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This tutorial: Topics & Plan

ä Current state of advanced Numerical Linear Algebra including:

First part: Sparse large matrix problems, linear systems, eigenvalue prob-
lems

Second: data-related problems: graphs, dimension reduction, ...

Prerequisite: senior level course in numerical linear algebra

5 lectures + Matlab demos

All materials posted here:
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Schedule

Wed. 8:00– 9:00 Historical Perspective; Background & Examples;
am Sparsity; Data structures; Relaxation methods

Wed. 1:00 – 2:00 Projection methods for lin. systems, Krylov methods
pm Eigenvalue Pbs; Proj. Methods; Subs. it.; Lanczos

Thu. 8:00– 9:00 Backround on Graphs; Graph representations; Graphs
am for Data; Networks & Centrality; Graph Laplaceans.

Thu. 1:00 – 2:00 Graph methods; Clustering; Segmentation; Graph
pm embedding; Dimension Reduction; Informtion retrieval.

Fri. 8:00– 9:00 Supervised Learning; Neural Networks; Coarsening
am in scientific computing & in Data Sciences
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra in early 50s:
direct methods, iterative methods, conditioning, precondition-
ing, The Conjugate Gradient, acceleration methods, ....

ä An amazing paper in which the author was urging researchers to start
looking at solving linear systems
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra in early 50s:
direct methods, iterative methods, conditioning, precondition-
ing, The Conjugate Gradient, acceleration methods, ....

ä An amazing paper in which the author was urging researchers to start
looking at solving linear systems

ä Nearly 70 years later – we can certainly state that:

“Linear Algebra problems in Machine Learning can be
interesting”
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Focus of numerical linear algebra changes over time

ä Linear algebra took many direction changes in the past

1940s–1950s: Major issue: flutter problem in aerospace engineering
→ eigenvalue problem [cf. Olga Taussky Todd]→ LR, QR, .. → ‘EISPACK’

1960s: Problems related to the power grid promoted what we would call
today general sparse matrix techniques

1970s– Automotive, Aerospace, ..: Computational Fluid Dynamics ( CFD )

Late 1980s: Thrust on parallel matrix computations .

Late 1990s: Spur of interest in “financial computing”

Current: Machine Learning
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Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng.
(e.g. structures) major force behind numerical linear algebra algorithms in
the past few decades.

ä Strong new forces are now reshaping the field today: Applications related
to the use of “data”

ä Machine learning is appearing in unexpected places:

• design of materials

• machine learning in geophysics

• self-driving cars, ..

• ....
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Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs
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Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs

ä Old leaders - e.g., Mining; Car companies;
Aerospace; Manufacturing; offer little growth
– Some instances of renewal driven by new
technologies [e.g. Tesla]

ä Look at what you are doing under new lenses: DATA
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Impact on what we teach...

ä My course: CSCI 8314: Sparse Matrix Computations
[url: my website - follow teaching]

... Has changed substantially in past 4-6 years

Before: —PDEs, solving linear systems, Sparse direct solvers, Iterative
methods, Krylov methods, Preconditioners, Multigrid,..

−→

Now: — a little of sparse direct methods + Applications of graphs, dimen-
sion reduction, Krylov methods.. Examples in: PCA, Information retrieval,
Segmentation, Clustering, ...
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General Introduction and Background

ä This tutorial is about Numerical Linear Algebra – both the classical kind
and the new :

Standard matrix computations (e.g. solving linear systems, eigenvalue/SVD
problems, ...)

Graph algorithms and tools (Sparse graphs, graph coarsening, graphs
and sparse methods). ..

Dimension reduction methods; Graph embeddings;

Specific machine learning algorithms; unsupervised/ supervised learning;

Graph coarsening methods in scientific computing and machine learning
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Example: Fluid flow

Physical Model
↓

Nonlinear PDEs
↓

Discretization
↓

Linearization (Newton)
↓

Sparse Linear Systems Ax = b
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Example: Eigenvalue Problems

ä Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...
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Example: Vibrations

ä Vibrations in mechanical systems. See:
www.cs.umn.edu/∼saad/eig book 2ndEd.pdf

Problem: Determine the vibration modes of the
mechanical system [to avoid resonance]. See
details in Chapter 10 (sec. 10.2) of above
reference.

jjjjj
jjjjj
m1

m2

l1

l2

k1

k2

ä Problem type: Eigenvalue Problem
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Example: Google Rank (pagerank)

If one were to do a random walk
from web page to web page, fol-
lowing each link on a given web
page at random with equal likeli-
hood, which are the pages to be
encountered this way most often?

ä Problem type: (homogeneous) Linear system. Eigenvector problem.
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Example: Power networks

ä Electrical circuits .. [Kirchhiff’s voltage Law]

1 Ω 1 Ω

1 Ω1 Ω

1 Ω

4 Ω

30 v 20v

5v

3 Ω

Ω4

Problem: Determine the loop currents in a an electrical circuit - using Kirch-
hoff’s Law (V = RI)

ä Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
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Example: Economics/ Marketing/ Social Networks

ä Given: an influence graph G: gij = strength of influence of j over i
ä Goal: charge member i price pi in
order to maximize profit
ä Utility for member i: [xi = con-
sumption of i]

ui = axi − bx2
i +

∑
j 6=i

gijxj − pixi

• 1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption xi

Result : Optimal pricing proportional to Bonacich centrality:
(I − αG)−1 1 where α = 1

2b
[Candogan et al., 2012 + many refs.]
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ä ’centrality’ defines a measure of importance of a node (or an edge) in a
graph

ä Many other ideas of centrality in graphs [degree centrality, betweenness
centrality, closeness centrality,

ä Important application: Social Network Analysis
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Example: Method of least-squares

ä First use of least squares by Gauss, in early 1800’s:

A planet follows an elliptical orbit according to ay2+bxy+cx+dy+e = x2 in
cartesian coordinates. Given a set of noisy observations of (x, y) positions,
compute a, b, c, d, e, and use to predict future positions of the planet. This
least squares problem is nearly rank-deficient and hence very sensitive to
perturbations in the observations.

ä Problem type: Least-Squares system

Read Wikipedia’s article on planet ceres:
http://en.wikipedia.org/wiki/Ceres (dwarf planet)
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Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

dy

dt
= Ay

Determine y(t) for t > 0, given y(0) [called ‘orbit’ of y]

ä Problem type: (Linear) system of ordinary differential equations.

Solution: y(t) = etAy(0)

ä Involves exponential of A [think Taylor series], i.e., a matrix function
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ä This is the simplest form of dynamical systems (linear).

ä Consider the slightly more complex system:

dy

dt
= A(y)y

ä Nonlinear. Requires ‘integration scheme’.

ä Next: a little digression into our interesting times...
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Example: The SIR model in epidemiology

A population of N individuals, with N = S + I +R where:

S Susceptible population. These are susecptible to being contaminated by
others (not immune).

I Infectious population: will contaminate susceptible individuals.

R ‘Removed’ population: either deceased or recovered. These will no
longer contaminate others.

Three
equations:

dS
dt

= −βIS; dI
dt

= (βS − µ)I; dR
dt

= µI

1/µ = infection period; β = µR0/N ; R0 = reproduction number.
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ä The importance of reducing R0 (a.k.a. “social distancing”):
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ä See the latest on this (R0 ≈ 8.2 for variant BA.1 and ≈ 12 for BA.2 !!)

ä ... and keep away from each other
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Problems in Numerical Linear Algebra

Linear systems: Ax = b. Often: A is large and sparse

Least-squares problems min ‖b−Ax‖2

Eigenvalue problem Ax = λx. Several variations -

SVD .. and

... Low-rank approximation

Tensors and low-rank tensor approximation

Matrix equations: Sylvester, Lyapunov, Riccati, ..

Nonlinear equations – acceleration methods

Matrix functions and applications

Many many more ...
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SPARSE MATRICES ; DATA STRUCTURES



What are sparse matrices?

Vague definition: “..matrices that allow special techniques to take advantage
of the large number of zero elements and the structure.”

A few applications of sparse matrices: Structural Engineering, Reservoir
simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factorization
may be reasonably sparse (if a good technique is used).
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Sample sparsity patterns

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by  3 grid, 3 unk
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Sparse matrices in Matlab

- Explore the scripts Lap2D, mark (provided in matlab suite) for generat-
ing sparse matrices

- Explore the command spy

- Explore the command sparse

- Run the demos titled demo sparse0 and demo sparse1

- Load the matrix can 256.mat from the SuiteSparse collection. Show its
pattern
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Sparse matrices - continued

ä Main goal of Sparse Matrix Techniques: To perform standard matrix com-
putations economically, i.e., without storing the zeros

ä Example: To add two square dense matrices of size n requires O(n2)

operations. To add two sparse matrices A and B requires O(nnz(A) +

nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).
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Data structures: The coordinate format (COO)

A =


1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.


ä Also known as ‘triplet format’
ä Simple data structure - Often used as ’entry’ format in
packages
ä Variant used in matlab
ä Note: order of entries is arbitrary [in matlab: sorted by
columns]

AA JR JC
12. 5 5

9. 3 5
7. 3 3
5. 2 4
1. 1 1
2. 1 4

11. 4 4
3. 2 1
6. 3 1
4. 2 2
8. 3 4

10. 4 3
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Compressed Sparse Row (CSR) format

A =


12. 0. 0. 11. 0.

10. 9. 0. 8. 0.

7. 0. 6. 5. 4.

0. 0. 3. 2. 0.

0. 0. 0. 0. 1.


ä IA(j) points to beginning or row j in arrays AA, JA

ä Related: Compressed Sparse Column format,
Modified Sparse Row format (MSR).
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ä Used predominantly in Fortran & portable codes [e.g. Metis] – what about
C?
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CSR (CSC) format - C-style

* CSR: Collection of pointers of rows & array of row lengths

typedef struct SpaFmt {
/*---------------------------------------------
| C-style CSR format - used internally
| for all matrices in CSR/CSC format
|---------------------------------------------*/

int n; /* size of matrix */
int *nzcount; /* length of each row */
int **ja; /* to store column indices */
double **ma; /* to store nonzero entries */

} SparMat;

aa[i][*] == entries of i-th row (col.);
ja[i][*] == col. (row) indices,
nzcount[i] == number of nonzero elmts in row (col.) i

34 Ark. 47th Spring Lect., May 4-6, 2022



Data structure used in Csparse [T. Davis’ SuiteSparse code]

typedef struct cs_sparse
{/* matrix in compressed-column or triplet form */
int nzmax ; /* maximum number of entries */
int m ; /* number of rows */
int n ; /* number of columns */
int *p ; /* column pointers (size n+1) or

col indices (size nzmax) */
int *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
int nz ; /* # of entries in triplet matrix,

-1 for compressed-col */
} cs ;

ä Can be used for CSR, CSC, and COO (triplet) storage

ä Easy to use from Fortran
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Computing y = Ax; row and column storage

Row-form:
Dot product of A(i, :) and x
gives yi

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax

Column-form:
Linear combination of
columns A(:, j) with
coefficients xj yields y

★ ★

★ ★

★

★

★ ★

★ ★

★

★ ★

x Ax
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Matvec – row version

void matvec( csptr mata, double *x, double *y )
{

int i, k, *ki;
double *kr;
for (i=0; i<mata->n; i++) {

y[i] = 0.0;
kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[i] += kr[k] * x[ki[k]];
}

}

ä Uses sparse dot products (sparse SDOTS)

- Operation count
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Matvec – Column version

void matvecC( csptr mata, double *x, double *y )
{

int n = mata->n, i, k, *ki;
double *kr;
for (i=0; i<n; i++)

y[i] = 0.0;
for (i=0; i<n; i++) {

kr = mata->ma[i];
ki = mata->ja[i];
for (k=0; k<mata->nzcount[i]; k++)

y[ki[k]] += kr[k] * x[i];
}

}

ä Uses sparse vector combinations (sparse SAXPY)

- Operation count
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ä Using the CS data structure from Suite-Sparse:

int cs_gaxpy (cs *A, double *x, double *y) {
int p, j, n, *Ap, *Ai;
n = A->n; Ap = A-> p; Ai = A->i; Ax = A->x;
for (j=0; j<n; j++) {

for (p=Ap[j]; p<Ap[j+1];p++)
y[Ai[p]] += Ax[p]*x[j];

}
return(1)
}
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BASIC RELAXATION METHODS



Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A = D − E − F

D

−F

−E

D = diag(A), −E = strict lower part of A and −F its
strict upper part.
ä For example, Gauss-Seidel iteration :

(D − E)x(k+1) = Fx(k) + b

ä Most common techniques 60 years ago.

