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Preface to the second edition

In the six years that passed since the publication of the first edition of this book,

iterative methods for linear systems have made good progress in scientific and engi-

neering disciplines. This is due in great part to the increased complexity and size of

the new generation of linear and nonlinear systems which arise from typical appli-

cations. At the same time, parallel computing has penetrated the same application

areas, as inexpensive computer power became broadly available and standard com-

munication languages such as MPI gave a much needed standardization. This has

created an incentive to utilize iterative rather than direct solvers because the prob-

lems solved are typically from 3-dimensional models for which direct solvers often

become ineffective. Another incentive is that iterative methods are far easier to im-

plement on parallel computers,

Though iterative methods for linear systems have seen a significant maturation,

there are still many open problems. In particular, it still cannot be stated that an

arbitrary sparse linear system can be solved iteratively in an efficient way. If physical

information about the problem can be exploited, more effective and robust methods

can be tailored for the solutions. This strategy is exploited by multigrid methods. In

addition, parallel computers necessitate different ways of approaching the problem

and solution algorithms that are radically different from classical ones.

Several new texts on the subject of this book have appeared since the first edition.

Among these, are the books by Greenbaum [154], and Meurant [209]. The exhaustive

5-volume treatise by G. W. Stewart [274] is likely to become the de-facto reference

in numerical linear algebra in years to come. The related multigrid literature has

also benefited from a few notable additions, including a new edition of the excellent

“Multigrid tutorial” [65], and a new title by Trottenberg et al. [286].

Most notable among the changes from the first edition, is the addition of a sorely

needed chapter on Multigrid techniques. The chapters which have seen the biggest

changes are Chapter 3, 6, 10, and 12. In most cases, the modifications were made to

update the material by adding topics that were developed recently or gained impor-

tance in the last few years. In some instances some of the older topics were removed

or shortened. For example the discussion on parallel architecture has been short-

ened. In the mid-1990’s hypercubes and “fat-trees” were important topic to teach.

This is no longer the case, since manufacturers have taken steps to hide the topology

from the user, in the sense that communication has become much less sensitive to the

xiii
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underlying architecture.

The bibliography has been updated to include work that has appeared in the last

few years, as well as to reflect change of emphasis when new topics have gained

importance. Similarly, keeping in mind the educational side of this book, many

new exercises have been added. The first edition suffered many typographical errors

which have been corrected. Many thanks to those readers who took the time to point

out errors.

I would like to reiterate my thanks to all my colleagues who helped make the

the first edition a success (see the preface to the first edition). I received support

and encouragement from many students and colleagues to put together this revised

volume. I also wish to thank those who proofread this book. I found that one of

the best way to improve clarity is to solicit comments and questions from students

in a course which teaches the material. Thanks to all students in Csci 8314 who

helped in this regard. Special thanks to Bernie Sheeham, who pointed out quite a

few typographical errors and made numerous helpful suggestions.

My sincere thanks to Michele Benzi, Howard Elman, and Steve Mc Cormick

for their reviews of this edition. Michele proof-read a few chapters thoroughly and

caught a few misstatements. Steve Mc Cormick’s review of Chapter 13 helped ensure

that my slight bias for Krylov methods (versus multigrid) was not too obvious. His

comments were at the origin of the addition of Section 13.7 (Multigrid vs Krylov

methods).

I would also like to express my appreciation to the SIAM staff, especially Linda

Thiel and Sara Murphy.
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Suggestions for teaching

This book can be used as a text to teach a graduate-level course on iterative methods

for linear systems. Selecting topics to teach depends on whether the course is taught

in a mathematics department or a computer science (or engineering) department, and

whether the course is over a semester or a quarter. Here are a few comments on the

relevance of the topics in each chapter.

For a graduate course in a mathematics department, much of the material in

Chapter 1 should be known already. For non-mathematics majors most of the chap-

ter must be covered or reviewed to acquire a good background for later chapters.

The important topics for the rest of the book are in Sections: 1.8.1, 1.8.3, 1.8.4, 1.9,

1.11. Section 1.12 is best treated at the beginning of Chapter 5. Chapter 2 is essen-

tially independent from the rest and could be skipped altogether in a quarter session,

unless multigrid methods are to be included in the course. One lecture on finite dif-

ferences and the resulting matrices would be enough for a non-math course. Chapter

3 aims at familiarizing the student with some implementation issues associated with

iterative solution procedures for general sparse matrices. In a computer science or

engineering department, this can be very relevant. For mathematicians, a mention

of the graph theory aspects of sparse matrices and a few storage schemes may be

sufficient. Most students at this level should be familiar with a few of the elementary

relaxation techniques covered in Chapter 4. The convergence theory can be skipped

for non-math majors. These methods are now often used as preconditioners and this

may be the only motive for covering them.

Chapter 5 introduces key concepts and presents projection techniques in gen-

eral terms. Non-mathematicians may wish to skip Section 5.2.3. Otherwise, it is

recommended to start the theory section by going back to Section 1.12 on general

definitions on projectors. Chapters 6 and 7 represent the heart of the matter. It is

recommended to describe the first algorithms carefully and put emphasis on the fact

that they generalize the one-dimensional methods covered in Chapter 5. It is also

important to stress the optimality properties of those methods in Chapter 6 and the

fact that these follow immediately from the properties of projectors seen in Section

1.12. Chapter 6 is rather long and the instructor will need to select what to cover

among the non-essential topics as well as topics for reading.

When covering the algorithms in Chapter 7, it is crucial to point out the main

differences between them and those seen in Chapter 6. The variants such as CGS,

BICGSTAB, and TFQMR can be covered in a short time, omitting details of the

algebraic derivations or covering only one of the three. The class of methods based

on the normal equation approach, i.e., Chapter 8, can be skipped in a math-oriented

course, especially in the case of a quarter system. For a semester course, selected

topics may be Sections 8.1, 8.2, and 8.4.

Preconditioning is known to be the determining ingredient in the success of iter-

ative methods in solving real-life problems. Therefore, at least some parts of Chapter

9 and Chapter 10 should be covered. Section 9.2 and (very briefly) 9.3 are recom-

mended. From Chapter 10, discuss the basic ideas in Sections 10.1 through 10.3.
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The rest could be skipped in a quarter course.

Chapter 11 may be useful to present to computer science majors, but may be

skimmed through or skipped in a mathematics or an engineering course. Parts of

Chapter 12 could be taught primarily to make the students aware of the importance

of “alternative” preconditioners. Suggested selections are: 12.2, 12.4, and 12.7.2 (for

engineers).

Chapters 13 and 14 present important research areas and are primarily geared

to mathematics majors. Computer scientists or engineers may cover this material in

less detail.

To make these suggestions more specific, the following two tables are offered

as sample course outlines. Numbers refer to sections in the text. A semester course

represents approximately 30 lectures of 75 minutes each whereas a quarter course

is approximately 20 lectures of 75 minutes each. Different topics are selected for a

mathematics course and a non-mathematics course.

Semester course

Weeks Mathematics Computer Science / Eng.

1.9 –1.13 1.1 – 1.6 (Read) ; 1.7; 1.9;

1 – 3 2.1 – 2.5 1.11; 1.12; 2.1 – 2.2

3.1 – 3.3 3.1 – 3.6

4.1 – 4.2 4.1 – 4.2.1; 4.2.3

4 – 6 5. 1 – 5.3; 6.1 – 6.4 5.1 – 5.2.1; 5.3

6.5.1; 6.5.3 – 6.5.9 6.1 – 6.4; 6.5.1 – 6.5.5

6.6 – 6.8 6.7.1 6.8–6.9

7 – 9 6.9 – 6.11; 7.1 – 7.3 6.11.3; 7.1 – 7.3

7.4.1; 7.4.2; 7.4.3 (Read) 7.4.1 – 7.4.2; 7.4.3 (Read)

8.1; 8.2 ; 9.1 – 9.4; 8.1 – 8.3; 9.1 – 9.3

10 – 12 10.1 – 10.3; 10.4.1; 10.1 – 10.3 ; 10.4.1 – 10.4.3;

10.5.1 – 10.5.7 10.5.1 – 10.5.4; 10.5.7

12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6

13 – 15 13.1 – 13.5 12.1 – 12.2 ; 12.4 – 12.7

14.1 – 14.6 14.1 – 14.3; 14.6
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Quarter course

Weeks Mathematics Computer Science / Eng.

1 – 2 1.9 – 1.13 1.1 – 1.6 (Read); 3.1 – 3.5

4.1 – 4.2; 5.1 – 5.4 4.1; 1.12 (Read)

3 – 4 6.1 – 6.4 5.1 – 5.2.1; 5.3

6.5.1; 6.5.3 – 6.5.5 6.1 – 6.3

5 – 6 6.7.1; 6.11.3; 7.1 – 7.3 6.4; 6.5.1; 6.5.3 – 6.5.5

7.4.1 – 7.4.2; 7.4.3 (Read) 6.7.1; 6.11.3; 7.1 – 7.3

7 – 8 9.1 – 9.3 7.4.1 – 7.4.2 (Read); 9.1 – 9.3

10.1 – 10.3; 10.5.1; 10.5.7 10.1 – 10.3; 10.5.1; 10.5.7

9 – 10 13.1 – 13.5 11.1 – 11.4 (Read); 11.5; 11.6

14.1 – 14.4 12.1 – 12.2; 12.4 – 12.7
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Preface to the first edition

Iterative methods for solving general, large sparse linear systems have been gain-

ing popularity in many areas of scientific computing. Until recently, direct solution

methods were often preferred to iterative methods in real applications because of

their robustness and predictable behavior. However, a number of efficient iterative

solvers were discovered and the increased need for solving very large linear systems

triggered a noticeable and rapid shift toward iterative techniques in many applica-

tions.

This trend can be traced back to the 1960s and 1970s when two important de-

velopments revolutionized solution methods for large linear systems. First was the

realization that one can take advantage of “sparsity” to design special direct meth-

ods that can be quite economical. Initiated by electrical engineers, these “direct

sparse solution methods” led to the development of reliable and efficient general--

purpose direct solution software codes over the next three decades. Second was

the emergence of preconditioned conjugate gradient-like methods for solving linear

systems. It was found that the combination of preconditioning and Krylov subspace

iterations could provide efficient and simple “general-purpose” procedures that could

compete with direct solvers. Preconditioning involves exploiting ideas from sparse

direct solvers. Gradually, iterative methods started to approach the quality of di-

rect solvers. In earlier times, iterative methods were often special-purpose in nature.

They were developed with certain applications in mind, and their efficiency relied on

many problem-dependent parameters.

Now, three-dimensional models are commonplace and iterative methods are al-

most mandatory. The memory and the computational requirements for solving three-

dimensional Partial Differential Equations, or two-dimensional ones involving many

degrees of freedom per point, may seriously challenge the most efficient direct solvers

available today. Also, iterative methods are gaining ground because they are easier

to implement efficiently on high-performance computers than direct methods.

My intention in writing this volume is to provide up-to-date coverage of itera-

tive methods for solving large sparse linear systems. I focused the book on practical

methods that work for general sparse matrices rather than for any specific class of

problems. It is indeed becoming important to embrace applications not necessar-

ily governed by Partial Differential Equations, as these applications are on the rise.

xix
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Apart from two recent volumes by Axelsson [14] and Hackbusch [163], few books on

iterative methods have appeared since the excellent ones by Varga [293]. and later

Young [322]. Since then, researchers and practitioners have achieved remarkable

progress in the development and use of effective iterative methods. Unfortunately,

fewer elegant results have been discovered since the 1950s and 1960s. The field has

moved in other directions. Methods have gained not only in efficiency but also in

robustness and in generality. The traditional techniques which required rather com-

plicated procedures to determine optimal acceleration parameters have yielded to the

parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available

today, from both preconditioners and accelerators. One of the aims of the book is

to provide a good mix of theory and practice. It also addresses some of the current

research issues such as parallel implementations and robust preconditioners. The

emphasis is on Krylov subspace methods, currently the most practical and common

group of techniques used in applications. Although there is a tutorial chapter that

covers the discretization of Partial Differential Equations, the book is not biased

toward any specific application area. Instead, the matrices are assumed to be general

sparse, possibly irregularly structured.

The book has been structured in four distinct parts. The first part, Chapters 1 to 4,

presents the basic tools. The second part, Chapters 5 to 8, presents projection meth-

ods and Krylov subspace techniques. The third part, Chapters 9 and 10, discusses

preconditioning. The fourth part, Chapters 11 to 13, discusses parallel implementa-

tions and parallel algorithms.
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Chapter 1

BACKGROUND IN LINEAR ALGEBRA

This chapter gives an overview of the relevant concepts in linear algebra which are useful in

later chapters. It begins with a review of basic matrix theory and introduces the elementary

notation used throughout the book. The convergence analysis of iterative methods requires a

good level of knowledge in mathematical analysis and in linear algebra. Traditionally, many of the

concepts presented specifically for these analyses have been geared toward matrices arising from

the discretization of Partial Differential Equations and basic relaxation-type methods. These

concepts are now becoming less important because of the trend toward projection-type methods

which have more robust convergence properties and require different analysis tools. The material

covered in this chapter will be helpful in establishing some theory for the algorithms and defining

the notation used throughout the book.

1.1 Matrices

For the sake of generality, all vector spaces considered in this chapter are complex,

unless otherwise stated. A complex n ×m matrix A is an n ×m array of complex

numbers

aij, i = 1, . . . , n, j = 1, . . . ,m.

The set of all n×mmatrices is a complex vector space denoted by C
n×m. The main

operations with matrices are the following:

• Addition: C = A+B, where A,B, and C are matrices of size n×m and

cij = aij + bij, i = 1, 2, . . . n, j = 1, 2, . . . m.

• Multiplication by a scalar: C = αA, where

cij = α aij, i = 1, 2, . . . n, j = 1, 2, . . . m.

1
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• Multiplication by another matrix:

C = AB,

where A ∈ C
n×m, B ∈ C

m×p, C ∈ C
n×p, and

cij =

m∑

k=1

aikbkj.

Sometimes, a notation with column vectors and row vectors is used. The column

vector a∗j is the vector consisting of the j-th column of A,

a∗j =







a1j
a2j

...

anj






.

Similarly, the notation ai∗ will denote the i-th row of the matrix A

ai∗ = (ai1, ai2, . . . , aim) .

For example, the following could be written

A = (a∗1, a∗2, . . . , a∗m) ,

or

A =









a1∗
a2∗
.
.
an∗









.

The transpose of a matrix A in C
n×m is a matrix C in C

m×n whose elements

are defined by cij = aji, i = 1, . . . ,m, j = 1, . . . , n. It is denoted by AT . It is often

more relevant to use the transpose conjugate matrix denoted by AH and defined by

AH = ĀT = AT ,

in which the bar denotes the (element-wise) complex conjugation.

Matrices are strongly related to linear mappings between vector spaces of finite

dimension. This is because they represent these mappings with respect to two given

bases: one for the initial vector space and the other for the image vector space, or

range of A.
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1.2 Square Matrices and Eigenvalues

A matrix is square if it has the same number of columns and rows, i.e., if m = n. An

important square matrix is the identity matrix

I = {δij}i,j=1,...,n,

where δij is the Kronecker symbol. The identity matrix satisfies the equality AI =
IA = A for every matrix A of size n. The inverse of a matrix, when it exists, is a

matrix C such that

CA = AC = I.

The inverse of A is denoted by A−1.

The determinant of a matrix may be defined in several ways. For simplicity, the

following recursive definition is used here. The determinant of a 1× 1 matrix (a) is

defined as the scalar a. Then the determinant of an n× n matrix is given by

det(A) =

n∑

j=1

(−1)j+1a1jdet(A1j),

where A1j is an (n − 1)× (n− 1) matrix obtained by deleting the first row and the

j-th column of A. A matrix is said to be singular when det(A) = 0 and nonsingular

otherwise. We have the following simple properties:

• det(AB) = det(A)det(B).

• det(AT ) = det(A).

• det(αA) = αndet(A).

• det(Ā) = det(A).

• det(I) = 1.

From the above definition of determinants it can be shown by induction that the

function that maps a given complex value λ to the value pA(λ) = det(A − λI)
is a polynomial of degree n; see Exercise 8. This is known as the characteristic

polynomial of the matrix A.

Definition 1.1 A complex scalar λ is called an eigenvalue of the square matrix A
if a nonzero vector u of Cn exists such that Au = λu. The vector u is called an

eigenvector of A associated with λ. The set of all the eigenvalues of A is called the

spectrum of A and is denoted by σ(A).

A scalar λ is an eigenvalue of A if and only if det(A− λI) ≡ pA(λ) = 0. That

is true if and only if (iff thereafter) λ is a root of the characteristic polynomial. In

particular, there are at most n distinct eigenvalues.

It is clear that a matrix is singular if and only if it admits zero as an eigenvalue.

A well known result in linear algebra is stated in the following proposition.
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Proposition 1.2 A matrix A is nonsingular if and only if it admits an inverse.

Thus, the determinant of a matrix determines whether or not the matrix admits an

inverse.

The maximum modulus of the eigenvalues is called spectral radius and is de-

noted by ρ(A)
ρ(A) = max

λ∈σ(A)
|λ|.

The trace of a matrix is equal to the sum of all its diagonal elements

tr(A) =
n∑

i=1

aii.

It can be easily shown that the trace of A is also equal to the sum of the eigenvalues

of A counted with their multiplicities as roots of the characteristic polynomial.

Proposition 1.3 If λ is an eigenvalue of A, then λ̄ is an eigenvalue of AH . An

eigenvector v of AH associated with the eigenvalue λ̄ is called a left eigenvector of

A.

When a distinction is necessary, an eigenvector of A is often called a right eigen-

vector. Therefore, the eigenvalue λ as well as the right and left eigenvectors, u and

v, satisfy the relations

Au = λu, vHA = λvH ,

or, equivalently,

uHAH = λ̄uH , AHv = λ̄v.

1.3 Types of Matrices

The choice of a method for solving linear systems will often depend on the structure

of the matrix A. One of the most important properties of matrices is symmetry, be-

cause of its impact on the eigenstructure of A. A number of other classes of matrices

also have particular eigenstructures. The most important ones are listed below:

• Symmetric matrices: AT = A.

• Hermitian matrices: AH = A.

• Skew-symmetric matrices: AT = −A.

• Skew-Hermitian matrices: AH = −A.

• Normal matrices: AHA = AAH .

• Nonnegative matrices: aij ≥ 0, i, j = 1, . . . , n (similar definition for non-

positive, positive, and negative matrices).
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• Unitary matrices: QHQ = I .

It is worth noting that a unitary matrix Q is a matrix whose inverse is its transpose

conjugate QH , since

QHQ = I → Q−1 = QH . (1.1)

A matrix Q such that QHQ is diagonal is often called orthogonal.

Some matrices have particular structures that are often convenient for computa-

tional purposes. The following list, though incomplete, gives an idea of these special

matrices which play an important role in numerical analysis and scientific computing

applications.

• Diagonal matrices: aij = 0 for j 6= i. Notation:

A = diag (a11, a22, . . . , ann) .

• Upper triangular matrices: aij = 0 for i > j.

• Lower triangular matrices: aij = 0 for i < j.

• Upper bidiagonal matrices: aij = 0 for j 6= i or j 6= i+ 1.

• Lower bidiagonal matrices: aij = 0 for j 6= i or j 6= i− 1.

• Tridiagonal matrices: aij = 0 for any pair i, j such that |j − i| > 1. Notation:

A = tridiag (ai,i−1, aii, ai,i+1) .

• Banded matrices: aij 6= 0 only if i−ml ≤ j ≤ i+mu, where ml and mu are

two nonnegative integers. The number ml +mu + 1 is called the bandwidth

of A.

• Upper Hessenberg matrices: aij = 0 for any pair i, j such that i > j + 1.

Lower Hessenberg matrices can be defined similarly.

• Outer product matrices: A = uvH , where both u and v are vectors.

• Permutation matrices: the columns of A are a permutation of the columns of

the identity matrix.

• Block diagonal matrices: generalizes the diagonal matrix by replacing each

diagonal entry by a matrix. Notation:

A = diag (A11, A22, . . . , Ann) .

• Block tridiagonal matrices: generalizes the tridiagonal matrix by replacing

each nonzero entry by a square matrix. Notation:

A = tridiag (Ai,i−1, Aii, Ai,i+1) .

The above properties emphasize structure, i.e., positions of the nonzero elements

with respect to the zeros. Also, they assume that there are many zero elements or

that the matrix is of low rank. This is in contrast with the classifications listed earlier,

such as symmetry or normality.
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1.4 Vector Inner Products and Norms

An inner product on a (complex) vector space X is any mapping s from X × X into

C,

x ∈ X, y ∈ X → s(x, y) ∈ C,

which satisfies the following conditions:

1. s(x, y) is linear with respect to x, i.e.,

s(λ1x1 + λ2x2, y) = λ1s(x1, y) + λ2s(x2, y), ∀ x1, x2 ∈ X,∀ λ1, λ2 ∈ C.

2. s(x, y) is Hermitian, i.e.,

s(y, x) = s(x, y), ∀ x, y ∈ X.

3. s(x, y) is positive definite, i.e.,

s(x, x) > 0, ∀ x 6= 0.

Note that (2) implies that s(x, x) is real and therefore, (3) adds the constraint that

s(x, x) must also be positive for any nonzero x. For any x and y,

s(x, 0) = s(x, 0.y) = 0.s(x, y) = 0.

Similarly, s(0, y) = 0 for any y. Hence, s(0, y) = s(x, 0) = 0 for any x and y. In

particular the condition (3) can be rewritten as

s(x, x) ≥ 0 and s(x, x) = 0 iff x = 0,

as can be readily shown. A useful relation satisfied by any inner product is the so-

called Cauchy-Schwartz inequality:

|s(x, y)|2 ≤ s(x, x) s(y, y). (1.2)

The proof of this inequality begins by expanding s(x− λy, x− λy) using the prop-

erties of s,

s(x− λy, x− λy) = s(x, x)− λ̄s(x, y)− λs(y, x) + |λ|2s(y, y).

If y = 0 then the inequality is trivially satisfied. Assume that y 6= 0 and take

λ = s(x, y)/s(y, y). Then, from the above equality, s(x − λy, x − λy) ≥ 0 shows

that

0 ≤ s(x− λy, x− λy) = s(x, x)− 2
|s(x, y)|2
s(y, y)

+
|s(x, y)|2
s(y, y)

= s(x, x)− |s(x, y)|
2

s(y, y)
,
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which yields the result (1.2).

In the particular case of the vector space X = C
n, a “canonical” inner product

is the Euclidean inner product. The Euclidean inner product of two vectors x =
(xi)i=1,...,n and y = (yi)i=1,...,n of Cn is defined by

(x, y) =

n∑

i=1

xiȳi, (1.3)

which is often rewritten in matrix notation as

(x, y) = yHx. (1.4)

It is easy to verify that this mapping does indeed satisfy the three conditions required

for inner products, listed above. A fundamental property of the Euclidean inner

product in matrix computations is the simple relation

(Ax, y) = (x,AHy), ∀ x, y ∈ C
n. (1.5)

The proof of this is straightforward. The adjoint of A with respect to an arbitrary

inner product is a matrix B such that (Ax, y) = (x,By) for all pairs of vectors x
and y. A matrix is self-adjoint, or Hermitian with respect to this inner product, if it

is equal to its adjoint. The following proposition is a consequence of the equality

(1.5).

Proposition 1.4 Unitary matrices preserve the Euclidean inner product, i.e.,

(Qx,Qy) = (x, y)

for any unitary matrix Q and any vectors x and y.

Proof. Indeed, (Qx,Qy) = (x,QHQy) = (x, y).

A vector norm on a vector space X is a real-valued function x → ‖x‖ on X,

which satisfies the following three conditions:

1. ‖x‖ ≥ 0, ∀ x ∈ X, and ‖x‖ = 0 iff x = 0.

2. ‖αx‖ = |α|‖x‖, ∀ x ∈ X, ∀α ∈ C.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ X.

For the particular case when X = C
n, we can associate with the inner product

(1.3) the Euclidean norm of a complex vector defined by

‖x‖2 = (x, x)1/2.

It follows from Proposition 1.4 that a unitary matrix preserves the Euclidean norm

metric, i.e.,

‖Qx‖2 = ‖x‖2, ∀ x.
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The linear transformation associated with a unitary matrixQ is therefore an isometry.

The most commonly used vector norms in numerical linear algebra are special

cases of the Hölder norms

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (1.6)

Note that the limit of ‖x‖p when p tends to infinity exists and is equal to the maxi-

mum modulus of the xi’s. This defines a norm denoted by ‖.‖∞. The cases p = 1,

p = 2, and p =∞ lead to the most important norms in practice,

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|,
‖x‖2 =

[
|x1|2 + |x2|2 + · · · + |xn|2

]1/2
,

‖x‖∞ = max
i=1,...,n

|xi|.

The Cauchy-Schwartz inequality of (1.2) becomes

|(x, y)| ≤ ‖x‖2‖y‖2.

1.5 Matrix Norms

For a general matrix A in C
n×m, we define the following special set of norms

‖A‖pq = max
x∈Cm, x 6=0

‖Ax‖p
‖x‖q

. (1.7)

The norm ‖.‖pq is induced by the two norms ‖.‖p and ‖.‖q . These norms satisfy the

usual properties of norms, i.e.,

‖A‖ ≥ 0, ∀ A ∈ C
n×m, and ‖A‖ = 0 iff A = 0 (1.8)

‖αA‖ = |α|‖A‖,∀ A ∈ C
n×m, ∀ α ∈ C (1.9)

‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀ A,B ∈ C
n×m. (1.10)

(1.11)

A norm which satisfies the above three properties is nothing but a vector norm ap-

plied to the matrix considered as a vector consisting of the m columns stacked into a

vector of size nm.

The most important cases are again those associated with p, q = 1, 2,∞. The

case q = p is of particular interest and the associated norm ‖.‖pq is simply denoted

by ‖.‖p and called a “p-norm.” A fundamental property of a p-norm is that

‖AB‖p ≤ ‖A‖p‖B‖p,

an immediate consequence of the definition (1.7). Matrix norms that satisfy the above

property are sometimes called consistent. Often a norm satisfying the properties
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(1.8–1.10) and which is consistent is called a matrix norm. A result of consistency is

that for any square matrix A,

‖Ak‖p ≤ ‖A‖kp .
In particular the matrix Ak converges to zero if any of its p-norms is less than 1.

The Frobenius norm of a matrix is defined by

‖A‖F =





m∑

j=1

n∑

i=1

|aij |2




1/2

. (1.12)

This can be viewed as the 2-norm of the column (or row) vector in C
n2

consisting

of all the columns (respectively rows) of A listed from 1 to m (respectively 1 to n.)

It can be shown that this norm is also consistent, in spite of the fact that it is not

induced by a pair of vector norms, i.e., it is not derived from a formula of the form

(1.7); see Exercise 5. However, it does not satisfy some of the other properties of

the p-norms. For example, the Frobenius norm of the identity matrix is not equal to

one. To avoid these difficulties, we will only use the term matrix norm for a norm

that is induced by two norms as in the definition (1.7). Thus, we will not consider

the Frobenius norm to be a proper matrix norm, according to our conventions, even

though it is consistent.

The following equalities satisfied by the matrix norms defined above lead to al-

ternative definitions that are often easier to work with:

‖A‖1 = max
j=1,...,m

n∑

i=1

|aij |, (1.13)

‖A‖∞ = max
i=1,...,n

m∑

j=1

|aij |, (1.14)

‖A‖2 =
[
ρ(AHA)

]1/2
=
[
ρ(AAH)

]1/2
, (1.15)

‖A‖F =
[
tr(AHA)

]1/2
=
[
tr(AAH)

]1/2
. (1.16)

As will be shown later, the eigenvalues of AHA are nonnegative. Their square

roots are called singular values of A and are denoted by σi, i = 1, . . . ,m. Thus, the

relation (1.15) states that ‖A‖2 is equal to σ1, the largest singular value of A.

Example 1.1. From the relation (1.15), it is clear that the spectral radius ρ(A) is

equal to the 2-norm of a matrix when the matrix is Hermitian. However, it is not

a matrix norm in general. For example, the first property of norms is not satisfied,

since for

A =

(
0 1
0 0

)

,

we have ρ(A) = 0 while A 6= 0. Also, the triangle inequality is not satisfied for the

pair A, and B = AT where A is defined above. Indeed,

ρ(A+B) = 1 while ρ(A) + ρ(B) = 0.
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1.6 Subspaces, Range, and Kernel

A subspace of Cn is a subset of Cn that is also a complex vector space. The set of

all linear combinations of a set of vectors G = {a1, a2, . . . , aq} of Cn is a vector

subspace called the linear span of G,

span{G} = span {a1, a2, . . . , aq}

=

{

z ∈ C
n

∣
∣
∣
∣
z =

q
∑

i=1

αiai; {αi}i=1,...,q ∈ C
q

}

.

If the ai’s are linearly independent, then each vector of span{G} admits a unique

expression as a linear combination of the ai’s. The set G is then called a basis of the

subspace span{G}.
Given two vector subspaces S1 and S2, their sum S is a subspace defined as the

set of all vectors that are equal to the sum of a vector of S1 and a vector of S2. The

intersection of two subspaces is also a subspace. If the intersection of S1 and S2 is

reduced to {0}, then the sum of S1 and S2 is called their direct sum and is denoted

by S = S1
⊕
S2. When S is equal to C

n, then every vector x of Cn can be written

in a unique way as the sum of an element x1 of S1 and an element x2 of S2. The

transformation P that maps x into x1 is a linear transformation that is idempotent,

i.e., such that P 2 = P . It is called a projector onto S1 along S2.

Two important subspaces that are associated with a matrix A of Cn×m are its

range, defined by

Ran(A) = {Ax | x ∈ C
m}, (1.17)

and its kernel or null space

Null(A) = {x ∈ C
m | Ax = 0 }.

The range of A is clearly equal to the linear span of its columns. The rank of a

matrix is equal to the dimension of the range of A, i.e., to the number of linearly

independent columns. This column rank is equal to the row rank, the number of

linearly independent rows of A. A matrix in C
n×m is of full rank when its rank is

equal to the smallest of m and n. A fundamental result of linear algebra is stated by

the following relation

C
n = Ran(A)⊕Null(AT ) . (1.18)

The same result applied to the transpose of A yields: Cm = Ran(AT )⊕Null(A).
A subspace S is said to be invariant under a (square) matrix A whenever AS ⊂

S. In particular for any eigenvalue λ of A the subspace Null(A − λI) is invariant

under A. The subspace Null(A− λI) is called the eigenspace associated with λ and

consists of all the eigenvectors of A associated with λ, in addition to the zero-vector.
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1.7 Orthogonal Vectors and Subspaces

A set of vectors G = {a1, a2, . . . , ar} is said to be orthogonal if

(ai, aj) = 0 when i 6= j.

It is orthonormal if, in addition, every vector of G has a 2-norm equal to unity. A

vector that is orthogonal to all the vectors of a subspace S is said to be orthogonal to

this subspace. The set of all the vectors that are orthogonal to S is a vector subspace

called the orthogonal complement of S and denoted by S⊥. The space C
n is the

direct sum of S and its orthogonal complement. Thus, any vector x can be written in

a unique fashion as the sum of a vector in S and a vector in S⊥. The operator which

maps x into its component in the subspace S is the orthogonal projector onto S.

Every subspace admits an orthonormal basis which is obtained by taking any

basis and “orthonormalizing” it. The orthonormalization can be achieved by an al-

gorithm known as the Gram-Schmidt process which we now describe.

Given a set of linearly independent vectors {x1, x2, . . . , xr}, first normalize the

vector x1, which means divide it by its 2-norm, to obtain the scaled vector q1 of

norm unity. Then x2 is orthogonalized against the vector q1 by subtracting from x2
a multiple of q1 to make the resulting vector orthogonal to q1, i.e.,

x2 ← x2 − (x2, q1)q1.

The resulting vector is again normalized to yield the second vector q2. The i-th step

of the Gram-Schmidt process consists of orthogonalizing the vector xi against all

previous vectors qj .

ALGORITHM 1.1 Gram-Schmidt

1. Compute r11 := ‖x1‖2. If r11 = 0 Stop, else compute q1 := x1/r11.

2. For j = 2, . . . , r Do:

3. Compute rij := (xj , qi) , for i = 1, 2, . . . , j − 1

4. q̂ := xj −
j−1∑

i=1
rijqi

5. rjj := ‖q̂‖2 ,

6. If rjj = 0 then Stop, else qj := q̂/rjj
7. EndDo

It is easy to prove that the above algorithm will not break down, i.e., all r steps

will be completed if and only if the set of vectors x1, x2, . . . , xr is linearly indepen-

dent. From lines 4 and 5, it is clear that at every step of the algorithm the following

relation holds:

xj =

j
∑

i=1

rijqi.
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If X = [x1, x2, . . . , xr], Q = [q1, q2, . . . , qr], and if R denotes the r × r upper

triangular matrix whose nonzero elements are the rij defined in the algorithm, then

the above relation can be written as

X = QR. (1.19)

This is called the QR decomposition of the n× r matrix X. From what was said

above, the QR decomposition of a matrix exists whenever the column vectors of X
form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are alterna-

tive formulations of the algorithm which have better numerical properties. The best

known of these is the Modified Gram-Schmidt (MGS) algorithm.

ALGORITHM 1.2 Modified Gram-Schmidt

1. Define r11 := ‖x1‖2. If r11 = 0 Stop, else q1 := x1/r11.

2. For j = 2, . . . , r Do:

3. Define q̂ := xj
4. For i = 1, . . . , j − 1, Do:

5. rij := (q̂, qi)
6. q̂ := q̂ − rijqi
7. EndDo

8. Compute rjj := ‖q̂‖2,

9. If rjj = 0 then Stop, else qj := q̂/rjj
10. EndDo

Yet another alternative for orthogonalizing a sequence of vectors is the House-

holder algorithm. This technique uses Householder reflectors, i.e., matrices of the

form

P = I − 2wwT , (1.20)

in which w is a vector of 2-norm unity. Geometrically, the vector Px represents a

mirror image of x with respect to the hyperplane span{w}⊥.

To describe the Householder orthogonalization process, the problem can be for-

mulated as that of finding a QR factorization of a given n ×m matrix X. For any

vector x, the vector w for the Householder transformation (1.20) is selected in such

a way that

Px = αe1,

where α is a scalar. Writing (I − 2wwT )x = αe1 yields

2wTx w = x− αe1. (1.21)

This shows that the desired w is a multiple of the vector x− αe1,

w = ± x− αe1
‖x− αe1‖2

.

