Graph embeddings;

- Specific machine learning algorithms; unsupervised/ supervised learning;
- Graph coarsening methods in scientific computing and machine learning

Example: Fluid flow

Example: Eigenvalue Problems

> Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix A

- Structural Engineering - (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]
- ...

Example: Vibrations

> Vibrations in mechanical systems. See: www.cs.umn.edu/~saad/eig book 2ndEd.pdf

Problem: Determine the vibration modes of the mechanical system [to avoid resonance]. See details in Chapter 10 (sec. 10.2) of above reference.

> Problem type: Eigenvalue Problem

Example: Google Rank (pagerank)

If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?

> Problem type: (homogeneous) Linear system. Eigenvector problem.

Example: Power networks

> Electrical circuits .. [Kirchhiff's voltage Law]

Problem: Determine the loop currents in a an electrical circuit - using Kirchhoff's Law ($V=R I$)
> Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]

Example: Economics/ Marketing/ Social Networks

$>$ Given: an influence graph G : $g_{i j}=$ strength of influence of j over i
> Goal: charge member i price p_{i} in order to maximize profit
$>$ Utility for member i : [$x_{i}=$ consumption of i]

$$
u_{i}=a x_{i}-b x_{i}^{2}+\sum_{j \neq i} g_{i j} x_{j}-p_{i} x_{i}
$$

- 1: 'Monopolist' fixes prices; 2: agent i fixes consumption x_{i}

Result: Optimal pricing proportional to Bonacich centrality: $(I-\alpha G)^{-1}$ ๆ where $\alpha=\frac{1}{2 b}$ [Candogan et al., $2012+$ many refs.]
> 'centrality' defines a measure of importance of a node (or an edge) in a graph
> Many other ideas of centrality in graphs [degree centrality, betweenness centrality, closeness centrality,
> Important application: Social Network Analysis

Example: Method of least-squares

> First use of least squares by Gauss, in early 1800's:
A planet follows an elliptical orbit according to $a y^{2}+b x y+c x+d y+e=x^{2}$ in cartesian coordinates. Given a set of noisy observations of (x, y) positions, compute a, b, c, d, e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations.
> Problem type: Least-Squares system
Read Wikipedia's article on planet ceres:
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

$$
\frac{d y}{d t}=A y
$$

Determine $y(t)$ for $t>0$, given $y(0)$ [called 'orbit' of y]
$>$ Problem type: (Linear) system of ordinary differential equations.

Solution:

$$
y(t)=e^{t A} y(0)
$$

> Involves exponential of \boldsymbol{A} [think Taylor series], i.e., a matrix function

This is the simplest form of dynamical systems (linear).
$>$ Consider the slightly more complex system:

$$
\frac{d y}{d t}=A(y) y
$$

$>$ Nonlinear. Requires 'integration scheme'.
> Next: a little digression into our interesting times...

Example: The SIR model in epidemiology

A population of N individuals, with $N=S+I+R$ where:
S Susceptible population. These are susecptible to being contaminated by others (not immune).

1 Infectious population: will contaminate susceptible individuals.
R 'Removed' population: either deceased or recovered. These will no longer contaminate others.

Three

 equations:$$
\frac{d S}{d t}=-\beta I S ; \quad \frac{d I}{d t}=(\beta S-\mu) I ; \quad \frac{d R}{d t}=\mu I
$$

$1 / \mu=$ infection period; $\beta=\mu R_{0} / N ; R_{0}=$ reproduction number.

The importance of reducing R_{0} (a.k.a. "social distancing"):

$>$ See the latest on this ($R_{0} \approx 8.2$ for variant BA. 1 and ≈ 12 for BA. 2 !!)
... and keep away from each other

Problems in Numerical Linear Algebra

- Linear systems: $\boldsymbol{A x}=\boldsymbol{b}$. Often: \boldsymbol{A} is large and sparse
- Least-squares problems min $\|b-A x\|_{2}$
- Eigenvalue problem $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$. Several variations -
- SVD .. and
- ... Low-rank approximation
- Tensors and low-rank tensor approximation
- Matrix equations: Sylvester, Lyapunov, Riccati, ..
- Nonlinear equations - acceleration methods
- Matrix functions and applications
- Many many more ...

SPARSE MATRICES ; DATA STRUCTURES

What are sparse matrices?

Vague definition: "..matrices that allow special techniques to take advantage of the large number of zero elements and the structure."

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...
Goals: |Much less storage and work than dense computations.
Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).

Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

Sparse matrices in Matlab

® Explore the scripts Lap2D, mark (provided in matlab suite) for generating sparse matrices
(${ }^{0}$ Explore the command spy
Ex Explore the command sparse

* Run the demos titled demo_sparse0 and demo_sparse1
« Load the matrix can_256.mat from the SuiteSparse collection. Show its pattern

Sparse matrices - continued

> Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically, i.e., without storing the zeros

- Example: To add two square dense matrices of size n requires $O\left(n^{2}\right)$ operations. To add two sparse matrices A and B requires $O(n n z(A)+$ $n n z(B))$ where $n n z(X)=$ number of nonzero elements of a matrix X.
> For typical Finite Element/Finite difference matrices, number of nonzero elements is $O(n)$.