ä Now: used as smoothers in Multigrid or as preconditioners

Note: If ρ(k)
i = ith component of

current residual b−Ax then relaxation
version of GS is:

ξ
(k+1)
i = ξ

(k)
i +

ρ
(k)
i

aii

for i = 1, · · · , n
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Iteration matrices

ä Jacobi, Gauss-Seidel, SOR, &
SSOR iterations are of the form

x(k+1) = Mx(k) + f

• MJac = D−1(E + F ) = I −D−1A

• MGS(A) = (D − E)−1F = I − (D − E)−1A

SOR relaxation: ξ
(k+1)
i = ωξ

(GS,k+1)
i + (1− ω)ξ

(k)
i

• MSOR(A) = (D − ωE)−1(ωF + (1− ω)D)

= I − (ω−1D − E)−1A

- Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/
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An observation & Introduction to Preconditioning

ä The iteration x(k+1) = Mx(k) + f is attempting to solve (I −M)x = f .
Since M is of the form M = I − P−1A this system can be rewritten as

P−1Ax = P−1b

where for SSOR, we have

PSSOR = (D − ωE)D−1(D − ωF )

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration
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PROJECTION METHODS



Projection Methods

ä The main idea of projection methods is to extract an approximate solution
from a subspace.

ä We define a subspace of approximants of dimension m and a set of m
conditions to extract the solution

ä These conditions are typically expressed by orthogonality constraints.

ä This defines one basic step which is repeated until convergence (alterna-
tively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be
viewed as a projection step
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Background on projectors

ä A projector is a linear operator that
is idempotent:

P 2 = P

A few properties:

• P is a projector iff I − P is a projector

• x ∈ Ran(P ) iff x = Px iff x ∈ Null(I − P )

• This means that : Ran(P ) = Null(I − P ) .

• Any x ∈ Rn can be written (uniquely) as x = x1 + x2,
x1 = Px ∈ Ran(P ) x2 = (I − P )x ∈ Null(P ) - So:

Rn = Ran(P )⊕ Null(P )
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Background on projectors (Continued)

Decomposition Rn = K ⊕ S defines a (unique) projector P :

• From x = x1 + x2, set Px = x1.

• For this P : Ran(P ) = K and Null(P ) = S.

• Note: dim(K) = m, dim(S) = n−m.

ä Pb: express mapping x→ u = Px in terms of K,S

ä Note u ∈ K, x− u ∈ S

ä Express 2nd part with m constraints: let L = S⊥, then

u = Px iff
{

u∈K
x−u⊥L

ä Projection onto K and or-
thogonally to L
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ä Illustration: P projects onto K and orthogonally to L

ä When L = K projector is orthogonal.

ä Note: Px = 0 iff x ⊥ L.
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Projection methods for linear systems

ä Initial Problem: b−Ax = 0

ä Given two subspaces K and L of RN of dimension m, define ...

Approximate problem: Find x̃ ∈ K such that b−Ax̃ ⊥ L︸ ︷︷ ︸
Petrov-Galerkin cond.

ä m degrees of freedom (K) + m constraints (L)→

ä To solve: A small linear system (‘projected problem’)

ä Basic projection step. Typically a sequence of such steps are applied
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ä With a nonzero initial guess x0, approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. → system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

- Formulate Gauss-Seidel as a projection method -

- Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’ of
coordinates span{ei, ei+1, ..., ei+p}
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Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

ä Write approximate solution as x̃ = x0 + δ ≡ x0 + V y where y ∈ Rm.
Then Petrov-Galerkin condition yields:

W T (r0 −AV y) = 0

ä Therefore,

x̃ = x0 + V [W TAV ]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a simple struc-
ture [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases:
V = [v1, . . . , vm] for K and
W = [w1, . . . , wm] for L.

3. Compute :
r ← b−Ax,
y ← (W TAV )−1W Tr,

x← x+ V y.
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Projection methods: Operator form representation

ä Let Π = the orthogonal projector onto K and
Q the (oblique) projector onto K and orthogonally to L.

Πx ∈ K, x−Πx ⊥ K
Qx ∈ K, x−Qx ⊥ L
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Π and Q projectors

Assumption: no vector of K is ⊥ to L
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In the case x0 = 0, approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form (solution is Πx)

Q(b−AΠx) = 0

Question: what accuracy can one expect?

54 Ark. 47th Spring Lect., May 4-6, 2022



ä Let x∗ be the exact solution. Then

1) We cannot get better accuracy than ‖(I −Π)x∗‖2, i.e.,

‖x̃− x∗‖2 ≥ ‖(I −Π)x∗‖2

2) The residual of the exact solution for the approximate problem satisfies:

‖b−QAΠx∗‖2 ≤ ‖QA(I −Π)‖2‖(I −Π)x∗‖2
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Two Important Particular Cases.

1. L = K

ä When A is SPD then ‖x∗ − x̃‖A = minz∈K ‖x∗ − z‖A.

ä Class of Galerkin or Orthogonal projection methods

ä Important member of this class: Conjugate Gradient (CG) method

2. L = AK .

In this case ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

ä Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES,
CGNR, ...
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One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃ = x+ αd. Condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

ä Three popular choices:

(1) Steepest descent

(2) Minimal residual iteration

(3) Residual norm steepest descent
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1. Steepest descent.

A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Each step minimizes f(x) = ‖x − x∗‖2
A = (A(x − x∗), (x − x∗)) in

direction −∇f .

ä Convergence guaranteed if A is SPD.

- As is formulated, the above algorithm requires 2 ‘matvecs’ per step.
Reformulate it so only one is needed.
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Convergence based on the Kantorovitch inequality: Let B be an SPD
matrix, λmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤

(λmax + λmin)
2

4 λmaxλmin
, ∀x 6= 0.

ä This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors dk = x∗−xk
generated by steepest descent satisfy:

‖dk+1‖A ≤
λmax − λmin
λmax + λmin

‖dk‖A

ä Algorithm converges for any initial guess x0.
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Proof: Observe ‖dk+1‖2
A = (Adk+1, dk+1) = (rk+1, dk+1)

ä by substitution,
‖dk+1‖2

A = (rk+1, dk − αkrk)

ä By construction rk+1 ⊥ rk so we get ‖dk+1‖2
A = (rk+1, dk). Now:

‖dk+1‖2
A = (rk − αkArk, dk)

= (rk, A
−1rk)− αk(rk, rk)

= ‖dk‖2
A

(
1−

(rk, rk)

(rk, Ark)
×

(rk, rk)

(rk, A−1rk)

)
.

Result follows by applying the Kantorovich inequality.
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2. Minimal residual iteration.

A positive definite (A+AT is SPD). Take at each step d = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction r.

ä Converges under the condition that A+AT is SPD.

- As is formulated, the above algorithm would require 2 ’matvecs’ at each
step. Reformulate it so that only one matvec is required
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Convergence

Let A be a real positive definite matrix, and let

µ = λmin(A+AT )/2, σ = ‖A‖2.

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

‖rk+1‖2 ≤
(

1−
µ2

σ2

)1/2

‖rk‖2

ä In this case Min. Res. converges for any initial guess x0.
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Proof: Similar to steepest descent. Start with

‖rk+1‖2
2 = (rk+1, rk − αkArk)

= (rk+1, rk)− αk(rk+1, Ark).

By construction, rk+1 = rk − αkArk is ⊥ Ark, so:
‖rk+1‖2

2 = (rk+1, rk) = (rk − αkArk, rk). Then:

‖rk+1‖2
2 = (rk, rk)− αk(Ark, rk)

= ‖rk‖2
2

(
1−

(Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)
= ‖rk‖2

2

(
1−

(Ark, rk)
2

(rk, rk)2

‖rk‖2
2

‖Ark‖2
2

)
.

Result follows from the inequalities (Ax, x)/(x, x) ≥ µ > 0 and ‖Ark‖2 ≤
‖A‖2 ‖rk‖2.
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3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step d = ATr and e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖2

2/‖Ad‖2
2

x← x+ αd

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction −∇f .

ä Important Note: equivalent to usual steepest descent applied to normal
equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.
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KRYLOV SUBSPACE METHODS



Motivation

ä One-dimensional
projection techniques:

xnew = x+ αd where d = a certain di-
rection.

ä α is defined to optimize a certain function.

ä Equivalently: determine α by an orthogonality constraint

Example
In MR:
x(α) = x+ αd, with d = b−Ax.
minα ‖b−Ax(α)‖2 reached iff b−Ax(α) ⊥ r

ä One-dimensional projection methods are greedy methods. They are
‘short-sighted’.
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Example:

Recall in Steepest Descent: New direction of
search r̃ is ⊥ to old direction of search r.

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

Question: can we do better by combining successive iterates?

ä Yes: Krylov subspace methods..
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Krylov subspace methods: Introduction

ä Consider MR (or steepest de-
scent). At each iteration:

rk+1 = b−A(x(k) + αkrk)

= rk − αkArk
= (I − αkA)rk

ä In the end: rk+1 = (I − αkA)(I − αk−1A) · · · (I − α0A)r0 = pk+1(A)r0

where pk+1(t) is a polynomial of degree k + 1 of the form

pk+1(t) = 1− tqk(t)

- Show that: x(k+1) = x(0) + qk(A)r0 , with deg (qk) = k

ä Krylov subspace methods: iterations of this form that are ‘optimal’ [from
m-dimensional projection methods]
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km [µ ≡ deg. of minimal polynomial of v1.]

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 1 Arnoldi

1: for j = 1, ...,m do
2: Compute w := Avj

3: for i = 1, . . . , j do
4: hi,j := (w, vi)

5: w := w − hi,jvi
6: end for
7: Compute: hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

8: end for
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Result of orthogonalization process (Arnoldi):

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm

3. V T
mAVm = Hm ≡ Hm− last row.

Vm =

@
@
@
@
@
@
@

@
@
@
@
@
@
@

O
Hm =

Vm+1 = [Vm, vm+1]

AVm = Vm+1Hm
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Arnoldi’s Method for linear systems (Lm = Km)

From Petrov-Galerkin condition when
Lm = Km, we get

xm = x0 + VmH
−1
m V T

mr0

ä Select v1 = r0/‖r0‖2 ≡ r0/β in
Arnoldi’s. Then

xm = x0 + βVmH
−1
m e1

- What is the residual vector rm = b−Axm?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s ORTHORES
[1982], Axelsson’s projection method [1981],..

* Also Conjugate Gradient method [see later]
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Minimal residual methods (Lm = AKm)

When Lm = AKm, we let Wm ≡ AVm and obtain relation

xm = x0 + Vm[W T
mAVm]−1W T

mr0

= x0 + Vm[(AVm)TAVm]−1(AVm)Tr0.

ä Use again v1 := r0/(β := ‖r0‖2) and the relation

AVm = Vm+1Hm

ä xm = x0 + Vm[H̄T
mH̄m]−1H̄T

mβe1 = x0 + Vmym

where ym minimizes ‖βe1 − H̄my‖2 over y ∈ Rm.
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ä Gives the Generalized Minimal Residual method (GMRES) ([YS-Schultz,’86]):

xm = x0 + Vmym where
ym = min

y
‖βe1 − H̄my‖2

ä Several Mathematically equivalent methods:

• Axelsson’s CGLS • Orthomin (1980)
• Orthodir • GCR
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The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

Hm = V T
mAVm

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix
then the matrix Hm is symmetric tridiagonal:

hij = 0 1 ≤ i < j − 1; and
hj,j+1 = hj+1,j, j = 1, . . . ,m
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ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


(1)

The vi’s satisfy a 3-term recurrence [Lanczos Algorithm]:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi→ Symmetric Lanczos
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The Lanczos algorithm

ALGORITHM : 2 Lanczos

1. Choose an initial vector v1, s.t. ‖v1‖2 = 1

Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo
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Lanczos algorithm for linear systems

ä Usual orthogonal projection method setting:

• Lm = Km = span{r0, Ar0, . . . , A
m−1r0}

• Basis Vm = [v1, . . . , vm] of Km generated by the Lanczos algorithm

ä Three different possible implementations.

(1) Arnoldi-like;

(2) Exploit tridiagonal nature of Hm (DIOM);

(3) Conjugate gradient (CG) - derived from (2)

We will skip details and show the CG algorithm
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The Conjugate Gradient Algorithm (A S.P.D.)

ALGORITHM : 3 Conjugate Gradient Method

1: Start: r0 := b−Ax0, p0 := r0.
2: while (xj Not-converged) do
3: αj := (rj, rj)/(Apj, pj)

4: xj+1 := xj + αjpj

5: rj+1 := rj − αjApj
6: βj := (rj+1, rj+1)/(rj, rj)

7: pj+1 := rj+1 + βjpj

8: end while

rj = scaling × vj+1 → the rj’s are orthogonal.