For (1.21) to be satisfied, we must impose the condition

2(x− αe1)Tx = ‖x− αe1‖22
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which gives 2(‖x‖21 − αξ1) = ‖x‖22 − 2αξ1 + α2, where ξ1 ≡ eT1 x is the first

component of the vector x. Therefore, it is necessary that

α = ±‖x‖2.

In order to avoid that the resulting vector w be small, it is customary to take

α = −sign(ξ1)‖x‖2,

which yields

w =
x+ sign(ξ1)‖x‖2e1
‖x+ sign(ξ1)‖x‖2e1‖2

. (1.22)

Given an n ×m matrix, its first column can be transformed to a multiple of the

column e1, by premultiplying it by a Householder matrix P1,

X1 ≡ P1X, X1e1 = αe1.

Assume, inductively, that the matrix X has been transformed in k − 1 successive

steps into the partially upper triangular form

Xk ≡ Pk−1 . . . P1X1 =
















x11 x12 x13 · · · · · · · · · x1m
x22 x23 · · · · · · · · · x2m

x33 · · · · · · · · · x3m
. . . · · · · · · ...

xkk · · · ...

xk+1,k · · · xk+1,m
...

...
...

xn,k · · · xn,m
















.

This matrix is upper triangular up to column number k − 1. To advance by one

step, it must be transformed into one which is upper triangular up the k-th column,

leaving the previous columns in the same form. To leave the first k − 1 columns

unchanged, select a w vector which has zeros in positions 1 through k − 1. So the

next Householder reflector matrix is defined as

Pk = I − 2wkw
T
k , (1.23)

in which the vector wk is defined as

wk =
z

‖z‖2
, (1.24)

where the components of the vector z are given by

zi =







0 if i < k
β + xii if i = k
xik if i > k

(1.25)
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with

β = sign(xkk)×
(

n∑

i=k

x2ik

)1/2

. (1.26)

We note in passing that the premultiplication of a matrix X by a Householder

transform requires only a rank-one update since,

(I − 2wwT )X = X − wvT where v = 2XTw.

Therefore, the Householder matrices need not, and should not, be explicitly formed.

In addition, the vectors w need not be explicitly scaled.

Assume now that m − 1 Householder transforms have been applied to a certain

matrix X of dimension n×m, to reduce it into the upper triangular form,

Xm ≡ Pm−1Pm−2 . . . P1X =
















x11 x12 x13 · · · x1m
x22 x23 · · · x2m

x33 · · · x3m
. . .

...

xm,m

0
...
...
















. (1.27)

Recall that our initial goal was to obtain a QR factorization of X. We now wish to

recover the Q and R matrices from the Pk’s and the above matrix. If we denote by

P the product of the Pi on the left-side of (1.27), then (1.27) becomes

PX =

(
R
O

)

, (1.28)

in which R is an m × m upper triangular matrix, and O is an (n − m) × m zero

block. Since P is unitary, its inverse is equal to its transpose and, as a result,

X = P T

(
R
O

)

= P1P2 . . . Pm−1

(
R
O

)

.

IfEm is the matrix of size n×mwhich consists of the firstm columns of the identity

matrix, then the above equality translates into

X = P TEmR.

The matrix Q = P TEm represents the m first columns of P T . Since

QTQ = ET
mPP

TEm = I,

Q and R are the matrices sought. In summary,

X = QR,
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in which R is the triangular matrix obtained from the Householder reduction of X
(see (1.27) and (1.28)) and

Qej = P1P2 . . . Pm−1ej .

ALGORITHM 1.3 Householder Orthogonalization

1. Define X = [x1, . . . , xm]
2. For k = 1, . . . ,m Do:

3. If k > 1 compute rk := Pk−1Pk−2 . . . P1xk
4. Compute wk using (1.24), (1.25), (1.26)

5. Compute rk := Pkrk with Pk = I − 2wkw
T
k

6. Compute qk = P1P2 . . . Pkek
7. EndDo

Note that line 6 can be omitted since the qi are not needed in the execution of the

next steps. It must be executed only when the matrixQ is needed at the completion of

the algorithm. Also, the operation in line 5 consists only of zeroing the components

k + 1, . . . , n and updating the k-th component of rk. In practice, a work vector can

be used for rk and its nonzero components after this step can be saved into an upper

triangular matrix. Since the components 1 through k of the vector wk are zero, the

upper triangular matrixR can be saved in those zero locations which would otherwise

be unused.

1.8 Canonical Forms of Matrices

This section discusses the reduction of square matrices into matrices that have sim-

pler forms, such as diagonal, bidiagonal, or triangular. Reduction means a transfor-

mation that preserves the eigenvalues of a matrix.

Definition 1.5 Two matrices A and B are said to be similar if there is a nonsingular

matrix X such that

A = XBX−1.

The mapping B → A is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity transformations pre-

serve the eigenvalues of matrices. An eigenvector uB of B is transformed into the

eigenvector uA = XuB of A. In effect, a similarity transformation amounts to rep-

resenting the matrix B in a different basis.

We now introduce some terminology.

1. An eigenvalue λ of A has algebraic multiplicity µ, if it is a root of multiplicity

µ of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A

nonsimple eigenvalue is multiple.
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3. The geometric multiplicity γ of an eigenvalue λ of A is the maximum number

of independent eigenvectors associated with it. In other words, the geometric

multiplicity γ is the dimension of the eigenspace Null (A− λI).

4. A matrix is derogatory if the geometric multiplicity of at least one of its eigen-

values is larger than one.

5. An eigenvalue is semisimple if its algebraic multiplicity is equal to its geomet-

ric multiplicity. An eigenvalue that is not semisimple is called defective.

Often, λ1, λ2, . . . , λp (p ≤ n) are used to denote the distinct eigenvalues of

A. It is easy to show that the characteristic polynomials of two similar matrices are

identical; see Exercise 9. Therefore, the eigenvalues of two similar matrices are equal

and so are their algebraic multiplicities. Moreover, if v is an eigenvector of B, then

Xv is an eigenvector of A and, conversely, if y is an eigenvector of A then X−1y is

an eigenvector of B. As a result the number of independent eigenvectors associated

with a given eigenvalue is the same for two similar matrices, i.e., their geometric

multiplicity is also the same.

1.8.1 Reduction to the Diagonal Form

The simplest form in which a matrix can be reduced is undoubtedly the diagonal

form. Unfortunately, this reduction is not always possible. A matrix that can be

reduced to the diagonal form is called diagonalizable. The following theorem char-

acterizes such matrices.

Theorem 1.6 A matrix of dimension n is diagonalizable if and only if it has n line-

arly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingular matrix

X and a diagonal matrix D such that A = XDX−1, or equivalently AX = XD,

whereD is a diagonal matrix. This is equivalent to saying that n linearly independent

vectors exist — the n column-vectors of X — such that Axi = dixi. Each of these

column-vectors is an eigenvector of A.

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all

the eigenvalues of a matrix A are semisimple, then A has n eigenvectors. It can be

easily shown that these eigenvectors are linearly independent; see Exercise 2. As a

result, we have the following proposition.

Proposition 1.7 A matrix is diagonalizable if and only if all its eigenvalues are

semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above

result is: When A has n distinct eigenvalues, then it is diagonalizable.
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1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of ma-

trices is the well known Jordan form. A full development of the steps leading to

the Jordan form is beyond the scope of this book. Only the main theorem is stated.

Details, including the proof, can be found in standard books of linear algebra such

as [164]. In the following, mi refers to the algebraic multiplicity of the individual

eigenvalue λi and li is the index of the eigenvalue, i.e., the smallest integer for which

Null(A− λiI)li+1 = Null(A− λiI)li .

Theorem 1.8 Any matrix A can be reduced to a block diagonal matrix consisting

of p diagonal blocks, each associated with a distinct eigenvalue λi. Each of these

diagonal blocks has itself a block diagonal structure consisting of γi sub-blocks,

where γi is the geometric multiplicity of the eigenvalue λi. Each of the sub-blocks,

referred to as a Jordan block, is an upper bidiagonal matrix of size not exceeding

li ≤ mi, with the constant λi on the diagonal and the constant one on the super

diagonal.

The i-th diagonal block, i = 1, . . . , p, is known as the i-th Jordan submatrix (some-

times “Jordan Box”). The Jordan submatrix number i starts in column ji ≡ m1 +
m2 + · · · +mi−1 + 1. Thus,

X−1AX = J =












J1
J2

. . .

Ji
. . .

Jp












,

where each Ji is associated with λi and is of size mi the algebraic multiplicity of λi.
It has itself the following structure,

Ji =







Ji1
Ji2

. . .

Jiγi







with Jik =







λi 1
. . .

. . .

λi 1
λi






.

Each of the blocks Jik corresponds to a different eigenvector associated with the

eigenvalue λi. Its size li is the index of λi.

1.8.3 The Schur Canonical Form

Here, it will be shown that any matrix is unitarily similar to an upper triangular

matrix. The only result needed to prove the following theorem is that any vector of

2-norm one can be completed by n − 1 additional vectors to form an orthonormal

basis of Cn.
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Theorem 1.9 For any square matrix A, there exists a unitary matrix Q such that

QHAQ = R

is upper triangular.

Proof. The proof is by induction over the dimension n. The result is trivial for

n = 1. Assume that it is true for n − 1 and consider any matrix A of size n. The

matrix admits at least one eigenvector u that is associated with an eigenvalue λ. Also

assume without loss of generality that ‖u‖2 = 1. First, complete the vector u into

an orthonormal set, i.e., find an n × (n − 1) matrix V such that the n × n matrix

U = [u, V ] is unitary. Then AU = [λu,AV ] and hence,

UHAU =

[
uH

V H

]

[λu,AV ] =

(
λ uHAV
0 V HAV

)

. (1.29)

Now use the induction hypothesis for the (n − 1) × (n − 1) matrix B = V HAV :

There exists an (n − 1) × (n − 1) unitary matrix Q1 such that QH
1 BQ1 = R1 is

upper triangular. Define the n× n matrix

Q̂1 =

(
1 0
0 Q1

)

and multiply both members of (1.29) by Q̂H
1 from the left and Q̂1 from the right. The

resulting matrix is clearly upper triangular and this shows that the result is true for

A, with Q = Q̂1U which is a unitary n× n matrix.

A simpler proof that uses the Jordan canonical form and the QR decomposition is the

subject of Exercise 7. Since the matrix R is triangular and similar to A, its diagonal

elements are equal to the eigenvalues of A ordered in a certain manner. In fact, it is

easy to extend the proof of the theorem to show that this factorization can be obtained

with any order for the eigenvalues. Despite its simplicity, the above theorem has far-

reaching consequences, some of which will be examined in the next section.

It is important to note that for any k ≤ n, the subspace spanned by the first k
columns of Q is invariant under A. Indeed, the relation AQ = QR implies that for

1 ≤ j ≤ k, we have

Aqj =

i=j
∑

i=1

rijqi.

If we let Qk = [q1, q2, . . . , qk] and if Rk is the principal leading submatrix of dimen-

sion k of R, the above relation can be rewritten as

AQk = QkRk,

which is known as the partial Schur decomposition of A. The simplest case of this

decomposition is when k = 1, in which case q1 is an eigenvector. The vectors qi are
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usually called Schur vectors. Schur vectors are not unique and depend, in particular,

on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quasi-Schur form, also

called the real Schur form. Here, diagonal blocks of size 2 × 2 are allowed in the

upper triangular matrix R. The reason for this is to avoid complex arithmetic when

the original matrix is real. A 2× 2 block is associated with each complex conjugate

pair of eigenvalues of the matrix.

Example 1.2. Consider the 3× 3 matrix

A =





1 10 0
−1 3 1
−1 0 1



 .

The matrix A has the pair of complex conjugate eigenvalues

2.4069 . . . ± i× 3.2110 . . .

and the real eigenvalue 0.1863 . . .. The standard (complex) Schur form is given by

the pair of matrices

V =





0.3381 − 0.8462i 0.3572 − 0.1071i 0.1749
0.3193 − 0.0105i −0.2263 − 0.6786i −0.6214
0.1824 + 0.1852i −0.2659 − 0.5277i 0.7637





and

S =





2.4069 + 3.2110i 4.6073 − 4.7030i −2.3418 − 5.2330i
0 2.4069 − 3.2110i −2.0251 − 1.2016i
0 0 0.1863



 .

It is possible to avoid complex arithmetic by using the quasi-Schur form which con-

sists of the pair of matrices

U =





−0.9768 0.1236 0.1749
−0.0121 0.7834 −0.6214
0.2138 0.6091 0.7637





and

R =





1.3129 −7.7033 6.0407
1.4938 3.5008 −1.3870

0 0 0.1863



 .

We conclude this section by pointing out that the Schur and the quasi-Schur

forms of a given matrix are in no way unique. In addition to the dependence on the

ordering of the eigenvalues, any column of Q can be multiplied by a complex sign

eiθ and a new corresponding R can be found. For the quasi-Schur form, there are

infinitely many ways to select the 2× 2 blocks, corresponding to applying arbitrary

rotations to the columns of Q associated with these blocks.
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1.8.4 Application to Powers of Matrices

The analysis of many numerical techniques is based on understanding the behavior of

the successive powers Ak of a given matrix A. In this regard, the following theorem

plays a fundamental role in numerical linear algebra, more particularly in the analysis

of iterative methods.

Theorem 1.10 The sequence Ak, k = 0, 1, . . . , converges to zero if and only if

ρ(A) < 1.

Proof. To prove the necessary condition, assume that Ak → 0 and consider u1 a

unit eigenvector associated with an eigenvalue λ1 of maximum modulus. We have

Aku1 = λk1u1,

which implies, by taking the 2-norms of both sides,

|λk1| = ‖Aku1‖2 → 0.

This shows that ρ(A) = |λ1| < 1.

The Jordan canonical form must be used to show the sufficient condition. As-

sume that ρ(A) < 1. Start with the equality

Ak = XJkX−1.

To prove that Ak converges to zero, it is sufficient to show that Jk converges to

zero. An important observation is that Jk preserves its block form. Therefore, it is

sufficient to prove that each of the Jordan blocks converges to zero. Each block is of

the form

Ji = λiI + Ei

where Ei is a nilpotent matrix of index li, i.e., Eli
i = 0. Therefore, for k ≥ li,

Jk
i =

li−1∑

j=0

k!

j!(k − j)!λ
k−j
i Ej

i .

Using the triangle inequality for any norm and taking k ≥ li yields

‖Jk
i ‖ ≤

li−1∑

j=0

k!

j!(k − j)! |λi|
k−j‖Ej

i ‖.

Since |λi| < 1, each of the terms in this finite sum converges to zero as k → ∞.

Therefore, the matrix Jk
i converges to zero.

An equally important result is stated in the following theorem.
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Theorem 1.11 The series ∞∑

k=0

Ak

converges if and only if ρ(A) < 1. Under this condition, I − A is nonsingular and

the limit of the series is equal to (I −A)−1.

Proof. The first part of the theorem is an immediate consequence of Theorem 1.10.

Indeed, if the series converges, then ‖Ak‖ → 0. By the previous theorem, this

implies that ρ(A) < 1. To show that the converse is also true, use the equality

I −Ak+1 = (I −A)(I +A+A2 + . . .+Ak)

and exploit the fact that since ρ(A) < 1, then I −A is nonsingular, and therefore,

(I −A)−1(I −Ak+1) = I +A+A2 + . . .+Ak.

This shows that the series converges since the left-hand side will converge to (I −
A)−1. In addition, it also shows the second part of the theorem.

Another important consequence of the Jordan canonical form is a result that re-

lates the spectral radius of a matrix to its matrix norm.

Theorem 1.12 For any matrix norm ‖.‖, we have

lim
k→∞

‖Ak‖1/k = ρ(A).

Proof. The proof is a direct application of the Jordan canonical form and is the

subject of Exercise 10.

1.9 Normal and Hermitian Matrices

This section examines specific properties of normal matrices and Hermitian matrices,

including some optimality properties related to their spectra. The most common

normal matrices that arise in practice are Hermitian or skew-Hermitian.

1.9.1 Normal Matrices

By definition, a matrix is said to be normal if it commutes with its transpose conju-

gate, i.e., if it satisfies the relation

AHA = AAH . (1.30)

An immediate property of normal matrices is stated in the following lemma.

Lemma 1.13 If a normal matrix is triangular, then it is a diagonal matrix.
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Proof. Assume, for example, that A is upper triangular and normal. Compare the

first diagonal element of the left-hand side matrix of (1.30) with the corresponding

element of the matrix on the right-hand side. We obtain that

|a11|2 =
n∑

j=1

|a1j |2,

which shows that the elements of the first row are zeros except for the diagonal one.

The same argument can now be used for the second row, the third row, and so on to

the last row, to show that aij = 0 for i 6= j.

A consequence of this lemma is the following important result.

Theorem 1.14 A matrix is normal if and only if it is unitarily similar to a diagonal

matrix.

Proof. It is straightforward to verify that a matrix which is unitarily similar to a

diagonal matrix is normal. We now prove that any normal matrix A is unitarily

similar to a diagonal matrix. Let A = QRQH be the Schur canonical form of A
where Q is unitary and R is upper triangular. By the normality of A,

QRHQHQRQH = QRQHQRHQH

or,

QRHRQH = QRRHQH .

Upon multiplication by QH on the left and Q on the right, this leads to the equality

RHR = RRH which means that R is normal, and according to the previous lemma

this is only possible if R is diagonal.

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigen-

vectors, namely, the column vectors of Q.

The following result will be used in a later chapter. The question that is asked

is: Assuming that any eigenvector of a matrix A is also an eigenvector of AH , is A
normal? If A had a full set of eigenvectors, then the result is true and easy to prove.

Indeed, if V is the n × n matrix of common eigenvectors, then AV = V D1 and

AHV = V D2, with D1 and D2 diagonal. Then, AAHV = V D1D2 and AHAV =
V D2D1 and, therefore, AAH = AHA. It turns out that the result is true in general,

i.e., independently of the number of eigenvectors that A admits.

Lemma 1.15 A matrix A is normal if and only if each of its eigenvectors is also an

eigenvector of AH .

Proof. If A is normal, then its left and right eigenvectors are identical, so the suffi-

cient condition is trivial. Assume now that a matrix A is such that each of its eigen-

vectors vi, i = 1, . . . , k, with k ≤ n is an eigenvector ofAH . For each eigenvector vi
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of A, Avi = λivi, and since vi is also an eigenvector of AH , then AHvi = µvi. Ob-

serve that (AHvi, vi) = µ(vi, vi) and because (AHvi, vi) = (vi, Avi) = λ̄i(vi, vi), it

follows that µ = λ̄i. Next, it is proved by contradiction that there are no elementary

divisors. Assume that the contrary is true for λi. Then, the first principal vector ui
associated with λi is defined by

(A− λiI)ui = vi.

Taking the inner product of the above relation with vi, we obtain

(Aui, vi) = λi(ui, vi) + (vi, vi). (1.31)

On the other hand, it is also true that

(Aui, vi) = (ui, A
Hvi) = (ui, λ̄ivi) = λi(ui, vi). (1.32)

A result of (1.31) and (1.32) is that (vi, vi) = 0 which is a contradiction. Therefore,

A has a full set of eigenvectors. This leads to the situation discussed just before the

lemma, from which it is concluded that A must be normal.

Clearly, Hermitian matrices are a particular case of normal matrices. Since a

normal matrix satisfies the relation A = QDQH , with D diagonal and Q unitary, the

eigenvalues of A are the diagonal entries of D. Therefore, if these entries are real it

is clear that AH = A. This is restated in the following corollary.

Corollary 1.16 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., a Hermitian matrix has real

eigenvalues.

An eigenvalue λ of any matrix satisfies the relation

λ =
(Au, u)

(u, u)
,

where u is an associated eigenvector. Generally, one might consider the complex

scalars

µ(x) =
(Ax, x)

(x, x)
, (1.33)

defined for any nonzero vector in C
n. These ratios are known as Rayleigh quotients

and are important both for theoretical and practical purposes. The set of all possible

Rayleigh quotients as x runs over Cn is called the field of values of A. This set is

clearly bounded since each |µ(x)| is bounded by the the 2-norm of A, i.e., |µ(x)| ≤
‖A‖2 for all x.

If a matrix is normal, then any vector x in C
n can be expressed as

n∑

i=1

ξiqi,
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where the vectors qi form an orthogonal basis of eigenvectors, and the expression for

µ(x) becomes

µ(x) =
(Ax, x)

(x, x)
=

∑n
k=1 λk|ξk|2∑n
k=1 |ξk|2

≡
n∑

k=1

βkλk, (1.34)

where

0 ≤ βi =
|ξi|2

∑n
k=1 |ξk|2

≤ 1, and
n∑

i=1

βi = 1.

From a well known characterization of convex hulls established by Hausdorff (Haus-

dorff’s convex hull theorem), this means that the set of all possible Rayleigh quo-

tients as x runs over all of Cn is equal to the convex hull of the λi’s. This leads to

the following theorem which is stated without proof.

Theorem 1.17 The field of values of a normal matrix is equal to the convex hull of

its spectrum.

The next question is whether or not this is also true for nonnormal matrices and

the answer is no: The convex hull of the eigenvalues and the field of values of a

nonnormal matrix are different in general. As a generic example, one can take any

nonsymmetric real matrix which has real eigenvalues only. In this case, the convex

hull of the spectrum is a real interval but its field of values will contain imaginary

values. See Exercise 12 for another example. It has been shown (Hausdorff) that

the field of values of a matrix is a convex set. Since the eigenvalues are members

of the field of values, their convex hull is contained in the field of values. This is

summarized in the following proposition.

Proposition 1.18 The field of values of an arbitrary matrix is a convex set which

contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum

when the matrix is normal.

A useful definition based on field of values is that of the numerical radius. The

numerical radius ν(A) of an arbitrary matrix A is the radius of the smallest disk

containing the field of values, i.e.,

ν(A) = max
x ∈ Cn

|µ(x)| .

It is easy to see that

ρ(A) ≤ ν(A) ≤ ‖A‖2 .
The spectral radius and numerical radius are identical for normal matrices. It can

also be easily shown (see Exercise 21) that ν(A) ≥ ‖A‖2/2, which means that

‖A‖2
2
≤ ν(A) ≤ ‖A‖2. (1.35)

The numerical radius is a vector norm, i.e., it satisfies (1.8–1.10), but it is not consis-

tent, see Exercise 22. However, it satisfies the power inequality (See [172, p333]):

ν(Ak) ≤ ν(A)k . (1.36)
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1.9.2 Hermitian Matrices

A first result on Hermitian matrices is the following.

Theorem 1.19 The eigenvalues of a Hermitian matrix are real, i.e., σ(A) ⊂ R.

Proof. Let λ be an eigenvalue of A and u an associated eigenvector of 2-norm unity.

Then

λ = (Au, u) = (u,Au) = (Au, u) = λ,

which is the stated result.

It is not difficult to see that if, in addition, the matrix is real, then the eigenvectors

can be chosen to be real; see Exercise 24. Since a Hermitian matrix is normal, the

following is a consequence of Theorem 1.14.

Theorem 1.20 Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that form

a basis of Cn.

In the proof of Theorem 1.17 we used the fact that the inner products (Au, u) are

real. Generally, it is clear that any Hermitian matrix is such that (Ax, x) is real for

any vector x ∈ C
n. It turns out that the converse is also true, i.e., it can be shown that

if (Az, z) is real for all vectors z in C
n, then the matrix A is Hermitian; see Exercise

15.

Eigenvalues of Hermitian matrices can be characterized by optimality properties

of the Rayleigh quotients (1.33). The best known of these is the min-max principle.

We now label all the eigenvalues of A in descending order:

λ1 ≥ λ2 ≥ · · · ≥ λn.

Here, the eigenvalues are not necessarily distinct and they are repeated, each accord-

ing to its multiplicity. In the following theorem, known as the Min-Max Theorem, S
represents a generic subspace of Cn.

Theorem 1.21 The eigenvalues of a Hermitian matrix A are characterized by the

relation

λk = min
S, dim (S)=n−k+1

max
x∈S,x 6=0

(Ax, x)

(x, x)
. (1.37)

Proof. Let {qi}i=1,...,n be an orthonormal basis of Cn consisting of eigenvectors ofA
associated with λ1, . . . , λn respectively. Let Sk be the subspace spanned by the first k
of these vectors and denote by µ(S) the maximum of (Ax, x)/(x, x) over all nonzero

vectors of a subspace S. Since the dimension of Sk is k, a well known theorem of

linear algebra shows that its intersection with any subspace S of dimension n−k+1
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is not reduced to {0}, i.e., there is vector x in S
⋂
Sk. For this x =

∑k
i=1 ξiqi, we

have
(Ax, x)

(x, x)
=

∑k
i=1 λi|ξi|2
∑k

i=1 |ξi|2
≥ λk

so that µ(S) ≥ λk.

Consider, on the other hand, the particular subspace S0 of dimension n − k + 1
which is spanned by qk, . . . , qn. For each vector x in this subspace, we have

(Ax, x)

(x, x)
=

∑n
i=k λi|ξi|2∑n
i=k |ξi|2

≤ λk

so that µ(S0) ≤ λk. In other words, as S runs over all the (n − k + 1)-dimensional

subspaces, µ(S) is always ≥ λk and there is at least one subspace S0 for which

µ(S0) ≤ λk. This shows the desired result.

The above result is often called the Courant-Fisher min-max principle or theorem.

As a particular case, the largest eigenvalue of A satisfies

λ1 = max
x 6=0

(Ax, x)

(x, x)
. (1.38)

Actually, there are four different ways of rewriting the above characterization.

The second formulation is

λk = max
S, dim (S)=k

min
x∈S,x 6=0

(Ax, x)

(x, x)
(1.39)

and the two other ones can be obtained from (1.37) and (1.39) by simply relabeling

the eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the

eigenvalues in descending order, (1.39) tells us that the smallest eigenvalue satisfies

λn = min
x 6=0

(Ax, x)

(x, x)
, (1.40)

with λn replaced by λ1 if the eigenvalues are relabeled increasingly.

In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary

and sufficient that

(Ax, x) > 0, ∀ x ∈ C
n, x 6= 0.

Such a matrix is called positive definite. A matrix which satisfies (Ax, x) ≥ 0 for any

x is said to be positive semidefinite. In particular, the matrix AHA is semipositive

definite for any rectangular matrix, since

(AHAx, x) = (Ax,Ax) ≥ 0, ∀ x.

Similarly, AAH is also a Hermitian semipositive definite matrix. The square roots

of the eigenvalues of AHA for a general rectangular matrix A are called the singular

values of A and are denoted by σi. In Section 1.5, we have stated without proof that



1.10. NONNEGATIVE MATRICES, M-MATRICES 27

the 2-norm of any matrix A is equal to the largest singular value σ1 of A. This is now

an obvious fact, because

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

(Ax,Ax)

(x, x)
= max

x 6=0

(AHAx, x)

(x, x)
= σ21

which results from (1.38).

Another characterization of eigenvalues, known as the Courant characterization,

is stated in the next theorem. In contrast with the min-max theorem, this property is

recursive in nature.

Theorem 1.22 The eigenvalue λi and the corresponding eigenvector qi of a Hermi-

tian matrix are such that

λ1 =
(Aq1, q1)

(q1, q1)
= max

x∈Cn,x 6=0

(Ax, x)

(x, x)

and for k > 1,

λk =
(Aqk, qk)

(qk, qk)
= max

x 6=0,qH1 x=...=qH
k−1x=0

(Ax, x)

(x, x)
. (1.41)

In other words, the maximum of the Rayleigh quotient over a subspace that is

orthogonal to the first k − 1 eigenvectors is equal to λk and is achieved for the

eigenvector qk associated with λk. The proof follows easily from the expansion

(1.34) of the Rayleigh quotient.

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are impor-

tant in the study of convergence of iterative methods and arise in many applications

including economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More

generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 Let A and B be two n×m matrices. Then

A ≤ B

if by definition, aij ≤ bij for 1 ≤ i ≤ n, 1 ≤ j ≤ m. If O denotes the n ×m zero

matrix, then A is nonnegative if A ≥ O, and positive if A > O. Similar definitions

hold in which “positive” is replaced by “negative”.

The binary relation “≤” imposes only a partial order on R
n×m since two arbitrary

matrices in R
n×m are not necessarily comparable by this relation. For the remain-

der of this section, we now assume that only square matrices are involved. The next

proposition lists a number of rather trivial properties regarding the partial order rela-

tion just defined.
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Proposition 1.24 The following properties hold.

1. The relation ≤ for matrices is reflexive (A ≤ A), antisymmetric (if A ≤ B and

B ≤ A, then A = B), and transitive (if A ≤ B and B ≤ C , then A ≤ C).

2. If A and B are nonnegative, then so is their product AB and their sum A+B.

3. If A is nonnegative, then so is Ak.

4. If A ≤ B, then AT ≤ BT .

5. If O ≤ A ≤ B, then ‖A‖1 ≤ ‖B‖1 and similarly ‖A‖∞ ≤ ‖B‖∞.

The proof of these properties is left as Exercise 26.

A matrix is said to be reducible if there is a permutation matrix P such that

PAP T is block upper triangular. Otherwise, it is irreducible. An important re-

sult concerning nonnegative matrices is the following theorem known as the Perron-

Frobenius theorem.

Theorem 1.25 Let A be a real n × n nonnegative irreducible matrix. Then λ ≡
ρ(A), the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists an

eigenvector u with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion

is somewhat weakened in the sense that the elements of the eigenvectors are only

guaranteed to be nonnegative.

Next, a useful property is established.

Proposition 1.26 Let A,B,C be nonnegative matrices, with A ≤ B. Then

AC ≤ BC and CA ≤ CB.

Proof. Consider the first inequality only, since the proof for the second is identical.

The result that is claimed translates into

n∑

k=1

aikckj ≤
n∑

k=1

bikckj, 1 ≤ i, j ≤ n,

which is clearly true by the assumptions.

A consequence of the proposition is the following corollary.

Corollary 1.27 Let A and B be two nonnegative matrices, with A ≤ B. Then

Ak ≤ Bk, ∀ k ≥ 0. (1.42)
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Proof. The proof is by induction. The inequality is clearly true for k = 0. Assume

that (1.42) is true for k. According to the previous proposition, multiplying (1.42)

from the left by A results in

Ak+1 ≤ ABk. (1.43)

Now, it is clear that if B ≥ 0, then also Bk ≥ 0, by Proposition 1.24. We now

multiply both sides of the inequality A ≤ B by Bk to the right, and obtain

ABk ≤ Bk+1. (1.44)

The inequalities (1.43) and (1.44) show that Ak+1 ≤ Bk+1, which completes the

induction proof.

A theorem which has important consequences on the analysis of iterative meth-

ods will now be stated.

Theorem 1.28 Let A and B be two square matrices that satisfy the inequalities

O ≤ A ≤ B. (1.45)

Then

ρ(A) ≤ ρ(B). (1.46)

Proof. The proof is based on the following equality stated in Theorem 1.12

ρ(X) = lim
k→∞

‖Xk‖1/k

for any matrix norm. Choosing the 1−norm, for example, we have from the last

property in Proposition 1.24

ρ(A) = lim
k→∞

‖Ak‖1/k1 ≤ lim
k→∞

‖Bk‖1/k1 = ρ(B)

which completes the proof.

Theorem 1.29 Let B be a nonnegative matrix. Then ρ(B) < 1 if and only if I −B
is nonsingular and (I −B)−1 is nonnegative.

Proof. Define C = I − B. If it is assumed that ρ(B) < 1, then by Theorem 1.11,

C = I −B is nonsingular and

C−1 = (I −B)−1 =
∞∑

i=0

Bi. (1.47)

In addition, since B ≥ 0, all the powers of B as well as their sum in (1.47) are also

nonnegative.
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To prove the sufficient condition, assume that C is nonsingular and that its in-

verse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigen-

vector u associated with ρ(B), which is an eigenvalue, i.e.,

Bu = ρ(B)u

or, equivalently,

C−1u =
1

1− ρ(B)
u.

Since u and C−1 are nonnegative, and I − B is nonsingular, this shows that 1 −
ρ(B) > 0, which is the desired result.

Definition 1.30 A matrix is said to be an M -matrix if it satisfies the following four

properties:

1. ai,i > 0 for i = 1, . . . , n.

2. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

3. A is nonsingular.

4. A−1 ≥ 0.

In reality, the four conditions in the above definition are somewhat redundant and

equivalent conditions that are more rigorous will be given later. Let A be any matrix

which satisfies properties (1) and (2) in the above definition and let D be the diagonal

of A. Since D > 0,

A = D − (D −A) = D
(
I − (I −D−1A)

)
.

Now define

B ≡ I −D−1A.

Using the previous theorem, I − B = D−1A is nonsingular and (I − B)−1 =
A−1D ≥ 0 if and only if ρ(B) < 1. It is now easy to see that conditions (3) and (4)

of Definition 1.30 can be replaced by the condition ρ(B) < 1.

Theorem 1.31 Let a matrix A be given such that

1. ai,i > 0 for i = 1, . . . , n.

2. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

Then A is an M -matrix if and only if

3. ρ(B) < 1, where B = I −D−1A.
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Proof. From the above argument, an immediate application of Theorem 1.29 shows

that properties (3) and (4) of the above definition are equivalent to ρ(B) < 1, where

B = I − C and C = D−1A. In addition, C is nonsingular iff A is and C−1 is

nonnegative iff A is.

The next theorem shows that the condition (1) in Definition 1.30 is implied by

the other three.

Theorem 1.32 Let a matrix A be given such that

1. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

2. A is nonsingular.

3. A−1 ≥ 0.

Then

4. ai,i > 0 for i = 1, . . . , n, i.e., A is an M -matrix.

5. ρ(B) < 1 where B = I −D−1A.

Proof. Define C ≡ A−1. Writing that (AC)ii = 1 yields

n∑

k=1

aikcki = 1

which gives

aiicii = 1−
n∑

k=1
k 6=i

aikcki.

Since aikcki ≤ 0 for all k, the right-hand side is ≥ 1 and since cii ≥ 0, then aii > 0.

The second part of the result now follows immediately from an application of the

previous theorem.

Finally, this useful result follows.

Theorem 1.33 Let A,B be two matrices which satisfy

1. A ≤ B.

2. bij ≤ 0 for all i 6= j.

Then if A is an M -matrix, so is the matrix B.
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Proof. Assume that A is an M -matrix and let DX denote the diagonal of a matrix

X. The matrix DB is positive because

DB ≥ DA > 0.

Consider now the matrix I −D−1
B B. Since A ≤ B, then

DA −A ≥ DB −B ≥ O

which, upon multiplying through by D−1
A , yields

I −D−1
A A ≥ D−1

A (DB −B) ≥ D−1
B (DB −B) = I −D−1

B B ≥ O.