Data structures: The coordinate format (COO)

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

AA	JR	JC
12.	5	5
9.	3	5
7.	3	3
5.	2	4
1.	1	1
2.	1	4
11.	4	4
3.	2	1
6.	3	1
4.	2	2
8.	3	4
10.	4	3

Compressed Sparse Row (CSR) format

$$
A=\left(\begin{array}{ccccc}
12 . & 0 . & 0 . & 11 . & 0 . \\
10 . & 9 . & 0 . & 8 . & 0 . \\
7 . & 0 . & 6 . & 5 . & 4 . \\
0 . & 0 . & 3 . & 2 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

$>\mathrm{IA}(\mathrm{j})$ points to beginning or row j in arrays AA, JA
> Related: Compressed Sparse Column format, Modified Sparse Row format (MSR).

AA JA IA	
12	$1<1$
11	4
10	$1<3$
9	2
8	$4-6$
7	1
6	$3 \quad 10$
5	4
4	512
3	3
2	413
1	

> Used predominantly in Fortran \& portable codes [e.g. Metis] - what about C?

CSR (CSC) format - C-style

* CSR: Collection of pointers of rows \& array of row lengths

```
typedef struct SpaFmt {
/*--------------------------------------------------
| C-style CSR format - used internally
| for all matrices in CSR/CSC format
|-------------------------------------------------*/
    int n; /* size of matrix */
    int *nzcount; /* length of each row */
    int **ja; /* to store column indices */
    double **ma; /* to store nonzero entries */
} SparMat;
aa[i] [*] == entries of i-th row (col.);
ja[i][*] == col.(row) indices,
nzcount [i] == number of nonzero elmts in row (col.) i
```


Data structure used in Csparse

```
typedef struct cs_sparse
{/* matrix in compressed-column or triplet form */
    int nzmax ; /* maximum number of entries */
    int m ; /* number of rows */
    int n ; /* number of columns */
    int *p ; /* column pointers (size n+1) or
    col indices (size nzmax) */
    int *i ; /* row indices, size nzmax */
    double *x ; /* numerical values, size nzmax */
    int nz ; /* # of entries in triplet matrix,
                                    -1 for compressed-col */
} CS ;
```

$>$ Can be used for CSR, CSC, and COO (triplet) storage
$>$ Easy to use from Fortran

Computing $y=A x$; row and column storage

Row-form:
Dot product of $\boldsymbol{A}(i,:)$ and x gives y_{i}

Column-form:
Linear combination
columns $\quad A(:, j) \quad$ with coefficients x_{j} yields y

Matvec - row version

```
void matvec( csptr mata, double *x, double *y )
{
    int i, k, *ki;
    double *kr;
    for (i=0; i<mata->n; i++) {
        y[i] = 0.0;
        kr = mata->ma[i];
        ki = mata->ja[i];
        for (k=0; k<mata->nzcount[i]; k++)
            y[i] += kr[k] * x[ki[k]];
    }
}
> Uses sparse dot products (sparse SDOTS)
* Operation count
```


Matvec - Column version

```
void matvecC( csptr mata, double *x, double *y )
{
    int n = mata->n, i, k, *ki;
    double *kr;
    for (i=0; i<n; i++)
        y[i] = 0.0;
    for (i=0; i<n; i++) {
        kr = mata->ma[i];
        ki = mata->ja[i];
        for (k=0; k<mata->nzcount[i]; k++)
            y[ki[k]] += kr[k] * x[i];
    }
}
> Uses sparse vector combinations (sparse SAXPY)
* Operation count
```


Using the CS data structure from Suite-Sparse:

```
int cs_gaxpy (cs *A, double *x, double *y) {
    int p, j, n, *Ap, *Ai;
    n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
    for (j=0; j<n; j++) {
        for (p=Ap[j]; p<Ap[j+1];p++)
        y[Ai[p]] += Ax[p]*x[j];
    }
return(1)
```


Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition $A=D-E-F$

$\boldsymbol{D}=\operatorname{diag}(\mathrm{A}),-\boldsymbol{E}=$ strict lower part of \boldsymbol{A} and $-\boldsymbol{F}$ its strict upper part.
> For example, Gauss-Seidel iteration :

$$
(D-E) x^{(k+1)}=F x^{(k)}+b
$$

$>$ Most common techniques 60 years ago.
> Now: used as smoothers in Multigrid or as preconditioners
Note: If $\rho_{i}^{(k)}=i$ th component of current residual $\boldsymbol{b}-\boldsymbol{A x}$ then relaxation version of GS is:

$$
\begin{aligned}
& \xi_{i}^{(k+1)}=\xi_{i}^{(k)}+\frac{\rho_{i}^{(k)}}{a_{i i}} \\
& \text { for } i=1, \cdots, n
\end{aligned}
$$

Iteration matrices

> Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
x^{(k+1)}=M x^{(k)}+f
$$

- $M_{J a c}=D^{-1}(E+F)=I-D^{-1} A$
- $M_{G S}(A)=(D-E)^{-1} F=I-(D-E)^{-1} A$

SOR relaxation: $\xi_{i}^{(k+1)}=\omega \xi_{i}^{(G S, k+1)}+(1-\omega) \xi_{i}^{(k)}$

- $M_{S O R}(A)=(D-\omega E)^{-1}(\omega F+(1-\omega) D)$

$$
=I-\left(\omega^{-1} D-E\right)^{-1} A
$$

* Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

An observation \& Introduction to Preconditioning

$>$ The iteration $x^{(k+1)}=M x^{(k)}+f$ is attempting to solve $(I-M) x=f$. Since \boldsymbol{M} is of the form $\boldsymbol{M}=\boldsymbol{I}-P^{-1} A$ this system can be rewritten as

$$
P^{-1} A x=P^{-1} b
$$

where for SSOR, we have

$$
P_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

referred to as the SSOR 'preconditioning' matrix.
In other words:

Relaxation Scheme \Longleftrightarrow Preconditioned Fixed Point Iteration