The pj’s are A-conjugate, i.e., (Api, pj) = 0 for i 6= j.
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A bit of history. From the 1952 CG article:

“The method of conjugate gradients was developed independently by
E. Stiefel of the Institute of Applied Mathematics at Zurich and by M.
R. Hestenes with the cooperation of J. B. Rosser, G. Forsythe, and
L. Paige of the Institute for Numerical Analysis, National Bureau of
Standards. (...) The first papers on this method were given by E.
Stiefel [1952] and by M. R. Hestenes [1951]. Reports on this method
were given by E. Stiefel and J. B. Rosser at a Symposium on August
23-25, 1951. Recently, C. Lanczos [1952] developed a closely related
routine based on his earlier paper on eigenvalue problem [1950].
Examples and numerical tests of the method have been by R. Hayes,
U. Hoschstrasser, and M. Stein.”
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SOLUTION OF EIGENVALUE PROBLEMS



Background. Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu] (Goal: frequency response)

• Electronic structure calculations [Schrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

ä Large eigenvalue problems in quantum chemistry use up biggest portion
of the time in supercomputer centers
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Background. New applications in data analytics

ä Machine learning problems often require a (partial) Singular Value De-
composition -

ä Somewhat different issues in this case:

• Very large matrices, update the SVD

• Compute dominant singular values/vectors

• Many problems of approximating a matrix (or a tensor) by one of lower
rank (Dimension reduction, ...)

ä But: Methods for computing SVD often based on those for standard
eigenvalue problems
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Background. The Problem (s)

ä Standard eigenvalue problem:

Ax = λx

Often: A is symmetric real (or Hermitian complex)

ä Generalized problem Ax = λBx Often: B is symmetric positive
definite, A is symmetric or nonsymmetric

ä Quadratic problems: (A+ λB + λ2C)u = 0

ä Nonlinear eigenvalue
problems (NEVP)

[
A0 + λB0 +

n∑
i=1

fi(λ)Ai

]
u = 0
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ä General form of NEVP A(λ)x = 0

ä Nonlinear eigenvector problems:

[A+ λB + F (u1, u2, · · · , uk)]u = 0

What to compute:

• A few λi ’s with smallest or largest real parts;

• All λi’s in a certain region of C;

• A few of the dominant eigenvalues;

• All λi’s (rare).
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Large eigenvalue problems in applications

ä Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

ä Density Functional Theory in electronic structure calculations: ‘ground
states’

ä Excited states involve transitions and invariably lead to much more com-
plex computations. → Large matrices, *many* eigen-pairs to compute
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Background: The main tools

Projection process: Rayleigh-Ritz

(a) Build a ‘good’ subspace K = span(V );

(b) get approximate eigenpairs by a Rayleigh-Ritz process:

Find λ̃ ∈ C, ũ ∈ K such that: (A− λ̃I)ũ ⊥ K

ä Will revisit this shortly
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The main tools: Shift-and-invert:

ä If we want eigenvalues near σ, replace A by (A− σI)−1.

Example: power method: vj = Avj−1/scaling replaced by

vj =
(A−σI)−1vj−1

scaling

ä Works well for computing a few eigenvalues near σ/

ä Used in commercial package NASTRAN (for decades!)

ä Requires factoring (A − σI) (or (A − σB) in generalized case.) But
convergence will be much faster.

ä A solve each time - Factorization done once (ideally).
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The main tools: Deflation / Restarting

Deflation: ä Once eigenvectors converge remove them from the picture
(e.g., with power method, second largest becomes largest eigenvalue after
deflation).

Restarting Strategies:

ä Restart projection process by using information gathered in previous steps

ä ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-invert (op-
tion).]

89 Ark. 47th Spring Lect., May 4-6, 2022



Current state-of-the art in eigensolvers

ä Eigenvalues at one end of the spectrum:

• Subspace iteration + filtering [e.g. FEAST, Cheb,...]

• Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..),
e.g., ARPACK code, PRIMME.

• Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]

• + Many others - more or less related to above

ä ‘Interior’ eigenvalue problems (middle of spectrum):

• Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g.,
NASTRAN

• Rational filtering [FEAST, Sakurai et al.,.. ]
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Projection Methods for Eigenvalue Problems

General formulation:

ä Projection method onto K orthogonal to L

ä Given: Two subspaces K and L of same dimension.

ä Find: λ̃, ũ such that: λ̃ ∈ C, ũ ∈ K; (λ̃I −A)ũ ⊥ L

Two types of methods:

ä Orthogonal projection methods: situation when L = K.

ä Oblique projection methods: When L 6= K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvec-
tors of A.
Question: How to extract good approximations to eigenvalues/ eigenvec-
tors from this subspace?

Answer: Rayleigh Ritz process.

LetQ = [q1, . . . , qm] an orthonormal basis ofX. Then write an approximation
in the form ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0 ä QHAQy = λ̃y
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Procedure:
1. Obtain an orthonormal basis of X
2. Compute C = QHAQ (an m×m matrix)
3. Obtain Schur factorization of C, C = Y RY H

4. Compute Ũ = QY

Property: if X is (exactly) invariant, then procedure will yield exact eigen-
values and eigenvectors.

Proof: Since X is invariant, (A − λ̃I)u = Qz for a certain z. QHQz = 0

implies z = 0 and therefore (A− λ̃I)u = 0.

ä Can use this procedure in conjunction with the subspace obtained from
subspace iteration algorithm
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Subspace Iteration

ä Original idea: projection technique onto a subspace if the form Y = AkX

ä In practice: Replace Ak by suitable polynomial [Chebyshev]

Advantages:
• Easy to implement (in symmetric case);
• Easy to analyze;

Disadvantage: Slow.

ä Often used with polynomial acceleration: AkX replaced by Ck(A)X.
Typically Ck = Chebyshev polynomial.
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Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [x0, . . . , xm]

and an initial polynomial Ck.

2. Iterate: Until convergence do:

(a) Compute Ẑ = Ck(A)Xold.
(b) Orthonormalize Ẑ into Z.
(c) Compute B = ZHAZ and use the QR algorithm to

compute the Schur vectors Y = [y1, . . . , ym] of B.
(d) Compute Xnew = ZY .
(e) Test for convergence. If satisfied stop. Else select a new

polynomial C′k′ and continue.



THEOREM: Let S0 = span{x1, x2, . . . , xm} and assume that S0 is such that
the vectors {Pxi}i=1,...,m are linearly independent where P is the spectral
projector associated with λ1, . . . , λm. Let Pk the orthogonal projector onto
the subspace Sk = span{Xk}. Then for each eigenvector ui of A, i =

1, . . . ,m, there exists a unique vector si in the subspace S0 such that Psi =

ui. Moreover, the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣λm+1

λi

∣∣∣∣+ εk

)k
, (2)

where εk tends to zero as k tends to infinity.
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• The most important class of iterative methods.

• Many variants exist depending on the subspace L.

Simple properties of Km [µ ≡ deg. of minimal polynomial of v1.]

•Km = {p(A)v1|p = polynomial of degree ≤ m− 1}

•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.
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Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 4 Arnoldi’s procedure

For j = 1, ...,m do
Compute w := Avj

For i = 1, . . . , j, do

{
hi,j := (w, vi)

w := w − hi,jvi
hj+1,j = ‖w‖2; vj+1 = w/hj+1,j

End
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Result of Arnoldi’s algorithm

Let

Hm =



x x x x x

x x x x x

x x x x

x x x

x x

x


; Hm = Hm(1 : m, 1 : m)

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.
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Appliaction to eigenvalue problems

ä Write approximate eigenvector as ũ = Vmy + Galerkin condition

(A− λ̃I)Vmy ⊥ Km→ V H
m (A− λ̃I)Vmy = 0

ä Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

Associated approximate eigenvectors are

ũj = Vmyj

Typically a few of the outermost eigenvalues will converge first.
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Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary

ä Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM : 5 Restarted Arnoldi

1. Start: Choose an initial vector v1 and a dimension m.
2. Iterate: Perform m steps of Arnoldi’s algorithm.
3. Restart: Compute the approximate eigenvector u(m)

1

4. associated with the rightmost eigenvalue λ(m)
1 .

5. If satisfied stop, else set v1 ≡ u(m)
1 and goto 2.
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Deflation

ä Very useful in practice.

ä Different forms: locking (subspace iteration), selective orthogonalization
(Lanczos), Schur deflation, ...

A little background Consider Schur canonical form A = URUH

where U is a (complex) upper triangular matrix.

ä Vector columns u1, . . . , un called Schur vectors.

ä Note: Schur vectors are not unique. In particular, they depend on the
order of the eigenvalues
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Wiedlandt Deflation: Assume we have computed a right eigenpair λ1, u1.
Wielandt deflation considers eigenvalues of

A1 = A− σu1v
H

Note:
Λ(A1) = {λ1 − σ, λ2, . . . , λn}

Wielandt deflation preserves u1 as an eigenvector as well all the left
eigenvectors not associated with λ1.

ä An interesting choice for v is to take simply v = u1. In this case Wielandt
deflation preserves Schur vectors as well.

ä Can apply above procedure successively.
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ALGORITHM : 6 Explicit Deflation

1. A0 = A

2. For j = 0 . . . µ− 1 Do:
3. Compute a dominant eigenvector of Aj

4. Define Aj+1 = Aj − σjujuHj
5. End

ä Computed u1, u2., .. form a set of Schur vectors for A.

ä In Arnoldi: Accumulate each new converged eigenvector in columns 1, 2,
3, ... [‘locked’ set of eigenvectors.] + maintain orthogonality

ä Alternative: implicit deflation (within a procedure such as Arnoldi).

104 Ark. 47th Spring Lect., May 4-6, 2022



Deflated Arnoldi

For k = 1, . . . .NEV do: /* Eigenvalue loop */

1. For j = k, k + 1, ...,m do: /* Arnoldi loop*/

• Compute w := Avj.
• Orthonormalize w against v1, v2, . . . , vj → vj+1

2. Compute next approximate eigenpair λ̃, ũ.

3. Orthonormalize ũ against v1, . . . , vj ä Result = s̃ = approximate
Schur vector.

4. Define vk := s̃.

5. If approximation not satisfactory go to 1.

6. Else define hi,k = (Avk, vi) , i = 1, .., k,
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Thus, for k = 2: Vm =

[
v1, v2︸ ︷︷ ︸
Locked

,
active︷ ︸︸ ︷

v3, . . . , vm

]

Hm =



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗



ä Similar techniques in Subspace iteration [G. Stewart’s SRRIT]
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Hermitian case: The Lanczos Algorithm

ä The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m −→

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


Consequence:
3-term recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

Hermitian matrix + Arnoldi→ Hermitian Lanczos
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ALGORITHM : 7 Lanczos

1. Choose v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)

5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä However: in practice severe loss of orthogonality;
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Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the
first eigenpair converges. It indicates loss of linear indedependence of the
vis. When orthogonality is lost, then several copies of the same eigenvalue
start appearing.

Forms of Re-orthogonalization
Full – reorthogonalize vj+1 against all previous vi’s every time.

Partial – reorthogonalize vj+1 against all previous vi’s only when needed

Selective – reorthogonalize vj+1 against computed eigenvectors

None – Do not reorthogonalize - but take measures to deal with ’spurious’
eigenvalues.
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The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly λ1 ≤ λ2 ≤ · · · ≤ λn

ä Orthogonal projection method onto Km;

ä To derive error bounds, use the Courant characterization

λ̃1 = min
u ∈ K, u6=0

(Au, u)

(u, u)
=

(Aũ1, ũ1)

(ũ1, ũ1)

λ̃j = min{
u ∈ K, u 6=0
u ⊥ũ1,...,ũj−1

(Au, u)

(u, u)
=

(Aũj, ũj)

(ũj, ũj)
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ä Bounds for λ1 easy to find – similar to linear systems.

ä Ritz values approximate eigenvalues of A inside out:

λ1 λ2

λ̃1 λ̃2

λn−1 λn

λ̃n−1 λ̃n
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A-priori error bounds

Theorem [Kaniel, 1966]: Let γ1 = λ2−λ1

λN−λ2
; Then:

0 ≤ λ(m)
1 − λ1 ≤ (λN − λ1)

[
tan∠(v1, u1)

Tm−1(1 + 2γ1)

]2

Theorem [Kaniel, Paige, YS]. Let γi =
λi+1−λi
λN−λi+1

, κ
(m)
i =

∏
j<i

λ
(m)
j −λN
λ
(m)
j −λi

Then:

0 ≤ λ(m)
i − λi ≤ (λN − λ1)

[
κ

(m)
i

tan∠(vi, ui)

Tm−i(1 + 2γi)

]2
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The Lanczos biorthogonalization (AH 6= A)
ALGORITHM : 8 Lanczos bi-orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.
2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0

3. For j = 1, 2, . . . ,m Do:
4. αj = (Avj, wj)

5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11.EndDo
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ä Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AH, w1)

ä Many choices for δj+1, βj+1 in lines 7 and 8. Only constraint:

δj+1βj+1 = (v̂j+1, ŵj+1)

Let

Tm =


α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm

 .