Since the matrices I − D−1
B B and I − D−1

A A are nonnegative, Theorems 1.28 and

1.31 imply that

ρ(I −D−1
B B) ≤ ρ(I −D−1

A A) < 1.

This establishes the result by using Theorem 1.31 once again.

1.11 Positive-Definite Matrices

A real matrix is said to be positive definite or positive real if

(Au, u) > 0, ∀ u ∈ R
n, u 6= 0. (1.48)

It must be emphasized that this definition is only useful when formulated entirely for

real variables. Indeed, if u were not restricted to be real, then assuming that (Au, u)
is real for all u complex would imply that A is Hermitian; see Exercise 15. If, in

addition to the definition stated by 1.48, A is symmetric (real), then A is said to be

Symmetric Positive Definite (SPD). Similarly, if A is Hermitian, then A is said to be

Hermitian Positive Definite (HPD). Some properties of HPD matrices were seen in

Section 1.9, in particular with regards to their eigenvalues. Now the more general

case where A is non-Hermitian and positive definite is considered.

We begin with the observation that any square matrix (real or complex) can be

decomposed as

A = H + iS, (1.49)

in which

H =
1

2
(A+AH) (1.50)

S =
1

2i
(A−AH). (1.51)

Note that both H and S are Hermitian while the matrix iS in the decomposition

(1.49) is skew-Hermitian. The matrix H in the decomposition is called the Hermi-

tian part of A, while the matrix iS is the skew-Hermitian part of A. The above
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decomposition is the analogue of the decomposition of a complex number z into

z = x+ iy,

x = ℜe(z) = 1

2
(z + z̄), y = ℑm(z) =

1

2i
(z − z̄).

When A is real and u is a real vector then (Au, u) is real and, as a result, the

decomposition (1.49) immediately gives the equality

(Au, u) = (Hu, u). (1.52)

This results in the following theorem.

Theorem 1.34 Let A be a real positive definite matrix. Then A is nonsingular. In

addition, there exists a scalar α > 0 such that

(Au, u) ≥ α‖u‖22, (1.53)

for any real vector u.

Proof. The first statement is an immediate consequence of the definition of positive

definiteness. Indeed, if A were singular, then there would be a nonzero vector such

that Au = 0 and as a result (Au, u) = 0 for this vector, which would contradict

(1.48). We now prove the second part of the theorem. From (1.52) and the fact that

A is positive definite, we conclude that H is HPD. Hence, from (1.40) based on the

min-max theorem, we get

min
u 6=0

(Au, u)

(u, u)
= min

u 6=0

(Hu, u)

(u, u)
≥ λmin(H) > 0.

Taking α ≡ λmin(H) yields the desired inequality (1.53).

A simple yet important result which locates the eigenvalues of A in terms of the

spectra of H and S can now be proved.

Theorem 1.35 Let A be any square (possibly complex) matrix and let H = 1
2(A +

AH) and S = 1
2i(A−AH). Then any eigenvalue λj of A is such that

λmin(H) ≤ ℜe(λj) ≤ λmax(H) (1.54)

λmin(S) ≤ ℑm(λj) ≤ λmax(S). (1.55)

Proof. When the decomposition (1.49) is applied to the Rayleigh quotient of the

eigenvector uj associated with λj , we obtain

λj = (Auj , uj) = (Huj , uj) + i(Suj , uj), (1.56)

assuming that ‖uj‖2 = 1. This leads to

ℜe(λj) = (Huj , uj)

ℑm(λj) = (Suj , uj).

The result follows using properties established in Section 1.9.
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Thus, the eigenvalues of a matrix are contained in a rectangle defined by the

eigenvalues of its Hermitian part and its non-Hermitian part. In the particular case

where A is real, then iS is skew-Hermitian and its eigenvalues form a set that is

symmetric with respect to the real axis in the complex plane. Indeed, in this case, iS
is real and its eigenvalues come in conjugate pairs.

Note that all the arguments herein are based on the field of values and, therefore,

they provide ways to localize the eigenvalues of A from knowledge of the field of

values. However, this approximation can be inaccurate in some cases.

Example 1.3. Consider the matrix

A =

(
1 1
104 1

)

.

The eigenvalues of A are −99 and 101. Those of H are 1 ± (104 + 1)/2 and those

of iS are ±i(104 − 1)/2.

When a matrix B is Symmetric Positive Definite, the mapping

x, y → (x, y)B ≡ (Bx, y) (1.57)

from C
n×Cn to C is a proper inner product on C

n, in the sense defined in Section 1.4.

The associated norm is often referred to as the energy norm or A-norm. Sometimes,

it is possible to find an appropriate HPD matrix B which makes a given matrix A
Hermitian, i.e., such that

(Ax, y)B = (x,Ay)B , ∀ x, y
although A is a non-Hermitian matrix with respect to the Euclidean inner product.

The simplest examples are A = B−1C and A = CB, where C is Hermitian and B
is Hermitian Positive Definite.

1.12 Projection Operators

Projection operators or projectors play an important role in numerical linear algebra,

particularly in iterative methods for solving various matrix problems. This section

introduces these operators from a purely algebraic point of view and gives a few of

their important properties.

1.12.1 Range and Null Space of a Projector

A projector P is any linear mapping from C
n to itself which is idempotent, i.e., such

that

P 2 = P.

A few simple properties follow from this definition. First, if P is a projector, then so

is (I − P ), and the following relation holds,

Null(P ) = Ran(I − P ). (1.58)
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In addition, the two subspaces Null(P ) and Ran(P ) intersect only at the element

zero. Indeed, if a vector x belongs to Ran(P ), then Px = x, by the idempotence

property. If it is also in Null(P ), then Px = 0. Hence, x = Px = 0 which proves

the result. Moreover, every element of Cn can be written as x = Px + (I − P )x.

Therefore, the space C
n can be decomposed as the direct sum

C
n = Null(P ) ⊕ Ran(P ).

Conversely, every pair of subspaces M and S which forms a direct sum of Cn defines

a unique projector such that Ran(P ) = M and Null(P ) = S. This associated

projector P maps an element x of Cn into the component x1, where x1 is the M -

component in the unique decomposition x = x1+x2 associated with the direct sum.

In fact, this association is unique, that is, an arbitrary projector P can be entirely

determined by two subspaces: (1) The range M of P , and (2) its null space S which

is also the range of I − P . For any x, the vector Px satisfies the conditions,

Px ∈ M

x− Px ∈ S.

The linear mapping P is said to project x onto M and along or parallel to the sub-

space S. If P is of rank m, then the range of I−P is of dimension n−m. Therefore,

it is natural to define S through its orthogonal complement L = S⊥ which has di-

mension m. The above conditions that define u = Px for any x become

u ∈ M (1.59)

x− u ⊥ L. (1.60)

These equations define a projector P onto M and orthogonal to the subspace L.

The first statement, (1.59), establishes the m degrees of freedom, while the second,

(1.60), gives the m constraints that define Px from these degrees of freedom. The

general definition of projectors is illustrated in Figure 1.1.

M

L
x

Px

Px ∈ M
x− Px ⊥ L

Figure 1.1 Projection of x onto M and orthogonal to L.
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The question now is: Given two arbitrary subspaces, M and L both of dimension

m, is it always possible to define a projector onto M orthogonal to L through the

conditions (1.59) and (1.60)? The following lemma answers this question.

Lemma 1.36 Given two subspaces M and L of the same dimension m, the following

two conditions are mathematically equivalent.

i. No nonzero vector of M is orthogonal to L;

ii. For any x in C
n there is a unique vector u which satisfies the conditions

(1.59) and (1.60).

Proof. The first condition states that any vector which is in M and also orthogonal

to L must be the zero vector. It is equivalent to the condition

M ∩ L⊥ = {0}.

Since L is of dimension m, L⊥ is of dimension n − m and the above condition is

equivalent to the condition that

C
n =M ⊕ L⊥. (1.61)

This in turn is equivalent to the statement that for any x, there exists a unique pair of

vectors u,w such that

x = u+ w,

where u belongs to M , and w = x− u belongs to L⊥, a statement which is identical

with ii.

In summary, given two subspaces M and L, satisfying the condition M ∩L⊥ = {0},
there is a projector P onto M orthogonal to L, which defines the projected vector u
of any vector x from equations (1.59) and (1.60). This projector is such that

Ran(P ) =M, Null(P ) = L⊥.

In particular, the condition Px = 0 translates into x ∈ Null(P ) which means that

x ∈ L⊥. The converse is also true. Hence, the following useful property,

Px = 0 iff x ⊥ L. (1.62)

1.12.2 Matrix Representations

Two bases are required to obtain a matrix representation of a general projector: a

basis V = [v1, . . . , vm] for the subspace M = Ran(P ) and a second one W =
[w1, . . . , wm] for the subspace L. These two bases are biorthogonal when

(vi, wj) = δij . (1.63)
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In matrix form this means WHV = I . Since Px belongs to M , let V y be its

representation in the V basis. The constraint x − Px ⊥ L is equivalent to the

condition,

((x− V y), wj) = 0 for j = 1, . . . ,m.

In matrix form, this can be rewritten as

WH(x− V y) = 0. (1.64)

If the two bases are biorthogonal, then it follows that y = WHx. Therefore, in this

case, Px = VWHx, which yields the matrix representation of P ,

P = VWH . (1.65)

In case the bases V and W are not biorthogonal, then it is easily seen from the

condition (1.64) that

P = V (WHV )−1WH . (1.66)

If we assume that no vector of M is orthogonal to L, then it can be shown that the

m×m matrix WHV is nonsingular.

1.12.3 Orthogonal and Oblique Projectors

An important class of projectors is obtained in the case when the subspace L is equal

to M , i.e., when

Null(P ) = Ran(P )⊥.

Then, the projector P is said to be the orthogonal projector onto M . A projector that

is not orthogonal is oblique. Thus, an orthogonal projector is defined through the

following requirements satisfied for any vector x,

Px ∈ M and (I − P ) x ⊥M (1.67)

or equivalently,

Px ∈ M and ((I − P )x, y) = 0 ∀ y ∈M.

❄

Px

x

M

Px ∈ M
x− Px ⊥M
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Figure 1.2 Orthogonal projection of x onto a subspace

M .

It is interesting to consider the mapping PH defined as the adjoint of P

(PHx, y) = (x, Py), ∀ x, ∀ y. (1.68)

First note that PH is also a projector because for all x and y,

((PH)2x, y) = (PHx, Py) = (x, P 2y) = (x, Py) = (PHx, y).

A consequence of the relation (1.68) is

Null(PH) = Ran(P )⊥ (1.69)

Null(P ) = Ran(PH)⊥. (1.70)

The above relations lead to the following proposition.

Proposition 1.37 A projector is orthogonal if and only if it is Hermitian.

Proof. By definition, an orthogonal projector is one for which Null(P ) = Ran(P )⊥.

Therefore, by (1.69), if P is Hermitian, then it is orthogonal. Conversely, if P is or-

thogonal, then (1.69) implies Null(P ) = Null(PH) while (1.70) implies Ran(P ) =
Ran(PH). Since PH is a projector and since projectors are uniquely determined by

their range and null spaces, this implies that P = PH .

Given any unitary n×m matrix V whose columns form an orthonormal basis of

M = Ran(P ), we can represent P by the matrix P = V V H . This is a particular case

of the matrix representation of projectors (1.65). In addition to being idempotent, the

linear mapping associated with this matrix satisfies the characterization given above,

i.e.,

V V Hx ∈M and (I − V V H)x ∈ M⊥.

It is important to note that this representation of the orthogonal projector P is not

unique. In fact, any orthonormal basis V will give a different representation of P in

the above form. As a consequence for any two orthogonal bases V1, V2 of M , we

must have V1V
H
1 = V2V

H
2 , an equality which can also be verified independently;

see Exercise 30.

1.12.4 Properties of Orthogonal Projectors

When P is an orthogonal projector, then the two vectors Px and (I − P )x in the

decomposition x = Px+ (I − P )x are orthogonal. The following relation results:

‖x‖22 = ‖Px‖22 + ‖(I − P )x‖22.

A consequence of this is that for any x,

‖Px‖2 ≤ ‖x‖2.
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Thus, the maximum of ‖Px‖2/‖x‖2, for all x in C
n does not exceed one. In addition

the value one is reached for any element in Ran(P ). Therefore,

‖P‖2 = 1

for any orthogonal projector P .

An orthogonal projector has only two eigenvalues: zero or one. Any vector of

the range of P is an eigenvector associated with the eigenvalue one. Any vector of

the null-space is obviously an eigenvector associated with the eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.

Theorem 1.38 Let P be the orthogonal projector onto a subspace M . Then for any

given vector x in C
n, the following is true:

min
y∈M
‖x− y‖2 = ‖x− Px‖2. (1.71)

Proof. Let y be any vector ofM and consider the square of its distance from x. Since

x− Px is orthogonal to M to which Px− y belongs, then

‖x− y‖22 = ‖x− Px+ (Px− y)‖22 = ‖x− Px‖22 + ‖(Px− y)‖22.

Therefore, ‖x − y‖2 ≥ ‖x − Px‖2 for all y in M . This establishes the result by

noticing that the minimum is reached for y = Px.

By expressing the conditions that define y∗ ≡ Px for an orthogonal projector P
onto a subspace M , it is possible to reformulate the above result in the form of nec-

essary and sufficient conditions which enable us to determine the best approximation

to a given vector x in the least-squares sense.

Corollary 1.39 Let a subspace M , and a vector x in C
n be given. Then

min
y∈M
‖x− y‖2 = ‖x− y∗‖2, (1.72)

if and only if the following two conditions are satisfied,
{
y∗ ∈ M
x− y∗ ⊥ M.

1.13 Basic Concepts in Linear Systems

Linear systems are among the most important and common problems encountered in

scientific computing. From the theoretical point of view, it is well understood when

a solution exists, when it does not, and when there are infinitely many solutions. In

addition, explicit expressions of the solution using determinants exist. However, the

numerical viewpoint is far more complex. Approximations may be available but it

may be difficult to estimate how accurate they are. This clearly will depend on the

data at hand, i.e., primarily on the coefficient matrix. This section gives a very brief

overview of the existence theory as well as the sensitivity of the solutions.
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1.13.1 Existence of a Solution

Consider the linear system

Ax = b. (1.73)

Here, x is termed the unknown and b the right-hand side. When solving the linear

system (1.73), we distinguish three situations.

Case 1 The matrixA is nonsingular. There is a unique solution given by x = A−1b.

Case 2 The matrix A is singular and b ∈ Ran(A). Since b ∈ Ran(A), there is an

x0 such that Ax0 = b. Then x0 + v is also a solution for any v in Null(A). Since

Null(A) is at least one-dimensional, there are infinitely many solutions.

Case 3 The matrix A is singular and b /∈ Ran(A). There are no solutions.

Example 1.4. The simplest illustration of the above three cases is with small di-

agonal matrices. Let

A =

(
2 0
0 4

)

b =

(
1
8

)

.

Then A is nonsingular and there is a unique x given by

x =

(
0.5
2

)

.

Now let

A =

(
2 0
0 0

)

, b =

(
1
0

)

.

Then A is singular and, as is easily seen, b ∈ Ran(A). For example, a particular

element x0 such that Ax0 = b is x0 =
(0.5

0

)
. The null space of A consists of all

vectors whose first component is zero, i.e., all vectors of the form
( 0
α

)
. Therefore,

there are infinitely many solution which are given by

x(α) =

(
0.5
α

)

∀ α.

Finally, let A be the same as in the previous case, but define the right-hand side as

b =

(
1
1

)

.

In this case there are no solutions because the second equation cannot be satisfied.
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1.13.2 Perturbation Analysis

Consider the linear system (1.73) where A is an n × n nonsingular matrix. Given

any matrix E, the matrix A(ǫ) = A+ ǫE is nonsingular for ǫ small enough, i.e., for

ǫ ≤ α where α is some small number; see Exercise 37. Assume that we perturb the

data in the above system, i.e., that we perturb the matrix A by ǫE and the right-hand

side b by ǫe. The solution x(ǫ) of the perturbed system satisfies the equation,

(A+ ǫE)x(ǫ) = b+ ǫe. (1.74)

Let δ(ǫ) = x(ǫ)− x. Then,

(A+ ǫE)δ(ǫ) = (b+ ǫe)− (A+ ǫE)x

= ǫ (e− Ex)
δ(ǫ) = ǫ (A+ ǫE)−1(e− Ex).

As an immediate result, the function x(ǫ) is differentiable at ǫ = 0 and its derivative

is given by

x′(0) = lim
ǫ→0

δ(ǫ)

ǫ
= A−1 (e− Ex) . (1.75)

The size of the derivative of x(ǫ) is an indication of the size of the variation that

the solution x(ǫ) undergoes when the data, i.e., the pair [A, b] is perturbed in the

direction [E, e]. In absolute terms, a small variation [ǫE, ǫe] will cause the solution

to vary by roughly ǫx′(0) = ǫA−1(e− Ex). The relative variation is such that

‖x(ǫ) − x‖
‖x‖ ≤ ǫ‖A−1‖

( ‖e‖
‖x‖ + ‖E‖

)

+ o(ǫ).

Using the fact that ‖b‖ ≤ ‖A‖‖x‖ in the above equation yields

‖x(ǫ) − x‖
‖x‖ ≤ ǫ‖A‖‖A−1‖

(‖e‖
‖b‖ +

‖E‖
‖A‖

)

+ o(ǫ) (1.76)

which relates the relative variation in the solution to the relative sizes of the pertur-

bations. The quantity

κ(A) = ‖A‖ ‖A−1‖
is called the condition number of the linear system (1.73) with respect to the norm

‖.‖. The condition number is relative to a norm. When using the standard norms ‖.‖p,

p = 1, . . . ,∞, it is customary to label κ(A) with the same label as the associated

norm. Thus,

κp(A) = ‖A‖p‖A−1‖p.
For large matrices, the determinant of a matrix is almost never a good indication

of “near” singularity or degree of sensitivity of the linear system. The reason is that

det(A) is the product of the eigenvalues which depends very much on a scaling of a

matrix, whereas the condition number of a matrix is scaling-invariant. For example,
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for A = αI the determinant is det(A) = αn, which can be very small if |α| < 1,

whereas κ(A) = 1 for any of the standard norms.

In addition, small eigenvalues do not always give a good indication of poor con-

ditioning. Indeed, a matrix can have all its eigenvalues equal to one yet be poorly

conditioned.

Example 1.5. The simplest example is provided by matrices of the form

An = I + αe1e
T
n

for large α. The inverse of An is

A−1
n = I − αe1eTn

and for the∞-norm we have

‖An‖∞ = ‖A−1
n ‖∞ = 1 + |α|

so that

κ∞(An) = (1 + |α|)2.
For a large α, this can give a very large condition number, whereas all the eigenvalues

of An are equal to unity.

When an iterative procedure is used for solving a linear system, we typically

face the problem of choosing a good stopping procedure for the algorithm. Often a

residual norm,

‖r‖ = ‖b−Ax̃‖
is available for some current approximation x̃ and an estimate of the absolute error

‖x− x̃‖ or the relative error ‖x − x̃‖/‖x‖ is desired. The following simple relation

is helpful in this regard,
‖x− x̃‖
‖x‖ ≤ κ(A) ‖r‖‖b‖ .

It is necessary to have an estimate of the condition number κ(A) in order to exploit

the above relation.

PROBLEMS

P-1.1 Verify that the Euclidean inner product defined by (1.4) does indeed satisfy the gen-

eral definition of inner products on vector spaces.

P-1.2 Show that two eigenvectors associated with two distinct eigenvalues are linearly inde-

pendent. In a more general sense, show that a family of eigenvectors associated with distinct

eigenvalues forms a linearly independent family.
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P-1.3 Show that if λ is any nonzero eigenvalue of the matrix AB, then it is also an eigen-

value of the matrix BA. Start with the particular case where A and B are square and B
is nonsingular, then consider the more general case where A,B may be singular or even

rectangular (but such that AB and BA are square).

P-1.4 LetA be an n×n orthogonal matrix, i.e., such thatAHA = D, whereD is a diagonal

matrix. Assuming that D is nonsingular, what is the inverse of A? Assuming that D > 0,

how can A be transformed into a unitary matrix (by operations on its rows or columns)?

P-1.5 Show that the Frobenius norm is consistent. Can this norm be associated to two vector

norms via (1.7)? What is the Frobenius norm of a diagonal matrix? What is the p-norm of a

diagonal matrix (for any p)?

P-1.6 Find the Jordan canonical form of the matrix:

A =





1 2 −4
0 1 2
0 0 2



 .

Same question for the matrix obtained by replacing the element a33 by 1.

P-1.7 Give an alternative proof of Theorem 1.9 on the Schur form by starting from the

Jordan canonical form. [Hint: Write A = XJX−1 and use the QR decomposition of X .]

P-1.8 Show from the definition of determinants used in Section 1.2 that the characteristic

polynomial is a polynomial of degree n for an n× n matrix.

P-1.9 Show that the characteristic polynomials of two similar matrices are equal.

P-1.10 Show that

lim
k→∞

‖Ak‖1/k = ρ(A),

for any matrix norm. [Hint: Use the Jordan canonical form.]

P-1.11 LetX be a nonsingular matrix and, for any matrix norm ‖.‖, define ‖A‖X = ‖AX‖.
Show that this is indeed a matrix norm. Is this matrix norm consistent? Show the same for

‖XA‖ and ‖Y AX‖ where Y is also a nonsingular matrix. These norms are not, in general,

associated with any vector norms, i.e., they can’t be defined by a formula of the form (1.7).

Why? What can you say about the particular case when Y = X−1? Is ‖X−1AX‖ induced

by a vector norm in this particular case?

P-1.12 Find the field of values of the matrix

A =

(
0 1
0 0

)

and verify that it is not equal to the convex hull of its eigenvalues.

P-1.13 Show that for a skew-Hermitian matrix S,

ℜe(Sx, x) = 0 for any x ∈ C
n.

P-1.14 Given an arbitrary matrix S, show that if (Sx, x) = 0 for all x in Cn, then it is true

that

(Sy, z) + (Sz, y) = 0 ∀ y, z ∈ C
n. (1.77)

[Hint: Expand (S(y + z), y + z).]
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P-1.15 Using the results of the previous two problems, show that if (Ax, x) is real for all

x in Cn, then A must be Hermitian. Would this result be true if the assumption were to be

replaced by: (Ax, x) is real for all real x? Explain.

P-1.16 Show that if (Sx, x) = 0 for all complex vectors x, then S is zero. [Hint: Start by

doing Problem 14. Then selecting y = ek, z = eθej in (1.77), for an arbitrary θ, establish

that skje
2θ = −sjk and conclude that sjk = sjk = 0]. Is the result true if (Sx, x) = 0 for

all real vectors x?

P-1.17 The definition of a positive definite matrix is that (Ax, x) be real and positive for all

real vectors x. Show that this is equivalent to requiring that the Hermitian part of A, namely,
1
2 (A+AH), be (Hermitian) positive definite.

P-1.18 LetA1 = B−1C andA2 = CB whereC is a Hermitian matrix andB is a Hermitian

Positive Definite matrix. Are A1 and A2 Hermitian in general? Show that A1 and A2 are

Hermitian (self-adjoint) with respect to the B-inner product.

P-1.19 Let a matrix A be such that AH = p(A) where p is a polynomial. Show that A is

normal. Given a diagonal complex matrix D, show that there exists a polynomial of degree

< n such that D̄ = p(D). Use this to show that a normal matrix satisfies AH = p(A) for

a certain polynomial of p of degree < n. As an application, use this result to provide an

alternative proof of Lemma 1.13.

P-1.20 Show that A is normal iff its Hermitian and skew-Hermitian parts, as defined in

Section 1.11, commute.

P-1.21 The goal of this exercise is to establish the relation (1.35). Consider the numerical

radius ν(A) of an arbitrary matrix A. Show that ν(A) ≤ ‖A‖2. Show that for a normal

matrix ν(A) = ‖A‖2. Consider the decomposition of a matrix into its Hermtian and skew-

Hermitian parts as shown in (1.49), (1.50), and (1.51). Show that ‖A‖2 ≤ ν(H)+ν(S). Now,

using this inequality and the definition of the numerical radius show that ‖A‖2 ≤ 2ν(A).

P-1.22 Show that the numerical radius is a vector norm in the sense that it satisfies the three

properties (1.8–1.10) of norms. [Hint: For (1.8) solve exercise 16 first]. Find a counter-

example to show that the numerical radius is not a (consistent) matrix norm, i.e., that ν(AB)
can be larger than ν(A) ν(B).

P-1.23 Let A be a Hermitian matrix and B a Hermitian Positive Definite matrix defining a

B-inner product. Show that A is Hermitian (self-adjoint) with respect to theB-inner product

if and only if A and B commute. What condition must satisfy B for the same condition to

hold in the more general case where A is not Hermitian?

P-1.24 Let A be a real symmetric matrix and λ an eigenvalue of A. Show that if u is an

eigenvector associated with λ, then so is ū. As a result, prove that for any eigenvalue of a

real symmetric matrix, there is an associated eigenvector which is real.

P-1.25 Show that a Hessenberg matrixH such that hj+1,j 6= 0, j = 1, 2, . . . , n− 1, cannot

be derogatory.

P-1.26 Prove all the properties listed in Proposition 1.24.

P-1.27 Let A be an M -matrix and u, v two nonnegative vectors such that vTA−1u < 1.

Show that A− uvT is an M -matrix.

P-1.28 Show that if O ≤ A ≤ B then O ≤ ATA ≤ BTB. Conclude that under the same

assumption, we have ‖A‖2 ≤ ‖B‖2.
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P-1.29 Consider the subspace M of R4 spanned by the vectors

v1 =






1
0
1
1




 ; v2 =






1
−1
0
−1






a. Write down the matrix representing the orthogonal projector onto M .

b. What is the null space of P ?

c. What is its range?

d. Find the vector x in S which is the closest in the 2-norm sense to the vector c =
[1, 1, 1, 1]T

P-1.30 Show that for two orthonormal bases V1, V2 of the same subspaceM of Cn we have

V1V
H
1 x = V2V

H
2 x, ∀ x.

P-1.31 What are the eigenvalues of a projector? What about its eigenvectors?

P-1.32 Show that if two projectors P1 and P2 commute, then their product P = P1P2 is a

projector. What are the range and kernel of P ?

P-1.33 Theorem 1.32 shows that the condition (2) in Definition 1.30 is not needed, i.e., it

is implied by (4) (and the other conditions). One is tempted to say that only one of (2) or (4)

is required. Is this true? In other words, does (2) also imply (4)? [Prove or show a counter

example]

P-1.34 Consider the matrix A of size n× n and the vector x ∈ Rn,

A =











1 −1 −1 −1 . . . −1
0 1 −1 −1 . . . −1
0 0 1 −1 . . . −1
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 0 . . . 0 1











x =











1
1/2
1/4
1/8

...

1/2n−1











.

a. Compute Ax, ‖Ax‖2, and ‖x‖2.

b. Show that ‖A‖2 ≥
√
n.

c. Give a lower bound for κ2(A).

P-1.35 What is the inverse of the matrix A of the previous exercise? Give an expression of

κ1(A) and κ∞(A) based on this.

P-1.36 Find a small rank-one perturbation which makes the matrix A in Exercise 34 singu-

lar. Derive a lower bound for the singular values of A.

P-1.37 Consider a nonsingular matrixA. Given any matrixE, show that there exists α such

that the matrixA(ǫ) = A+ǫE is nonsingular for all ǫ < α. What is the largest possible value

for α satisfying the condition? [Hint: Consider the eigenvalues of the generalized eigenvalue

problemAu = λEu.]

NOTES AND REFERENCES. For additional reading on the material presented in this chapter, see Golub

and Van Loan [149], Meyer [210], Demmel [99], Datta [93], Stewart [273], and Varga [293]. Volume

2 (“Eigensystems”) of the series [274], offers an up-to-date coverage of algorithms for eigenvalue
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problems. The excellent treatise of nonnegative matrices in the book by Varga [293] remains a good

reference on this topic and on iterative methods four decades after its first publication. State-of-the-art

coverage on iterative methods up to the very beginning of the 1970s can be found in the book by Young

[322] which covers M -matrices and related topics in great detail. For a good overview of the linear

algebra aspects of matrix theory and a complete proof of Jordan’s canonical form, Halmos [164] is

recommended.



Chapter 2

DISCRETIZATION OF PDES

Partial Differential Equations (PDEs) constitute by far the biggest source of sparse matrix

problems. The typical way to solve such equations is to discretize them, i.e., to approximate

them by equations that involve a finite number of unknowns. The matrix problems that arise

from these discretizations are generally large and sparse, i.e., they have very few nonzero entries.

There are several different ways to discretize a Partial Differential Equation. The simplest method

uses finite difference approximations for the partial differential operators. The Finite Element

Method replaces the original function by a function which has some degree of smoothness over

the global domain, but which is piecewise polynomial on simple cells, such as small triangles

or rectangles. This method is probably the most general and well understood discretization

technique available. In between these two methods, there are a few conservative schemes called

Finite Volume Methods, which attempt to emulate continuous conservation laws of physics. This

chapter introduces these three different discretization methods.

2.1 Partial Differential Equations

Physical phenomena are often modeled by equations that relate several partial deriva-

tives of physical quantities, such as forces, momentums, velocities, energy, tempera-

ture, etc. These equations rarely have a closed-form (explicit) solution. In this chap-

ter, a few types of Partial Differential Equations are introduced, which will serve as

models throughout the book. Only one- or two-dimensional problems are considered,

and the space variables are denoted by x in the case of one-dimensional problems or

x1 and x2 for two-dimensional problems. In two dimensions, x denotes the “vector”

of components (x1, x2).

2.1.1 Elliptic Operators

One of the most common Partial Differential Equations encountered in various areas

of engineering is Poisson’s equation:

∂2u

∂x21
+
∂2u

∂x22
= f, for x =

(
x1
x2

)

in Ω (2.1)

where Ω is a bounded, open domain in R
2. Here, x1, x2 are the two space variables.

47
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~n

x1

x2 Ω

Γ

Figure 2.1: Domain Ω for Poisson’s equation.

The above equation is to be satisfied only for points that are located at the interior

of the domain Ω. Equally important are the conditions that must be satisfied on the

boundary Γ of Ω. These are termed boundary conditions, and they come in three

common types:

Dirichlet condition u(x) = φ(x)

Neumann condition ∂u
∂~n(x) = 0

Cauchy condition ∂u
∂~n(x) + α(x)u(x) = γ(x)

The vector ~n usually refers to a unit vector that is normal to Γ and directed

outwards. Note that the Neumann boundary conditions are a particular case of the

Cauchy conditions with γ = α = 0. For a given unit vector, ~v with components v1
and v2, the directional derivative ∂u/∂~v is defined by

∂u

∂~v
(x) = lim

h→0

u(x+ h~v)− u(x)
h

=
∂u

∂x1
(x)v1 +

∂u

∂x2
(x)v2 (2.2)

= ∇u.~v (2.3)

where ∇u is the gradient of u,

∇u =

(
∂u
∂x1

∂u
∂x2

)

, (2.4)

and the dot in (2.3) indicates a dot product of two vectors in R
2.

In reality, Poisson’s equation is often a limit case of a time-dependent problem.

Its solution can, for example, represent the steady-state temperature distribution in

a region Ω when there is a heat source f that is constant with respect to time. The

boundary conditions should then model heat loss across the boundary Γ.

The particular case where f(x) = 0, i.e., the equation

∆u = 0,
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to which boundary conditions must be added, is called the Laplace equation and its

solutions are called harmonic functions.

Many problems in physics have boundary conditions of mixed type, e.g., of

Dirichlet type in one part of the boundary and of Cauchy type in another. Another ob-

servation is that the Neumann conditions do not define the solution uniquely. Indeed,

if u is a solution, then so is u+ c for any constant c.
The operator

∆ =
∂2

∂x21
+

∂2

∂x22
is called the Laplacean operator and appears in many models of physical and me-

chanical phenomena. These models often lead to more general elliptic operators of

the form

L =
∂

∂x1

(

a
∂

∂x1

)

+
∂

∂x2

(

a
∂

∂x2

)

= ∇. (a∇) (2.5)

where the scalar function a depends on the coordinate and may represent some spe-

cific parameter of the medium, such as density, porosity, etc. At this point it may

be useful to recall some notation which is widely used in physics and mechanics.

The ∇ operator can be considered as a vector consisting of the components ∂
∂x1

and
∂

∂x2
. When applied to a scalar function u, this operator is nothing but the gradient

operator, since it yields a vector with the components ∂u
∂x1

and ∂u
∂x2

as is shown in

(2.4). The dot notation allows dot products of vectors in R
2 to be defined. These

vectors can include partial differential operators. For example, the dot product ∇.u
of ∇ with u =

(
u1

u2

)

yields the scalar quantity,

∂u1
∂x1

+
∂u2
∂x2

,

which is called the divergence of the vector function ~u =
(
u1

u2

)

. Applying this

divergence operator to u = a∇, where a is a scalar function, yields the L operator

in (2.5). The divergence of the vector function ~v is often denoted by div ~v or ∇.~v.

Thus,

div ~v = ∇.~v =
∂v1
∂x1

+
∂v2
∂x2

.

The closely related operator

L =
∂

∂x1

(

a1
∂

∂x1

)

+
∂

∂x2

(

a2
∂

∂x2

)

= ∇ (~a. ∇) (2.6)

is a further generalization of the Laplacean operator ∆ in the case where the medium

is anisotropic and inhomogeneous. The coefficients a1, a2 depend on the space vari-

able x and reflect the position as well as the directional dependence of the material

properties, such as porosity in the case of fluid flow or dielectric constants in electro-

statics. In fact, the above operator can be viewed as a particular case of L = ∇.(A∇),
where A is a 2× 2 matrix which acts on the two components of ∇.
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2.1.2 The Convection Diffusion Equation

Many physical problems involve a combination of “diffusion” and “convection” phe-

nomena. Such phenomena are modeled by the convection-diffusion equation

∂u

∂t
+ b1

∂u

∂x1
+ b2

∂u

∂x2
= ∇.(a∇)u+ f

or
∂u

∂t
+~b.∇u = ∇.(a∇)u+ f

the steady-state version of which can be written as

−∇.(a∇)u+~b.∇u = f. (2.7)

Problems of this type are often used as model problems because they represent the

simplest form of conservation of mass in fluid mechanics. Note that the vector ~b is

sometimes quite large, which may cause some difficulties either to the discretization

schemes or to the iterative solution techniques.

2.2 Finite Difference Methods

The finite difference method is based on local approximations of the partial deriva-

tives in a Partial Differential Equation, which are derived by low order Taylor series

expansions. The method is quite simple to define and rather easy to implement.