ä vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).
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If the algorithm does not break down before stepm, then the
vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m, are biortho-
gonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and
{wi}i=1,2,...,m is a basis of Km(AH, w1) and

AVm = VmTm + δm+1vm+1e
H
m,

AHWm = WmT
H
m + β̄m+1wm+1e

H
m,

WH
mAVm = Tm .
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ä If θj, yj, zj are, respectively an eigenvalue of Tm, with associated right and
left eigenvectors yj and zj respectively, then corresponding approximations
for A are

Ritz value Right Ritz vector Left Ritz vector
θj Vmyj Wmzj

[Note: terminology is abused slightly - Ritz values and vectors normally refer
to Hermitian cases.]
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Advantages and disadvantages

Advantages:

ä Nice three-term recurrence – requires little storage in theory.

ä Computes left and a right eigenvectors at the same time

Disadvantages:

ä Algorithm can break down or nearly break down.

ä Convergence not too well understood. Erratic behavior

ä Not easy to take advantage of the tridiagonal form of Tm.
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Look-ahead Lanczos

Algorithm breaks down when:

(v̂j+1, ŵj+1) = 0

Three distinct situations.

ä ‘lucky breakdown’ when either v̂j+1 or ŵj+1 is zero. In this case, eigenval-
ues of Tm are eigenvalues of A.

ä (v̂j+1, ŵj+1) = 0 but of v̂j+1 6= 0, ŵj+1 6= 0 → serious breakdown. Often
possible to bypass the step (+ a few more) and continue the algorithm. If
this is not possible then we get an ...

ä ... Incurable break-down. [very rare]
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BACKGROUND ON GRAPHS



Graphs – definitions & representations

ä Graph theory is a fundamental tool in many areas

Definition. A graphG is defined as a pair of setsG = (V,E) withE ⊂ V ×V .
So G represents a binary relation. The graph is undirected if the binary
relation is symmetric. It is directed otherwise.

ä V is the vertex set and E is the edge set

ä A binary relation R in V can be represente by graph G = (V,E) where:

(u, v) ∈ E ↔ u R v

Undirected graph↔ symmetric relation
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1 2

34

1

3

2

4

- Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the
relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]

ä |E| ≤ |V |2. For undirected graphs: |E| ≤ |V |(|V |+ 1)/2.

ä A sparse graph is one for which |E| � |V |2.

121 Ark. 47th Spring Lect., May 4-6, 2022



Basic Terminology & notation:

ä If (u, v) ∈ E, then v is adjacent to u. The edge (u, v) is incident to u
and v.

ä If the graph is directed, then (u, v) is an outgoing edge from u and
incoming edge to v

ä Adj(i) = {j|j adjacent to i}

ä The degree of a vertex v is the number of edges incident to v. Can also
define the indegree and outdegree. (Sometimes self-edge i→ i omitted)

ä |S| is the cardinality of set S [so |Adj(i)| == deg( i) ]

ä A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊂ V and E′ ⊂ E.
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Representations of Graphs

ä A graph is nothing but a collection of vertices (indices from 1 to n), each
with a set of its adjacent vertices [in effect a ’sparse matrix without values’]

ä For sparse graphs: use any of the sparse matrix storage formats - omit
the real values arrays.

Adjacency matrix Assume V =

{1, 2, · · · , n}. Then the adjacency matrix
of G = (V,E) is the n × n matrix, with
entries:

ai,j =

{
1 if (i, j) ∈ E
0 Otherwise
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Representations of Graphs (cont.)

Example:


1

1

1 1

1




1 1

1 1

1 1

1 1



1 2

34

1

3

2

4
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More terminology & notation

ä Given Y ⊂ X, the section graph of Y is the subgraph GY = (Y,E(Y ))

where E(Y ) = {(x, y) ∈ E|x ∈ Y, y in Y }

ä A section graph is a clique if all the nodes in the subgraph are pairwise
adjacent (→ dense block in matrix)

ä A path is a sequence of vertices w0, w1, . . . , wk such that (wi, wi+1) ∈ E
for i = 0, . . . , k − 1.

ä The length of the path w0, w1, . . . , wk is k (# of edges in the path)

ä A cycle is a closed path, i.e., a path with wk = w0.

ä A graph is acyclic if it has no cycles.
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- Find cycles in this graph:
1

2

3

5

4

7 6

A path in an indirected graph
1

2

3

5

4

7 6

ä A path w0, . . . , wk is simple if the vertices w0, . . . , wk are distinct (except
that we may have w0 = wk for cycles).

ä An undirected graph is connected if there is path from every vertex to
every other vertex.

ä A digraph with the same property is said to be strongly connected
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ä The undirected (or symmetrized) form of a digraph = undirected graph
obtained by removing the directions of all edges

ä A directed graph whose undirected form is connected is said to be weakly
connected or connected.

ä Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic
& connected – Forest = a collection of trees
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GRAPH MODELS FOR SPARSE MATRICES



Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V,E) of an n× n matrix A :

V = {1, 2, ...., N} E = {(i, j)|aij 6= 0}

ä G == undirected if A has a symmetric pattern

Example:


?

?

? ?

?


1 2

34


? ?

? ?

? ?

? ?


1

3

2

4
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- Show the matrix pattern for the graph on
the right and give an interpretation of the path
v4, v2, v3, v5, v1 on the matrix

1

2

3

5

4

7 6

ä A separator is a set Y of vertices such that the graph GX−Y is discon-
nected.

Example: Y = {v3, v4, v5} is a separator in the above figure
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Example: Adjacency graph of:

A =



? ?

? ?

? ? ? ?

? ?

? ?

? ?


.

Example: For any adjacency matrix A, what is the graph of A2? [inter-
pret in terms of paths in the graph of A]
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ä Two graphs are isomorphic is there is a mapping between the vertices of
the two graphs that preserves adjacency.

- Are the following 3 graphs isomorphic? If yes find the mappings between
them.

1

23

4

5
6 36

4 5

1 2
1

2 3

4 5

6

ä Graphs are identical – labels are different

ä Determinig graph isomorphism is a hard problem
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Bipartite graph representation

ä Rows and columns are (both) represented by vertices;

ä Relations only between rows and columns: Row i is connected to column
j if aij 6= 0

Example:


?

?

? ?

? ?

? ?


ä Bipartite models used only for specific cases [e.g. rectangular matrices,
...] - By default we use the standard definition of graphs.
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Interpretation of graphs of matrices

- What is the graph of A+B (for two n× n matrices)?

- What is the graph of AT ?

- What is the graph of A.B?
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Paths in graphs

- What is the graph of Ak?

Theorem Let A be the adjacency matrix of a graph G = (V,E). Then for
k ≥ 0 and vertices u and v of G, the number of paths of length k starting at
u and ending at v is equal to (Ak)u,v.

Proof: Proof is by induction.
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ä Recall (definition): A matrix is reducible if it can be permuted into a block
upper triangular matrix.

ä Note: A matrix is reducible iff its adjacency graph is not (strongly) con-
nected, i.e., iff it has more than one connected component.
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●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 
BC

A

A B C

ä No edges from C to
A orB. No edges from
B to A.

Theorem: Perron-Frobenius An irreducible, nonnegative n × n matrix A
has a real, positive eigenvalue λ1 such that:
(i) λ1 is a simple eigenvalue of A;
(ii) λ1 admits a positive eigenvector u1 ; and
(iii)|λi| ≤ λ1 for all other eigenvalues λi where i > 1.

ä The spectral radius is equal to the eigenvalue λ1
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ä Definition : a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the
eigenvalue λ = d. In addition this eigenvalue is the largest possible (consider
the infinity norm of A). Therefore e is the Perron-Frobenius vector u1.
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Application: Markov Chains

ä Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/∼saad/eig book 2ndEd.pdf

ä Let π ≡ row vector of stationary probabilities
ä Then π satisfies the equation →

πP = π

ä P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
(i) pij ≥ 0 for all i, j
(ii)

∑n
j=1 pij = 1 for i = 1, · · · , n

(iii) No column of P is a zero column.
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ä Spectral radius is ≤ 1

- Why?

ä Assume P is irreducible. Then:

ä Perron Frobenius → ρ(P ) = 1 is an eigenvalue and associated eigen-
vector has positive entries.

ä Probabilities are obtained by scaling π by its sum.

ä Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college
(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the
following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage to next
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To From Fr So. Ju. Sr. Grad lwd
Fr. .2 0 0 0 0 0
So. .6 .1 0 0 0 0
Ju. 0 .7 .1 0 0 0
Sr. 0 0 .8 .1 0 0
Grad 0 0 0 .75 1 0
lwd .2 .2 .1 .15 0 1

- What is P? Assume initial population is x0 = [10, 16, 12, 12, 0, 0] and do
a follow the population for a few years. What is the probability that a student
will graduate? What is the probability that s/he leaves without a degree?
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A few words on hypergraphs

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes when parti-
tioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning problems and
provide better solutions.

ä Example: completely nonsymmetric patterns ...

ä .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for
text data
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Example: V = {1, . . . , 9} and E = {a, . . . , e} with
a = {1, 2, 3, 4}, b = {3, 5, 6, 7}, c = {4, 7, 8, 9},
d = {6, 7, 8}, and e = {2, 9}

✖ ✖

●

✖ ✖

●

●●

✖

✖✖

✖✖

●

1

2

3

4

5

67

8
9

a b

c
d

e

net  e 

net  d

Boolean matrix:
1 2 3 4 5 6 7 8 9
1 1 1 1 a

1 1 1 1 b
A = 1 1 1 1 c

1 1 1 d
1 1 e
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A few words on computational graphs

ä Computational graphs: graphs where
nodes represent computations whose evalu-
ation depend on other (incoming) nodes.

a(x,y,z)   b(x,y,z)

f(x,y,z)

f(x,y,z) = g(a(x,y,z), b(x,y,z))

ä
Consider the following
expression:

g(x, y) = (x+ y − 2) ∗ (y + 1)

We can decompose this as


z = x+ y

v = y + 1

g = (z − 2) ∗ v
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ä Computational graph→
ä Given x, y we want:
(a) Evaluate the nodes and
(b) derivatives w.r.t x, y

x y

v = y+1
z = x+y 

g = (z−2)*v

(a) is trivial - just follow the graph up - starting from the leaves (that contain x
and y)

(b): Use the chain rule – here shown for x only
using previous setting

∂g
∂x

= ∂g
∂a
da
dx

+ ∂g
∂b
db
dx

- For the above example compute values and derivatives at all nodes when
x = −1, y = 2.
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Back-Propagation

ä Often we want to compute the gradient of the function at the root, once
the nodes have been evaluated

ä The derivatives can be calculated by going backward (or down the tree)

ä Here is a very simple example from Neural Networks
L = 1

2
(y − t)2

y = σ(z)

z = wx+ b

x

w

b

z y 
L

t

ä Note that t (desired output) and x (input) are constant.
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Back-Propagation: General computational graphs

Representation: a DAG

ä Last node (vn) is the target function. Let us rename it f .

ä Nodes vi, i = 1, · · · , e with indegree 0 are the variables

ä Want to compute ∂f/∂v1, ∂f/∂v2, · · · , ∂f/∂ve

ä Use the chain rule.
For vk(vj, vl, vm) −→

∂f

∂vk
=
∂f

∂vj

∂vj

∂vk
+
∂f

∂vl

∂vl

∂vk
+
∂f

∂vm

∂vm

∂vk
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ä Let δk = ∂f
∂vk

(called ‘errors’). Then

δk = δj
∂vj

∂vk
+ δl

∂vl

∂vk
+ δm

∂vm

∂vk

ä To compute the δk’s once the vj’s have
been computed (in a ‘forward’ propagation) –
proceed backward.
ä δj, δl, δm available and ∂vi/∂vk com-
putable. Nore δn ≡ 1.

ä However: cannot just do this in any order. Must follow a topological order
in order to obey dependencies.
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Example:
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GRAPH CENTRALITY



Centrality in graphs

ä Goal: measure importance of a node, edge, subgraph, .. in a graph

ä Many measures introduced over the years

ä Early Work: Freeman ’77 [introduced 3 measures] – based on ‘paths in
graph’

ä Many different ways of defininf centrality! We will just see a few
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Degree centrality: (simplest) ‘Nodes
with high degree are important’

CD(v) = deg(v)
n−1

(note: scaling n− 1 is unimportant)

Closeness centrality: ‘Nodes that are
close to many other nodes are important’

CC(v) = n−1∑
w 6=v d(v,w)

Betweenness centrality:
(Freeman ’77)

CB(v) =
∑

u 6=v,w 6=v
σuw(v)
σuw

• σuw = total # shortest paths from u to w

• σuw(v) = total # shortest paths from u to w passing through v

ä ’Nodes that are on many shortest paths are important’
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Example: Find CD(v); CC(v); CB(v) when v = C

A  B

E F C

D

(u,w) σuw(v) σuw / (u,w) σuw(v) σuw /
(A,B) 0 1 0 (B,E) 0 1 0
(A,D) 0 1 0 (B,F) 1 1 1
(A,E) 0 1 0 (D,E) 1 2 .5
(A,F) 0 1 0 (D,F) 1 1 1
(B,D) 0 1 0 (E,F) 0 1 0

ä CD(v) = 3/5 = 0.6 ;

ä CC(v) = 5/[dCA + dCB + dCD + dCE + dCF ]

= 5/[2 + 1 + 1 + 2 + 1] = 5/7

ä CB(v) = 2.5 (add all ratios in table)

- Redo this for v = B
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Eigenvector centrality:

ä Supppose we have n nodes vj, j = 1, · · · , n– each with a measure of
importance (’prestige’) pj

ä Principle: prestige of i depends on that of its neighbors.

ä Prestige xi = multiple of sum of pres-
tiges of neighbors pointing to it λxi =

∑
j ∈ N (i)

xj =

n∑
j=1

ajixj

ä xi = component of eigenvector associated with λ.

ä Perron Frobenius theorem at play again: take largest eigenvalue→ xi’s
nonnegative
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Page-rank

ä Can be viewed as a variant of Eigenvector centrality

Main point: A page is important if it is pointed to by other important pages.

ä Importance of your page (its PageRank) is determined by summing the
page ranks of all pages which point to it. [→ same as EV centrality]

ä Weighting: If a page points to several other pages, then the weighting
should be distributed proportionally.

ä Imagine many tokens doing a random walk on this graph:
• (δ/n) chance to follow one of the n links on a page,
• (1− δ) chance to jump to a random page.
•What’s the chance a token will land on each page?
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Page-Rank - definitions

If T1, ..., Tn point to page Ti then

ρ(Ti) = 1− δ + δ

[
ρ(T1)

|T1|
+
ρ(T2)

|T2|
+ · · ·

ρ(Tn)

|Tn|

]
ä |Tj| = count of links going out of Page Ti. So the ’vote’ ρ(Tj) is spread
evenly among |Tj| links.

ä Sum of all PageRanks == 1: ΣTρ(T ) = 1

ä δ is a ’damping’ parameter close to 1 – e.g. 0.85

ä Defines a (possibly huge) Hy-
perlink matrix H

hij =

{
1
|Ti|

if i points to j
0 otherwise
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- 4 Nodes

A points to B and D

B points to A, C, and D

C points to A and B

D points to C

1) What is the H matrix?

2) the graph?

158 Ark. 47th Spring Lect., May 4-6, 2022



A
B

C

D

A B C D

A 1/2 1/2

B 1/3 1/3 1/3

C 1/2 1/2

D 1

ä Row- sums of H are = 1.

ä Sum of all PageRanks will be
one:

∑
All-PagesA

ρ(A) = 1.

ä H is a stochastic matrix [actually it is forced to be by changing zero rows]
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Algorithm (PageRank)

1. Select initial row vector v (v ≥ 0)
2. For i=1:maxitr
3 v := (1− δ)eT + δvH

4. end

- Do a few steps of this algorithm for previous example with δ = 0.85.

ä This is a row iteration..

v = (1− δ)eT + v . δH
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A few properties:

ä v will remain ≥ 0. [combines non-negative vectors]

ä More general iteration is of the form

v := v[(1− δ)E + δH︸ ︷︷ ︸
G

] with E = ezT

where z is a probability vector eTz = 1 [Ex. z = 1
n
e]

ä A variant of the power method.

ä e is a right-eigenvector of G associated with λ = 1. We are interested in
the left eigenvector.
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Kleinberg’s Hubs and Authorities

ä Idea is to put order into the web by ranking pages by their degree of
Authority or ”Hubness”.

ä An Authority is a page pointed to by many important pages.
• Authority Weight = sum of Hub Weights from In-Links.

ä A Hub is a page that points to many important pages:
• Hub Weight = sum of Authority Weights from Out-Links.

ä Source:

http://www.cs.cornell.edu/home/kleinber/auth.pdf
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Computation of Hubs and Authorities

ä Simplify computation by forcing sum of squares of weights
to be 1.

ä Authj = xj =
∑

i:(i,j)∈Edges Hubi.

ä Hubi = yi =
∑

j:(i,j)∈Edges Authj.

ä Let A = Adjacency matrix: aij = 1 if (i, j) ∈ Edges.

ä y = Ax, x = ATy.

ä Iterate . . . to leading eigenvectors of ATA & AAT .

ä Answer: Leading Singular Vectors!
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GRAPH LAPLACEANS AND THEIR APPLICATIONS



Graph Laplaceans - Definition

ä “Laplace-type” matrices associated with general undirected graphs –
useful in many applications

ä Given a graph G = (V,E) define

A matrix W of weights wij for each edge

Assume wij ≥ 0,, wii = 0, and wij = wji ∀(i, j)
The diagonal matrix D = diag(di) with di =

∑
j 6=iwij

ä Corresponding graph Laplacean of G is: L = D −W

ä Gershgorin’s theorem→ L is positive semidefinite.
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ä Simplest case:

wij =

{
1 if (i, j) ∈ E&i 6= j

0 else
D = diag

di =
∑
j 6=i

wij


Example:

Consider the graph

●

●● ●

5

2

34

1

●

L =


1 −1 0 0 0

−1 2 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

0 −1 −1 −1 3
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- Define the graph Laplacean for the graph
associated with the simple mesh shown next.
[use the simple weights of 0 or 1]. What is
the difference with the discretization of the
Laplace operator for case when mesh is the
same as this graph? 1 2 3

6 8

109 11 12

4

5 7
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Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) If G has k > 1 connected components G1, G2, · · · , Gk, then the nullity
of L is k and Null(L) is spanned by the vectors z(j), j = 1, · · · , k defined
by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is a null vector
for L. The vector D−1/2u is an eigenvector for the matrix D−1/2LD−1/2 =

I − D−1/2WD−1/2 associated with the smallest eigenvalue. It is also an
eigenvector for D−1/2WD−1/2 associated with the largest eigenvalue. By the
Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved
from the fact that L can be written as a direct sum of the Laplacian matrices
for G1, · · · , Gk.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges i ∼ j into
i→ j or j → i. (2) Rows of H indexed by vertices of G. Columns indexed
by edges. (3) For each (i, j) in E, define the corresponding column in H
as
√
w(i, j)(ei − ej).

Example: In previous example
(4 p. back) orient i → j so that
j > i [lower triangular matrix repre-
sentation]. Then matrix H is:

H =


1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1


Property 1 L = HHT

- Re-prove part (iv) of previous proposition by using this property.
170 Ark. 47th Spring Lect., May 4-6, 2022



A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and local dis-
tances between entries of x
ä Let L = any matrix s.t. L = D −W , with
D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 2: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2
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Property 3: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2

ä Note: yj = j-th colunm of Y . Usually d < n. Each column can represent
a data sample.

Property 4: For the particular L = I − 1
n

1 1>

XLX> = X̄X̄> == n× Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones(n,1)
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Property 6: (Graph partitioning) Consider situation when wij ∈ {0, 1}. If
x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used to partition graphs

+1

−1
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ä Would like to minimize (Lx, x) subject to x ∈ {−1, 1}n and eTx = 0

[balanced sets]

ä Wll solve a relaxed form of this problem

- What if we replace x by a vector of ones (representing one partition) and
zeros (representing the other)?

- Let x be any vector and y = x+α 1 and L a graph Laplacean. Compare
(Lx, x) with (Ly, y).

174 Ark. 47th Spring Lect., May 4-6, 2022



ä Consider any symmetric (real) matrix A with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1

ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves a relaxed form of the
problem -
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min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x) → min
x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based on

Fielder vector
3 Partition largest subgraph in

two recursively ...
4 ... Until the desired number of

partitions is reached

177 Ark. 47th Spring Lect., May 4-6, 2022



Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice et al.,
Miller, Vavasis, Teng et al.]

3. Graph Theory techniques – multilevel,... [use graph, but no coordinates]

• Currently best known technique is Metis (multi-level algorithm)
• Simplest idea: Recursive Graph Bisection; Nested dissection (George &

Liu, 1980; Liu 1992]
• Advantages: simplicity – no coordinates required
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Example of a graph theory approach

ä Level Set Expansion Algorithm

ä Given: p nodes ‘uniformly’ spread in the graph (roughly same distance
from one another).

ä Method: Perform a level-set traversal (BFS) from each node simultane-
ously.

ä Best described for an example on a 15× 15 five – point Finite Difference
grid.

ä See [Goehring-YS ’94, See Cai-YS ’95]

ä Approach also known under the name ‘bubble’ algorithm and imple-
mented in some packages [Party, DibaP]
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APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING



Clustering

ä Problem: we are given n data items: x1, x2, · · · , xn. Would like to
‘cluster’ them, i.e., group them so that each group or cluster contains items
that are similar in some sense.

ä Example: materials
Superhard

Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Example: Digits

−6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5
PCA − digits : 5 −− 7

 

 

5
6
7

ä Each group is a ‘cluster’ or a ‘class’ ä ‘Unsupervised learning’
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What is ‘Unsupervised Learning’?

Ans: Class of methods that do not exploit labeled data

ä Example of digits: perform a 2-D projection

ä Images of same digit tend to cluster (more or less)

ä Such 2-D representations are popular for visualization

ä Can also try to find natural clusters in data, e.g., in materials

ä Basic clusterning technique: K-means
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Example: Community Detection

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A sends frequent
e-mails to user B’] . [data: www-personal.umich.edu/∼mejn/netdata/]

← Original Adj. matrix
Goal: Find ordering so

blocks are as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
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Example of application Data set from :

http://www-personal.umich.edu/∼mejn/netdata/

ä Network connecting bloggers of different political orientations [2004 US
presidentual election]

ä ‘Communities’: liberal vs. conservative

ä Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.

ä Edge: i→ j : a citation between blogs i and j

ä Blocking algorithm (Density theshold=0.4): subgraphs [note: density =
|E|/|V |2.]

ä Smaller subgraph: conservative blogs, larger one: liberals
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A basic method: K-means

ä A basic algorithm that uses Euclidean distance

1 Select p initial centers: c1, c2, ..., cp for classes 1, 2, · · · , p
2 For each xi do: determine class of xi as argmink‖xi − ck‖
3 Redefine each ck to be the centroid of class k
4 Repeat until convergence

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●●●

●

●

●

●

●

c

c

c

1

2

3

ä Simple algorithm
ä Works well (gives good re-
sults) but can be slow
ä Performance depends on ini-
tialization
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Methods based on similarity graphs

ä Class of Methods that perform clustering by exploiting a graph that de-
scribes the similarities between any two items in the data.

ä Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair of nodes.

Example: For text data: Can decide that any columns i and j with a
cosine greater than 0.95 are ‘similar’ and assign that cosine value to wij
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First task: build a ‘similarity’ graph

ä Goal: to build a similarity
graph, i.e., a graph that captures
similarity between any two items

●

●

●

●

●

●

●

i

j

w(i,j)=?

ä Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’) kernel
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K-nearest neighbor graphs

ä Given: a set of n data points X = {x1, . . . , xn} → vertices

ä Given: a proximity measure between two data points xi and xj – as
measured by a quantity dist(xi, xj)

ä Want: For each point xi a list of the ‘nearest neighbors’ of xi (edges
between xi and these nodes).

ä Note: graph will usually be directed→ need to symmetrize
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Nearest neighbor graphs

ä For each node, get
a few of the nearest
neighbors→ Graph
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Data

Graph

ä Problem: How to build a nearest-neighbor graph from given data

ä We will revisit this later.
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Two types of nearest neighbor graph often used:

ε-graph: Edges consist of pairs (xi, xj) such that ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with the k with
smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’

Define weight between i and j as:

wij = fij ×

 e

−‖xi−xj‖
2

σ2X if ‖xi − xj‖ < r

0 if not

ä Note ‖xi − xj‖ could be any measure of distance...

ä fij = optional = some measure of similarity - other than distance

ä Only nearby points kept.

ä Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

ä Assume now that we have built a ‘similarity graph’

ä Setting is identical with that of graph partitioning.

ä Need a Graph Laplacean: L = D − W with wii = 0, wij ≥ 0 and
D = diag(W ∗ ones(n, 1)) [in matlab notation]

ä Partition vertex set V in two sets A and B with

A ∪B = V, A ∩B = ∅

ä Define

cut(A,B) =
∑

u ∈A,v∈B

w(u, v)
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ä First (naive) approach: use this measure to partition graph, i.e.,

... Find A and B that minimize cut(A,B).

ä Issue: Small sets, isolated nodes, big imbalances,

●
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Better cut 

Min−cut 2

Min−cut 1
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Ratio-cuts

ä Standard Graph Partitioning approach: Find A,B by solving

Minimize cut(A,B), subject to |A| = |B|

ä Condition |A| = |B| not too meaningful in some applications - too restric-
tive in others.