Also, it is particularly appealing for simple regions, such as rectangles, and when

uniform meshes are used. The matrices that result from these discretizations are

often well structured, which means that they typically consist of a few nonzero di-

agonals. Another advantage is that there are a number of “fast Poisson solvers” for

constant coefficient problems, which can deliver the solution in logarithmic time per

grid point. This means the total number of operations is of the order of n log(n)
where n is the total number of discretization points. This section gives an overview

of finite difference discretization techniques.

2.2.1 Basic Approximations

The simplest way to approximate the first derivative of a function u at the point x is

via the formula (
du

dx

)

(x) ≈ u(x+ h)− u(x)
h

. (2.8)

When u is differentiable at x, then the limit of the above ratio when h tends to zero is

the derivative of u at x. For a function that is C4 in the neighborhood of x, we have

by Taylor’s formula

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ+), (2.9)
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for some ξ+ in the interval (x, x + h). Therefore, the above approximation (2.8)

satisfies
du

dx
=
u(x+ h)− u(x)

h
− h

2

d2u(x)

dx2
+O(h2). (2.10)

The formula (2.9) can be rewritten with h replaced by −h to obtain

u(x− h) = u(x)− hdu
dx

+
h2

2

d2u

dx2
− h3

6

d3u

dx3
+
h4

24

d4u(ξ−)
dx4

, (2.11)

in which ξ− belongs to the interval (x − h, x). Adding (2.9) and (2.11), dividing

through by h2, and using the mean value theorem for the fourth order derivatives

results in the following approximation of the second derivative

d2u(x)

dx2
=

u(x+ h)− 2u(x) + u(x− h)
h2

− h2

12

d4u(ξ)

dx4
, (2.12)

where ξ− ≤ ξ ≤ ξ+. The above formula is called a centered difference approxima-

tion of the second derivative since the point at which the derivative is being approx-

imated is the center of the points used for the approximation. The dependence of

this derivative on the values of u at the points involved in the approximation is often

represented by a “stencil” or “molecule,” shown in Figure 2.2.

1 −2 1

Figure 2.2: The three-point stencil for the centered difference approximation to the

second order derivative.

The approximation (2.8) for the first derivative is forward rather than centered.

Also, a backward formula can be used which consists of replacing hwith−h in (2.8).

The two formulas can also be averaged to obtain the centered difference formula:

du(x)

dx
≈ u(x+ h)− u(x− h)

2 h
. (2.13)

It is easy to show that the above centered difference formula is of the second

order, while (2.8) is only first order accurate. Denoted by δ+ and δ−, the forward

and backward difference operators are defined by

δ+u(x) = u(x+ h)− u(x) (2.14)

δ−u(x) = u(x)− u(x− h). (2.15)

All previous approximations can be rewritten using these operators.

In addition to standard first order and second order derivatives, it is sometimes

necessary to approximate the second order operator

d

dx

[

a(x)
d

dx

]

.
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A centered difference formula for this, which has second order accuracy, is given by

d

dx

[

a(x)
du

dx

]

=
1

h2
δ+
(
ai−1/2 δ

−u
)
+O(h2) (2.16)

≈
ai+1/2(ui+1 − ui)− ai−1/2(ui − ui−1)

h2
.

2.2.2 Difference Schemes for the Laplacean Operator

If the approximation (2.12) is used for both the ∂2

∂x2
1

and ∂2

∂x2
2

terms in the Laplacean

operator, using a mesh size of h1 for the x1 variable and h2 for the x2 variable, the

following second order accurate approximation results:

∆u(x) ≈ u(x1 + h1, x2)− 2u(x1, x2) + u(x− h1, x2)
h21

+

u(x1, x2 + h2)− 2u(x1, x2) + u(x1, x2 − h2)
h22

.

In the particular case where the mesh sizes h1 and h2 are the same and equal to a

mesh size h, the approximation becomes

∆u(x) ≈ 1

h2
[u(x1 + h, x2) + u(x1 − h, x2) + u(x1, x2 + h)

+ u(x1, x2 − h)− 4u(x1, x2)] , (2.17)

which is called the five-point centered approximation to the Laplacean. The stencil

of this finite difference approximation is illustrated in (a) of Figure 2.3.

(a)

1

1 -4 1

1

(b)

1 1

-4

1 1

Figure 2.3: Five-point stencils for the centered difference approximation to the

Laplacean operator: (a) the standard stencil, (b) the skewed stencil.

Another approximation may be obtained by exploiting the four points u(x1 ±
h, x2 ± h) located on the two diagonal lines from u(x1, x2). These points can be
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used in the same manner as in the previous approximation except that the mesh size

has changed. The corresponding stencil is illustrated in (b) of Figure 2.3.

The approximation (2.17) is second order accurate and the error takes the form

h2

12

(
∂4u

∂4x1
+

∂4u

∂4x2

)

+O(h3).

There are other schemes that utilize nine-point formulas as opposed to five-point for-

mulas. Two such schemes obtained by combining the standard and skewed stencils

described above are shown in Figure 2.4. Both approximations (c) and (d) are sec-

ond order accurate. However, (d) is sixth order for harmonic functions, i.e., functions

whose Laplacean is zero.

(c)

1 1 1

1 -8 1

1 1 1

(d)

1 4 1

4 -20 4

1 4 1

Figure 2.4: Two nine-point centered difference stencils for the Laplacean operator.

2.2.3 Finite Differences for 1-D Problems

Consider the one-dimensional equation,

−u′′(x) = f(x) for x ∈ (0, 1) (2.18)

u(0) = u(1) = 0. (2.19)

The interval [0,1] can be discretized uniformly by taking the n+ 2 points

xi = i× h, i = 0, . . . , n+ 1

where h = 1/(n + 1). Because of the Dirichlet boundary conditions, the values

u(x0) and u(xn+1) are known. At every other point, an approximation ui is sought

for the exact solution u(xi).
If the centered difference approximation (2.12) is used, then by the equation

(2.18) expressed at the point xi, the unknowns ui, ui−1, ui+1 satisfy the relation

−ui−1 + 2ui − ui+1 = h2 fi,
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in which fi ≡ f(xi). Notice that for i = 1 and i = n, the equation will involve

u0 and un+1 which are known quantities, both equal to zero in this case. Thus, for

n = 6, the linear system obtained is of the form

Ax = f

where

A =
1

h2











2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2











.

2.2.4 Upwind Schemes

Consider now the one-dimensional version of the convection-diffusion equation (2.7)

in which the coefficients a and b are constant, and f = 0, using Dirichlet boundary

conditions, {

−a u′′ + b u′ = 0, 0 < x < L = 1
u(0) = 0, u(L) = 1.

(2.20)

In this particular case, it is easy to verify that the exact solution to the above equation

is given by

u(x) =
1− eRx

1− eR
where R is the so-called Péclet number defined by R = bL/a. Now consider the

approximate solution provided by using the centered difference schemes seen above,

for both the first- and second order derivatives. The equation for unknown number i
becomes

b
ui+1 − ui−1

2h
− aui+1 − 2ui + ui−1

h2
= 0,

or, defining c = Rh/2,

−(1− c)ui+1 + 2ui − (1 + c)ui−1 = 0. (2.21)

This is a second order homogeneous linear difference equation and the usual way to

solve it is to seek a general solution in the form uj = rj . Substituting in (2.21), r
must satisfy

(1− c)r2 − 2r + (c+ 1) = 0.

Therefore, r1 = 1 is a root and the second root is r2 = (1 + c)/(1− c). The general

solution of the above difference equation is now sought as a linear combination of

the two solutions corresponding to these two roots,

ui = αri1 + βri2 = α+ β

(
1 + c

1− c

)i

.
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Because of the boundary condition u0 = 0, it is necessary that β = −α. Likewise,

the boundary condition un+1 = 1 yields

α =
1

1− σn+1
with σ ≡ 1 + c

1− c .

Thus, the solution is

ui =
1− σi

1− σn+1
.

When h > 2/R the factor σ becomes negative and the above approximations will

oscillate around zero. In contrast, the exact solution is positive and monotone in

the range [0, 1]. In this situation the solution is very inaccurate regardless of the

arithmetic. In other words, the scheme itself creates the oscillations. To avoid this, a

small enough mesh h can be taken to ensure that c < 1. The resulting approximation

is in much better agreement with the exact solution. Unfortunately, this condition

can limit the mesh size too drastically for large values of b.
Note that when b < 0, the oscillations disappear since σ < 1. In fact, a linear

algebra interpretation of the oscillations comes from comparing the tridiagonal ma-

trices obtained from the discretization. Again, for the case n = 6, the tridiagonal

matrix resulting from discretizing the equation (2.7) takes the form

A =
1

h2











2 −1 + c
−1− c 2 −1 + c

−1− c 2 −1 + c
−1− c 2 −1 + c

−1− c 2 −1 + c
−1− c 2











.

The above matrix is no longer a diagonally dominant M-matrix. Observe that if the

backward difference formula for the first order derivative is used, we obtain

b
ui − ui−1

h
− aui−1 − 2ui + ui+1

h2
= 0.

Then (weak) diagonal dominance is preserved if b > 0. This is because the new

matrix obtained for the above backward scheme is

A =
1

h2











2 + c −1
−1− c 2 + c −1

−1− c 2 + c −1
−1− c 2 + c −1

−1− c 2 + c −1
−1− c 2 + c











where c is now defined by c = Rh. Each diagonal term aii gets reinforced by the

positive term c while each subdiagonal term ai,i−1 increases by the same amount in

absolute value. In the case where b < 0, the forward difference formula

b
ui+1 − ui

h
− aui−1 − 2ui + ui+1

h2
= 0
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can be used to achieve the same effect. Generally speaking, if b depends on the

space variable x, the effect of weak-diagonal dominance can be achieved by simply

adopting the following discretization known as an “upwind scheme”:

b
δ∗i ui
h
− a ui−1 − 2ui + ui+1

h2
= 0

where

δ∗i =

{
δ−i if b > 0
δ+i if b < 0.

The above difference scheme can be rewritten by introducing the sign function sign (b) =
|b|/b. The approximation to u′ at xi is then defined by

u′(xi) ≈
1

2
(1− sign(b))

δ+ui
h

+
1

2
(1 + sign(b))

δ−ui
h

.

Making use of the notation

(x)+ =
1

2
(x+ |x|), (x)− =

1

2
(x− |x|), (2.22)

a slightly more elegant formula can be obtained by expressing the approximation of

the product b(xi)u
′(xi),

b(xi)u
′(xi) ≈

1

2
(bi − |bi|)

δ+ui
h

+
1

2
(bi + |bi|)

δ−ui
h

≈ 1

h

[
−b+i ui−1 + |bi|ui + b−i ui+1

]
, (2.23)

where bi stands for b(xi). The diagonal term in the resulting tridiagonal matrix is

nonnegative, the offdiagonal terms are nonpositive, and the diagonal term is the neg-

ative sum of the offdiagonal terms. This property characterizes upwind schemes.

A notable disadvantage of upwind schemes is the low order of approximation

which they yield. An advantage is that upwind schemes yield linear systems that are

easier to solve by iterative methods.

2.2.5 Finite Differences for 2-D Problems

Similar to the previous case, consider this simple problem,

−
(
∂2u

∂x21
+
∂2u

∂x22

)

= f in Ω (2.24)

u = 0 on Γ (2.25)

where Ω is now the rectangle (0, l1)× (0, l2) and Γ its boundary. Both intervals can

be discretized uniformly by taking n1+2 points in the x1 direction and n2+2 points

in the x2 directions:

x1,i = i× h1, i = 0, . . . , n1 + 1 x2,j = j × h2, j = 0, . . . , n2 + 1
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

✲

✻

Figure 2.5: Natural ordering of the unknowns for a 7× 5 two-dimensional grid.

where

h1 =
l1

n1 + 1
h2 =

l2
n2 + 1

.

Since the values at the boundaries are known, we number only the interior points,

i.e., the points (x1,i, x2,j) with 0 < i < n1 and 0 < j < n2. The points are labeled

from the bottom up, one horizontal line at a time. This labeling is called natural

ordering and is shown in Figure 2.5 for the very simple case when n1 = 7 and

n2 = 5. The pattern of the matrix corresponding to the above equations appears in

Figure 2.6.

Figure 2.6: Pattern of matrix associated with the 7 × 5 finite difference mesh of

Figure 2.5.
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In the case when h1 = h2 = h the matrix has the following block structure:

A =
1

h2





B −I
−I B −I

−I B



 with B =







4 −1
−1 4 −1

−1 4 −1
−1 4






.

2.2.6 Fast Poisson Solvers

A number of special techniques have been developed for solving linear systems aris-

ing from finite difference discretizations of the Poisson equation on rectangular grids.

These are termed Fast Poisson Solvers (FPS) because of the relatively low number

of arithmetic operations whuch they require, typically of the order of O(N log(N))
where N is the size of the matrix.

Consider first the linear systems seen in the previous subsection, which have the

form (after scaling by h2)









B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B

















u1
u2
...

um−1

um









=









b1
b2
...

bm−1

bm









(2.26)

in which

B =









4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4









(2.27)

The notation has changed slightly in that we call p and m the mesh sizes in the x1
and x2 directions respectively. Therefore, each ui if of dimension p and corresponds

to a block of solution components along one horizontal line.

Fourier methods exploit the knowledge of the eigenvalues and eigenvectors of

the matrix B. The eigenvalues are known to be

λj = 4− 2 cos

(
jπ

p+ 1

)

j = 1, . . . , p

and, defining θj ≡ (jπ)/(p + 1), the corresponding eigenvectors are given by:

qj =

√
2

p+ 1
× [sin θj, sin(2θj), . . . , sin(pθj)]

T .

Defining,

Q = [q1, . . . , qp]
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it is clear that QTBQ = Λ = diag (λj). The j-th (block)-row of the system (2.26)

which can be written as

−uj−1 +Buj − uj+1 = bj ,

will now be transformed by applying the similarity transformation Q to the above

equation, leading to

−QTuj−1 + (QTBQ) QTuj −QTuj+1 = QT bj

If we denote by a bar quantities expressed in the Q basis, then the above equation

becomes

−ūj−1 + Λūj − ūj+1 = b̄j .

Note that the transformation from uj to ūj can be performed with a (real) Fast Fourier

Transform and this will be exploited shortly. Together the above equations yield the

large system,









Λ −I
−I Λ −I

. . .
. . .

. . .

−I Λ −I
−I Λ

















ū1
ū2
...

ūm−1

ūm









=









b̄1
b̄2
...

b̄m−1

b̄m









(2.28)

As it turns out, the above system disguises a set of m independent tridiagonal sys-

tems. Indeed, taking the i-th row of each block, yields









λi −1
−1 λi −1

. . .
. . .

. . .

−1 λi −1
−1 λi

















ūi1
ūi2

...

ūip−1

ūip









=









b̄i1
b̄i2
...

b̄ip−1

b̄ip









(2.29)

where uij and bij represent the j-th components of the vectors uj and bj respectively.

The procedure becomes clear and is described in the next algorithm.

ALGORITHM 2.1 FFT-based Fast-Poisson Solver

1. Compute b̄j = QT bj , j = 1, . . . ,m
2. Solve the tridiagonal systems (2.29) for i = 1, . . . , p
3. Compute uj = Qūj , j = 1, . . . ,m

The operations in Lines 1 and 3 are performed by FFT transforms, and require a

total of O(p log2 p) operations each, leading to a total of O(m×p log2 p) operations.

Solving the m tridiagonal systems requires a total of 8 × p × m operations. As a

result, the complexity of the algorithm is O(NlogN) where N = p×m.
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A second class of Fast Poisson Solvers utilize Block Cyclic Reduction (BCR).

For simplicity, assume that p = 2µ − 1. Denoting 2r by h, at the r-th step of BCR,

the system is of the following form:








B(r) −I
−I B(r) −I

. . .
. . .

. . .

−I B(r) −I
−I B(r)

















uh
u2h

...

u(pr−1)h

uprh









=









bh
b2h

...

b(pr−1)h

bprh









(2.30)

Equations whose block-index j is odd are now eliminated by multiplying each equa-

tion indexed 2jh by B(r) and adding it to equations (2j − 1)h and (2j + 1)h. This

would yield a system with a size half that of (2.30), which involves only the equations

with indices that are even multiples of h:

−u(2j−2)h +
[

(B(r))2 − 2I
]

u2jh − u(2j+2)h = B(r)b2jh + b(2j−1)h + b(2j+1)h .

The process can then be repeated until we have only one system ofm equations. This

could then be solved and the other unknowns recovered from it in a back-substitution.

The method based on this direct approach is not stable.

A stable modification due to Buneman [69] consists of writing the right-hand

sides differently. Each bjh is written as

b
(r)
jh = B(r)p

(r)
jh + q

(r)
jh (2.31)

Initially, when r = 0, the vector p
(0)
i is zero and q

(0)
i ≡ bj . The elimination of

block-row jh proceeds in the same manner, as was described above, leading to

−u(2j−2)h +
[

(B(r))2 − 2I
]

u2jh − u(2j+2)h = (B(r))2p
(r)
2jh +

B(r)(q
(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h) + q

(r)
(2j−1)h + q

(r)
(2j+1)h .(2.32)

It is clear that the diagonal block matrix for the next step is

B(r+1) = (B(r))2 − 2I . (2.33)

It remains to recast Equation (2.32) in a such way that the right-hand side blocks are

again in the form (2.31). The new right-hand side is rewritten as

b
(r+1)
2jh = (B(r))2

[

p
(r)
2jh + (B(r))−1(q

(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h)

]

+q
(r)
(2j−1)h+q

(r)
(2j+1)h.

The term in the brackets is defined as p
(r+1)
2jh

p
(r+1)
2jh = p

(r)
2jh + (B(r))−1(q

(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h), (2.34)

so that,

b
(r+1)
2jh = (B(r))2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h

= [(B(r))2 − 2I]p
(r+1)
2jh + 2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h .
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Then it becomes clear that q
(r+1)
2jh should be defined as

q
(r+1)
2jh = 2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h . (2.35)

After µ − 1 steps of the above transformation, the original system (2.26) is re-

duced to a system with a single block which can be solved directly. The other un-

known are then obtained by back-substitution, computing the ujh’s for odd values of

j from the the ujh’s with even values of j:

u
(r+1)
jh = (B(r))−1[brjh + u(j−1)h + u(j+1)h]

= (B(r))−1[B(r)prjh + qrjh + u(j−1)h + u(j+1)h]

= prjh + (B(r))−1[qrjh + u(j−1)h + u(j+1)h] .

These substitutions are done for h = 2r decreasing from h = 2µ, to h = 20. Bune-

man’s algorithm is described below.

ALGORITHM 2.2 Block Cyclic Reduction (Buneman’s version)

1. Initialize: p
(0)
i = 0, q

(0)
j = bj , j = 1, . . . , p and h = 1, r = 0.

2. Forward solution: While (h = 2r < p) Do:

3. Form the matrix Yr with columns

4. q
(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h, j = 1, . . . , (p + 1)/2h − 1

5. Solve the (multi)- linear system B(r)Xr = Yr
6. Update the vectors p and q according to (2.34) and (2.35)

7. r := r + 1
8. EndWhile

9. Solve for u: B(r)u = q
(r)
1 and set uh = ph + u.

10. Backward substitution: while h ≥ 1 do

11. h := h/2
12. Form the matrix Yr with column vectors

13. q
(r)
jh + u(j−1)h + u(j+1)h , j = 1, 3, 5, . . . , n/h.

14. Solve the (multi)- linear system B(r)Wr = Yr
15. Update the solution vectors ujh, j = 1, 3 , . . . , by

16. Ur = Pr +Wr, where Ur (resp. Pr) is the matrix with vector

17. columns ujh (resp. pjh ).

18. EndWhile

The bulk of the work in the above algorithms lies in Lines 5 and 14, where sys-

tems of equations with multiple right-hand sides are solved with the same coefficient

matrix B(r). For this purpose the matrix B(r) is not formed explicitly. Instead, it is

observed that B(r) is a known polynomial in B, specifically:

B(r) ≡ ph(A) = 2Ch(B/2) =
h∏

i=1

(B − λ(r)i I)
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whereCk denotes the Chebyshev polynomial of degree k of the first kind (See section

6.11.1 of Chapter 6 for a brief discussion of Chebyshev polynomials). The roots λi
of the polynomials ph are easily determined from those of Ch:

λ
(r)
i = 2cos

(
(2i − 1)π

2h

)

i = 1, . . . , h

Thus, if p = 2µ − 1, the systems in Line 5 can be written as

2r∏

i=1

(A− λ(r)i I)[x1| · · · |x2µ−r−1−1] = [y1| · · · |y2µ−r−1−1]. (2.36)

An interesting, and more efficient technique, consists of combining BCR with the

FFT approach [280, 170]. In this technique a small number of cyclic reduction steps

are taken and the resulting system is then solved using the Fourier-based approach

described earlier. The cost of the algorithm is still of the form O(mp log p) but the

constant in the cost is smaller.

Block cyclic reduction can also be applied for solving general ‘separable’ equa-

tions using the algorithm described by Swartzrauber [279]. However, the roots of the

polynomial must be computed since they are not known in advance.

2.3 The Finite Element Method

The finite element method is best illustrated with the solution of a simple elliptic

Partial Differential Equation in a two-dimensional space. Consider again Poisson’s

equation (2.24) with the Dirichlet boundary condition (2.25), where Ω is a bounded

open domain in R
2 and Γ its boundary. The Laplacean operator

∆ =
∂2

∂x21
+

∂2

∂x22

appears in many models of physical and mechanical phenomena. Equations involv-

ing the more general elliptic operators (2.5) and (2.6) can be treated in the same way

as Poisson’s equation (2.24) and (2.25), at least from the viewpoint of the numerical

solutions techniques.

An essential ingredient for understanding the finite element method is Green’s

formula. The setting for this formula is an open set Ω whose boundary consists of a

closed and smooth curve Γ as illustrated in Figure 2.1. A vector-valued function ~v =(
v1
v2

)

, which is continuously differentiable in Ω, is given. The divergence theorem in

two-dimensional spaces states that

∫

Ω
div~v dx =

∫

Γ
~v.~n ds. (2.37)

The dot in the right-hand side represents a dot product of two vectors in R
2. In this

case it is between the vector ~v and the unit vector ~n which is normal to Γ at the point
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of consideration and oriented outward. To derive Green’s formula, consider a scalar

function v and a vector function ~w =
(
w1

w2

)

. By standard differentiation,

∇.(v ~w) = (∇v). ~w + v∇. ~w,

which expresses ∇v.~w as

∇v.~w = −v∇. ~w +∇.(v ~w). (2.38)

Integrating the above equality over Ω and using the divergence theorem, we obtain
∫

Ω
∇v.~w dx = −

∫

Ω
v∇. ~w dx+

∫

Ω
∇.(v ~w) dx

= −
∫

Ω
v∇. ~w dx+

∫

Γ
v ~w.~n ds. (2.39)

The above equality can be viewed as a generalization of the standard integration by

part formula in calculus. Green’s formula results from (2.39) by simply taking a

vector ~w which is itself a gradient of a scalar function u, namely, ~w = ∇u,
∫

Ω
∇v.∇u dx = −

∫

Ω
v∇.∇u dx+

∫

Γ
v∇u.~n ds.

Observe that ∇.∇u = ∆u. Also the function ∇u.~n is called the normal derivative

and is denoted by

∇u.~n =
∂u

∂~n
.

With this, we obtain Green’s formula
∫

Ω
∇v.∇u dx = −

∫

Ω
v∆u dx+

∫

Γ
v
∂u

∂~n
ds. (2.40)

We now return to the initial problem (2.24-2.25). To solve this problem approxi-

mately, it is necessary to (1) take approximations to the unknown function u, and (2)

translate the equations into a system which can be solved numerically. The options

for approximating u are numerous. However, the primary requirement is that these

approximations should be in a (small) finite dimensional space. There are also some

additional desirable numerical properties. For example, it is difficult to approximate

high degree polynomials numerically. To extract systems of equations which yield

the solution, it is common to use the weak formulation of the problem. Let us define

a(u, v) ≡
∫

Ω
∇u.∇v dx =

∫

Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)

dx,

(f, v) ≡
∫

Ω
fv dx.

An immediate property of the functional a is that it is bilinear. That means that it is

linear with respect to u and v, namely,

a(µ1u1 + µ2u2, v) = µ1a(u1, v) + µ2a(u2, v), ∀µ1, µ2 ∈ R,

a(u, λ1v1 + λ2v2) = λ1a(u, v1) + λ2a(u, v2), ∀λ1, λ2 ∈ R.
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Notice that (u, v) denotes the L2-inner product of u and v in Ω, i.e.,

(u, v) =

∫

Ω
u(x)v(x)dx,

then, for functions satisfying the Dirichlet boundary conditions, which are at least

twice differentiable, Green’s formula (2.40) shows that

a(u, v) = −(∆u, v).
The weak formulation of the initial problem (2.24-2.25) consists of selecting a sub-

space of reference V of L2 and then defining the following problem:

Find u ∈ V such that a(u, v) = (f, v), ∀ v ∈ V. (2.41)

In order to understand the usual choices for the space V , note that the definition of

the weak problem only requires the dot products of the gradients of u and v and the

functions f and v to be L2–integrable. The most general V under these conditions

is the space of all functions whose derivatives up to the first order are in L2. This

is known as H1(Ω). However, this space does not take into account the boundary

conditions. The functions in V must be restricted to have zero values on Γ. The

resulting space is called H1
0 (Ω).

The finite element method consists of approximating the weak problem by a

finite-dimensional problem obtained by replacing V with a subspace of functions

that are defined as low-degree polynomials on small pieces (elements) of the original

domain.

Figure 2.7: Finite element triangulation of a domain.

Consider a region Ω in the plane which is triangulated as shown in Figure 2.7. In

this example, the domain is simply an ellipse but the external enclosing curve is not

shown. The original domain is thus approximated by the union Ωh of m triangles

Ki,

Ωh =
m⋃

i=1

Ki.
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For the triangulation to be valid, these triangles must have no vertex that lies on the

edge of any other triangle. The mesh size h is defined by

h = max
i=1,...,m

diam(Ki)

where diam(K), the diameter of a triangle K , is the length of its longest side.

Then the finite dimensional space Vh is defined as the space of all functions

which are piecewise linear and continuous on the polygonal region Ωh, and which

vanish on the boundary Γ. More specifically,

Vh = {φ | φ|Ωh
continuous, φ|Γh

= 0, φ|Kj
linear ∀ j}.

Here, φ|X represents the restriction of the function φ to the subset X. If xj, j =
1, . . . , n are the nodes of the triangulation, then a function φj in Vh can be associ-

ated with each node xj , so that the family of functions φj’s satisfies the following

conditions:

φj(xi) = δij =

{
1 if xi = xj
0 if xi 6= xj

. (2.42)

These conditions define φi, i = 1, . . . , n uniquely. In addition, the φi’s form a basis

of the space Vh.

Each function of Vh can be expressed as

φ(x) =
n∑

i=1

ξiφi(x).

The finite element approximation consists of writing the Galerkin condition (2.41)

for functions in Vh. This defines the approximate problem:

Find u ∈ Vh such that a(u, v) = (f, v), ∀ v ∈ Vh. (2.43)

Since u is in Vh, there are n degrees of freedom. By the linearity of a with respect

to v, it is only necessary to impose the condition a(u, φi) = (f, φi) for i = 1, . . . , n.

This results in n constraints.

Writing the desired solution u in the basis {φi} as

u =
n∑

j=1

ξjφj(x)

and substituting in (2.43) gives the linear problem

n∑

j=1

αijξj = βi (2.44)

where

αij = a(φi, φj), βi = (f, φi).
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The above equations form a linear system of equations

Ax = b,

in which the coefficients of A are the αij’s; those of b are the βj’s. In addition, A is

a Symmetric Positive Definite matrix. Indeed, it is clear that
∫

Ω
∇φi .∇φj dx =

∫

Ω
∇φj .∇φi dx,

which means that αij = αji. To see that A is positive definite, first note that

a(u, u) ≥ 0 for any function u. If a(φ, φ) = 0 for a function in Vh, then it must

be true that ∇φ = 0 almost everywhere in Ωh. Since φ is linear in each triangle

and continuous, then it is clear that it must be constant on all Ω. Since, in addition,

it vanishes on the boundary, then it must be equal to zero on all of Ω. The result

follows by exploiting the relation

(Aξ, ξ) = a(φ, φ) with φ =
n∑

i=1

ξiφi,

which is valid for any vector {ξi}i=1....,n.

Another important observation is that the matrix A is also sparse. Indeed, αij is

nonzero only when the two basis functions φi and φj have common support trian-

gles, or equivalently when the nodes i and j are the vertices of a common triangle.

Specifically, for a given node i, the coefficient αij will be nonzero only when the

node j is one of the nodes of a triangle that is adjacent to node i.
In practice, the matrix is built by summing up the contributions of all triangles

by applying the formula

a(φi, φj) =
∑

K

aK(φi, φj)

in which the sum is over all the triangles K and

aK(φi, φj) =

∫

K
∇φi ∇φj dx.

Note that aK(φi, φj) is zero unless the nodes i and j are both vertices of K . Thus, a

triangle contributes nonzero values to its three vertices from the above formula. The

3× 3 matrix

AK =





aK(φi, φi) aK(φi, φj) aK(φi, φk)
aK(φj , φi) aK(φj , φj) aK(φj , φk)
aK(φk, φi) aK(φk, φj) aK(φk, φk)





associated with the triangle K(i, j, k) with vertices i, j, k is called an element stiff-

ness matrix. In order to form the matrix A, it is necessary to sum up all the con-

tributions aK(φk, φm) to the position k,m of the matrix. This process is called an

assembly process. In the assembly, the matrix is computed as

A =

nel∑

e=1

A[e], (2.45)
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in which nel is the number of elements. Each of the matrices A[e] is of the form

A[e] = PeAKeP
T
e

where AKe is the element matrix for the element Ke as defined above. Also Pe is an

n × 3 Boolean connectivity matrix which maps the coordinates of the 3 × 3 matrix

AKe into the coordinates of the full matrix A.

Finite element mesh

1

2 3

4 5

6

1

2

3

4

Assembled matrix

Figure 2.8: A simple finite element mesh and the pattern of the corresponding as-

sembled matrix.

Example 2.1. The assembly process can be illustrated with a very simple exam-

ple. Consider the finite element mesh shown in Figure 2.8. The four elements are

numbered from bottom to top as indicated by the labels located at their centers. There

are six nodes in this mesh and their labeling is indicated in the circled numbers. The

four matrices A[e] associated with these elements are shown in Figure 2.9. Thus, the

first element will contribute to the nodes 1, 2, 3, the second to nodes 2, 3, 5, the third

to nodes 2, 4, 5, and the fourth to nodes 4, 5, 6.

A[1] A[2] A[3] A[4]

Figure 2.9: The element matrices A[e], e = 1, . . . , 4 for the finite element mesh

shown in Figure 2.8.
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In fact there are two different ways to represent and use the matrix A. We can

form all the element matrices one by one and then we can store them, e.g., in an

nel × 3 × 3 rectangular array. This representation is often called the unassembled

form of A. Then the matrix A may be assembled if it is needed. However, element

stiffness matrices can also be used in different ways without having to assemble the

matrix. For example, frontal techniques are direct solution methods that take the

linear system in unassembled form and compute the solution by a form of Gaussian

elimination.

There are also iterative solution techniques which work directly with unassem-

bled matrices. One of the main operations required in many iterative methods is to

compute y = Ax, the product of the matrix A by an arbitrary vector x. In unassem-

bled form, this can be achieved as follows:

y = Ax =

nel∑

e=1

A[e]x =

nel∑

e=1

PeAKe(P
T
e x). (2.46)

Thus, the product P T
e x gathers the x data associated with the e-element into a 3-

vector consistent with the ordering of the matrix AKe . After this is done, this vector

must be multiplied by AKe . Finally, the result is added to the current y vector in

appropriate locations determined by the Pe array. This sequence of operations must

be done for each of the nel elements.

A more common, and somewhat more appealing, technique is to perform the as-

sembly of the matrix. All the elements are scanned one by one and the nine associated

contributions aK(φk, φm), k,m ∈ {i, j, k} added to the corresponding positions in

the global “stiffness” matrix. The assembled matrix must now be stored but the el-

ement matrices may be discarded. The structure of the assembled matrix depends

on the ordering of the nodes. To facilitate the computations, a widely used strategy

transforms all triangles into a reference triangle with vertices (0, 0), (0, 1), (1, 0).
The area of the triangle is then simply the determinant of the Jacobian of the trans-

formation that allows passage from one set of axes to the other.

Simple boundary conditions such as Neumann or Dirichlet do not cause any

difficulty. The simplest way to handle Dirichlet conditions is to include boundary

values as unknowns and modify the assembled system to incorporate the boundary

values. Thus, each equation associated with the boundary point in the assembled

system is replaced by the equation ui = fi. This yields a small identity block hidden

within the linear system.

For Neumann conditions, Green’s formula will give rise to the equations

∫

Ω
∇u.∇φj dx =

∫

Ω
fφjdx+

∫

Γ
φj
∂u

∂~n
ds, (2.47)

which will involve the Neumann data ∂u
∂~n over the boundary. Since the Neumann

data is typically given at some points only (the boundary nodes), linear interpolation

(trapezoidal rule) or the mid-line value (midpoint rule) can be used to approximate

the integral. Note that (2.47) can be viewed as the j-th equation of the linear system.
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Another important point is that if the boundary conditions are only of Neumann type,

then the resulting system is singular. An equation must be removed, or the linear

system must be solved by taking this singularity into account.

2.4 Mesh Generation and Refinement

Generating a finite element triangulation can be done easily by exploiting some initial

grid and then refining the mesh a few times either uniformly or in specific areas. The

simplest refinement technique consists of taking the three midpoints of a triangle,

thus creating four smaller triangles from a larger triangle and losing one triangle,

namely, the original one. A systematic use of one level of this strategy is illustrated

for the mesh in Figure 2.8, and is shown in Figure 2.10.

This approach has the advantage of preserving the angles of the original triangu-

lation. This is an important property since the angles of a good quality triangulation

must satisfy certain bounds. On the other hand, the indiscriminate use of the uniform

refinement strategy may lead to some inefficiencies. It is desirable to introduce more

triangles in areas where the solution is likely to have large variations. In terms of ver-

tices, midpoints should be introduced only where needed. To obtain standard finite

element triangles, the points that have been created on the edges of a triangle must

be linked to existing vertices in the triangle. This is because no vertex of a triangle is

allowed to lie on the edge of another triangle.

Figure 2.11 shows three possible cases that can arise. The original triangle is (a).

In (b), only one new vertex (numbered 4) has appeared on one edge of the triangle

and it is joined to the vertex opposite to it. In (c), two new vertices appear inside the

original triangle. There is no alternative but to join vertices (4) and (5). However,

after this is done, either vertices (4) and (3) or vertices (1) and (5) must be joined.

If angles are desired that will not become too small with further refinements, the

second choice is clearly better in this case. In fact, various strategies for improving

the quality of the triangles have been devised. The final case (d) corresponds to the

“uniform refinement” case where all edges have been split in two. There are three

new vertices and four new elements, and the larger initial element is removed.

2.5 Finite Volume Method

The finite volume method is geared toward the solution of conservation laws of the

form:
∂u

∂t
+∇. ~F = Q. (2.48)

In the above equation, ~F (u, t) is a certain vector function of u and time, possibly

nonlinear. This is called the “flux vector.” The source term Q is a function of space

and time. We now apply the principle used in the weak formulation, described before.

Multiply both sides by a test function w, and take the integral

∫

Ω
w
∂u

∂t
dx+

∫

Ω
w ∇. ~F dx =

∫

Ω
w Q dx.
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Finite element mesh

1

2 3

4 5

6

7

8

9

1011

12

13

1415

1

2
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4

5

67

8 9

10

11

1213

14 15

16

Assembled matrix

Figure 2.10: The simple finite element mesh of Figure 2.8 after one level of refine-

ment and the corresponding matrix.

Then integrate by part using formula (2.39) for the second term on the left-hand side

to obtain
∫

Ω
w
∂u

∂t
dx−

∫

Ω
∇w.~F dx+

∫

Γ
w ~F .~n ds =

∫

Ω
w Q dx.

Consider now a control volume consisting, for example, of an elementary triangle

Ki in the two-dimensional case, such as those used in the finite element method.

Take for w a function wi whose value is one on the triangle and zero elsewhere. The

second term in the above equation vanishes and the following relation results:
∫

Ki

∂u

∂t
dx+

∫

Γi

~F .~n ds =

∫

Ki

Q dx. (2.49)

The above relation is at the basis of the finite volume approximation. To go a little

further, the assumptions will be simplified slightly by taking a vector function ~F that

is linear with respect to u. Specifically, assume

~F =

(
λ1u

λ2u

)

≡ ~λu.

Note that, in this case, the term ∇. ~F in (2.48) becomes ~F (u) = ~λ.∇u. In addition,

the right-hand side and the first term in the left-hand side of (2.49) can be approxi-

mated as follows:
∫

Ki

∂u

∂t
dx ≈ ∂ui

∂t
|Ki|,

∫

Ki

Q dx ≈ qi|Ki|.
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Figure 2.11: Original triangle (a) and three possible refinement scenarios.

Here, |Ki| represents the volume of Ki, and qi is some average value of Q in the cell

Ki (Note that in two dimensions, “volume” is considered to mean area). These are

crude approximations but they serve the purpose of illustrating the scheme.

The finite volume equation (2.49) yields

∂ui
∂t
|Ki|+ ~λ.

∫

Γi

u ~n ds = qi|Ki|. (2.50)

The contour integral ∫

Γi

u ~n ds

is the sum of the integrals over all edges of the control volume. Let the value of u
on each edge j be approximated by some “average” ūj . In addition, sj denotes the

length of each edge and a common notation is

~sj = sj~nj.

Then the contour integral is approximated by

~λ.

∫

Γi

u ~n ds ≈
∑

edges

ūj~λ.~njsj =
∑

edges

ūj~λ.~sj. (2.51)

The situation in the case where the control volume is a simple triangle is depicted in

Figure 2.12. The unknowns are the approximations ui of the function u associated

with each cell. These can be viewed as approximations of u at the centers of gravity

of each cell i. This type of model is called cell-centered finite volume approxima-

tions. Other techniques based on using approximations on the vertices of the cells

are known as cell-vertex finite volume techniques.
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Figure 2.12: Finite volume cell associated with node i and three neighboring cells.

The value ūj required in (2.51) can be taken simply as the average between the

approximation ui of u in cell i and the approximation uj in the cell j on the other

side of the edge

ūj =
1

2
(uj + ui). (2.52)

This gives
∂ui
∂t
|Ki| +

1

2

∑

j

(ui + uj)~λ.~sj = qi|Ki|.

One further simplification takes place by observing that

∑

j

~sj = 0

and therefore ∑

j

ui~λ.~sj = ui~λ.
∑

j

~sj = 0.

This yields
∂ui
∂t
|Ki|+

1

2

∑

j

uj~λ.~sj = qi|Ki|.

In the above equation, the summation is over all the neighboring cells j. One

problem with such simple approximations is that they do not account for large gradi-

ents of u in the components. In finite volume approximations, it is typical to exploit

upwind schemes which are more suitable in such cases. By comparing with one-

dimensional upwind schemes, it can be easily seen that the suitable modification to

(2.52) is as follows:

ūj =
1

2
(uj + ui)−

1

2
sign

(

~λ.~sj

)

(uj − ui). (2.53)
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This gives

∂ui
∂t
|Ki|+

∑

j

~λ.~sj

(
1

2
(uj + ui)−

1

2
sign(~λ.~sj)(uj − ui)

)

= qi|Ki|.

Now write

∂ui
∂t
|Ki| +

∑

j

(
1

2
(uj + ui)~λ.~sj −

1

2
|~λ.~sj|(uj − ui)

)

= qi|Ki|

∂ui
∂t
|Ki| +

∑

j

(

ui(~λ.~sj)
+ + uj(~λ.~sj)

−
)

= qi|Ki|

where

(z)± ≡ z ± |z|
2

.

The equation for cell i takes the form

∂ui
∂t
|Ki|+ βiui +

∑

j

αijuj = qi|Ki|,

where

βi =
∑

j

(~λ.~sj)
+ ≥ 0, (2.54)

αij = (~λ.~sj)
− ≤ 0. (2.55)

Thus, the diagonal elements of the matrix are nonnegative, while its offdiagonal

elements are nonpositive. In addition, the row-sum of the elements, i.e., the sum of

all elements in the same row, is equal to zero. This is because

βi +
∑

j

αij =
∑

j

(~λ.~sj)
+ +

∑

j

(~λ.~sj)
− =

∑

j

~λ.~sj = ~λ.
∑

j

~sj = 0.

The matrices obtained have the same desirable property of weak diagonal dominance

seen in the one-dimensional case. A disadvantage of upwind schemes, whether in the

context of irregular grids or in one-dimensional equations, is the loss of accuracy due

to the low order of the schemes.

PROBLEMS

P-2.1 Derive Forward Difference formulas similar to (2.8), i.e., involving u(x), u(x +
h), u(x + 2h), . . ., which are of second and third order. Write down the discretization er-

rors explicitly.

P-2.2 Derive a Centered Difference formula for the first derivative, similar to (2.13), which

is at least of third order.
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P-2.3 Show that the Upwind Difference scheme described in 2.2.4, when a and ~b are con-

stant, is stable for the model problem (2.7).

P-2.4 Develop the two nine-point formulas illustrated in Figure 2.4. Find the corresponding

discretization errors. [Hint: Combine 1
3 of the five-point formula (2.17) plus 2

3 of the same

formula based on the diagonal stencil {(x, y), (x + h, y + h) + (x + h, y − h), (x− h, y +
h), (x − h, y − h)} to get one formula. Use the reverse combination 2

3 , 1
3 to get the other

formula.]

P-2.5 Consider a (two-dimensional) rectangular mesh which is discretized as in the finite

difference approximation. Show that the finite volume approximation to ~λ.∇u yields the

same matrix as an upwind scheme applied to the same problem. What would be the mesh of

the equivalent upwind finite difference approximation?

P-2.6 Show that the right-hand side of equation (2.16) can also be written as

1

h2
δ−
(

ai+ 1

2

δ+u
)

.

P-2.7 Show that the formula (2.16) is indeed second order accurate for functions that are in

C4.

P-2.8 Show that the functions φi’s defined by (2.42) form a basis of Vh.

P-2.9 Develop the equivalent of Green’s formula for the elliptic operator L defined in (2.6).

P-2.10 Write a short FORTRAN or C program to perform a matrix-by-vector product when

the matrix is stored in unassembled form.

P-2.11 Consider the finite element mesh of Example 2.1. Compare the number of opera-

tions required to perform a matrix-by-vector product when the matrix is in assembled and

in unassembled form. Compare also the storage required in each case. For a general finite

element matrix, what can the ratio be between the two in the worst case (consider only linear

approximations on triangular elements) for arithmetic? Express the number of operations in

terms of the number of nodes and edges of the mesh. You may make the assumption that the

maximum number of elements that are adjacent to a given node is p (e.g., p = 8).

P-2.12 LetK be a polygon in R2 withm edges, and let ~sj = sj~nj , for j = 1, . . . ,m, where

sj is the length of the j-th edge and ~nj is the unit outward normal at the j-th edge. Use the

divergence theorem to prove that
∑m

j=1 ~sj = 0.

NOTES AND REFERENCES. The books by C. Johnson [179], P. Ciarlet [84], and G. Strang and G.

Fix [277] are recommended for a good coverage of the finite element method. Axelsson and Barker

[15] discuss solution techniques for finite element problems emphasizing iterative methods. For finite

difference and finite volume methods, see C. Hirsch’s book [168] which also discusses equations and

solution methods for fluid flow problems. A 1965 article by Hockney [169] describes a one-level block

cyclic reduction method which seems to be the first “Fast Poisson Solver”. Block cyclic reduction was

developed by Buneman [69] and Hockney [171] for Poisson’s equations, and extended by Swartzrauber

[279] to separable elliptic equations. An efficient combination of block cyclic reduction and Fourier

analysis known as FACR(l), was developed by Hockney [171] and later extended in [280] and [170].

Parallel block cyclic reduction algorithms were considered in [138, 281].



Chapter 3

SPARSE MATRICES

As described in the previous chapter, standard discretizations of Partial Differential Equations

typically lead to large and sparse matrices. A sparse matrix is defined, somewhat vaguely, as

a matrix which has very few nonzero elements. But, in fact, a matrix can be termed sparse

whenever special techniques can be utilized to take advantage of the large number of zero

elements and their locations. These sparse matrix techniques begin with the idea that the

zero elements need not be stored. One of the key issues is to define data structures for these

matrices that are well suited for efficient implementation of standard solution methods, whether

direct or iterative. This chapter gives an overview of sparse matrices, their properties, their

representations, and the data structures used to store them.

3.1 Introduction

The natural idea to take advantage of the zeros of a matrix and their location was ini-

tiated by engineers in various disciplines. In the simplest case involving banded ma-

trices, special techniques are straightforward to develop. Electrical engineers dealing

with electrical networks in the 1960s were the first to exploit sparsity to solve general

sparse linear systems for matrices with irregular structure. The main issue, and the

first addressed by sparse matrix technology, was to devise direct solution methods

for linear systems. These had to be economical, both in terms of storage and compu-

tational effort. Sparse direct solvers can handle very large problems that cannot be

tackled by the usual “dense” solvers.

Essentially, there are two broad types of sparse matrices: structured and unstruc-

tured. A structured matrix is one whose nonzero entries form a regular pattern, often

along a small number of diagonals. Alternatively, the nonzero elements may lie in

blocks (dense submatrices) of the same size, which form a regular pattern, typically

along a small number of (block) diagonals. A matrix with irregularly located entries

is said to be irregularly structured. The best example of a regularly structured ma-

trix is a matrix that consists of only a few diagonals. Finite difference matrices on

rectangular grids, such as the ones seen in the previous chapter, are typical examples

of matrices with regular structure. Most finite element or finite volume techniques

75
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applied to complex geometries lead to irregularly structured matrices. Figure 3.2

shows a small irregularly structured sparse matrix associated with the finite element

grid problem shown in Figure 3.1.
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Figure 3.1: A small finite element grid model.

The distinction between the two types of matrices may not noticeably affect di-

rect solution techniques, and it has not received much attention in the past. However,

this distinction can be important for iterative solution methods. In these methods,

one of the essential operations is matrix-by-vector products. The performance of

these operations can differ significantly on high performance computers, depending

on whether they are regularly structured or not. For example, on vector computers,

storing the matrix by diagonals is ideal, but the more general schemes may suffer

because they require indirect addressing.

The next section discusses graph representations of sparse matrices. This is fol-

lowed by an overview of some of the storage schemes used for sparse matrices and

an explanation of how some of the simplest operations with sparse matrices can be

performed. Then sparse linear system solution methods will be covered. Finally,

Section 3.7 discusses test matrices.

3.2 Graph Representations

Graph theory is an ideal tool for representing the structure of sparse matrices and for

this reason it plays a major role in sparse matrix techniques. For example, graph the-

ory is the key ingredient used in unraveling parallelism in sparse Gaussian elimina-

tion or in preconditioning techniques. In the following section, graphs are discussed

in general terms and then their applications to finite element or finite difference ma-

trices are discussed.
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Figure 3.2: Sparse matrix associated with the finite element grid of Figure 3.1.

3.2.1 Graphs and Adjacency Graphs

Remember that a graph is defined by two sets, a set of vertices

V = {v1, v2, . . . , vn},

and a set of edges E which consists of pairs (vi, vj), where vi, vj are elements of V ,

i.e.,

E ⊆ V × V.
This graph G = (V,E) is often represented by a set of points in the plane linked by

a directed line between the points that are connected by an edge. A graph is a way

of representing a binary relation between objects of a set V . For example, V can

represent the major cities of the world. A line is drawn between any two cities that

are linked by a nonstop airline connection. Such a graph will represent the relation

“there is a nonstop flight from city (A) to city (B).” In this particular example, the

binary relation is likely to be symmetric, i.e., when there is a nonstop flight from (A)

to (B) there is also a nonstop flight from (B) to (A). In such situations, the graph is

said to be undirected, as opposed to a general graph which is directed.

Going back to sparse matrices, the adjacency graph of a sparse matrix is a graph

G = (V,E), whose n vertices in V represent the n unknowns. Its edges represent

the binary relations established by the equations in the following manner: There is

an edge from node i to node j when aij 6= 0. This edge will therefore represent the

binary relation equation i involves unknown j. Note that the adjacency graph is an

undirected graph when the matrix pattern is symmetric, i.e., when aij 6= 0 iff aji 6= 0
for all 1 ≤ i, j ≤ n).

When a matrix has a symmetric nonzero pattern, i.e., when aij and aji are al-

ways nonzero at the same time, then the graph is undirected. Thus, for undirected
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graphs, every edge points in both directions. As a result, undirected graphs can be

represented with nonoriented edges.

As an example of the use of graph models, parallelism in Gaussian elimination

can be extracted by finding unknowns that are independent at a given stage of the

elimination. These are unknowns which do not depend on each other according to the

above binary relation. The rows corresponding to such unknowns can then be used

as pivots simultaneously. Thus, in one extreme, when the matrix is diagonal, then all

unknowns are independent. Conversely, when a matrix is dense, each unknown will

depend on all other unknowns. Sparse matrices lie somewhere between these two

extremes.

1 2

4 3

1 2

4 3

Figure 3.3: Graphs of two 4× 4 sparse matrices.

There are a few interesting simple properties of adjacency graphs. The graph

of A2 can be interpreted as an n-vertex graph whose edges are the pairs (i, j) for

which there exists at least one path of length exactly two from node i to node j in

the original graph of A. Similarly, the graph of Ak consists of edges which represent

the binary relation “there is at least one path of length k from node i to node j.” For

details, see Exercise 4.

3.2.2 Graphs of PDE Matrices

For Partial Differential Equations involving only one physical unknown per mesh

point, the adjacency graph of the matrix arising from the discretization is often the

graph represented by the mesh itself. However, it is common to have several un-

knowns per mesh point. For example, the equations modeling fluid flow may involve

the two velocity components of the fluid (in two dimensions) as well as energy and

momentum at each mesh point.

In such situations, there are two choices when labeling the unknowns. They

can be labeled contiguously at each mesh point. Thus, for the example just men-
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tioned, we can label all four variables (two velocities followed by momentum and

then pressure) at a given mesh point as u(k), . . ., u(k + 3). Alternatively, all un-

knowns associated with one type of variable can be labeled first (e.g., first velocity

components), followed by those associated with the second type of variables (e.g.,

second velocity components), etc. In either case, it is clear that there is redundant

information in the graph of the adjacency matrix.

The quotient graph corresponding to the physical mesh can be used instead. This

results in substantial savings in storage and computation. In the fluid flow example

mentioned above, the storage can be reduced by a factor of almost 16 for the integer

arrays needed to represent the graph. This is because the number of edges has been

reduced by this much, while the number of vertices, which is usually much smaller,

remains the same.

3.3 Permutations and Reorderings

Permuting the rows or the columns, or both the rows and columns, of a sparse matrix

is a common operation. In fact, reordering rows and columns is one of the most

important ingredients used in parallel implementations of both direct and iterative

solution techniques. This section introduces the ideas related to these reordering

techniques and their relations to the adjacency graphs of the matrices. Recall the

notation introduced in Chapter 1 that the j-th column of a matrix is denoted by a∗j
and the i-th row by ai∗.

3.3.1 Basic Concepts

We begin with a definition and new notation.

Definition 3.1 Let A be a matrix and π = {i1, i2, . . . , in} a permutation of the set

{1, 2, . . . , n}. Then the matrices

Aπ,∗ = {aπ(i),j}i=1,...,n;j=1,...,m,

A∗,π = {ai,π(j)}i=1,...,n;j=1,...,m

are called row π-permutation and column π-permutation of A, respectively.

It is well known that any permutation of the set {1, 2, . . . , n} results from at most

n interchanges, i.e., elementary permutations in which only two entries have been

interchanged. An interchange matrix is the identity matrix with two of its rows in-

terchanged. Denote by Xij such matrices, with i and j being the numbers of the

interchanged rows. Note that in order to interchange rows i and j of a matrix A, we

only need to premultiply it by the matrix Xij . Let π = {i1, i2, . . . , in} be an arbi-

trary permutation. This permutation is the product of a sequence of n consecutive

interchanges σ(ik, jk), k = 1, . . . , n. Then the rows of a matrix can be permuted by

interchanging rows i1, j1, then rows i2, j2 of the resulting matrix, etc., and finally by

interchanging in, jn of the resulting matrix. Each of these operations can be achieved
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by a premultiplication by Xik ,jk . The same observation can be made regarding the

columns of a matrix: In order to interchange columns i and j of a matrix, postmulti-

ply it by Xij . The following proposition follows from these observations.

Proposition 3.2 Let π be a permutation resulting from the product of the inter-

changes σ(ik, jk), k = 1, . . . , n. Then,

Aπ,∗ = PπA, A∗,π = AQπ,

where

Pπ = Xin,jnXin−1,jn−1 . . . Xi1,j1 , (3.1)

Qπ = Xi1,j1Xi2,j2 . . . Xin,jn . (3.2)

Products of interchange matrices are called permutation matrices. Clearly, a permu-

tation matrix is nothing but the identity matrix with its rows (or columns) permuted.

Observe that X2
i,j = I , i.e., the square of an interchange matrix is the identity, or

equivalently, the inverse of an interchange matrix is equal to itself, a property which

is intuitively clear. It is easy to see that the matrices (3.1) and (3.2) satisfy

PπQπ = Xin,jnXin−1,jn−1 . . . Xi1,j1 ×Xi1,j1Xi2,j2 . . . Xin,jn = I,

which shows that the two matrices Qπ and Pπ are nonsingular and that they are the

inverse of one another. In other words, permuting the rows and the columns of a ma-

trix, using the same permutation, actually performs a similarity transformation. An-

other important consequence arises because the products involved in the definitions

(3.1) and (3.2) of Pπ and Qπ occur in reverse order. Since each of the elementary

matrices Xik,jk is symmetric, the matrix Qπ is the transpose of Pπ . Therefore,

Qπ = P T
π = P−1

π .

Since the inverse of the matrix Pπ is its own transpose, permutation matrices are

unitary.

Another way of deriving the above relationships is to express the permutation

matrices Pπ and P T
π in terms of the identity matrix, whose columns or rows are

permuted. It can easily be seen (See Exercise 3) that

Pπ = Iπ,∗, P T
π = I∗,π.

It is then possible to verify directly that

Aπ,∗ = Iπ,∗A = PπA, A∗,π = AI∗,π = AP T
π .

It is important to interpret permutation operations for the linear systems to be

solved. When the rows of a matrix are permuted, the order in which the equations

are written is changed. On the other hand, when the columns are permuted, the

unknowns are in effect relabeled, or reordered.



3.3. PERMUTATIONS AND REORDERINGS 81

Example 3.1. Consider, for example, the linear system Ax = b where

A =







a11 0 a13 0
0 a22 a23 a24
a31 a32 a33 0
0 a42 0 a44







and π = {1, 3, 2, 4}, then the (column-) permuted linear system is






a11 a13 0 0
0 a23 a22 a24
a31 a33 a32 0
0 0 a42 a44













x1
x3
x2
x4







=







b1
b2
b3
b4






.

Note that only the unknowns have been permuted, not the equations, and in particular,

the right-hand side has not changed.

In the above example, only the columns of A have been permuted. Such one-

sided permutations are not as common as two-sided permutations in sparse matrix

techniques. In reality, this is often related to the fact that the diagonal elements in

linear systems play a distinct and important role. For instance, diagonal elements are

typically large in PDE applications and it may be desirable to preserve this important

property in the permuted matrix. In order to do so, it is typical to apply the same

permutation to both the columns and the rows of A. Such operations are called

symmetric permutations, and if denoted by Aπ,π, then the result of such symmetric

permutations satisfies the relation

Aπ,π = PπAP
T
π .

The interpretation of the symmetric permutation is quite simple. The resulting ma-

trix corresponds to renaming, or relabeling, or reordering the unknowns and then

reordering the equations in the same manner.

Example 3.2. For the previous example, if the rows are permuted with the same

permutation as the columns, the linear system obtained is






a11 a13 0 0
a31 a33 a32 0
0 a23 a22 a24
0 0 a42 a44













x1
x3
x2
x4







=







b1
b3
b2
b4






.

Observe that the diagonal elements are now diagonal elements from the original ma-

trix, placed in a different order on the main diagonal.

3.3.2 Relations with the Adjacency Graph

From the point of view of graph theory, another important interpretation of a symmet-

ric permutation is that it is equivalent to relabeling the vertices of the graph without
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altering the edges. Indeed, let (i, j) be an edge in the adjacency graph of the original

matrix A and let A′ be the permuted matrix. Then a′ij = aπ(i),π(j) and as a result

(i, j) is an edge in the adjacency graph of the permuted matrix A′, if and only if

(π(i), π(j)) is an edge in the graph of the original matrix A. In essence, it is as if

we simply relabel each node with the “old” label π(i) with the “new” label i. This is

pictured in the following diagram:

π(i) π(j)

i j ← new labels

← old labels

Thus, the graph of the permuted matrix has not changed; rather, the labeling of the

vertices has. In contrast, nonsymmetric permutations do not preserve the graph. In

fact, they can transform an indirected graph into a directed one. Symmetric permuta-

tions change the order in which the nodes are considered in a given algorithm (such

as Gaussian elimination) and this may have a tremendous impact on the performance

of the algorithm.

1

2

3

4

5

6

7

8

9

Figure 3.4: Pattern of a 9 × 9 arrow matrix and its adjacency graph.

Example 3.3. Consider the matrix illustrated in Figure 3.4 together with its adja-

cency graph. Such matrices are sometimes called “arrow” matrices because of their

shape, but it would probably be more accurate to term them “star” matrices because

of the structure of their graphs. If the equations are reordered using the permutation

9, 8, . . . , 1, the matrix and graph shown in Figure 3.5 are obtained.

Although the difference between the two graphs may seem slight, the matrices

have a completely different structure, which may have a significant impact on the

algorithms. As an example, if Gaussian elimination is used on the reordered matrix,

no fill-in will occur, i.e., the L and U parts of the LU factorization will have the same

structure as the lower and upper parts of A, respectively.
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Figure 3.5: Adjacency graph and matrix obtained from above figure after permuting

the nodes in reverse order.

On the other hand, Gaussian elimination on the original matrix results in disas-

trous fill-ins. Specifically, the L and U parts of the LU factorization are now dense

matrices after the first step of Gaussian elimination. With direct sparse matrix tech-

niques, it is important to find permutations of the matrix that will have the effect of

reducing fill-ins during the Gaussian elimination process.

To conclude this section, it should be mentioned that two-sided nonsymmetric

permutations may also arise in practice. However, they are more common in the

context of direct methods.

3.3.3 Common Reorderings

The type of reordering, or permutations, used in applications depends on whether a

direct or an iterative method is being considered. The following is a sample of such

reorderings which are more useful for iterative methods.

Level-set orderings. This class of orderings contains a number of techniques that

are based on traversing the graph by level sets. A level set is defined recursively as

the set of all unmarked neighbors of all the nodes of a previous level set. Initially, a

level set consists of one node, although strategies with several starting nodes are also

important and will be considered later. As soon as a level set is traversed, its nodes

are marked and numbered. They can, for example, be numbered in the order in which

they are traversed. In addition, the order in which each level itself is traversed gives

rise to different orderings. For instance, the nodes of a certain level can be visited

in the natural order in which they are listed. The neighbors of each of these nodes

are then inspected. Each time, a neighbor of a visited vertex that is not numbered is

encountered, it is added to the list and labeled as the next element of the next level

set. This simple strategy is called Breadth First Search (BFS) traversal in graph

theory. The ordering will depend on the way in which the nodes are traversed in each
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level set. In BFS the elements of a level set are always traversed in the natural order

in which they are listed. In the Cuthill-McKee ordering the nodes adjacent a a visited

node are always traversed from lowest to highest degree.

ALGORITHM 3.1 BFS(G, v)

1. Initialize S = {v}, seen = 1, π(seen) = v; Mark v;

2. While seen < n Do

3. Snew = ∅;
4. For each node v in S do

5. For each unmarked w in adj(v) do

6. Add w to Snew;

7. Mark w;

8. π(+ + seen) = w;

9. EndDo

10. S := Snew
11. EndDo

12. EndWhile

In the above algorithm, the notation π(+ + seen) = w in Line 8, uses a style bor-

rowed from the C/C++ language. It states that seen should be first incremented by

one, and then π(seen) is assigned w. Two important modifications will be made to

this algorithm to obtain the Cuthill Mc Kee ordering. The first concerns the selection

of the first node to begin the traversal. The second, mentioned above, is the orde in

which the nearest neighbors of a given node are traversed.

ALGORITHM 3.2 Cuthill-McKee ( G)

0. Find an intial node v for the traversal

1. Initialize S = {v}, seen = 1, π(seen) = v; Mark v;

2. While seen < n Do

3. Snew = ∅;
4. For each node v Do:

5. π(+ + seen) = v;

6. For each unmarked w in adj(v), going from lowest to highest degree Do:

7. Add w to Snew;

8. Mark w;

9. EndDo

10. S := Snew
11. EndDo

12. EndWhile

The π array obtained from the procedure lists the nodes in the order in which

they are visited and can, in a practical implementation, be used to store the level sets

in succession. A pointer is needed to indicate where each set starts.
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The main property of level sets is that, at the exception of the first and the last

levels, they are are graph separators. A graph separator is a set of vertices, the

removal of which separates the graph in two disjoint components. In fact if there

are l levels and V1 = S1US2 . . . Si−1, V2 = Si+1U . . . Sl, then the nodes of V1 are

V2 are not coupled. This is easy to prove by contradiction. A major consequence of

this property is that the matrix resulting from the Cuthill-McKee (or BFS) ordering

is block-tridiagonal, with the i-th block being of size |Si|.
I order to explain the concept of level sets, the previous two algorithms were

described with the explicit use of level sets. A more common, and somewhat simpler,

implementation relies on queues. The queue implementation is as follows.

ALGORITHM 3.3 Cuthill-McKee (G) – Queue implementation

0. Find an intial node v for the traversal

1. Initialize Q = {v}, Mark v;

2. While |Q| < n Do

3. head++ ;

4. For each unmarked w in adj(h), going from lowest to highest degree Do:

5. Append w to Q;

6. Mark w;

7. EndDo

8. EndWhile

The final array Q will give the desired permutation π. Clearly, this implementation

can also be applied to BFS. As an example, consider the finite element mesh problem

illustrated in Figure 2.10 of Chapter 2, and assume that v = 3 is the initial node of

the traversal. The state of the Q array after each step along with the head vertex head
and its adjacency list are shown in the following table. Note that the adjacency lists

in the third column are listed by increasing degrees.

Q head adj(head)

3 3 7, 10, 8

3, 7, 10, 8 7 1, 9

3, 7, 10, 8, 1, 9 10 5, 11

3, 7, 10, 8, 1, 9, 5, 11 8 2

3, 7, 10, 8, 1, 9, 5, 11, 2 1 -

3, 7, 10, 8, 1, 9, 5, 11, 2 9 -

3, 7, 10, 8, 1, 9, 5, 11, 2 5 14, 12

3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12 11 13

3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13 2 -

3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13 14 6, 15

3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13, 6, 15 12 4

3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13, 6, 15, 4

An implementation using explicit levels, would find the sets S1 = {3}, S2 =
{7, 8, 10}, S3 = {1, 9, 5, 11, 2}, S4 = {14, 12, 13}, and S5 = {6, 15, 4}. The
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new labeling of the graph along with the corresponding matrix pattern are shown in

Figure 3.6. The partitionning of the matrix pattern corresponds to the levels.

In 1971, George [142] observed that reversing the Cuthill-McKee ordering yields

a better scheme for sparse Gaussian elimination. The simplest way to understand

this is to look at the two graphs produced by these orderings. The results of the

standard and reversed Cuthill-McKee orderings on the sample finite element mesh

problem seen earlier are shown in Figures 3.6 and 3.7, when the initial node is i1 = 3
(relative to the labeling of the original ordering of Figure 2.10). The case of the

figure, corresponds to a variant of CMK in which the traversals in Line 6, is done

in a random order instead of according to the degree. A large part of the structure

of the two matrices consists of little “arrow” submatrices, similar to the ones seen in

Example 3.3. In the case of the regular CMK ordering, these arrows point upward,

as in Figure 3.4, a consequence of the level set labeling. These blocks are similar

the star matrices of Figure 3.4. As a result, Gaussian elimination will essentially fill

in the square blocks which they span. As was indicated in Example 3.3, a remedy

is to reorder the nodes backward, as is done globally in the reverse Cuthill-McKee

strategy. For the reverse CMK ordering, the arrows are pointing downward, as in

Figure 3.5, and Gaussian elimination yields much less fill-in.
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Figure 3.6: Graph and matrix pattern for example pf Figure 2.10 after Cuthill-

McKee ordering.

Example 3.4. The choice of the initial node in the CMK and RCMK orderings

may be important. Referring to the original ordering of Figure 2.10, the previous

illustration used i1 = 3. However, it is clearly a poor choice if matrices with small

bandwidth or profile are desired. If i1 = 1 is selected instead, then the reverse
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Figure 3.7: Reverse Cuthill-McKee ordering.

Cuthill-McKee algorithm produces the matrix in Figure 3.8, which is more suitable

for banded or skyline solvers.

Independent set orderings. The matrices that arise in the model finite element

problems seen in Figures 2.7, 2.10, and 3.2 are all characterized by an upper-left

block that is diagonal, i.e., they have the structure

A =

(
D E
F C

)

, (3.3)

in which D is diagonal and C,E, and F are sparse matrices. The upper-diagonal

block corresponds to unknowns from the previous levels of refinement and its pres-

ence is due to the ordering of the equations in use. As new vertices are created in

the refined grid, they are given new numbers and the initial numbering of the vertices

is unchanged. Since the old connected vertices are “cut” by new ones, they are no

longer related by equations. Sets such as these are called independent sets. Indepen-

dent sets are especially useful in parallel computing, for implementing both direct

and iterative methods.

Referring to the adjacency graph G = (V,E) of the matrix, and denoting by

(x, y) the edge from vertex x to vertex y, an independent set S is a subset of the

vertex set V such that

if x ∈ S, then {(x, y) ∈ E or (y, x) ∈ E} → y /∈ S.

To explain this in words: Elements of S are not allowed to be connected to

other elements of S either by incoming or outgoing edges. An independent set is
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Figure 3.8: Reverse Cuthill-McKee starting with i1 = 1.

maximal if it cannot be augmented by elements in its complement to form a larger

independent set. Note that a maximal independent set is by no means the largest

possible independent set that can be found. In fact, finding the independent set of

maximum cardinal is NP -hard [183]. In the following, the term independent set

always refers to maximal independent set.

There are a number of simple and inexpensive heuristics for finding large maxi-

mal independent sets. A greedy heuristic traverses the nodes in a given order, and if

a node is not already marked, it selects the node as a new member of S. Then this

node is marked along with its nearest neighbors. Here, a nearest neighbor of a node

x means any node linked to x by an incoming or an outgoing edge.

ALGORITHM 3.4 Greedy Algorithm for ISO

1. Set S = ∅.
2. For j = 1, 2, . . . , n Do:

3. If node j is not marked then

4. S = S ∪ {j}
5. Mark j and all its nearest neighbors

6. EndIf

7. EndDo

In the above algorithm, the nodes are traversed in the natural order 1, 2, . . . , n,

but they can also be traversed in any permutation {i1, . . . , in} of {1, 2, . . . , n}. Since

the size of the reduced system is n − |S|, it is reasonable to try to maximize the

size of S in order to obtain a small reduced system. It is possible to give a rough
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idea of the size of S. Assume that the maximum degree of each node does not

exceed ν. Whenever the above algorithm accepts a node as a new member of S, it

potentially puts all its nearest neighbors, i.e., at most ν nodes, in the complement of

S. Therefore, if s is the size of S, the size of its complement, n − s, is such that

n− s ≤ νs, and as a result,

s ≥ n

1 + ν
.

This lower bound can be improved slightly by replacing ν with the maximum degree

νS of all the vertices that constitute S. This results in the inequality

s ≥ n

1 + νS
,

which suggests that it may be a good idea to first visit the nodes with smaller degrees.

In fact, this observation leads to a general heuristic regarding a good order of traver-

sal. The algorithm can be viewed as follows: Each time a node is visited, remove it

and its nearest neighbors from the graph, and then visit a node from the remaining

graph. Continue in the same manner until all nodes are exhausted. Every node that is

visited is a member of S and its nearest neighbors are members of S̄. As result, if νi
is the degree of the node visited at step i, adjusted for all the edge deletions resulting

from the previous visitation steps, then the number ni of nodes that are left at step i
satisfies the relation

ni = ni−1 − νi − 1.

The process adds a new element to the set S at each step and stops when ni = 0.

In order to maximize |S|, the number of steps in the procedure must be maximized.

The difficulty in the analysis arises from the fact that the degrees are updated at each

step i because of the removal of the edges associated with the removed nodes. If the

process is to be lengthened, a rule of thumb would be to visit the nodes that have the

smallest degrees first.