ä Minimum Ratio Cut approach. Find A,B by solving:

Minimize cut(A,B)
|A|.|B|

ä Difficult to find solution (original paper [Wei-Cheng ’91] proposes several
heuristics)

ä Approximate solution : spectral .
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Theorem [Hagen-Kahng, 91] If λ2 is the 2nd smallest eigenvalue of L,
then a lower bound for the cost c of the optimal ratio cut partition, is:

c ≥
λ2

n
.

Proof: Consider an optimal partition A,B and let p = |A|/n, q = |B|/n.
Note that p+ q = 1. Let x be the vector with coordinates

xi =

{
q if i ∈ A

−p if i ∈ B

Note that x ⊥ 1. Also if (i, j) == an edge-cut then |xi − xj| = |q − (−p)| =
|q + p| = 1, otherwise xi− xj = 0. Therefore, xTLx =

∑
(i,j)∈E(xi− xj)2 =

w(A,B). In addition:
‖x‖2 = pq2n+ qp2n = pq(p+ q)n = pqn = |A|.|B|

n
.



Therefore, by the Courant-Fischer theorem:

λ2 ≤
(Lx, x)

(x, x)
= n×

w(A,B)

|A|.|B|
= n× c.

Hence result.

ä Idea is to use eigenvector associated with λ2 to determine partition, e.g.,
based on sign of entries. Use the ratio-cut measure to actually determine
where to split.
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Normalized cuts [Shi-Malik,2000]

ä Recall notation w(X,Y ) =
∑

x∈X,y∈Y w(x, y) - then define:

ncut(A,B) = cut(A,B)
w(A,V )

+ cut(A,B)
w(B,V )

ä Goal is to avoid small sets A, B

- What is w(A, V ) in the case when wij == 1 ?

ä Let x be an indicator
vector: xi =

{
1 if i ∈ A
0 if i ∈ B

ä Recall that: xTLx =
∑

(i,j)∈E wij|xi − xj|2 (note: each edge counted
once)
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ä Therefore:

cut(A,B) =
∑

xi=1,xj=0

wij = xTLx

w(A, V ) =
∑
xi=1

di = xTW 1 = xTD 1

w(B, V ) =
∑
xj=0

dj = ( 1− x)TW 1 = ( 1− x)TD 1

ä Goal now: to minimize ncut

min
A,B

ncut(A,B) = min
xi ∈{0,1}

xTLx

xTDx
+

xTLx

( 1− x)TDx
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ä Let β =
w(A, V )

w(B, V )
=

xTD 1
( 1− x)TD 1

y = x− β( 1− x)

ä Then we need to solve: min
yi {0,−β}

yTLy

yTDy

Subject to yTD 1 = 0

ä + Relax→ need to solve Generalized eigenvalue problem

Ly = λDy

ä y1 = 1 is eigenvector associated with eigenvalue λ1 = 0

ä y2 associated with second eigenvalue solves problem.
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A few properties

- Show that

ncut(A,B) = σ ×
cut(A,B)

w(A, V )× w(B, V )

where σ is a constant

- How do ratio-cuts and normalized cuts compare when the graph is d-
regular (same degree for each node).
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Extension to more than 2 clusters

ä Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted parts]

2. or compute a few eigenvectors and run K-means clustering on these eigen-
vectors to get the clustering.
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Application: Image segmentation

ä First task: obtain a graph from pixels.

ä Common idea: use “Heat kernels”

ä Let Fj = feature value (e.g., brightness), and Let Xj = spatial position.

Then define

wij = e

−‖Fi−Fj‖
2

σ2I ×

 e

−‖Xi−Xj‖
2

σ2X if‖Xi −Xj‖ < r

0 else

ä Sparsity depends on parameters
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Spectral clustering: General approach

1 Given: Collection of data samples {x1, x2, · · · , xn}

2 Build a similarity graph be-
tween items

●

●

●

●

●

●

●

i

j

w(i,j)=?

3 Compute (smallest) eigenvector (s) of resulting graph Laplacean

4 Use k-means on eigenvector (s) of Laplacean

ä For Normalized cuts solve generalized eigen problem.
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ä Recall observation made earlier:
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ä Alg. Multiplicity of eigenvalue zero = # connected components.
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Building a nearest neighbor graph

ä Question: How to build a nearest-neighbor graph from given data?

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

Data

Graph

ä Will demonstrate the power of a divide a conquer approach combined
with the Lanczos algorithm.

ä Note: The Lanczos algortithm will be covered in detail later
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Recall: Two common types of nearest neighbor graphs

ε-graph: Edges consist of pairs (xi, xj) such that ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with the k with
smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

ä Key ingredient is Spectral bisection

ä Let the data matrix X = [x1, . . . , xn] ∈ Rd×n

ä Each column == a data point.

ä Center the data: X̂ = [x̂1, . . . , x̂n] = X − ceT

where c == centroid; e = ones(d, 1) (matlab)

Goal: Split X̂ into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, ’98.

Idea: Use the (σ, u, v) = largest singular triplet of X̂ with: uTX̂ = σvT .
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ä Hyperplane is defined as 〈u, x〉 = 0, i.e., it splits the set of data points
into two subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.

●

● + SIDE

− SIDE 
Hyperplane

u

ä Note that uT x̂i = uTX̂ei = σvTei→
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X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0},

where vi is the i-th entry of v.

ä In practice: replace above criterion by

X+ = {xi | vi ≥ med(v)} & X− = {xi | vi < med(v)}

where med(v) == median of the entries of v.

ä For largest singular triplet (σ, u, v) of X̂ : use Golub-Kahan-Lanczos
algorithm or Lanczos applied to X̂X̂T or X̂TX̂

ä Cost (assuming s Lanczos steps) : O(n× d× s) ; Usually: d very small
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Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X1, X2

Glue method: divide current set into two disjoint subsetsX1, X2 plus a third
set X3 called gluing set.

hyperplane

X1 X2

hyperplane

X1 X2X3

ä Exploit recursivity
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The Overlap Method

ä Divide current set X into two overlapping subsets:

X1 = {xi | vi ≥ −hα(Sv)} and X2 = {xi | vi < hα(Sv)},

• where Sv = {|vi| | i = 1, 2, . . . , n}.

• and hα(·) is a function that returns an element larger than (100α)% of
those in Sv.

ä Rationale: to ensure that the two subsets overlap (100α)% of the data,
i.e.,

|X1 ∩X2| = dα|X|e .
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The Glue Method

Divide the set X into two disjoint subsets X1 and X2 with a gluing subset X3:

X1 ∪X2 = X, X1 ∩X2 = ∅, X1 ∩X3 6= ∅, X2 ∩X3 6= ∅.

Criterion used for splitting:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(Sv) ≤ vi < hα(Sv)}.

Note: gluing subset X3 here is just the intersection of the sets X1, X2 of the
overlap method.
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Theorem The time complexity for the overlap method is

To(n) = Θ(dnto), where: to = log2/(1+α) 2 =
1

1− log2(1 + α)
.

Theorem The time complexity for the glue method is

Tg(n) = Θ(dntg/α), where tg ≡ sol. to the equ.:
2

2t
+ αt = 1.

Example: When α = 0.1, then to = 1.16 while tg = 1.12.

Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph Construc-
tion for High Dimensional Data via Recursive Lanczos Bisection” JMLR, vol.
10, pp. 1989-2012 (2009).
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APPLICATIONS OF GRAPH LAPLACEANS: GRAPH EMBEDDINGS



Graph embeddings

ä We have seen how to build a graph to represent data

ä Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
−→ Data: Y = [y1, y2, · · · , yn] in Rd

ä Trivial use: visualize a graph (d = 2)

ä Wish: mapping should preserve similarities in graph.
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Vertex embedding: map every vertex xi to a vector yi ∈ Rd

ä Many applications [clustering, finding missing link, semi-supervised learn-
ing, community detection, ...]

ä Graph captures similarities, closeness, ..., in data
Objective: Build a mapping of each vertex i to a

data point yi ∈ Rd

x

x
j

i

y
i

y
j

ä Many methods do this

ä Eigenmaps and LLE are two of the best known

217 Ark. 47th Spring Lect., May 4-6, 2022



ä Eigenmaps uses the graph Laplacean

ä Recall: Graph Laplacean is a matrix defined by :

L = D −W

{
wij ≥ 0 if j ∈ Adj(i)
wij = 0 else

D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excludes i)

ä Remember that vertex i represents data item xi. We will use i or xi to
refer to the vertex.

ä We will find the yi’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =

n∑
i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small (orig. data), we
want ‖yi − yj‖ to be also small (low-Dim. data)
ä Original data used indirectly through its graph
ä Objective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assumeD = I. Amounts to rescaling data. Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex
combination of its k nearest neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1

ä Optimal weights computed (’local calcula-
tion’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i
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2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:

∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W )ui = λiui; yi = u>i .

ä (I −W>)(I −W ) replaces the graph Laplacean of eigenmaps
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Implicit vs explicit mappings

ä In Eigenmaps and LLE we only determine a set of y′is in Rd from the data
points {xi}.

ä The mapping yi = φ(xi), i = 1, · · · , n is implicit

ä Difficult to compute a y for an x that is not one of the xi’s

ä Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

ä In Explicit (also known as linear) methods: mapping φ is known explicitly
(and it is linear.)

223 Ark. 47th Spring Lect., May 4-6, 2022



Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps: L ≡ D −W =
graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is an explicit projection of X

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
*but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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More recent methods

ä Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy , Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 1317, 2013,
Rio de Janeiro, Brazil]
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Example: Graph factorization

ä Line of work in Papers [1] and [3] above + others

ä Instead of minimizing
∑
wij‖yi − yj‖2

2 as before

... try to minimize
∑
ij

|wij − yTi yj|
2

ä In other words solve: minY ‖W − Y TY ‖2
F

ä Referred to as Graph factorization

ä Common in knowledge graphs
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Major tool of Data Mining: Dimension reduction

ä Eigenmaps and LLE are a form of dimension reduction:

Data in Rm→ graph→ Data in Rd

ä So are the explicit (linear) methods (LPP, ONPP), ...,

Dimenson reduction: Given: X = [x1, · · · , xn] ∈ Rm×n, find a low-
dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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m

n

X

Y

x

y

i

id

n

ä Φ may be linear : yj = W>xj, ∀j, or, Y = W>X

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?
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Basics: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to:

Maximize vari-
ance of pro-
jected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to
maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä Solution W = { dominant eigenvectors } of the covariance matrix ≡ Set
of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄ replaced by X.
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Recall: Unsupervised learning

“Unsupervised learning” : methods do not
exploit labeled data
ä Example of digits: perform a 2-D projec-
tion
ä Images of same digit tend to cluster
(more or less)
ä Such 2-D representations are popular
for visualization
ä Can also try to find natural clusters in
data, e.g., in materials
ä Basic clusterning technique: K-means
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PCA − digits : 5 −− 7
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Thermo−electricMulti−ferroics
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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PCA − digits : 0 −− 4
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SPECTRAL DENSITIES AND RANK ESTIMATION



What dimension to use in dimension reduction?

ä Important question – but a hard one.

ä Often, dimension k is selected in an ad-hoc way.

ä k = intrinsic rank of data.

ä Can we estimate it?

Two scenarios:

1. We know the magnitude of the
noise, say τ . Then, ignore any
singular value below τ and count
the others.

2. We have no idea on the
magnitude of noise. Determine
a good threshold τ to use and
count singular values > τ .
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Determining rank by eigenvalue counts

ä Idea: count eigenvalues of ATA (or AAT ) that are > τ .

ä Use technique in [E. Di Napoli, E. Polizzi, and Y.S., 2013] based on trace
estimators.

ä Summarized next for general situation of a symmetric real (or Hermitian
complex) matrix A
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Eigenvalue counts [E. Di Napoli, E. Polizzi, YS]

The problem:

Estimate number of eigenvalues of A in given interval [a, b]

Motivation:

ä Eigensolvers based on splitting the spectrum intervals and extracting
eigenpairs from each interval independently.

• Contour integration-type methods, e,g., FEAST [Polizzi 2011], Sakurai-
Sugiura - method [2003, 2007, ..]

• Polynomial filtering, e.g.,: Schofield, Chelikowsky, YS’2011.

ä Problems related to rank estimation in many applications
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Eigenvalue counts: Standard approach and an alternative

Problem: A Hermitian with eigenpairs λ1 ≤ λ2 ≤ · · · ≤ λn . Want:
number µ[a,b] of λi’s ∈ [a, b] - where λ1 ≤ a ≤ b ≤ λn.

ä Standard method: Use Sylvester inertia theorem. → Expensive

ä Alternative: Exploit trace of the
eigen-projector:

P =
∑

λi ∈ [a b]

uiu
T
i .

ä We know that : Tr (P ) = µ[a,b]

ä Goal: calculate an approximation to : Tr (P )
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ä P is not available ... but can be approximated by: • (1) a polynomial in
A, or • (2) a rational function in A.