ALGORITHM 3.5 Increasing Degree Traversal for ISO

1. Set S = ∅. Find an ordering i1, . . . , in of the nodes by increasing degree.

2. For j = 1, 2, . . . n, Do:

3. If node ij is not marked then

4. S = S ∪ {ij}
5. Mark ij and all its nearest neighbors

6. EndIf

7. EndDo

A refinement to the above algorithm would be to update the degrees of all nodes

involved in a removal, and dynamically select the one with the smallest degree as the

next node to be visited. This can be implemented efficiently using a min-heap data

structure. A different heuristic is to attempt to maximize the number of elements in S
by a form of local optimization which determines the order of traversal dynamically.

In the following, removing a vertex from a graph means deleting the vertex and all

edges incident to/from this vertex.
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Example 3.5. The algorithms described in this section were tested on the same

example used before, namely, the finite element mesh problem of Figure 2.10. Here,

all strategies used yield the initial independent set in the matrix itself, which corre-

sponds to the nodes of all the previous levels of refinement. This may well be optimal

in this case, i.e., a larger independent set may not exist.

Multicolor orderings. Graph coloring is a familiar problem in computer science

which refers to the process of labeling (coloring) the nodes of a graph in such a way

that no two adjacent nodes have the same label (color). The goal of graph color-

ing is to obtain a colored graph which uses the smallest possible number of colors.

However, optimality in the context of numerical linear algebra is a secondary issue

and simple heuristics do provide adequate colorings. Basic methods for obtaining a

multicoloring of an arbitrary grid are quite simple. They rely on greedy techniques,

a simple version of which is as follows.

ALGORITHM 3.6 Greedy Multicoloring Algorithm

1. For i = 1, . . . , n Do: set Color(i) = 0.

2. For i = 1, 2, . . . , n Do:

3. Set Color(i) = min {k > 0 | k 6= Color(j),∀ j ∈ Adj(i))}
4. EndDo

Line 3 assigns the smallest allowable color number to node i. Allowable means a

positive number that is different from the colors of the neighbors of node i. The

procedure is illustrated in Figure 3.9. The node being colored in the figure is indi-

cated by an arrow. It will be assigned color number 3, the smallest positive integer

different from 1, 2, 4, 5.

In the above algorithm, the order 1, 2, . . . , n has been arbitrarily selected for

traversing the nodes and coloring them. Instead, the nodes can be traversed in any

order {i1, i2, . . . , in}. If a graph is bipartite, i.e., if it can be colored with two

colors, then the algorithm will find the optimal two-color (Red-Black) ordering for

Breadth-First traversals. In addition, if a graph is bipartite, it is easy to show that

the algorithm will find two colors for any traversal which, at a given step, visits an

unmarked node that is adjacent to at least one visited node. In general, the number

of colors needed does not exceed the maximum degree of each node +1. These

properties are the subject of Exercises 11 and 10.

Example 3.6. Figure 3.10 illustrates the algorithm for the same example used ear-

lier, i.e., the finite element mesh problem of Figure 2.10. The dashed lines separate

the different color sets found. Four colors are found in this example.

Once the colors have been found, the matrix can be permuted to have a block

structure in which the diagonal blocks are diagonal. Alternatively, the color sets

Sj = [i
(j)
1 , . . ., i

(j)
nj ] and the permutation array in the algorithms can be used.
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Figure 3.9: The greedy multicoloring algorithm.
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Figure 3.10: Graph and matrix corresponding to mesh of Figure 2.10 after multicolor

ordering.

3.3.4 Irreducibility

Remember that a path in a graph is a sequence of vertices v1, v2, . . . , vk, which are

such that (vi, vi+1) is an edge for i = 1, . . . , k − 1. Also, a graph is said to be

connected if there is a path between any pair of two vertices in V . A connected com-

ponent in a graph is a maximal subset of vertices which all can be connected to one

another by paths in the graph. Now consider matrices whose graphs may be directed.

A matrix is reducible if its graph is not connected, and irreducible otherwise. When

a matrix is reducible, then it can be permuted by means of symmetric permutations

into a block upper triangular matrix of the form







A11 A12 A13 . . .
A22 A23 . . .

. . .
...

App






,
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where each partition corresponds to a connected component. It is clear that linear

systems with the above matrix can be solved through a sequence of subsystems with

the matrices Aii, i = p, p− 1, . . . , 1.

3.4 Storage Schemes

In order to take advantage of the large number of zero elements, special schemes are

required to store sparse matrices. The main goal is to represent only the nonzero

elements, and to be able to perform the common matrix operations. In the following,

Nz denotes the total number of nonzero elements.

The simplest storage scheme for sparse matrices is the so-called coordinate for-

mat. The data structure consists of three arrays: (1) a real array containing all the real

(or complex) values of the nonzero elements of A in any order; (2) an integer array

containing their row indices; and (3) a second integer array containing their column

indices. All three arrays are of length Nz, the number of nonzero elements.

Example 3.7. The matrix

A =









1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.









will be represented (for example) by

AA 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the above example, the elements are listed in an arbitrary order. In fact, they

are usually listed by row or columns. If the elements were listed by row, the array JC
which contains redundant information might be replaced by an array which points

to the beginning of each row instead. This would involve nonnegligible savings in

storage. The new data structure has three arrays with the following functions:

• A real array AA contains the real values aij stored row by row, from row 1 to

n. The length of AA is Nz.

• An integer array JA contains the column indices of the elements aij as stored

in the array AA. The length of JA is Nz.

• An integer array IA contains the pointers to the beginning of each row in the

arrays AA and JA. Thus, the content of IA(i) is the position in arrays AA
and JA where the i-th row starts. The length of IA is n + 1 with IA(n + 1)
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containing the number IA(1) + Nz, i.e., the address in A and JA of the

beginning of a fictitious row number n+ 1.

Thus, the above matrix may be stored as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

This format is probably the most popular for storing general sparse matrices.

It is called the Compressed Sparse Row (CSR) format. This scheme is preferred

over the coordinate scheme because it is often more useful for performing typical

computations. On the other hand, the coordinate scheme is advantageous for its

simplicity and its flexibility. It is often used as an “entry” format in sparse matrix

software packages.

There are a number of variations for the Compressed Sparse Row format. The

most obvious variation is storing the columns instead of the rows. The corresponding

scheme is known as the Compressed Sparse Column (CSC) scheme.

Another common variation exploits the fact that the diagonal elements of many

matrices are all usually nonzero and/or that they are accessed more often than the rest

of the elements. As a result, they can be stored separately. The Modified Sparse Row

(MSR) format has only two arrays: a real arrayAA and an integer array JA. The first

n positions in AA contain the diagonal elements of the matrix in order. The unused

position n + 1 of the array AA may sometimes carry some information concerning

the matrix.

Starting at position n + 2, the nonzero entries of AA, excluding its diagonal

elements, are stored by row. For each element AA(k), the integer JA(k) represents

its column index on the matrix. The n + 1 first positions of JA contain the pointer

to the beginning of each row in AA and JA. Thus, for the above example, the two

arrays will be as follows:

AA 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that JA(n) = JA(n + 1) = 14, indi-

cating that the last row is a zero row, once the diagonal element has been removed.

Diagonally structured matrices are matrices whose nonzero elements are located

along a small number of diagonals. These diagonals can be stored in a rectangular

array DIAG(1:n,1:Nd), where Nd is the number of diagonals. The offsets of each

of the diagonals with respect to the main diagonal must be known. These will be

stored in an array IOFF(1:Nd). Thus, the element ai,i+ioff(j) of the original matrix

is located in position (i, j) of the array DIAG, i.e.,

DIAG(i, j)← ai,i+ioff(j).
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The order in which the diagonals are stored in the columns of DIAG is generally

unimportant, though if several more operations are performed with the main diago-

nal, storing it in the first column may be slightly advantageous. Note also that all the

diagonals except the main diagonal have fewer than n elements, so there are positions

in DIAG that will not be used.

Example 3.8. For example, the following matrix which has three diagonals

A =









1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









will be represented by the two arrays

DIAG =

* 1. 2.

3. 4. 5.

6. 7. 8.

9. 10. *

11 12. *

IOFF = -1 0 2 .

A more general scheme which is popular on vector machines is the so-called

Ellpack-Itpack format. The assumption in this scheme is that there are at most Nd
nonzero elements per row, where Nd is small. Then two rectangular arrays of dimen-

sion n × Nd each are required (one real and one integer). The first, COEF, is similar

to DIAG and contains the nonzero elements of A. The nonzero elements of each row

of the matrix can be stored in a row of the array COEF(1:n,1:Nd), completing the

row by zeros as necessary. Together with COEF, an integer array JCOEF(1:n,1:Nd)

must be stored which contains the column positions of each entry in COEF.

Example 3.9. Thus, for the matrix of the previous example, the Ellpack-Itpack

storage scheme is

COEF =

1. 2. 0.

3. 4. 5.

6. 7. 8.

9. 10. 0.

11 12. 0.

JCOEF =

1 3 1

1 2 4

2 3 5

3 4 4

4 5 5

.

A certain column number must be chosen for each of the zero elements that must

be added to pad the shorter rows of A, i.e., rows 1, 4, and 5. In this example, those

integers are selected to be equal to the row numbers, as can be seen in the JCOEF

array. This is somewhat arbitrary, and in fact, any integer between 1 and n would be
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acceptable. However, there may be good reasons for not inserting the same integers

too often, e.g. a constant number, for performance considerations.

3.5 Basic Sparse Matrix Operations

The matrix-by-vector product is an important operation which is required in most of

the iterative solution algorithms for solving sparse linear systems. This section shows

how these can be implemented for a small subset of the storage schemes considered

earlier.

The following FORTRAN 90 segment shows the main loop of the matrix-by-

vector operation for matrices stored in the Compressed Sparse Row stored format.

DO I=1, N

K1 = IA(I)

K2 = IA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2),X(JA(K1:K2)))

ENDDO

Notice that each iteration of the loop computes a different component of the

resulting vector. This is advantageous because each of these components can be

computed independently. If the matrix is stored by columns, then the following code

could be used instead:

DO J=1, N

K1 = IA(J)

K2 = IA(J+1)-1

Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)

ENDDO

In each iteration of the loop, a multiple of the j-th column is added to the result,

which is assumed to have been initially set to zero. Notice now that the outer loop

is no longer parallelizable. An alternative to improve parallelization is to try to split

the vector operation in each inner loop. The inner loop has few operations, in gen-

eral, so this is unlikely to be a sound approach. This comparison demonstrates that

data structures may have to change to improve performance when dealing with high

performance computers.

Now consider the matrix-by-vector product in diagonal storage.

DO J=1, NDIAG

JOFF = IOFF(J)

DO I=1, N

Y(I) = Y(I) +DIAG(I,J)*X(JOFF+I)

ENDDO

ENDDO
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Here, each of the diagonals is multiplied by the vector x and the result added to

the vector y. It is again assumed that the vector y has been filled with zeros at the

start of the loop. From the point of view of parallelization and/or vectorization, the

above code is probably the better to use. On the other hand, it is not general enough.

Solving a lower or upper triangular system is another important “kernel” in

sparse matrix computations. The following segment of code shows a simple rou-

tine for solving a unit lower triangular system Lx = y for the CSR storage format.

X(1) = Y(1)

DO I = 2, N

K1 = IAL(I)

K2 = IAL(I+1)-1

X(I)=Y(I)-DOTPRODUCT(AL(K1:K2),X(JAL(K1:K2)))

ENDDO

At each step, the inner product of the current solution xwith the i-th row is computed

and subtracted from y(i). This gives the value of x(i). The dotproduct function

computes the dot product of two arbitrary vectors u(k1:k2) and v(k1:k2). The

vector AL(K1:K2) is the i-th row of the matrix L in sparse format and X(JAL(K1:K2))

is the vector of the components of X gathered into a short vector which is consistent

with the column indices of the elements in the row AL(K1:K2).

3.6 Sparse Direct Solution Methods

Most direct methods for sparse linear systems perform an LU factorization of the

original matrix and try to reduce cost by minimizing fill-ins, i.e., nonzero elements

introduced during the elimination process in positions which were initially zeros.

The data structures employed are rather complicated. The early codes relied heavily

on linked lists which are convenient for inserting new nonzero elements. Linked-

list data structures were dropped in favor of other more dynamic schemes that leave

some initial elbow room in each row for the insertions, and then adjust the structure

as more fill-ins are introduced.

A typical sparse direct solution solver for positive definite matrices consists of

four phases. First, preordering is applied to reduce fill-in. Two popular methods

are used: minimum degree ordering and nested-dissection ordering. Second, a sym-

bolic factorization is performed. This means that the factorization is processed only

symbolically, i.e., without numerical values. Third, the numerical factorization, in

which the actual factors L and U are formed, is processed. Finally, the forward and

backward triangular sweeps are executed for each different right-hand side. In a code

where numerical pivoting is necessary, the symbolic phase cannot be separated from

the numerical factorization.
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3.6.1 Minimum degree ordering

The minimum degree (MD) algorithm is perhaps the most popular strategy for min-

imizeing fill-in in sparse Gaussian elimination, specifically for SPD matrices. At a

given step of Gaussian elimination, this strategy selects the node with the smallest

degree as the next pivot row. This will tend to reduce fill-in. To be exact, it will

minimize (locally) an upper bound for the number of fill-ins that will be introduced

at the corrresponding step of Gaussian Elimination.

In contrast with the Cuthill McKee ordering, minimum degree ordering does not

have, nor does it attempt to have, a banded structure. While the algorithm is excellent

for sparse direct solvers, it has been observed that it does not perform as the RCM

ordering when used in conjunction with preconditioning (Chapter 10).

The Multiple Minimum Degree algorithm is a variation due to Liu [204, 143]

which exploits independent sets of pivots at each step. Degrees of nodes adjacent

to any vertex in the independent set are updated only after all vertices in the set are

processed.

3.6.2 Nested Dissection ordering

Nested dissection is used primarily to reduce fill-in in sparse direct solvers for Sym-

metric Positive Definite matrices. The technique is easily described with the help

of recursivity and by exploiting the concept of ‘separators’. A set S of vertices in a

graph is called a separator if the removal of S results in the graph being split in two

disjoint subgraphs. For example, each of the intermediate levels in the BFS algorithm

is in fact a separator. The nested dissection algorithm can be succinctly described by

the following algorithm

ALGORITHM 3.7 ND(G,nmin)

1. If |V | ≤ nmin
2. label nodes of V
3. Else

4. Find a separator S for V
5. Label the nodes of S
6. Split V into GL, GR by removing S
7. ND(GL, nmin)
8. ND(GR, nmin)
9. End

The labeling of the nodes in Lines 2 and 5, usually proceeds in sequence, so for

example, in Line 5, the nodes of S are labeled in a certain order, starting from the

last labeled node so far in the procedure. The main step of the ND procedure is to

separate the graph in three parts, two of which have no coupling between each other.

The third set has couplings with vertices from both of the first sets and is referred to

as a sepator. The key idea is to separate the graph in this way and then repeat the
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process recursively in each subgraph. The nodes of the separator are numbered last.

An illustration is shown in 3.11.

1
2

4
3

6

5

7

Figure 3.11: Nested dissection ordering and corresponding reordered matrix

3.7 Test Problems

For comparison purposes it is important to use a common set of test matrices that

represent a wide spectrum of applications. There are two distinct ways of providing

such data sets. The first approach is to collect sparse matrices in a well-specified

standard format from various applications. This approach is used in the Harwell-

Boeing collection of test matrices. The second approach is to generate these matrices

with a few sample programs such as those provided in the SPARSKIT library [245].

The coming chapters will use examples from these two sources. In particular, five

test problems will be emphasized for their varying degrees of difficulty.

The SPARSKIT package can generate matrices arising from the discretization of

the two- or three-dimensional Partial Differential Equations

− ∂

∂x

(

a
∂u

∂x

)

− ∂

∂y

(

b
∂u

∂y

)

− ∂

∂z

(

c
∂u

∂z

)

+
∂ (du)

∂x
+
∂ (eu)

∂y
+
∂ (fu)

∂z
+ gu = h

on rectangular regions with general mixed-type boundary conditions. In the test

problems, the regions are the square Ω = (0, 1)2, or the cube Ω = (0, 1)3; the

Dirichlet condition u = 0 is always used on the boundary. Only the discretized ma-

trix is of importance, since the right-hand side will be created artificially. Therefore,

the right-hand side, h, is not relevant.
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a(x, y) =

b(x, y) =

103

✲

✻

a(x, y) = b(x, y) = 1

1
4

3
4

1
4

3
4

Figure 3.12: Physical domain and coefficients for Problem 2.

Problem 1: F2DA. In the first test problem which will be labeled F2DA, the

domain is two-dimensional, with

a(x, y) = b(x, y) = 1.0

and

d(x, y) = γ(x+ y), e(x, y) = γ(x− y), f(x, y) = g(x, y) = 0.0, (3.4)

where the constant γ is equal to 10. If the number of points in each direction is 34,

then there are nx = ny = 32 interior points in each direction and a matrix of size

n = nx × ny = 322 = 1024 is obtained. In this test example, as well as the other

ones described below, the right-hand side is generated as

b = Ae,

in which e = (1, 1, . . . , 1)T . The initial guess is always taken to be a vector of

pseudo-random values.

Problem 2: F2DB. The second test problem is similar to the previous one but

involves discontinuous coefficient functions a and b. Here, nx = ny = 32 and the

functions d, e, f, g are also defined by (3.4). However, the functions a and b now

both take the value 1,000 inside the subsquare of width 1
2 centered at (12 ,

1
2 ), and one

elsewhere in the domain, i.e.,

a(x, y) = b(x, y) =

{
103 if 1

4 < x, y < 3
4

1 otherwise
.

The domain and coefficients for this problem are shown is Figure 3.12.
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Problem 3: F3D. The third test problem is three-dimensional with nx = ny =
nz = 16 internal mesh points in each direction leading to a problem of size n =
4096. In this case, we take

a(x, y, z) = b(x, y, z) = c(x, y, z) = 1

d(x, y, z) = γexy, e(x, y, z) = γe−xy,

and

f(x, y, z) = g(x, y, z) = 0.0.

The constant γ is taken to be equal to 10.0 as before.

The Harwell-Boeing collection is a large data set consisting of test matrices

which have been contributed by researchers and engineers from many different dis-

ciplines. These have often been used for test purposes in the literature [108]. The

collection provides a data structure which constitutes an excellent medium for ex-

changing matrices. The matrices are stored as ASCII files with a very specific for-

mat consisting of a four- or five-line header. Then, the data containing the matrix

is stored in CSC format together with any right-hand sides, initial guesses, or exact

solutions when available. The SPARSKIT library also provides routines for reading

and generating matrices in this format.

Only one matrix from the collection was selected for testing the algorithms de-

scribed in the coming chapters. The matrices in the last two test examples are both

irregularly structured.

Problem 4: ORS The matrix selected from the Harwell-Boeing collection is

ORSIRR1. This matrix arises from a reservoir engineering problem. Its size is

n = 1030 and it has a total of Nz =6,858 nonzero elements. The original prob-

lem is based on a 21 × 21 × 5 irregular grid. In this case and the next one, the

matrices are preprocessed by scaling their rows and columns.

Problem 5: FID This test matrix is extracted from the well known fluid flow

simulation package FIDAP [120]. It is actually the test example number 36 from this

package and features a two-dimensional Chemical Vapor Deposition in a Horizontal

Reactor. The matrix has a size of n = 3079 and has Nz = 53843 nonzero elements.

It has a symmetric pattern and few diagonally dominant rows or columns. The rows

and columns are prescaled in the same way as in the previous example. Figure 3.13

shows the patterns of the matrices ORS and FID.

PROBLEMS

P-3.1 Consider the mesh of a discretized PDE. In which situations is the graph representing

this mesh the same as the adjacency graph of the matrix? Give examples from both Finite

Difference and Finite Element discretizations.
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Figure 3.13: Patterns of the matrices ORS (left) and FID (right).

P-3.2 Let A and B be two sparse (square) matrices of the same dimension. How can the

graph of C = A+B be characterized with respect to the graphs of A and B?

P-3.3 Consider the matrix defined as

Pπ = Iπ,∗.

Show directly (without using Proposition 3.2 or interchange matrices) that the following three

relations hold

Aπ,∗ = Iπ,∗A

I∗,π = PT
π

APT
π = A∗,π.

P-3.4 Consider the two matrices

A =










⋆ ⋆ 0 ⋆ 0 0
0 ⋆ 0 0 0 ⋆
0 ⋆ ⋆ 0 0 0
0 ⋆ 0 0 ⋆ 0
0 0 0 0 ⋆ 0
0 0 0 0 0 ⋆










B =










⋆ 0 0 0 0 0
⋆ 0 ⋆ 0 ⋆ 0
0 ⋆ 0 0 0 0
⋆ ⋆ 0 0 0 0
0 ⋆ 0 ⋆ ⋆ 0
0 0 ⋆ 0 0 ⋆










where a ⋆ represents an arbitrary nonzero element.

a. Show the adjacency graphs of the matrices A, B, AB, and BA. (Assume that there

are no numerical cancellations in computing the products AB and BA). Since there

are zero diagonal elements, represent explicitly the cycles corresponding to the (i, i)
edges when they are present.

b. Consider the matrix C = AB. Give an interpretation of an edge in the graph of C in

terms of edges in the graph of A and B. Verify this answer using the above matrices.

c. Consider the particular case in which B = A. Give an interpretation of an edge in the

graph of C in terms of paths of length two in the graph of A. The paths must take into

account the cycles corresponding to nonzero diagonal elements of A.
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d. Now consider the case where B = A2. Give an interpretation of an edge in the graph

of C = A3 in terms of paths of length three in the graph of A. Generalize the result to

arbitrary powers of A.

P-3.5 Consider two matrices A andB of dimension n×n, whose diagonal elements are all

nonzeros. Let EX denote the set of edges in the adjacency graph of a matrix X (i.e., the set

of pairs (i, j) such Xij 6= 0), then show that

EAB ⊃ EA ∪ EB .

Give extreme examples when |EAB| = n2 while EA ∪ EB is of order n. What practical

implications does this have on ways to store products of sparse matrices (Is it better so store

the product AB or the pairs A, B separately? Consider both the computational cost for

performing matrix-vector products and the cost of memory)

P-3.6 Consider a 6× 6 matrix which has the pattern

A =










⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆
⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆










.

a. Show the adjacency graph of A.

b. Consider the permutation π = {1, 3, 4, 2, 5, 6}. Show the adjacency graph and new

pattern for the matrix obtained from a symmetric permutation of A based on the per-

mutation array π.

P-3.7 You are given an 8 matrix which has the following pattern:














x x x
x x x x x

x x x x
x x x

x x x
x x x x x
x x x x

x x x














a. Show the adjacency graph of A ;

b. Find the Cuthill Mc Kee ordering for the matrix (break ties by giving priority to the

node with lowest index). Show the graph of the matrix permuted according to the

Cuthill-Mc Kee ordering.

c. What is the Reverse Cuthill Mc Kee ordering for this case? Show the matrix reordered

according to the reverse Cuthill Mc Kee ordering.

d. Find a multicoloring of the graph using the greedy multicolor algorithm. What is the

minimum number of colors required for multicoloring the graph?

e. Consider the variation of the Cuthill Mc-Kee ordering in which the first level L0 con-

sists of several vertices instead on only one vertex. Find the Cuthill Mc Kee ordering

with this variant with the starting level L0 = {1, 8}.
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P-3.8 Consider a matrix which has the pattern

A =














⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆














.

a. Show the adjacency graph of A. (Place the 8 vertices on a circle.)

b. Consider the permutation π = {1, 3, 5, 7, 2, 4, 6, 8}. Show the adjacency graph and

new pattern for the matrix obtained from a symmetric permutation of A based on the

permutation array π.

c. Show the adjacency graph and new pattern for the matrix obtained from a reverse

Cuthill-McKee ordering of A starting with the node 1. (Assume the vertices adjacent

to a given vertex are always listed in increasing order in the data structure that describes

the graph.)

d. Find a multicolor ordering for A (give the vertex labels color 1, followed by those for

color 2, etc.).

P-3.9 Given a five-point finite difference graph, show that the greedy algorithm will always

find a coloring of the graph with two colors.

P-3.10 Prove that the total number of colors found by the greedy multicoloring algorithm

does not exceed νmax + 1, where νmax is the maximum degree of all the vertices of a graph

(not counting the cycles (i, i) associated with diagonal elements).

P-3.11 Consider a graph that is bipartite, i.e., 2-colorable. Assume that the vertices of the

graph are colored by a variant of Algorithm (3.6), in which the nodes are traversed in a certain

order i1, i2, . . . , in.

a. Is it true that for any permutation i1, . . . , in the number of colors found will be two?

b. Consider now a permutation satisfying the following property: for each j at least one

of the nodes i1, i2, . . . , ij−1 is adjacent to ij . Show that the algorithm will find a

2-coloring of the graph.

c. Among the following traversals indicate which ones satisfy the property of the previous

question: (1) Breadth-First Search, (2) random traversal, (3) traversal defined by ij =

any node adjacent to ij−1.

P-3.12 Given a matrix that is irreducible and with a symmetric pattern, show that its struc-

tural inverse is dense. Structural inverse means the pattern of the inverse, regardless of the

values, or otherwise stated, is the union of all patterns of the inverses for all possible val-

ues. [Hint: Use Cayley Hamilton’s theorem and a well known result on powers of adjacency

matrices mentioned at the end of Section 3.2.1.]

P-3.13 The most economical storage scheme in terms of memory usage is the following

variation on the coordinate format: Store all nonzero values aij in a real array AA[1 : Nz]
and the corresponding “linear array address” (i−1)∗n+j in an integer array JA[1 : Nz]. The

order in which these corresponding entries are stored is unimportant as long as they are both

in the same position in their respective arrays. What are the advantages and disadvantages of
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this data structure? Write a short routine for performing a matrix-by-vector product in this

format.

P-3.14 Write a FORTRAN-90 or C code segment to perform the matrix-by-vector product

for matrices stored in Ellpack-Itpack format.

P-3.15 Write a small subroutine to perform the following operations on a sparse matrix in

coordinate format, diagonal format, and CSR format:

a. Count the number of nonzero elements in the main diagonal;

b. Extract the diagonal whose offset is k;

c. Add a nonzero element in position (i, j) of the matrix (this position may initially con-

tain a zero or a nonzero element);

d. Add a given diagonal to the matrix. What is the most convenient storage scheme for

each of these operations?

P-3.16 Linked lists is another popular scheme often used for storing sparse matrices. These

allow to link together k data items (e.g., elements of a given row) in a large linear array. A

starting position is given in the array which contains the first element of the set. Then, a link

to the next element in the array is provided from a LINK array.

a. Show how to implement this scheme. A linked list is to be used for each row.

b. What are the main advantages and disadvantages of linked lists?

c. Write an algorithm to perform a matrix-by-vector product in this format.

NOTES AND REFERENCES. Two good references on sparse matrix computations are the book by

George and Liu [144] and the more recent volume by Duff, Erisman, and Reid [107]. These are geared

toward direct solution methods and the first specializes in symmetric positive definite problems. Also

of interest are [221] and [227] and the early survey by Duff [106].

Sparse matrix techniques have traditionally been associated with direct solution methods. This

has changed in the last decade because of the increased need to solve three-dimensional problems. The

SPARSKIT library, a package for sparse matrix computations [245] is available from the author at:

http://www.cs.umn.edu/ saad/software .

Another available software package which emphasizes object-oriented design with the goal of hiding

complex data structures from users is PETSc [24].

The idea of the greedy multicoloring algorithm is known in Finite Element techniques (to color

elements); see, e.g., Benantar and Flaherty [31]. Wu [319] presents the greedy algorithm for multicol-

oring vertices and uses it for SOR type iterations, see also [248]. The effect of multicoloring has been

extensively studied by Adams [2, 3] and Poole and Ortega [228]. Interesting results regarding multi-

coloring in the context of finite elements based on quad-tree structures have been obtained by Benantar

and Flaherty [31] who show, in particular, that with this structure a maximum of six colors is required.



Chapter 4

BASIC ITERATIVE METHODS

The first iterative methods used for solving large linear systems were based on relaxation of the

coordinates. Beginning with a given approximate solution, these methods modify the compo-

nents of the approximation, one or a few at a time and in a certain order, until convergence is

reached. Each of these modifications, called relaxation steps, is aimed at annihilating one or a

few components of the residual vector. Now, these techniques are rarely used separately. How-

ever, when combined with the more efficient methods described in later chapters, they can be

quite successful. Moreover, there are a few application areas where variations of these methods

are still quite popular.

4.1 Jacobi, Gauss-Seidel, and SOR

This chapter begins by reviewing the basic iterative methods for solving linear sys-

tems. Given an n×n real matrix A and a real n-vector b, the problem considered is:

Find x belonging to R
n such that

Ax = b (4.1)

Equation (4.1) is a linear system, A is the coefficient matrix, b is the right-hand

side vector, and x is the vector of unknowns. Most of the methods covered in

this chapter involve passing from one iterate to the next by modifying one or a few

components of an approximate vector solution at a time. This is natural since there

are simple criteria when modifying a component in order to improve an iterate. One

example is to annihilate some component(s) of the residual vector b − Ax. The

convergence of these methods is rarely guaranteed for all matrices, but a large body of

theory exists for the case where the coefficient matrix arises from the finite difference

discretization of Elliptic Partial Differential Equations.

We begin with the decomposition

A = D − E − F, (4.2)

105
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in which D is the diagonal of A, −E its strict lower part, and −F its strict upper

part, as illustrated in Figure 4.1. It is always assumed that the diagonal entries of A
are all nonzero.

D

−F

−E

Figure 4.1: Initial partitioning of matrix A.

The Jacobi iteration determines the i-th component of the next approximation

so as to annihilate the i-th component of the residual vector. In the following, ξ
(k)
i

denotes the i-th component of the iterate xk and βi the i-th component of the right-

hand side b. Thus, writing

(b−Axk+1)i = 0, (4.3)

in which (y)i represents the i-th component of the vector y, yields

aiiξ
(k+1)
i = −

n∑

j=1
j 6=i

aijξ
(k)
j + βi,

or

ξ
(k+1)
i =

1

aii




βi −

n∑

j=1
j 6=i

aijξ
(k)
j




 i = 1, . . . , n. (4.4)

This is a component-wise form of the Jacobi iteration. All components of the next

iterate can be grouped into the vector xk+1. The above notation can be used to rewrite

the Jacobi iteration (4.4) in vector form as

xk+1 = D−1(E + F )xk +D−1b. (4.5)

Similarly, the Gauss-Seidel iteration corrects the i-th component of the current

approximate solution, in the order i = 1, 2, . . . , n, again to annihilate the i-th com-

ponent of the residual. However, this time the approximate solution is updated im-

mediately after the new component is determined. The newly computed components
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ξ
(k)
i , i = 1, 2, . . . , n can be changed within a working vector which is redefined at

each relaxation step. Thus, since the order is i = 1, 2, . . ., the result at the i-th step is

βi −
i−1∑

j=1

aijξ
(k+1)
j − aiiξ(k+1)

i −
n∑

j=i+1

aijξ
(k)
j = 0, (4.6)

which leads to the iteration,

ξ
(k+1)
i =

1

aii



−
i−1∑

j=1

aijξ
(k+1)
j −

n∑

j=i+1

aijξ
(k)
j + βi



 , i = 1, . . . , n. (4.7)

The defining equation (4.6) can be written as

b+ Exk+1 −Dxk+1 + Fxk = 0,

which leads immediately to the vector form of the Gauss-Seidel iteration

xk+1 = (D −E)−1Fxk + (D − E)−1b. (4.8)

Computing the new approximation in (4.5) requires multiplying by the inverse

of the diagonal matrix D. In (4.8) a triangular system must be solved with D − E,

the lower triangular part of A. Thus, the new approximation in a Gauss-Seidel step

can be determined either by solving a triangular system with the matrix D − E or

from the relation (4.7).

A backward Gauss-Seidel iteration can also be defined as

(D − F )xk+1 = Exk + b, (4.9)

which is equivalent to making the coordinate corrections in the order n, n−1, . . . , 1.

A Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a back-

ward sweep.

The Jacobi and the Gauss-Seidel iterations are both of the form

Mxk+1 = Nxk + b = (M −A)xk + b, (4.10)

in which

A =M −N (4.11)

is a splitting of A, with M = D for Jacobi, M = D − E for forward Gauss-Seidel,

and M = D − F for backward Gauss-Seidel. An iterative method of the form

(4.10) can be defined for any splitting of the form (4.11) where M is nonsingular.

Overrelaxation is based on the splitting

ωA = (D − ωE)− (ωF + (1− ω)D),

and the corresponding Successive Over Relaxation (SOR) method is given by the

recursion

(D − ωE)xk+1 = [ωF + (1− ω)D]xk + ωb. (4.12)
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The above iteration corresponds to the relaxation sequence

ξ
(k+1)
i = ωξGS

i + (1− ω)ξ(k)i , i = 1, 2, . . . , n,

in which ξGS
i is defined by the expression in the right-hand side of (4.7). A backward

SOR sweep can be defined analogously to the backward Gauss-Seidel sweep (4.9).

A Symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a

backward SOR step,

(D − ωE)xk+1/2 = [ωF + (1− ω)D]xk + ωb

(D − ωF )xk+1 = [ωE + (1 − ω)D]xk+1/2 + ωb

This gives the recurrence

xk+1 = Gωxk + fω,

where

Gω = (D − ωF )−1(ωE + (1− ω)D) ×
(D − ωE)−1(ωF + (1− ω)D), (4.13)

fω = ω(D − ωF )−1
(
I + [ωE + (1− ω)D](D − ωE)−1

)
b. (4.14)

Observing that

[ωE + (1− ω)D](D − ωE)−1 = [−(D − ωE) + (2− ω)D](D − ωE)−1

= −I + (2− ω)D(D − ωE)−1,

fω can be rewritten as

fω = ω(2− ω) (D − ωF )−1D(D − ωE)−1b.

4.1.1 Block Relaxation Schemes

Block relaxation schemes are generalizations of the “point” relaxation schemes de-

scribed above. They update a whole set of components at each time, typically a

subvector of the solution vector, instead of only one component. The matrix A and

the right-hand side and solution vectors are partitioned as follows:

A =









A11 A12 A13 · · · A1p

A21 A22 A23 · · · A2p

A31 A32 A33 · · · A3p
...

...
...

. . .
...

Ap1 Ap2 · · · · · · App









, x =









ξ1
ξ2
ξ3
...

ξp









, b =









β1
β2
β3
...