Approximation theory viewpoint:

ä Interpret P as a step function of A, namely:

P = h(A) where h(t) =

{
1 if t ∈ [a b]

0 otherwise

ä Approximate h(t) by a polynomial ψ. Then use statistical estimator for
approximating Tr (ψ(A)) – to be discussed next

ä Hutchinson’s unbiased estimator uses only matrix-vector products to ap-
proximate the trace of a generic matrix A.

How to estimate the trace of a matrix
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Trace estimation: A few examples of applications

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation methods [Stats]. Motivation for the work [Golub
& Meurant, “Matrices, Moments, and Quadrature”, 1993, Book with same title
in 2009]

Problem 2: Compute Tr [ f (A)], f a certain function

ä Arises in many applications in Physics, e.g., Stochastic estimations of Tr
( f(A)) extensively used by quantum chemists to estimate Density of States,
see

[H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382
(1997)] .
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
Related approach: Non Equilibrium Green’s Function (NEGF) approach used
to model nanoscale transistors.

ä Uncertainty quantification: diagonal of the inverse of a covariance matrix
needed [Bekas, Curioni, Fedulova ’09]

Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in density matrix approaches in quantum modeling

f(ε) =
1

1 + exp(ε−µ
kBT

)

Here, f = Fermi-Dirac operator
Note: when T → 0 then f → a step
function.

ä Linear-Scaling methods
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Problem 5: Estimate the numerical rank.

ä Amounts to counting the number of singular values above a certain thresh-
old τ == Trace (φτ(ATA))..

φτ(t) is a certain step function.

Problem 6: Estimate the log-determinant (common in statistics)

log det(A) = Trace(log(A)) =
∑n

i=1 log(λi).

.... many others
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Important tool: Stochastic Trace Estimator

ä To estimate diagonal of B = f(A) (e.g., B = A−1), let:

Notation:

• d(B) = diag(B) [matlab notation]

•� and �: Elementwise multiplication and division of vec-
tors

• {vj}: Sequence of s random vectors

Result: d(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A. Curioni, I. Fedulova ’09;
...
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Trace of a matrix

ä For the trace - take vectors of unit norm and

Trace(B) ≈
1

s

s∑
j=1

vTj Bvj

ä Hutchinson’s estimator : take random vectors with components of the
form ±1/

√
n [Rademacher vectors]

ä Extensively studied in literature. See e.g.: Hutchinson ’89; H. Avron and
S. Toledo ’11; G.H. Golub & U. Von Matt ’97; Roosta-Khorasani & U. Ascher
’15; ...
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Typical convergence curve for stochastic estimator

ä Estimating the diagonal of inverse of two sample matrices
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Alternative: standard probing

Basis of the method: Color columns of matrix so that no two columns of the
same color overlap.

Entries of same color can be
computed with 1 matvec

ä Corresponds to coloring
graph of ATA.

ä For problem of diag(A) need
only color graph of A
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In summary:

ä Probing much more powerful when f(A) is known to be nearly sparse
(e.g. banded)..

ä Approximate pattern (graph) can be obtained inexpensively

ä Generally just a handful of probing vectors needed – Can be obtained by
coloring graph

ä However:

ä Not as general: need f(A) to be ‘ ε – sparse ’
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References:

• J. M. Tang and YS, A probing method for computing the diagonal of a
matrix inverse, Numer. Lin. Alg. Appl., 19 (2012), pp. 485–501.

See also (improvements)

• Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos Hierarchical
Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices
SISC, 2012. [somewhat specific to Lattice QCD ]

• E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Computing 2012] com-
bine probing with stochastic estimation. Good improvements reported.

250 Ark. 47th Spring Lect., May 4-6, 2022



SPECTRAL DENSITIES



Spectral Densities - Introduction

ä Spectral density == function that provides a global representation of the
spectrum of a Hermitian matrix

ä Known in solid state physics as ‘Density of States’ (DOS)

ä Very useful in physics

ä Almost unknown (as a tool) in numerical linear algebra
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Density of States

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where: • δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä DOS is also referred to as the spectral density

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt .
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Issue: How to deal with distributions?

ä Highly ‘discontinuous’, not easy to handle numerically

ä Solution for practical and theoretical
purposes: replace φ by a regularized
(‘blurred’) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

Where, for example: hσ(t) = 1
(2πσ2)1/2

e−
t2

2σ2 .

ä Smoothed φ(t) can be viewed as a prob-
ability distribution function for the spectrum
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ä How to select smoothing parameter σ? Example for Si2
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ä Higher σ → smoother curve
ä But loss of detail ..
ä Compromise: σ = h
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ä h = resolution, κ = parameter > 1
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Computing the DOS: The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and Röder’94 ,
Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimator to get traces needed in calculations ä Assume
change of variable done so eigenvalues lie in [−1, 1].

ä To avoid weight function
expand

√
1− t2φ→

φ̂(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

ä Then, (full) expansion is: φ̂(t) =
∑∞

k=0 µkTk(t). Question: µk =??
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj).

ä Here 2− δk0 == 1 when k = 0 and == 2 otherwise.

ä Note:
∑
Tk(λi) = Trace[Tk(A)] −→ Estimate this, e.g., via stochastic

estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec)
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ä Each vector is normalized so that ‖v(l)‖ = 1, l = 1, . . . , nvec.

ä Estimate the trace of Tk(A)

with stochastisc estimator: Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä Will lead to the desired
estimate:

µk ≈
2− δk0

nπnvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä To compute scalars of the form vTTk(A)v, exploit 3-term recurrence of
the Chebyshev polynomial: Tk+1(A)v = 2ATk(A)v − Tk−1(A)v

ä If we let vk ≡ Tk(A)v, we have

vk+1 = 2Avk − vk−1

258 Ark. 47th Spring Lect., May 4-6, 2022



An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene n =8219 nnz = 242669

Degree = 40 # sample vectors = 10
Elapsed time is 0.235189 seconds.
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Use of the Lanczos Algorithm

ä Recall: The Lanczos algorithm generates an orthonormal basis Vm =

[v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


260 Ark. 47th Spring Lect., May 4-6, 2022



ä Lanczos process builds orthogonal polynomials wrt to dot product:∫
p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially inside the
spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthogonal polyno-
mials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub and Welsch
’69.

ä Formula exact when p is a polynomial of degree ≤ 2m+ 1
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ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral ≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v and average the
result of the above formula over them..

• Approximating spectral densities of large matrices, Lin Lin, YS, and Chao
Yang - SIAM Review ’16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number µ[a,b] of
eigenvalues of A in [a, b].

Standard method: Sylvester inertia theorem→ expensive!

First alternative: integrate
the Spectral Density in [a, b]. µ[a,b] ≈ n

m∑
k=0

µk

(∫ b

a

Tk(t)√
1− t2

dt

)
= ...

Second method: Estimate trace of the
related spectral projector P
(→ ui’s = eigenvectors↔ λi’s)

P =
∑

λi ∈ [a b]

uiu
T
i .

ä It turns out that the 2 methods are identical.
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Application 3: Estimating the rank

ä Very important problem in signal processing applications, machine learn-
ing, etc.

ä Often: a certain rank is selected ad-hoc. Dimension reduction is applica-
tion with this “guessed” rank.

ä Can be viewed as a particular case of the eigenvalue count problem - but
need a cutoff value..
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Approximate rank, Numerical rank

ä Notion defined in various ways. A common one:

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

rε = Number of sing. values ≥ ε

ä Two distinct problems:

1. Get a good ε 2. Estimate number of sing. values ≥ ε

ä We will need a cut-off value (’threshold’) ε.

ä Could use ‘noise level’ for ε, but not always available
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Threshold selection

ä How to select a good threshold?

ä Answer: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop observed.

ä Simple idea: use derivative of DOS function φ

ä For an n× n matrix with eigenvalues λn ≤ λn−1 ≤ · · · ≤ λ1:

ε = min{t : λn ≤ t ≤ λ1, φ
′(t) = 0}.

ä In practice replace by

ε = min{t : λn ≤ t ≤ λ1, |φ′(t)| ≥ tol}
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Experiment: estimated rank by Lanczos for matrix netz4504.
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Tests with Matérn covariance matrices for grids

ä Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # λi’s rε

Size ≥ ε KPM Lanczos
1D regular Grid (2048× 1) 2048 16 16.75 15.80

1D no structure Grid (2048× 1) 2048 20 20.10 20.46

2D regular Grid (64× 64) 4096 72 72.71 72.90

2D no structure Grid (64× 64) 4096 70 69.20 71.23

2D deformed Grid (64× 64) 4096 69 68.11 69.45

ä For all test M(deg) = 50, nv=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) =
∑n

i=1 log(λi).

A is SPD.

ä Estimating the log-determinant of a matrix equivalent to estimating the
trace of the matrix function f(A) = log(A).

ä Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.

271 Ark. 47th Spring Lect., May 4-6, 2022



Numerical example: A graph Laplacian california of size 9664 × 9664,
nz ≈ 105 from the Univ. of Florida collection.

Rel. error vs degree

• 3 methods: Taylor Series,
Chebyshev expansion, SLQ

• # starting vectors nv = 100 in
all three cases. 10 20 30 40 50
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ä Many more applications!
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SUPERVISED LEARNING



Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)

c

e

f

d

a b g
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Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)

c

e

f

d

a b g

c
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f

d

a b g

??
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Supervised learning: classification

ä Best illustration: written
digits recognition example

Given: set of labeled sam-
ples (training set), and an
(unlabeled) test image x.
Problem: label of x =?
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ä Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample and
training samples

ä Get the k nearest neighbors (here
k = 8)

ä Predominant class among these k
items is assigned to the test sample
(“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
ä Example of application:
Distinguish between SPAM
and non-SPAM e-mails

Linear

classifier

ä Note: The world in non-linear. Often this is combined with Kernels –
amounts to changing the inner product
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A harder case:
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Spectral Bisection (PDDP)

ä Use kernels to transform
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Simple linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln]== labels. li = ±1

ä 1st Solution: Find a vector u such that
uTxi close to li, ∀i

ä Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A: uTxi ≥ 0 , B: uTxi < 0

v

[For clarity: principal axis u drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

ä Define “between scatter”: a measure of how well separated two distinct
classes are.

ä Define “within scatter”: a measure of how well clustered items of the same
class are.

ä Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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SB =

c∑
k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =

c∑
k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T
where:

• µ = mean (X)

• µ(k) = mean (Xk)

• Xk = k-th class

• nk = |Xk|

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H

X
3

1
X

µ

X
2
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ä Consider 2nd mo-
ments for a vector a:

aTSBa =

c∑
i=1

nk |aT (µ(k) − µ)|2,

aTSWa =

c∑
k=1

∑
xi ∈ Xk

|aT (xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maximize the
ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector asso-
ciated with top eigenvalue of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio of two
traces:

Trace[UTSBU ]

Trace[UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead the
(‘easier’) problem:

max
UTSWU=I

Trace[UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .

286 Ark. 47th Spring Lect., May 4-6, 2022



In Brief: Support Vector Machines (SVM)

ä Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

ä If the hyperplane is: wTx+ b = 0

ä Then the classifier is f(x) = sign(wTx+ b) : assigns y = +1 to one
class and y = −1 to other

ä Normalize parameters w, b by looking for hyperplanes of the form wTx+

b ≥ 1 to include one set and wTx+ b ≤ −1 to include the other.

ä With yi = +1 for one class and yi = −1 for the other, we can write the
constraints as yi(wTxi + b) ≥ 1.
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ä The margin is the maximum
distance between two such
planes: goal find w, b to maximize
margin.

ä Maximize margin subject to the
constraint yi(wTxi + b) ≥ 1. γ

ä As it turns out the margin is equal to: γ = 2
‖w‖2

- Prove it.
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ä Need to solve the con-
strained quadratic program-
ming problem:

min
w.b

1

2
‖w‖2

2

s.t. yi(w
Txi + b) ≥ 1, ∀xi.

Modification 1: Soft margin. Consider hinge loss: max{0, 1−yi[wTxi+b]}

ä Zero if constraint satisfied for pair xi, yi. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi[wTxi + b]}

- Suppose yi = +1 and let di = 1− yi[wTxi + b]. Show that the distance
between xi and hyperplane wTxi + b = +1 is di/‖w‖.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

ä Ideas of neural networks goes back to the 1960s - were popularized in
early 1990s – then laid dormant until recently.

ä Two reasons for the come-back:

• DNN are remarkably effective in some applications

• big progress made in hardware [→ affordable ‘training cost’]
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ä Training a neural network can be viewed as a problem of approximating
a function φ which is defined via sets of parameters:

φ(  )x
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.

.

.

Problem: find sets of parameters such that φ(x) ≈ y
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Input: x, Output: y
Set: z0 = x

For l = 1 : L+1 Do:
zl = σ(W T

l zl−1 + bl)

End
Set: y = φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+ 1) = output layer Layer

Input

Layer

OutputHidden

Layer

ä A matrix Wl is associated with layers 1,2, L+ 1.

ä Problem: Find φ (i.e., matrices Wl) s.t. φ(x) ≈ y
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DNN (continued)

ä Problem is not convex, highly parameterized, ...,

ä .. Main method used: Stochastic gradient descent [basic]

ä It all looks like alchemy... but it works well for certain applications

ä Training is still quite expensive – GPUs can help

ä *Very* active area of research
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GRAPH COARSENING



Graph coarsening

Given a graph G = (V,E), goal of graph coarsening is to find a smaller
graph Gc = (Vc, Ec) with nc nodes and mc edges, where nc < n, which is a
faithful approximation of G in some sense.

Notation:
• Ac = adjacency matrix of
Gc;
• Lc = graph Laplacian ofGc
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Graph Coarsening in scientific computing

ä Goal : exploit coarse representation of problem to solve linear systems

ä Fewer nodes so: cheaper
ä Can be used recursively

ä Success story: Multigrid, Algebraic Multi-
grid
ä AMG: Define coarse / fine nodes based on
‘strength of coupling’→
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Graph coarsening in scientific computing: (A) MG

Algebraic multigrid Main idea: generalize the interpolation and restriction
operations of standard MG.

ä For each fine node select a set of nearest neighbors from the coarse set

ä Then express a fine node i as a linear combination of a selected number
of nearest neighbors that form a set Ci:

Fine nodes: . Coarse: • In coarsening:
central fine node is expressed as a combi-
nation of its coarse neighbors.

297 Ark. 47th Spring Lect., May 4-6, 2022



ä Classical Ruge-Stüben strategy: selection based on ‘strong connections’
of node (i and j are strongly connected if aij has a large magnitude relative
to others)

ä Let C == set of coarse nodes; F == set of fine nodes

ä Can define ‘interpolation operator’ P :

[Px]i =

{
xi if i ∈ C,∑

j∈Ci pijxj otherwise.

ä Expand into a multilevel framework by repeating the process on the graph
of coarse set.
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ä Let G0 ≡ G (orig.) and G1, G2, . . . , Gh be sequence of coarse graphs:
G` = (V`, E`) is obtained by coarsening on G`−1 for 1 ≤ ` < L.

ä Let A(0) ≡ A and A(`) ≡ matrix associated of `-th level.

ä Linear system at the `-th level, can be reordered as:

A(`) =

[
A

(`)
CC A

(`)
CF

A
(`)
FC A

(`)
FF

]
, f (`) =

[
f

(`)
C

f
(`)
F

]
.

ä AMG: exploit different levels to building approximate solution. An AMG
scheme depends entirely on defining a sequence of interpolation operators
P` for ` = 0, 1, . . .

ä Once the P`’s are defined, one can design various ‘cycles’ : processes of
going back and forth between levels

299 Ark. 47th Spring Lect., May 4-6, 2022



Multilevel ILU preconditioner based on coarsening

ä Method: find a good ordering for ILU preconditioner

ä Example: technique presented in [D. Osei-Kuffuor et al, ’06]:

ä Ingredient: ordering based on coarsening + apply recursively

ä Matrix is ordered in block form - then A(0)
22 is in turn reordered:[

A
(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

]
→

A
(0)
11 A

(0)
12

A
(0)
21

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

 .
ä Repeat with A(1)

22 and further down for a few levels.

ä Do ILU factorization of the resulting reordered system.
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Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, ’15]

Goal: Form of ILU preconditioning with improved robustness

ä Traverse edges (i, j) ∈ Nz(A) in decreasing order of the weights:

wij = min

{
|aij|
δr(i)

,
|aij|
δc(j)

}
where:

δr(i) =
‖Ai,:‖1

nz(Ai,:)
and δc(j) =

‖A:,j‖1

nz(A:,j) i

j

w ij

ä Select i as ‘coarse’ if σi > σj and j

otherwise, where→
σk = |akk|

δr(k)δc(k)
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ä Goal: to put large entries in the blocks
(A(`)

CF ) and (A(`)
FC)

[
A

(`)
CC A

(`)
CF

A
(`)
FC A

(`)
FF

]
ä Model: very rough approximation of Gaussian Elimination.

ä Next: (Matlab) Test with matrix Raefsky3 1

ä 4 levels of coarsening. Then reorder matrix and:

ä Solve with ILUT- GMRES(50) or BSOR - GMRES(50)
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COARSENING APPROACHES



Coarsening by matching: Pairwise aggregation

ä Strategy: coalesce (collapse) two adjacent nodes in a graph into a single
node, based on some measure of nearness or similarity.

ä A matching of a graph G = (V,E) is a set of edges Ẽ, Ẽ ⊆ E, such that
no two edges in Ẽ have a node in common.

ä Matching is maximal if it cant be augmented by additional edges

ä Edge collapsing: usually selected using maximal matching

ä Such edge matching techniques are common in AMG literature
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ä For each node i, build a set Si of nodes that are ‘strongly connected’ to i

ä Traverse graph nodes in a certain order of preference

ä Next unmarked node in this order, say j, selected as a coarse node.

ä Priority measure of traversal updated after each insertion of a coarse
node

Heavy-edge matching (HEM) : matches a node iwith its largest off-diagonal
neighbor jmax;

|aijmax| = maxj∈adj(i),j 6=i |aij|

ä There will be left-over nodes - called ‘singletons’
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Heavy Edge Matching (HEM)

1. Visit edges (i, j) in decreasing value of their weight wi,j
2. If both i and j have no parents yet (left), create a new coarse node

(’new’). Set parents of i and j to be new.
3. At completion of traversal: deal with unassigned nodes: Either (middle)

add as a coarse nodes if disconnected (“singleton”) or (right) lump as a
child to an existing coarse node
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ALGORITHM : 9 Heavy Edge Matching (HEM)
1: Input: Weighted graph G = (V,E,A)
2: Output: Coarse nodes; Prnt list
3: Init: Prnt(i) = 0 ∀i ∈ V ; new = 0
4: for max to min edge (i, j) do
5: if Prnt(i) == 0, Prnt(j) == 0 then
6: new = new + 1
7: Prnt(i) = Prnt(j) = new
8: end if
9: end for

10: for Node v with Prnt(v) == 0 do
11: if v has no neighbor then
12: new = new + 1; Prnt(v) = new
13: else
14: Prnt(v) = Prnt(j) where j = argmaxi(aiv)
15: end if
16: end for

308 Ark. 47th Spring Lect., May 4-6, 2022



Coarsening by independent sets

Recall: Independent set: S ⊆ V is a set of vertices that are not adjacent
to each other: i, j ∈ S =⇒ aij = 0 . It is maximal if it can’t be augmented

ä Can take Vc = S as a coarse set. Need to define edges.

ä Let L = reordered graph Laplacian (nc ver-
tices of Vc listed first): (note: Dc is diagonal)

L =

(
Dc −F
−F T B

)

ä Replace B by Df = F T 1 and
define Gc = graph of Sc→

Sc = Dc − FD−1
f F

T

Property: Sc = Graph Laplacian of coarse graph Gc
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Coarsening by ‘algebraic distance’

ä Motivated by “bootstrap algebraic multigrid” (BAMG) [Brandt’01]

ä In BAMG notion of closeness (used for coarsening) defined from a few
steps of Gauss-Seidel for solving Ax = 0

ä Speed of convergence of the iterate determines an ‘algebraic distance’
between variables.

ä Exploited to aggregate the unknowns and define restriction and interpo-
lation operators. Analysis in [Chen-Safro’11]
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Coarsening by ‘kron’ decomposition

ä Kron reduction of networks proposed back in 1939 by Kron

ä Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:

• Select a coarse set V1: Shuman-al use eigenvectors
• Reorder matrix so that nodes of V1 come 1st.
Laplacean becomes→

L =

[
L11 L12

LT12 L22

]

• Kron reduction of L defined as the
Schur complement:

L(V1) = L11 − L12L
−1
22 L

T
12

Property L(V1) == graph Laplacian of V1 [Dorfler-Bullo]
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Example:

Two ways of using indepen-
dent sets for coarsening.
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Q. 1: How to deal with ‘denser’ graph?

A Sparsify - using spectral sparsificaition

Q. 2: How to select V1?

A Use signs of largest eigenvector of original Laplacian L

ä If u1 = [ξ1, ξ2, · · · , ξn]T = the largest eigenvector.

ä Define V+ = {i|ξi ≥ 0} and V− = {i|ξi < 0}

ä Then select one of V+, V− as V1.

ä Opposite of what is done in spectral graph partitioning
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Left side: spectral graph partitioning. Right: Coarsening withlargest eigen-
vector

ä Easy to show: (under mild condition on eigenvector) Each node of V+

(resp. V−) must have at least one nearest neighbor node from V− (resp. V+).
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Multilevel Dimension Reduction

Idea:

Coarsen for a few levels. Use
resulting data set X̂ to find a pro-
jector P from Rm to Rd. Use this P
to project data items.
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ä Gain: Dimension reduction is done with a much smaller set.

ä Wish: not much loss compared to using whole data
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Multilevel Dimension Reduction (for sparse data- e.g., text)

ä Use Hypergraph Coarsening with column matching – similar to a common
one used in graph partitioning

ä Compute the non-zero inner product 〈a(i), a(j)〉 between two vertices i
and j, i.e., the ith and jth columns of A.

ä Note: 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij

Modif. 1: Parameter: 0 < ε < 1. Match columns i
& j only if angle satisfies:

tan θij ≤ ε

Modif. 2: Re-Scale. If i and j match
and ‖a(i)‖0 ≥ ‖a(j)‖0 replace a(i) and
a(j) by

c(`) =
(
1 + cos2 θij

)1
2 a(i)
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ä Call C the coarsened matrix obtained from A using the approach just
described

Lemma: Let C ∈ Rm×c be the coarsened matrix of A obtained by one
level of coarsening of A ∈ Rm×n, with columns a(i) and a(j) matched if
tan θi ≤ ε. Then

|xTAATx− xTCCTx| ≤ 3ε‖A‖2
F ,

for any x ∈ Rm with ‖x‖2 = 1.

ä Very simple bound for Rayleigh quotients for any x.

ä Implies some bounds on singular values and norms - skipped.

ä See details + experiments in [Ubaru-YS ’19]
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Graph coarsening for graph embeddings: HARP and MILE

ä Recall Vertex embedding: Given G = (V,E) find mapping Φ:

Φ : v ∈ V −→ Φ(v) ∈ Rd d is small: d� n

Hierarchical Representation Learning
for Networks (HARP): (Chen et al. ’18)
coarsen for a few levels. Find embed-
ding Φ(`) for coarsest graph (level `).
Then a succession of expansions to
higher level + refinement.
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ä Gain: Embedding done with a much smaller set.
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ä MILE approach [Liang et al. ’18] very similar (difference in refinement).

Experiment to evaluate the effectiveness of HARP.

ä Baseline. Three embedding algorithms: DeepWalk [Perozzi-al’14], LINE
[Tang-al’15] and Node2vec [Grover-Leskovec’16]

ä Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) – variant of HEM
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Coarsening with eigenvectors

It is possible to coarsen a graph with the goal of exactly preserving a few
eigenvectors.

This has turned out not to be too useful in practice.

Instead we use eigenvectors to define ‘importance of nodes’ for the graph
traversal

Leverage Scores

ä A = UΣV T (ran (A) = ran (U))
ä Leverage score of i-th row→

ηi = ‖Ui,:‖2
2

• Used to measure importance of row i in random sampling methods [e.g.
El-Aloui & Mahonney ’15]
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• Let A now be a graph Laplacian and A = UΛUT with λ1 ≤ λ2 ≤ · · · ≤ λn

In Leverage-score coarsening (LESC) we
dampen lower sing. vectors→

ηi =
∑r

k=1(e
−τλkUik)

2

• Use ηi to decide order of traversal in coarsening algorithm

Note: Consider case when r = n (or simply r is large)

ηi =

n∑
k=1

(e−τλkUik)
2 =

n∑
k=1

e−2τλk|Uik|2 = eTi e
−2τLei.

ä ηi equals the i-th diagonal entry of the matrix H ≡ exp(−2τL)

• Next: visualization with 5 different coarsening methods on a graph with
n = 312 nodes and ne = 761 edges
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Final words

ä *Many* interesting new matrix problems in areas that involve the effective
exploitation of data

ä Unlike in Forsythe’s time: change happens fast - because we are better
connected

ä In particular: many many resources available online.

ä Huge potential for making a good impact by looking at a topic from new
perspective

ä To a researcher in computational linear algebra : Tsunami of change on
types or problems, algorithms, frameworks, culture,..
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ä My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so
regretfully upon the closed door that we do not see the one which has
opened for us.

ä Visit my web-site at www.cs.umn.edu/∼saad

ä More complete version of this material will available in course csci-8314
(S23) - notes (and more) are open to all.

Thank you !
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