βp









, (4.15)

in which the partitionings of b and x into subvectors βi and ξi are identical and

compatible with the partitioning of A. Thus, for any vector x partitioned as in (4.15),

(Ax)i =

p
∑

j=1

Aijξj,
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in which (y)i denotes the i-th component of the vector i according to the above

partitioning. The diagonal blocks in A are square and assumed nonsingular.

Now define, similarly to the scalar case, the splitting

A = D − E − F

with

D =







A11

A22
. . .

App






, (4.16)

E = −







O
A21 O

...
...

. . .

Ap1 Ap2 · · · O






, F = −







O A12 · · · A1p

O · · · A2p
. . .

...

O






.

With these definitions, it is easy to generalize the previous three iterative procedures

defined earlier, namely, Jacobi, Gauss-Seidel, and SOR. For example, the block Ja-

cobi iteration is now defined as a technique in which the new subvectors ξ
(k)
i are all

replaced according to

Aiiξ
(k+1)
i = ((E + F )xk)i + βi

or,

ξ
(k+1)
i = A−1

ii ((E + F )xk)i +A−1
ii βi, i = 1, . . . , p,

which leads to the same equation as before,

xk+1 = D−1(E + F )xk +D−1b,

except that the meanings of D, E, and F have changed to their block analogues.

With finite difference approximations of PDEs, it is standard to block the vari-

ables and the matrix by partitioning along whole lines of the mesh. For example, for

the two-dimensional mesh illustrated in Figure 2.5, this partitioning is

ξ1 =









u11
u12
u13
u14
u15









, ξ2 =









u21
u22
u23
u24
u25









, ξ3 =









u31
u32
u33
u34
u35









.

This corresponds to the mesh 2.5 of Chapter 2, whose associated matrix pattern is

shown in Figure 2.6. A relaxation can also be defined along the vertical instead

of the horizontal lines. Techniques of this type are often known as line relaxation

techniques.
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In addition, a block can also correspond to the unknowns associated with a few

consecutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a

6× 6 grid. The corresponding matrix with its block structure is shown in Figure 4.3.

An important difference between this partitioning and the one corresponding to the

single-line partitioning is that now the matrices Aii are block-tridiagonal instead of

tridiagonal. As a result, solving linear systems with Aii may be much more expen-

sive. On the other hand, the number of iterations required to achieve convergence

often decreases rapidly as the block-size increases.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Figure 4.2: Partitioning of a 6× 6 square mesh into three subdomains.

Figure 4.3: Matrix associated with the mesh of Figure 4.2.

Finally, block techniques can be defined in more general terms. First, by using

blocks that allow us to update arbitrary groups of components, and second, by allow-

ing the blocks to overlap. Since this is a form of the domain-decomposition method

which will be seen later, we define the approach carefully. So far, our partition has
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been based on an actual set-partition of the variable set S = {1, 2, . . . , n} into sub-

sets S1, S2, . . . , Sp, with the condition that two distinct subsets are disjoint. In set

theory, this is called a partition of S. More generally, a set-decomposition of S
removes the constraint of disjointness. In other words it is required that the union of

the subsets Si’s be equal to S:

Si ⊆ S,
⋃

i=1,···,p
Si = S.

In the following, ni denotes the size of Si and the subset Si is of the form,

Si = {mi(1),mi(2), . . . mi(ni)}.

A general block Jacobi iteration can be defined as follows. Let Vi be the n× ni
matrix

Vi = [emi(1), emi(2), . . . emi(ni)]

and

Wi = [ηmi(1)emi(1), ηmi(2)emi(2), . . . , ηmi(ni)emi(ni)],

where each ej is the j-th column of the n × n identity matrix, and ηmi(j) represents

a weight factor chosen so that

W T
i Vi = I.

When there is no overlap, i.e., when the Si’s form a partition of the whole set

{1, 2, . . . , n}, then define ηmi(j) = 1.

Let Aij be the ni × nj matrix

Aij =W T
i AVj

and define similarly the partitioned vectors

ξi =W T
i x, βi =W T

i b.

Note that ViW
T
i is a projector from R

n to the subspace Ki spanned by the columns

mi(1), . . . ,mi(ni). In addition, we have the relation

x =

s∑

i=1

Viξi.

The ni-dimensional vector W T
i x represents the projection ViW

T
i x of x with respect

to the basis spanned by the columns of Vi. The action of Vi performs the reverse op-

eration. That means Viy is an extension operation from a vector y in Ki (represented

in the basis consisting of the columns of Vi) into a vector Viy in R
n. The operator

W T
i is termed a restriction operator and Vi is an prolongation operator.

Each component of the Jacobi iteration can be obtained by imposing the condi-

tion that the projection of the residual in the span of Si be zero, i.e.,

W T
i



b−A



ViW
T
i xk+1 +

∑

j 6=i

VjW
T
j xk







 = 0.



112 CHAPTER 4. BASIC ITERATIVE METHODS

Remember that ξj =W T
j x, which can be rewritten as

ξ
(k+1)
i = ξ

(k)
i +A−1

ii W
T
i (b−Axk). (4.17)

This leads to the following algorithm:

ALGORITHM 4.1 General Block Jacobi Iteration

1. For k = 0, 1, . . . , until convergence Do:

2. For i = 1, 2, . . . , p Do:

3. Solve Aiiδi =W T
i (b−Axk)

4. Set xk+1 := xk + Viδi
5. EndDo

6. EndDo

As was the case with the scalar algorithms, there is only a slight difference be-

tween the Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the

component to be corrected at step i, and uses the updated approximate solution to

compute the residual vector needed to correct the next component. However, the Ja-

cobi iteration uses the same previous approximation xk for this purpose. Therefore,

the block Gauss-Seidel iteration can be defined algorithmically as follows:

ALGORITHM 4.2 General Block Gauss-Seidel Iteration

1. Until convergence Do:

2. For i = 1, 2, . . . , p Do:

3. Solve Aiiδi =W T
i (b−Ax)

4. Set x := x+ Viδi
5. EndDo

6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new

approximation can be overwritten over the same vector. Also, it typically converges

faster. On the other hand, the Jacobi iteration has some appeal on parallel computers

since the second Do loop, corresponding to the p different blocks, can be executed in

parallel. Although the point Jacobi algorithm by itself is rarely a successful technique

for real-life problems, its block Jacobi variant, when using large enough overlapping

blocks, can be quite attractive especially in a parallel computing environment.

4.1.2 Iteration Matrices and Preconditioning

The Jacobi and Gauss-Seidel iterations are of the form

xk+1 = Gxk + f, (4.18)

in which

GJA(A) = I −D−1A, (4.19)

GGS(A) = I − (D − E)−1A, (4.20)
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for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix

splitting

A =M −N, (4.21)

where A is associated with the linear system (4.1), a linear fixed-point iteration can

be defined by the recurrence

xk+1 =M−1Nxk +M−1b, (4.22)

which has the form (4.18) with

G =M−1N =M−1(M −A) = I −M−1A, f =M−1b. (4.23)

For example, for the Jacobi iteration, M = D,N = D − A, while for the Gauss-

Seidel iteration, M = D − E,N =M −A = F .

The iteration xk+1 = Gxk + f can be viewed as a technique for solving the

system

(I −G)x = f.

Since G has the form G = I −M−1A, this system can be rewritten as

M−1Ax =M−1b.

The above system which has the same solution as the original system is called a pre-

conditioned system and M is the preconditioning matrix or preconditioner. In other

words, a relaxation scheme is equivalent to a fixed-point iteration on a precondi-

tioned system.

For example, for the Jacobi, Gauss-Seidel, SOR, and SSOR iterations, these

preconditioning matrices are, respectively,

MJA = D, (4.24)

MGS = D − E, (4.25)

MSOR =
1

ω
(D − ωE), (4.26)

MSSOR =
1

ω(2− ω) (D − ωE)D−1(D − ωF ). (4.27)

Thus, the Jacobi preconditioner is simply the diagonal of A, while the Gauss-Seidel

preconditioner is the lower triangular part of A. The constant coefficients in front of

the matrices MSOR and MSSOR only have the effect of scaling the equations of the

preconditioned system uniformly. Therefore, they are unimportant in the precondi-

tioning context.

Note that the “preconditioned” system may be a full system. Indeed, there is

no reason why M−1 should be a sparse matrix (even though M may be sparse),

since the inverse of a sparse matrix is not necessarily sparse. This limits the number

of techniques that can be applied to solve the preconditioned system. Most of the

iterative techniques used only require matrix-by-vector products. In this case, to



114 CHAPTER 4. BASIC ITERATIVE METHODS

compute w =M−1Av for a given vector v, first compute r = Av and then solve the

system Mw = r:

r = Av,

w = M−1r.

In some cases, it may be advantageous to exploit the splitting A = M − N and

compute w =M−1Av as w = (I −M−1N)v by the procedure

r = Nv,

w = M−1r,

w := v − w.

The matrix N may be sparser than A and the matrix-by-vector product Nv may

be less expensive than the product Av. A number of similar but somewhat more

complex ideas have been exploited in the context of preconditioned iterative methods.

A few of these will be examined in Chapter 9.

4.2 Convergence

All the methods seen in the previous section define a sequence of iterates of the form

xk+1 = Gxk + f, (4.28)

in which G is a certain iteration matrix. The questions addressed in this section are:

(a) if the iteration converges, then is the limit indeed a solution of the original system?

(b) under which conditions does the iteration converge? (c) when the iteration does

converge, how fast is it?

If the above iteration converges, its limit x satisfies

x = Gx+ f. (4.29)

In the case where the above iteration arises from the splitting A =M −N , it is easy

to see that the solution x to the above system is identical to that of the original system

Ax = b. Indeed, in this case the sequence (4.28) has the form

xk+1 =M−1Nxk +M−1b

and its limit satisfies

Mx = Nx+ b,

or Ax = b. This answers question (a). Next, we focus on the other two questions.
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4.2.1 General Convergence Result

If I −G is nonsingular then there is a solution x∗ to the equation (4.29). Subtracting

(4.29) from (4.28) yields

xk+1 − x∗ = G(xk − x∗) = · · · = Gk+1(x0 − x∗). (4.30)

Standard results seen in Chapter 1 imply that if the spectral radius of the iteration

matrix G is less than unity, then xk − x∗ converges to zero and the iteration (4.28)

converges toward the solution defined by (4.29). Conversely, the relation

xk+1 − xk = G(xk − xk−1) = · · · = Gk(f − (I −G)x0).

shows that if the iteration converges for any x0 and f then Gkv converges to zero for

any vector v. As a result, ρ(G) must be less than unity and the following theorem is

proved:

Theorem 4.1 Let G be a square matrix such that ρ(G) < 1. Then I −G is nonsin-

gular and the iteration (4.28) converges for any f and x0. Conversely, if the iteration

(4.28) converges for for any f and x0, then ρ(G) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions

that guarantee convergence can be useful in practice. One such sufficient condition

could be obtained by utilizing the inequality, ρ(G) ≤ ‖G‖, for any matrix norm.

Corollary 4.2 Let G be a square matrix such that ‖G‖ < 1 for some matrix norm

‖.‖. Then I − G is nonsingular and the iteration (4.28) converges for any initial

vector x0.

Apart from knowing that the sequence (4.28) converges, it is also desirable to

know how fast it converges. The error dk = xk − x∗ at step k satisfies

dk = Gkd0.

The matrix G can be expressed in the Jordan canonical form as G = XJX−1.

Assume for simplicity that there is only one eigenvalue of G of largest modulus and

call it λ. Then

dk = λkX

(
J

λ

)k

X−1d0.

A careful look at the powers of the matrix J/λ shows that all its blocks, except the

block associated with the eigenvalue λ, converge to zero as k tends to infinity. Let

this Jordan block be of size p and of the form

Jλ = λI + E,

where E is nilpotent of index p, i.e., Ep = 0. Then, for k ≥ p,

Jk
λ = (λI + E)k = λk(I + λ−1E)k = λk

(
p−1
∑

i=0

λ−i

(
k

i

)

Ei

)

.
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If k is large enough, then for any λ the dominant term in the above sum is the last

term, i.e.,

Jk
λ ≈ λk−p+1

(
k

p− 1

)

Ep−1.

Thus, the norm of dk = Gkd0 has the asymptotical form

‖dk‖ ≈ C × |λk−p+1|
(

k

p− 1

)

,

where C is some constant. The convergence factor of a sequence is the limit

ρ = lim
k→∞

(‖dk‖
‖d0‖

)1/k

.

It follows from the above analysis that ρ = ρ(G). The convergence rate τ is the

(natural) logarithm of the inverse of the convergence factor

τ = − ln ρ.

The above definition depends on the initial vector x0, so it may be termed a

specific convergence factor. A general convergence factor can also be defined by

φ = lim
k→∞

(

max
x0∈Rn

‖dk‖
‖d0‖

)1/k

.

This factor satisfies

φ = lim
k→∞

(

max
d0∈Rn

‖Gkd0‖
‖d0‖

)1/k

= lim
k→∞

(

‖Gk‖
)1/k

= ρ(G).

Thus, the global asymptotic convergence factor is equal to the spectral radius of

the iteration matrix G. The general convergence rate differs from the specific rate

only when the initial error does not have any components in the invariant subspace

associated with the dominant eigenvalue. Since it is hard to know this information in

advance, the general convergence factor is more useful in practice.

Example 4.1. Consider the simple example of Richardson’s Iteration,

xk+1 = xk + α (b−Axk) , (4.31)

where α is a nonnegative scalar. This iteration can be rewritten as

xk+1 = (I − αA)xk + αb. (4.32)

Thus, the iteration matrix is Gα = I −αA and the convergence factor is ρ(I −αA).
Assume that the eigenvalues λi, i = 1, . . . , n, are all real and such that,

λmin ≤ λi ≤ λmax.
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Then, the eigenvalues µi of Gα are such that

1− αλmax ≤ µi ≤ 1− αλmin.

In particular, if λmin < 0 and λmax > 0, at least one eigenvalue is > 1, and so

ρ(Gα) > 1 for any α. In this case the method will always diverge for some initial

guess. Let us assume that all eigenvalues are positive, i.e., λmin > 0. Then, the

following conditions must be satisfied in order for the method to converge:

1− αλmin < 1,

1− αλmax > −1.

The first condition implies that α > 0, while the second requires that α ≤ 2/λmax.

In other words, the method converges for any scalar α which satisfies

0 < α <
2

λmax
.

The next question is: What is the best value αopt for the parameter α, i.e., the value

of α which minimizes ρ(Gα)? The spectral radius of Gα is

ρ(Gα) = max{|1− αλmin|, |1− αλmax|}.

This function of α is depicted in Figure 4.4. As the curve shows, the best possible α
is reached at the point where the curve |1 − λmaxα| with positive slope crosses the

curve |1− λminα| with negative slope, i.e., when

−1 + λmaxα = 1− λminα.

1
λmin

1
λmax

αopt

|1− λminα|
|1− λmaxα|

α

1

Figure 4.4: The curve ρ(Gα) as a function of α.

This gives

αopt =
2

λmin + λmax
. (4.33)
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Replacing this in one of the two curves gives the corresponding optimal spectral

radius

ρopt =
λmax − λmin

λmax + λmin
.

This expression shows the difficulty with the presence of small and large eigenvalues.

The convergence rate can be extremely small for realistic problems. In addition, to

achieve good convergence, eigenvalue estimates are required in order to obtain the

optimal or a near-optimal α, and this may cause difficulties. Finally, since λmax can

be very large, the curve ρ(Gα) can be extremely sensitive near the optimal value

of α. These observations are common to many iterative methods that depend on an

acceleration parameter.

4.2.2 Regular Splittings

Definition 4.3 Let A,M,N be three given matrices satisfying A = M − N . The

pair of matrices M,N is a regular splitting of A, if M is nonsingular and M−1 and

N are nonnegative.

With a regular splitting, we associate the iteration

xk+1 =M−1Nxk +M−1b. (4.34)

The question asked is: Under which conditions does such an iteration converge? The

following result, which generalizes Theorem 1.29, gives the answer.

Theorem 4.4 Let M,N be a regular splitting of a matrix A. Then ρ(M−1N) < 1 if

and only if A is nonsingular and A−1 is nonnegative.

Proof. Define G =M−1N . From the fact that ρ(G) < 1, and the relation

A =M(I −G) (4.35)

it follows that A is nonsingular. The assumptions of Theorem 1.29 are satisfied for

the matrix G since G =M−1N is nonnegative and ρ(G) < 1. Therefore, (I−G)−1

is nonnegative as is A−1 = (I −G)−1M−1.

To prove the sufficient condition, assume thatA is nonsingular and that its inverse

is nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that

I −G is nonsingular and in addition,

A−1N =
(
M(I −M−1N)

)−1
N

= (I −M−1N)−1M−1N

= (I −G)−1G. (4.36)

Clearly, G = M−1N is nonnegative by the assumptions, and as a result of the

Perron-Frobenius theorem, there is a nonnegative eigenvector x associated with ρ(G)
which is an eigenvalue, such that

Gx = ρ(G)x.
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From this and by virtue of (4.36), it follows that

A−1Nx =
ρ(G)

1− ρ(G)x.

Since x and A−1N are nonnegative, this shows that

ρ(G)

1− ρ(G) ≥ 0

and this can be true only when 0 ≤ ρ(G) ≤ 1. Since I − G is nonsingular, then

ρ(G) 6= 1, which implies that ρ(G) < 1.

This theorem establishes that the iteration (4.34) always converges, if M,N is a

regular splitting and A is an M-matrix.

4.2.3 Diagonally Dominant Matrices

We begin with a few standard definitions.

Definition 4.5 A matrix A is

• (weakly) diagonally dominant if

|ajj| ≥
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

• strictly diagonally dominant if

|ajj| >
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

• irreducibly diagonally dominant if A is irreducible, and

|ajj| ≥
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

with strict inequality for at least one j.

Often the term diagonally dominant is used instead of weakly diagonally dominant.

Diagonal dominance is related to an important result in Numerical Linear Alge-

bra known as Gershgorin’s theorem. This theorem allows rough locations for all the

eigenvalues of A to be determined. In some situations, it is desirable to determine

these locations in the complex plane by directly exploiting some knowledge of the

entries of the matrix A. The simplest such result is the bound

|λi| ≤ ‖A‖
for any matrix norm. Gershgorin’s theorem provides a more precise localization

result.
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Theorem 4.6 (Gershgorin) Any eigenvalue λ of a matrix A is located in one of the

closed discs of the complex plane centered at aii and having the radius

ρi =

j=n
∑

j=1
j 6=i

|aij |.

In other words,

∀ λ ∈ σ(A), ∃ i such that |λ− aii| ≤
j=n
∑

j=1
j 6=i

|aij |. (4.37)

Proof. Let x be an eigenvector associated with an eigenvalue λ, and let m be the

index of the component of largest modulus in x. Scale x so that |ξm| = 1, and

|ξi| ≤ 1, for i 6= m. Since x is an eigenvector, then

(λ− amm)ξm = −
n∑

j=1
j 6=m

amjξj,

which gives

|λ− amm| ≤
n∑

j=1
j 6=m

|amj ||ξj | ≤
n∑

j=1
j 6=m

|amj | = ρm. (4.38)

This completes the proof.

Since the result also holds for the transpose of A, a version of the theorem can also

be formulated based on column sums instead of row sums.

The n discs defined in the theorem are called Gershgorin discs. The theorem

states that the union of these n discs contains the spectrum of A. It can also be

shown that if there are m Gershgorin discs whose union S is disjoint from all other

discs, then S contains exactly m eigenvalues (counted with their multiplicities). For

example, when one disc is disjoint from the others, then it must contain exactly one

eigenvalue.

An additional refinement which has important consequences concerns the partic-

ular case when A is irreducible.

Theorem 4.7 Let A be an irreducible matrix, and assume that an eigenvalue λ of

A lies on the boundary of the union of the n Gershgorin discs. Then λ lies on the

boundary of all Gershgorin discs.

Proof. As in the proof of Gershgorin’s theorem, let x be an eigenvector associated

with λ, with |ξm| = 1, and |ξi| ≤ 1, for i 6= m. Start from equation (4.38) in the

proof of Gershgorin’s theorem which states that the point λ belongs to the m-th disc.

In addition, λ belongs to the boundary of the union of all the discs. As a result, it
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cannot be an interior point to the disc D(λ, ρm). This implies that |λ− amm| = ρm.

Therefore, the inequalities in (4.38) both become equalities:

|λ− amm| =
n∑

j=1
j 6=m

|amj ||ξj | =
n∑

j=1
j 6=m

|amj | = ρm. (4.39)

Let j be any integer 1 ≤ j ≤ n. Since A is irreducible, its graph is connected and,

therefore, there exists a path from node m to node j in the adjacency graph. Let this

path be

m,m1,m2, . . . ,mk = j.

By definition of an edge in the adjacency graph, am,m1 6= 0. Because of the equality

in (4.39), it is necessary that |ξj| = 1 for any nonzero ξj . Therefore, |ξm1 | must be

equal to one. Now repeating the argument with m replaced by m1 shows that the

following equality holds:

|λ− am1,m1 | =
n∑

j=1
j 6=m1

|am1,j||ξj | =
n∑

j=1
j 6=m1

|am1,j| = ρm1 . (4.40)

The argument can be continued showing each time that

|λ− ami,mi
| = ρmi

, (4.41)

and this is valid for i = 1, . . . , k. In the end, it will be proved that λ belongs to the

boundary of the j-th disc for an arbitrary j.

An immediate corollary of the Gershgorin theorem and the above theorem fol-

lows.

Corollary 4.8 If a matrixA is strictly diagonally dominant or irreducibly diagonally

dominant, then it is nonsingular.

Proof. If a matrix is strictly diagonally dominant, then the union of the Gershgorin

disks excludes the origin, so λ = 0 cannot be an eigenvalue. Assume now that it is

only irreducibly diagonal dominant. Then if it is singular, the zero eigenvalue lies on

the boundary of the union of the Gershgorin disks. In this situation, according to the

previous theorem, this eigenvalue should lie on the boundary of all the disks. This

would mean that

|ajj | =
n∑

i=1
i6=j

|aij| for j = 1, . . . , n,

which contradicts the assumption of irreducible diagonal dominance.

The following theorem can now be stated.

Theorem 4.9 If A is a strictly diagonally dominant or an irreducibly diagonally

dominant matrix, then the associated Jacobi and Gauss-Seidel iterations converge

for any x0.
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Proof. We first prove the results for strictly diagonally dominant matrices. Let λ be

the dominant eigenvalue of the iteration matrix MJ = D−1(E + F ) for Jacobi and

MG = (D − E)−1F for Gauss-Seidel. As in the proof of Gershgorin’s theorem, let

x be an eigenvector associated with λ, with |ξm| = 1, and |ξi| ≤ 1, for i 6= 1. Start

from equation (4.38) in the proof of Gershgorin’s theorem which states that for MJ ,

|λ| ≤
n∑

j=1
j 6=m

|amj |
|amm|

|ξj | ≤
n∑

j=1
j 6=m

|amj |
|amm|

< 1.

This proves the result for Jacobi’s method.

For the Gauss-Seidel iteration, write the m-th row of the equation Fx = λ(D −
E)x in the form

∑

j<m

amjξj = λ



ammξm +
∑

j>m

amjξj



 ,

which yields the inequality

|λ| ≤
∑

j<m |amj ||ξj |
|amm| −

∑

j>m |amj ||ξj|
≤

∑

j<m |amj |
|amm| −

∑

j>m |amj |
.

The last term in the above equation has the form σ2/(d − σ1) with d, σ1, σ2 all

nonnegative and d− σ1 − σ2 > 0. Therefore,

|λ| ≤ σ2
σ2 + (d− σ2 − σ1)

< 1.

In the case when the matrix is only irreducibly diagonally dominant, the above

proofs only show that ρ(M−1N) ≤ 1, whereM−1N is the iteration matrix for either

Jacobi or Gauss-Seidel. A proof by contradiction will be used to show that in fact

ρ(M−1N) < 1. Assume that λ is an eigenvalue of M−1N with |λ| = 1. Then the

matrix M−1N −λI would be singular and, as a result, A′ = N −λM would also be

singular. Since |λ| = 1, it is clear that A′ is also an irreducibly diagonally dominant

matrix. This would contradict Corollary 4.8.

4.2.4 Symmetric Positive Definite Matrices

It is possible to show that when A is Symmetric Positive Definite, then SOR will

converge for any ω in the open interval (0, 2) and for any initial guess x0. In fact, the

reverse is also true under certain assumptions.

Theorem 4.10 If A is symmetric with positive diagonal elements and for 0<ω < 2,

SOR converges for any x0 if and only if A is positive definite.
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4.2.5 Property A and Consistent Orderings

A number of properties which are related to the graph of a finite difference matrix are

now defined. The first of these properties is called Property A. A matrix has Property

A if its graph is bipartite. This means that the graph is two-colorable in the sense

defined in Chapter 3: Its vertices can be partitioned in two sets in such a way that

no two vertices in the same set are connected by an edge. Note that, as usual, the

self-connecting edges which correspond to the diagonal elements are ignored.

Definition 4.11 A matrix has Property A if the vertices of its adjacency graph can

be partitioned in two sets S1 and S2, so that any edge in the graph links a vertex of

S1 to a vertex of S2.

In other words, nodes from the first set are connected only to nodes from the second

set and vice versa. This definition is illustrated in Figure 4.5.

S2S1

Figure 4.5: Graph illustration of Property A.

An alternative definition is that a matrix has Property A if it can be permuted into

a matrix with the following structure:

A′ =

(
D1 −F
−E D2

)

, (4.42)

where D1 and D2 are diagonal matrices. This structure can be obtained by first

labeling all the unknowns in S1 from 1 to n1, in which n1 = |S1| and the rest

from n1 + 1 to n. Note that the Jacobi iteration matrix will have the same structure

except that the D1,D2 blocks will be replaced by zero blocks. These Jacobi iteration

matrices satisfy an important property stated in the following proposition.

Proposition 4.12 Let B be a matrix with the following structure:

B =

(
O B12

B21 O

)

, (4.43)

and let L and U be the lower and upper triangular parts of B, respectively. Then
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1. If µ is an eigenvalue of B, then so is −µ.

2. The eigenvalues of the matrix

B(α) = αL+
1

α
U

defined for α 6= 0 are independent of α.

Proof. The first property is shown by simply observing that if
(x
v

)
is an eigenvector

associated with µ, then
(

x
−v

)

is an eigenvector of B associated with the eigenvalue

−µ.

Consider the second property. For any α, the matrix B(α) is similar to B, i.e.,

B(α) = XBX−1 with X defined by

X =

(
1 O
O α

)

.

This proves the desired result

A definition which generalizes this important property is consistently ordered matri-

ces. Varga [293] calls a consistently ordered matrix one for which the eigenvalues

of B(α) are independent of α. Another definition given by Young [322] considers

a specific class of matrices which generalize this property. We will use this defini-

tion here. Unlike Property A, the consistent ordering property depends on the initial

ordering of the unknowns.

Definition 4.13 A matrix is said to be consistently ordered if the vertices of its adja-

cency graph can be partitioned in p sets S1, S2, . . ., Sp with the property that any

two adjacent vertices i and j in the graph belong to two consecutive partitions Sk
and Sk′ , with k′ = k − 1, if j < i, and k′ = k + 1, if j > i.

It is easy to show that consistently ordered matrices satisfy property A: the first color

is made up of all the partitions Si with odd i and the second with the partitions Si
with even i.

Example 4.2. Block tridiagonal matrices of the form

T =










D1 T12
T21 D2 T23

T32 D3
. . .

. . .
. . . Tp−1,p

Tp,p−1 Dp










whose diagonal blocks Di are diagonal matrices are called T -matrices. Clearly, such

matrices are consistently ordered. Note that matrices of the form (4.42) are a partic-

ular case with p = 2.
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Consider now a general, consistently ordered matrix. By definition, there is per-

mutation π of {1, 2, . . . , n} which is the union of p disjoint subsets

π = π1
⋃

π2 . . .
⋃

πp (4.44)

with the property that if aij 6= 0, j 6= i and i belongs to πk, then j belongs to πk±1

depending on whether i < j or i > j. This permutation π can be used to permute

A symmetrically. If P is the permutation matrix associated with the permutation π,

then clearly

A′ = P TAP

is a T -matrix.

Not every matrix that can be symmetrically permuted into a T -matrix is con-

sistently ordered. The important property here is that the partition {πi} preserves

the order of the indices i, j of nonzero elements. In terms of the adjacency graph,

there is a partition of the graph with the property that an oriented edge i, j from

i to j always points to a set with a larger index if j > i, or a smaller index oth-

erwise. In particular, a very important consequence is that edges corresponding to

the lower triangular part will remain so in the permuted matrix. The same is true

for the upper triangular part. Indeed, if a nonzero element in the permuted matrix

is a′i′,j′ = aπ−1(i),π−1(j) 6= 0 with i′ > j′, then by definition of the permutation

π(i′) > π(j′), or i = π(π−1(i)) > j = π(π−1(j)). Because of the order preserva-

tion, it is necessary that i > j. A similar observation holds for the upper triangular

part. Therefore, this results in the following proposition.

Proposition 4.14 If a matrix A is consistently ordered, then there exists a permuta-

tion matrix P such that P TAP is a T -matrix and

(P TAP )L = P TALP, (P TAP )U = P TAUP (4.45)

in which XL represents the (strict) lower part of X and XU the (strict) upper part of

X.

With the above property it can be shown that for consistently ordered matrices

the eigenvalues ofB(α) as defined in Proposition 4.12 are also invariant with respect

to α.

Proposition 4.15 LetB be the Jacobi iteration matrix associated with a consistently

ordered matrix A, and let L and U be the lower and upper triangular parts of B,

respectively. Then the eigenvalues of the matrix

B(α) = αL+
1

α
U

defined for α 6= 0 do not depend on α.
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Proof. First transform B(α) into a T -matrix using the permutation π in (4.44) pro-

vided by the previous proposition

P TB(α)P = αP TLP +
1

α
P TUP.

From the previous proposition, the lower part of P TBP is precisely L′ = P TLP .

Similarly, the upper part is U ′ = P TUP , the lower and upper parts of the associated

T -matrix. Therefore, we only need to show that the property is true for a T -matrix.

In this case, for any α, the matrix B(α) is similar to B. This means that B(α) =
XBX−1 with X being equal to

X =









1
αI

α2I
. . .

αp−1I









,

where the partitioning is associated with the subsets π1, . . . , πp respectively.

Note that T -matrices and matrices with the structure (4.42) are two particular

cases of matrices which fulfill the assumptions of the above proposition. There are a

number of well known properties related to Property A and consistent orderings. For

example, it is possible to show that,

• Property A is invariant under symmetric permutations.

• A matrix has Property A if and only if there is a permutation matrix P such

that A′ = P−1AP is consistently ordered.

Consistently ordered matrices satisfy an important property which relates the

eigenvalues of the corresponding SOR iteration matrices to those of the Jacobi iter-

ation matrices. The main theorem regarding the theory for SOR is a consequence of

the following result proved by Young [322]. Remember that

MSOR = (D − ωE)−1 (ωF + (1− ω)D)

= (I − ωD−1E)−1
(
ωD−1F + (1− ω)I

)
.

Theorem 4.16 Let A be a consistently ordered matrix such that aii 6= 0 for i =
1, . . . , n, and let ω 6= 0. Then if λ is a nonzero eigenvalue of the SOR iteration

matrix MSOR, any scalar µ such that

(λ+ ω − 1)2 = λω2µ2 (4.46)

is an eigenvalue of the Jacobi iteration matrix B. Conversely, if µ is an eigenvalue

of the Jacobi matrix B and if a scalar λ satisfies (4.46), then λ is an eigenvalue of

MSOR.
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Proof. Denote D−1E by L and D−1F by U , so that

MSOR = (I − ωL)−1 (ωU + (1− ω)I)

and the Jacobi iteration matrix is merely L + U . Writing that λ is an eigenvalue

yields

det
(
λI − (I − ωL)−1(ωU + (1− ω)I)

)
= 0

which is equivalent to

det (λ(I − ωL)− (ωU + (1− ω)I)) = 0

or

det ((λ+ ω − 1)I − ω(λL+ U)) = 0.

Since ω 6= 0, this can be rewritten as

det

(
λ+ ω − 1

ω
I − (λL+ U)

)

= 0,

which means that (λ+ω−1)/ω is an eigenvalue of λL+U . Since A is consistently

ordered, the eigenvalues of λL + U which are equal to λ1/2(λ1/2L + λ−1/2U) are

the same as those of λ1/2(L + U), where L + U is the Jacobi iteration matrix. The

proof follows immediately.

This theorem allows us to compute an optimal value for ω, which can be shown

to be equal to

ωopt =
2

1 +
√

1− ρ(B)2
. (4.47)

A typical SOR procedure starts with some ω, for example, ω = 1, then proceeds with

a number of SOR steps with this ω. The convergence rate for the resulting iterates is

estimated providing an estimate for ρ(B) using Theorem 4.16. A better ω is then ob-

tained from the formula (4.47), and the iteration restarted. Further refinements of the

optimal ω are calculated and retrofitted in this manner as the algorithm progresses.

4.3 Alternating Direction Methods

The Alternating Direction Implicit (ADI) method was introduced in the mid-1950s

by Peaceman and Rachford [226] specifically for solving equations arising from fi-

nite difference discretizations of elliptic and parabolic Partial Differential Equations.

Consider a partial differential equation of elliptic type

∂

∂x

(

a(x, y)
∂u(x, y)

∂x

)

+
∂

∂y

(

b(x, y)
∂u(x, y)

∂y

)

= f(x, y) (4.48)

on a rectangular domain with Dirichlet boundary conditions. The equations are dis-

cretized with centered finite differences using n + 2 points in the x direction and

m+ 2 points in the y direction, This results in the system of equations

Hu + V u = b, (4.49)
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in which the matrices H and V represent the three-point central difference approxi-

mations to the operators

∂

∂x

(

a(x, y)
∂

∂x

)

and
∂

∂y

(

b(x, y)
∂

∂y

)

,

respectively. In what follows, the same notation is used to represent the discretized

version of the unknown function u.

The ADI algorithm consists of iterating by solving (4.49) in the x and y direc-

tions alternatively as follows.

ALGORITHM 4.3 Peaceman-Rachford (PR) ADI

1. For k = 0., 1, . . . , until convergence Do:

2. Solve: (H + ρkI)uk+ 1
2
= (ρkI − V )uk + b

3. Solve: (V + ρkI)uk+1 = (ρkI −H)uk+ 1
2
+ b

4. EndDo

Here, ρk, k = 1, 2, . . ., is a sequence of positive acceleration parameters.

The specific case where ρk is chosen to be a constant ρ deserves particular atten-

tion. In this case, we can formulate the above iteration in the usual form of (4.28)

with

G = (V + ρI)−1(H − ρI)(H + ρI)−1(V − ρI), (4.50)

f = (V + ρI)−1
[
I − (H − ρI)(H + ρI)−1

]
b (4.51)

or, when ρ > 0, in the form (4.22) with

M =
1

2ρ
(H + ρI)(V + ρI), N =

1

2ρ
(H − ρI)(V − ρI). (4.52)

Note that (4.51) can be rewritten in a simpler form; see Exercise 5.

The ADI algorithm is often formulated for solving the time-dependent Partial

Differential Equation

∂u

∂t
=

∂

∂x

(

a(x, y)
∂u

∂x

)

+
∂

∂y

(

b(x, y)
∂u

∂y

)

(4.53)

on the domain (x, y, t) ∈ Ω × [0, T ] ≡ (0, 1) × (0, 1) × [0, T ]. The initial and

boundary conditions are:

u(x, y, 0) = x0(x, y), ∀(x, y) ∈ Ω, (4.54)

u(x̄, ȳ, t) = g(x̄, ȳ, t), ∀(x̄, ȳ) ∈ ∂Ω, t > 0, (4.55)

where ∂Ω is the boundary of the unit square Ω. The equations are discretized with

respect to the space variables x and y as before, resulting in a system of Ordinary

Differential Equations:
du

dt
= Hu+ V u, (4.56)
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in which the matrices H and V have been defined earlier. The Alternating Direction

Implicit algorithm advances the relation (4.56) forward in time alternately in the x
and y directions as follows:

(I − 1

2
∆t H)uk+ 1

2
= (I +

1

2
∆t V )uk ,

(I − 1

2
∆t V )uk+1 = (I +

1

2
∆t H)uk+ 1

2
.

The acceleration parameters ρk of Algorithm 4.3 are replaced by a natural time-step.

Horizontal ordering

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Vertical ordering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 4.6: The horizontal and vertical orderings for the unknowns in ADI.

Assuming that the mesh-points are ordered by lines in the x-direction, then the

first step of Algorithm 4.3 constitutes a set of m independent tridiagonal linear sys-

tems of size n each. However, the second step constitutes a large tridiagonal system

whose three diagonals are offset by −m, 0, and m, respectively. This second system

can also be rewritten as a set of n independent tridiagonal systems of size m each by

reordering the grid points by lines, this time in the y direction. The natural (horizon-

tal) and vertical orderings are illustrated in Figure 4.6. Whenever moving from one

half step of ADI to the next, we must implicitly work with the transpose of the matrix

representing the solution on the n × m grid points. This data operation may be an

expensive task on parallel machines and often it is cited as one of the drawbacks of

Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 1960s for the particular

case of positive definite systems. For such systems, H and V have real eigenvalues

and the following is a summary of the main results in this situation. First, when H
and V are Symmetric Positive Definite, then the stationary iteration (ρk = ρ > 0, for

all k) converges. For the model problem, the asymptotic rate of convergence of the

stationary ADI iteration using the optimal ρ is the same as that of SSOR using the

optimal ω. However, each ADI step is more expensive than one SSOR step. One of

the more important results in the ADI theory is that the rate of convergence of ADI

can be increased appreciably by using a cyclic sequence of parameters, ρk. A theory

for selecting the best sequence of ρk’s is well understood in the case when H and

V commute [38]. For the model problem, the parameters can be selected so that the

time complexity is reduced to O(n2 log n), for details see [226].
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PROBLEMS

P-4.1 Consider an n× n tridiagonal matrix of the form

Tα =










α −1
−1 α −1

−1 α −1
−1 α −1

−1 α −1
−1 α










, (4.57)

where α is a real parameter.

a. Verify that the eigenvalues of Tα are given by

λj = α− 2 cos (jθ) j = 1, . . . , n,

where

θ =
π

n+ 1

and that an eigenvector associated with each λj is

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]
T
.

Under what condition on α does this matrix become positive definite?

b. Now take α = 2. How does this matrix relate to the matrices seen in Chapter 2 for

one-dimensional problems?

(i) Will the Jacobi iteration converge for this matrix? If so, what will its conver-

gence factor be?

(ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its

convergence factor be?

(iii) For which values of ω will the SOR iteration converge?

P-4.2 Prove that the iteration matrixGω of SSOR, as defined by (4.13), can be expressed as

Gω = I − ω(2− ω)(D − ωF )−1D(D − ωE)−1A.

Deduce the expression (4.27) for the preconditioning matrix associated with the SSOR itera-

tion.

P-4.3 Let A be a matrix with a positive diagonal D.

a. Obtain an expression equivalent to that of (4.13) forGω but which involves the matrices

SE ≡ D−1/2ED−1/2 and SF ≡ D−1/2FD−1/2.

b. Show that

D1/2GωD
−1/2 = (I − ωSF )

−1(I − ωSE)
−1(ωSE + (1− ω)I)(ωSF + (1− ω)I)

c. Now assume that in addition to having a positive diagonal,A is symmetric. Prove that

the eigenvalues of the SSOR iteration matrix Gω are real and nonnegative.
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P-4.4 Let

A =










D1 −F2

−E2 D2 −F3

−E3 D3
. . .

. . .
. . . −Fm

−Em Dm










,

where the Di blocks are nonsingular matrices which are not necessarily diagonal.

a. What are the block Jacobi and block Gauss-Seidel iteration matrices?

b. Show a result similar to that in Proposition 4.15 for the Jacobi iteration matrix.

c. Show also that for ω = 1 (1) the block Gauss-Seidel and block Jacobi iterations either

both converge or both diverge, and (2) when they both converge, then the block Gauss-

Seidel iteration is (asymptotically) twice as fast as the block Jacobi iteration.

P-4.5 According to formula (4.23), the f vector in iteration (4.22) should be equal toM−1b,
where b is the right-hand side and M is given in (4.52). Yet, formula (4.51) gives a different

expression for f . Reconcile the two results, i.e., show that the expression (4.51) can also be

rewritten as

f = 2ρ(V + ρI)−1(H + ρI)−1b.

P-4.6 Show that a matrix has Property A if and only if there is a permutation matrix P such

that A′ = P−1AP is consistently ordered.

P-4.7 Consider a matrixA which is consistently ordered. Show that the asymptotic conver-

gence rate for Gauss-Seidel is double that of the Jacobi iteration.

P-4.8 A matrix of the form

B =





0 E 0
0 0 F
H 0 0





is called a three-cyclic matrix.

a. What are the eigenvalues of B? (Express them in terms of eigenvalues of a certain

matrix which depends on E, F , and H .)

b. Assume that a matrix A has the form A = D +B, where D is a nonsingular diagonal

matrix, and B is three-cyclic. How can the eigenvalues of the Jacobi iteration matrix

be related to those of the Gauss-Seidel iteration matrix? How does the asymptotic

convergence rate of the Gauss-Seidel iteration compare with that of the Jacobi iteration

matrix in this case?

c. Answer the same questions as in (b) for the case when SOR replaces the Gauss-Seidel

iteration.

d. Generalize the above results to p-cyclic matrices, i.e., matrices of the form

B =









0 E1

0 E2

0
. . .

0 Ep−1

Ep 0









.
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NOTES AND REFERENCES. Two good references for the material covered in this chapter are Varga

[293] and and Young [322]. Although relaxation-type methods were very popular up to the 1960s,

they are now mostly used as preconditioners, a topic which will be seen in detail in Chapters 9 and

10. One of the main difficulties with these methods is finding an optimal relaxation factor for general

matrices. Theorem 4.7 is due to Ostrowski. For details on the use of Gershgorin’s theorem in eigenvalue

problems, see [246]. The original idea of the ADI method is described in [226] and those results on the

optimal parameters for ADI can be found in [38]. A comprehensive text on this class of techniques can

be found in [300].



Chapter 5

PROJECTION METHODS

Most of the existing practical iterative techniques for solving large linear systems of equations

utilize a projection process in one way or another. A projection process represents a canonical

way for extracting an approximation to the solution of a linear system from a subspace. This

chapter describes these techniques in a very general framework and presents some theory. The

one-dimensional case is covered in detail at the end of the chapter, as it provides a good preview

of the more complex projection processes to be seen in later chapters.

5.1 Basic Definitions and Algorithms

Consider the linear system

Ax = b, (5.1)

where A is an n× n real matrix. In this chapter, the same symbol A is often used to

denote the matrix and the linear mapping in R
n that it represents. The idea of pro-

jection techniques is to extract an approximate solution to the above problem from a

subspace of Rn. IfK is this subspace of candidate approximants, or search subspace,

and if m is its dimension, then, in general, m constraints must be imposed to be able

to extract such an approximation. A typical way of describing these constraints is

to impose m (independent) orthogonality conditions. Specifically, the residual vec-

tor b − Ax is constrained to be orthogonal to m linearly independent vectors. This

defines another subspace L of dimension m which will be called the subspace of

constraints or left subspace for reasons that will be explained below. This simple

framework is common to many different mathematical methods and is known as the

Petrov-Galerkin conditions.

There are two broad classes of projection methods: orthogonal and oblique. In

an orthogonal projection technique, the subspace L is the same as K. In an oblique

projection method, L is different from K and may be totally unrelated to it. This

distinction is rather important and gives rise to different types of algorithms.

133
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5.1.1 General Projection Methods

Let A be an n× n real matrix and K and L be two m-dimensional subspaces of Rn.

A projection technique onto the subspace K and orthogonal to L is a process which

finds an approximate solution x̃ to (5.1) by imposing the conditions that x̃ belong to

K and that the new residual vector be orthogonal to L,

Find x̃ ∈ K, such that b−Ax̃ ⊥ L. (5.2)

If we wish to exploit the knowledge of an initial guess x0 to the solution, then the

approximation must be sought in the affine space x0+K instead of the homogeneous

vector space K. This requires a slight modification to the above formulation. The

approximate problem should be redefined as

Find x̃ ∈ x0 +K, such that b−Ax̃ ⊥ L. (5.3)

Note that if x̃ is written in the form x̃ = x0 + δ, and the initial residual vector r0 is

defined as

r0 = b−Ax0, (5.4)

then the above equation becomes b−A(x0 + δ) ⊥ L or

r0 −Aδ ⊥ L.

In other words, the approximate solution can be defined as

x̃ = x0 + δ, δ ∈ K, (5.5)

(r0 −Aδ,w) = 0, ∀w ∈ L. (5.6)

The orthogonality condition (5.6) imposed on the new residual rnew = r0 − Aδ is

illustrated in Figure 5.1.

L

✒
r0✲Aδ

✻
rnew

O

Figure 5.1: Interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard tech-

niques use a succession of such projections. Typically, a new projection step uses a

new pair of subspace K and L and an initial guess x0 equal to the most recent ap-

proximation obtained from the previous projection step. Projection methods form a
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unifying framework for many of the well known methods in scientific computing. In

fact, virtually all of the basic iterative techniques seen in the previous chapter can be

considered projection techniques. Whenever an approximation is defined via m de-

grees of freedom (subspace K) and m constraints (Subspace L), a projection process

results.

Example 5.1. In the simplest case, an elementary Gauss-Seidel step as defined by

(4.6) is nothing but a projection step with K = L = span{ei}. These projection

steps are cycled for i = 1, . . . , n until convergence. See Exercise 1 for an alternative

way of selecting the sequence of ei’s.

Orthogonal projection methods correspond to the particular case when the two

subspaces L and K are identical. The distinction is particularly important in the

Hermitian case since we are guaranteed that the projected problem will be Hermitian

in this situation, as will be seen shortly. In addition, a number of helpful theoretical

results are true for the orthogonal case. WhenL = K, the Petrov-Galerkin conditions

are often called the Galerkin conditions.

5.1.2 Matrix Representation

Let V = [v1, . . . , vm], an n × m matrix whose column-vectors form a basis of K
and, similarly, W = [w1, . . . , wm], an n ×m matrix whose column-vectors form a

basis of L. If the approximate solution is written as

x̃ = x0 + V y,

then the orthogonality condition leads immediately to the following system of equa-

tions for the vector y:

W TAV y =W T r0.

If the assumption is made that them×mmatrixW TAV is nonsingular, the following

expression for the approximate solution x̃ results,

x̃ = x0 + V (W TAV )−1W T r0. (5.7)

In many algorithms, the matrix W TAV does not have to be formed since it is avail-

able as a by-product of the algorithm. A prototype projection technique is repre-

sented by the following algorithm.

ALGORITHM 5.1 Prototype Projection Method

1. Until convergence, Do:

2. Select a pair of subspaces K and L
3. Choose bases V = [v1, . . . , vm] and W = [w1, . . . , wm] for K and L
4. r := b−Ax
5. y := (W TAV )−1W T r
6. x := x+ V y
7. EndDo
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The approximate solution is defined only when the matrix W TAV is nonsingu-

lar, a property that is not guaranteed to be true even when A is nonsingular.

Example 5.2. As an example, consider the matrix

A =

(
O I
I I

)

,

where I is the m×m identity matrix and O is the m×m zero matrix, and let V =
W = [e1, e2, . . . , em]. Although A is nonsingular, the matrix W TAV is precisely

the O block in the upper-left corner of A and is therefore singular.

It can be easily verified that W TAV is nonsingular if and only if no vector of

the subspace AK is orthogonal to the subspace L. We have encountered a similar

condition when defining projector operators in Chapter 1. There are two important

particular cases where the nonsingularity of W TAV is guaranteed. These are dis-

cussed in the following proposition.

Proposition 5.1 Let A, L, and K satisfy either one of the two following conditions,

i. A is positive definite and L = K, or

ii. A is nonsingular and L = AK.

Then the matrix B = W TAV is nonsingular for any bases V and W of K and L,

respectively.

Proof. Consider first the case (i). Let V be any basis of K and W be any basis of L.

In fact, since L and K are the same, W can always be expressed as W = V G, where

G is a nonsingular m×m matrix. Then

B =W TAV = GTV TAV.

Since A is positive definite, so is V TAV , see Chapter 1, and this shows that B is

nonsingular.

Consider now case (ii). Let V be any basis of K and W be any basis of L. Since

L = AK, W can be expressed in this case as W = AV G, where G is a nonsingular

m×m matrix. Then

B =W TAV = GT (AV )TAV. (5.8)

SinceA is nonsingular, the n×mmatrixAV is of full rank and as a result, (AV )TAV
is nonsingular. This, along with (5.8), shows that B is nonsingular.

Now consider the particular case where A is symmetric (real) and an orthogonal

projection technique is used. In this situation, the same basis can be used for L and

K, which are identical subspaces, and the projected matrix, which is B = V TAV , is

symmetric. In addition, if the matrix A is Symmetric Positive Definite, then so is B.
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5.2 General Theory

This section gives some general theoretical results without being specific about the

subspaces K and L which are used. The goal is to learn about the quality of the

approximation obtained from a general projection process. Two main tools are used

for this. The first is to exploit optimality properties of projection methods. These

properties are induced from those properties of projectors seen in Section 1.12.4 of

Chapter 1. The second tool consists of interpreting the projected problem with the

help of projection operators in an attempt to extract residual bounds.

5.2.1 Two Optimality Results

In this section, two important optimality results will be established that are satisfied

by the approximate solutions in some cases. Consider first the case when A is SPD.

Proposition 5.2 Assume that A is Symmetric Positive Definite and L = K. Then a

vector x̃ is the result of an (orthogonal) projection method onto K with the starting

vector x0 if and only if it minimizes the A-norm of the error over x0 +K, i.e., if and

only if

E(x̃) = min
x∈x0+K

E(x),

where

E(x) ≡ (A(x∗ − x), x∗ − x)1/2.

Proof. As was seen in Section 1.12.4, for x̃ to be the minimizer of E(x), it is neces-

sary and sufficient that x∗ − x̃ be A-orthogonal to all the subspace K. This yields

(A(x∗ − x̃), v) = 0, ∀v ∈ K,

or, equivalently,

(b−Ax̃, v) = 0, ∀v ∈ K,
which is the Galerkin condition defining an orthogonal projection process for the

approximation x̃.

We now take up the case when L is defined by L = AK.

Proposition 5.3 Let A be an arbitrary square matrix and assume that L = AK.

Then a vector x̃ is the result of an (oblique) projection method onto K orthogonally

to L with the starting vector x0 if and only if it minimizes the 2-norm of the residual

vector b−Ax over x ∈ x0 +K, i.e., if and only if

R(x̃) = min
x∈x0+K

R(x),

where R(x) ≡ ‖b−Ax‖2.
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Proof. As was seen in Section 1.12.4, for x̃ to be the minimizer of R(x), it is nec-

essary and sufficient that b − Ax̃ be orthogonal to all vectors of the form v = Ay,

where y belongs to K, i.e.,

(b−Ax̃, v) = 0, ∀v ∈ AK,

which is precisely the Petrov-Galerkin condition that defines the approximate solu-

tion x̃.

It is worthwhile to point out that A need not be nonsingular in the above proposition.

When A is singular there may be infinitely many vectors x̃ satisfying the optimality

condition.

5.2.2 Interpretation in Terms of Projectors

We now return to the two important particular cases singled out in the previous sec-

tion, namely, the cases L = K and L = AK. In these cases, the result of the

projection process can be interpreted easily in terms of actions of orthogonal pro-

jectors on the initial residual or initial error. Consider the second case first, as it is

slightly simpler. Let r0 be the initial residual r0 = b − Ax0, and r̃ = b − Ax̃ the

residual obtained after the projection process with L = AK. Then,

r̃ = b−A(x0 + δ) = r0 −Aδ. (5.9)

In addition, δ is obtained by enforcing the condition that r0 − Aδ be orthogonal to

AK. Therefore, the vector Aδ is the orthogonal projection of the vector r0 onto the

subspace AK. This is illustrated in Figure 5.2. Hence, the following proposition can

be stated.

Proposition 5.4 Let x̃ be the approximate solution obtained from a projection pro-

cess onto K orthogonally to L = AK, and let r̃ = b−Ax̃ be the associated residual.

Then,

r̃ = (I − P )r0, (5.10)

where P denotes the orthogonal projector onto the subspace AK.

A result of the proposition is that the 2-norm of the residual vector obtained after

one projection step will not exceed the initial 2-norm of the residual, i.e.,

‖r̃‖2 ≤ ‖r0‖2,

a result which has been established already. This class of methods may be termed

residual projection methods.

Now consider the case where L = K and A is Symmetric Positive Definite. Let

d0 = x∗ − x0 be the initial error, where x∗ denotes the exact solution to the system

and, similarly, let d̃ = x∗− x̃ where x̃ = x0+ δ is the approximate solution resulting

from the projection step. Then (5.9) yields the relation

Ad̃ = r̃ = A(d0 − δ),
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r0

Aδ = Pr0

AK

O

✻✯
❥

Figure 5.2: Interpretation of the projection process for the case when L = AK.

where δ is now obtained by constraining the residual vector r0−Aδ to be orthogonal

to K:

(r0 −Aδ,w) = 0, ∀ w ∈ K.
The above condition is equivalent to

(A(d0 − δ), w) = 0, ∀ w ∈ K.

Since A is SPD, it defines an inner product (see Section 1.11) which is usually de-

noted by (., .)A and the above condition becomes

(d0 − δ, w)A = 0, ∀ w ∈ K.

The above condition is now easy to interpret: The vector δ is the A-orthogonal pro-

jection of the initial error d0 onto the subspace K.

Proposition 5.5 Let x̃ be the approximate solution obtained from an orthogonal pro-

jection process onto K and let d̃ = x∗ − x̃ be the associated error vector. Then,

d̃ = (I − PA)d0,

where PA denotes the projector onto the subspace K, which is orthogonal with re-

spect to the A-inner product.

A result of the proposition is that the A-norm of the error vector obtained after one

projection step does not exceed the initial A-norm of the error, i.e.,

‖d̃‖A ≤ ‖d0‖A,

which is expected because it is known that the A-norm of the error is minimized in

x0 +K. This class of methods may be termed error projection methods.
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5.2.3 General Error Bound

If no vector of the subspace K comes close to the exact solution x, then it is im-

possible to find a good approximation x̃ to x from K. Therefore, the approximation

obtained by any projection process based on K will be poor. On the other hand, if

there is some vector in K which is a small distance ǫ away from x, then the question

is: How good can the approximate solution be? The purpose of this section is to try

to answer this question.

K

L

❄

x

P
K
x✠QL

K
x

P
K
x ∈ K, x− P

K
x ⊥ K

QL
K
x ∈ K, x−QL

K
x ⊥ L

Figure 5.3: Orthogonal and oblique projectors.

LetP
K

be the orthogonal projector onto the subpaceK and letQL
K

be the (oblique)

projector onto K and orthogonally to L. These projectors are defined by

P
K
x ∈ K, x− P

K
x ⊥ K,

QL
K
x ∈ K, x−QL

K
x ⊥ L,

and are illustrated in Figure 5.3. The symbol Am is used to denote the operator

Am = QL
K
AP

K
,

and it is assumed, without loss of generality, that x0 = 0. Then according to the

property (1.62), the approximate problem defined in (5.5 – 5.6) can be reformulated

as follows: find x̃ ∈ K such that

QL
K
(b−Ax̃) = 0,

or, equivalently,

Amx̃ = QL
K
b, x̃ ∈ K.
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Thus, an n-dimensional linear system is approximated by an m-dimensional one.

The following proposition examines what happens in the particular case when the

subspace K is invariant under A. This is a rare occurrence in practice, but the result

helps in understanding the breakdown behavior of the methods to be considered in

later chapters.

Proposition 5.6 Assume that K is invariant under A, x0 = 0, and b belongs to K.

Then the approximate solution obtained from any (oblique or orthogonal) projection

method onto K is exact.

Proof. An approximate solution x̃ is defined by

QL
K
(b−Ax̃) = 0,

where x̃ is a nonzero vector inK. The right-hand side b is inK, so we haveQL
K
b = b.

Similarly, x̃ belongs to K which is invariant under A, and therefore, QL
K
Ax̃ = Ax̃.

Then the above equation becomes

b−Ax̃ = 0,

showing that x̃ is an exact solution.

The result can be extended trivially to the case where x0 6= 0. The required assump-

tion in this case is that the initial residual r0 = b − Ax0 belongs to the invariant

subspace K.

An important quantity for the convergence properties of projection methods is

the distance ‖(I − P
K
)x∗‖2 of the exact solution x∗ from the subspace K. This

quantity plays a key role in the analysis of projection methods. Note that the solution

x∗ cannot be well approximated from K, if ‖(I −P
K
)x∗‖2 is not small because

‖x̃− x∗‖2 ≥ ‖(I − PK
)x∗‖2.

The fundamental quantity ‖(I − P
K
)x∗‖2/‖x∗‖2 is the sine of the acute angle be-

tween the solution x∗ and the subspace K. The following theorem establishes an

upper bound for the residual norm of the exact solution with respect to the approxi-

mate operator Am.

Theorem 5.7 Let γ = ‖QL
K
A(I − P

K
)‖2 and assume that b is a member of K and

x0 = 0. Then the exact solution x∗ of the original problem is such that

‖b−Amx∗‖2 ≤ γ‖(I − PK
)x∗‖2. (5.11)

Proof. Since b ∈ K, then

b−Amx∗ = QL
K
(b−AP

K
x∗)

= QL
K
(Ax∗ −APK

x∗)

= QL
K
A(x∗ −PK

x∗)

= QL
K
A(I − P

K
)x∗.
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Noting that I − P
K

is a projector, it follows that

‖b−Amx∗‖2 = ‖QL
K
A(I − P

K
)(I − P

K
)x∗‖2

≤ ‖QL
K
A(I − P

K
)‖2‖(I − PK

)x∗‖2,

which completes the proof.

It is useful to consider a matrix interpretation of the theorem. We consider only

the particular case of orthogonal projection methods (L = K). Assume that V is

unitary, i.e., that the basis {v1, . . . , vm} is orthonormal, and that W = V . Observe

that b = V V T b. Equation (5.11) can be represented in the basis V as

‖b− V (V TAV )V Tx∗‖2 ≤ γ‖(I −PK
)x∗‖2.

However,

‖b− V (V TAV )V Tx∗‖2 = ‖V (V T b− (V TAV )V Tx∗‖2
= ‖V T b− (V TAV )V Tx∗‖2.

Thus, the projection of the exact solution has a residual norm with respect to the

matrix B = V TAV , which is of the order of ‖(I − P
K
)x∗‖2.

5.3 One-Dimensional Projection Processes

This section examines simple examples provided by one-dimensional projection pro-

cesses. In what follows, the vector r denotes the residual vector r = b − Ax for the

current approximation x. To avoid subscripts, arrow notation is used to denote vector

updates. Thus, “x ← x + αr” means “compute x+ αr and overwrite the result on

the current x.” (This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

K = span{v} and L = span{w},

where v and w are two vectors. In this case, the new approximation takes the form

x← x+ αv and the Petrov-Galerkin condition r −Aδ ⊥ w yields

α =
(r, w)

(Av,w)
. (5.12)

Following are three popular choices to be considered.

5.3.1 Steepest Descent

The steepest descent algorithm is defined for the case where the matrix A is Sym-

metric Positive Definite. It consists of taking at each step v = r and w = r. This

yields the following iterative procedure:

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr.
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However, the above procedure requires two matrix-by-vector products and this can be

reduced to only one by rearranging the computation slightly. The variation consists

of computing r differently as is shown next.

ALGORITHM 5.2 Steepest Descent Algorithm

1. Compute r = b−Ax and p = Ar
2. Until convergence, Do:

3. α← (r, r)/(p, r)
4. x← x+ αr
5. r ← r − αp
6. compute p := Ar
7. EndDo

Each step of the above iteration minimizes

f(x) = ‖x− x∗‖2A = (A(x− x∗), (x− x∗)),

over all vectors of the form x + αd, where d is the negative of the gradient direc-

tion −∇f . The negative of the gradient direction is locally the direction that yields

the fastest rate of decrease for f . Next, we prove that convergence is guaranteed

when A is SPD. The result is a consequence of the following lemma known as the

Kantorovich inequality.

Lemma 5.8 (Kantorovich inequality) LetB be any Symmetric Positive Definite real

matrix and λmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤ (λmax + λmin)

2

4 λmaxλmin
, ∀x 6= 0. (5.13)

Proof. Clearly, it is equivalent to show that the result is true for any unit vector x.

Since B is symmetric, it is unitarily similar to a diagonal matrix, B = QTDQ, and

(Bx, x)(B−1x, x) = (QTDQx, x)(QTD−1Qx, x) = (DQx,Qx)(D−1Qx,Qx).

Setting y = Qx = (y1, . . . , yn)
T , and βi = y2i , note that

λ ≡ (Dy, y) =
n∑

i=1

βiλi

is a convex combination of the eigenvalues λi, i = 1, . . . , n. The following relation

holds,

(Bx, x)(B−1x, x) = λψ(y) with ψ(y) = (D−1y, y) =
n∑

i=1

βi
1

λi
.
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Noting that the function f(λ) = 1/λ is convex, ψ(y) is bounded from above by the

linear curve that joins the points (λ1, 1/λ1) and (λn, 1/λn), i.e.,

ψ(y) ≤ 1

λ1
+

1

λn
− λ

λ1λn
.

Therefore,

(Bx, x)(B−1x, x) = λψ(y) ≤ λ
(

1

λ1
+

1

λn
− λ

λ1λn

)

.

The maximum of the right-hand side is reached for λ = 1
2(λ1 + λn) yielding,

λ1 λ2 λi λnλ

Figure 5.4: The point (λ, ψ(y)) is a convex combination of points located on the

curve 1/λ. It is located in the convex set limited by the curve 1/λ and the line

1/λ1 + 1/λn − λ/(λ1λn).

(Bx, x)(B−1x, x) = λψ(y) ≤ (λ1 + λn)
2

4λ1 λn

which gives the desired result.

This lemma helps to establish the following result regarding the convergence rate

of the method.

Theorem 5.9 Let A be a Symmetric Positive Definite matrix. Then, the A-norms of

the error vectors dk = x∗ − xk generated by Algorithm 5.2 satisfy the relation

‖dk+1‖A ≤
λmax − λmin

λmax + λmin
‖dk‖A, (5.14)

and Algorithm 5.2 converges for any initial guess x0.
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Proof. Start by expanding the square of the A-norm of dk+1 = dk − αkrk as

‖dk+1‖2A = (dk+1, dk − αkrk)A = (dk+1, dk)A − αk(dk+1, rk)A = (dk+1, rk)

The last equality is due to the orthogonality between rk and rk+1. Thus,

‖dk+1‖2A = (dk − αrk, rk)
= (A−1rk, rk)− αk(rk, rk)

= ‖dk‖2A
(

1− (rk, rk)

(rk, Ark)
× (rk, rk)

(rk, A−1rk)

)

.

The result follows by applying the Kantorovich inequality (5.13).

5.3.2 Minimal Residual (MR) Iteration

We now assume that A is not necessarily symmetric but only positive definite, i.e.,

its symmetric part A+AT is Symmetric Positive Definite. Taking at each step v = r
and w = Ar, gives the following procedure.

r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr.

This procedure can be slightly rearranged again to reduce the number of matrix-

vector products required to only one per step as was done for the steepest descent

algorithm. This results in in the following algorithm.

ALGORITHM 5.3 Minimal Residual Iteration

1. Compute r = b−Ax and p = Ar
2. Until convergence, Do:

3. α← (p, r)/(p, p)
4. x← x+ αr
5. r ← r − αp
6. compute p := Ar
7. EndDo

Here, each step minimizes f(x) = ‖b − Ax‖22 in the direction r. The iteration con-

verges under the condition that A is positive definite as is stated in the next theorem.

Theorem 5.10 Let A be a real positive definite matrix, and let

µ = λmin(A+AT )/2, σ = ‖A‖2.

Then the residual vectors generated by Algorithm 5.3 satisfy the relation

‖rk+1‖2 ≤
(

1− µ2

σ2

)1/2

‖rk‖2 (5.15)

and Algorithm (5.3) converges for any initial guess x0.
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Proof. We proceed similarly to the steepest descent method, starting with the relation

‖rk+1‖22 = (rk − αkArk, rk − αkArk) (5.16)

= (rk − αkArk, rk)− αk(rk − αkArk, Ark). (5.17)

By construction, the new residual vector rk−αkArk must be orthogonal to the search

direction Ark, and, as a result, the second term in the right-hand side of the above

equation vanishes and we obtain

‖rk+1‖22 = (rk − αkArk, rk)

= (rk, rk)− αk(Ark, rk)

= ‖rk‖22
(

1− (Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)

(5.18)

= ‖rk‖22
(

1− (Ark, rk)
2

(rk, rk)2
‖rk‖22
‖Ark‖22

)

.

From Theorem 1.34, it can be stated that

(Ax, x)

(x, x)
≥ µ > 0, (5.19)

where µ = λmin(A + AT )/2. The desired result follows immediately by using the

inequality ‖Ark‖2 ≤ ‖A‖2 ‖rk‖2.

There are alternative ways of obtaining inequalities that prove convergence. For

example, starting from (5.18), (5.19) can be used again for the term (Ark, rk)/(rk, rk)
and similarly, we can write

(Ax, x)

(Ax,Ax)
=

(Ax,A−1(Ax))

(Ax,Ax)
≥ λmin

(
A−1 +A−T

2

)

> 0,

since A−1 is also positive definite. This would yield the inequality

‖rk+1‖22 ≤
(
1− µ(A)µ(A−1)

)
‖rk‖22, (5.20)

in which µ(B) = λmin(B +BT )/2.

Another interesting observation is that if we define

cos∠k =
(Ark, rk)

‖Ark‖2 ‖rk‖2
,

then (5.18) can be rewritten as

‖rk+1‖22 = ‖rk‖22
(

1− (Ark, rk)

(Ark, Ark)

(Ark, rk)

(rk, rk)

)

= ‖rk‖22
(
1− cos2∠k

)

= ‖rk‖22 sin2 ∠k.
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At each step the reduction in the residual norm is equal to the sine of the acute angle

between r and Ar. The convergence factor is therefore bounded by

ρ = max
x ∈ Rn, x 6=0

sin∠(x,Ax),

in which ∠(x,Ax) is the acute angle between x and Ax. The maximum angle

∠(x,Ax) is guaranteed to be less than π/2 when A is positive definite as the above

results show.

5.3.3 Residual Norm Steepest Descent

In the residual norm steepest descent algorithm, the assumption that A is positive

definite is relaxed. In fact, the only requirement is that A is a (square) nonsingular

matrix. At each step the algorithm uses v = AT r and w = Av, giving the following

sequence of operations:
r ← b−Ax, v = AT r,

α← ‖v‖22/‖Av‖22,
x← x+ αv.

(5.21)

However, an algorithm based on the above sequence of operations would require

three matrix-by-vector products, which is three times as many as the other algorithms

seen in this section. The number of matrix-by-vector operations can be reduced to

two per step by computing the residual differently. This variant is as follows.

ALGORITHM 5.4 Residual Norm Steepest Descent

1. Compute r := b−Ax
2. Until convergence, Do:

3. v := AT r
4. Compute Av and α := ‖v‖22/‖Av‖22
5. x := x+ αv
6. r := r − αAv
7. EndDo

Here, each step minimizes f(x) = ‖b − Ax‖22 in the direction −∇f . As it

turns out, this is equivalent to the steepest descent algorithm of Section 5.3.1 applied

to the normal equations ATAx = AT b. Since ATA is positive definite when A is

nonsingular, then, according to Theorem 5.9, the method will converge whenever A
is nonsingular.

5.4 Additive and Multiplicative Processes

We begin by considering again the block relaxation techniques seen in the previous

chapter. To define these techniques, a set-decomposition of S = {1, 2, . . . , n} is
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considered as the definition of p subsets S1, . . . , Sp of S with

Si ⊆ S,
⋃

i=1,···,p
Si = S.

Denote by ni the size of Si and define the subset Si as

Si = {mi(1),mi(2), . . . ,mi(ni)}.

Let Vi be the n× ni matrix

Vi = [emi(1), emi(2), . . . , emi(ni)],

where each ej is the j-th column of the n× n identity matrix.

If the block Jacobi and block Gauss-Seidel algorithms, Algorithms 4.1 and 4.2,

are examined carefully, it can be observed that each individual step in the main loop

(lines 2 to 5) represents an orthogonal projection process over Ki = span{Vi}. In-

deed, the equation (4.17) is exactly (5.7) with W = V = Vi. This individual projec-

tion step modifies only the components corresponding to the subspace Ki. However,

the general block Jacobi iteration combines these modifications, implicitly adding

them together, to obtain the next iterate xk+1. Borrowing from the terminology of

domain decomposition techniques, this will be called an additive projection proce-

dure. Generally, an additive projection procedure can be defined for any sequence

of subspaces Ki, not just subspaces spanned by the columns of the identity matrix.

The only requirement is that the subspaces Ki should be distinct, although they are

allowed to overlap.

Let a sequence of p orthogonal systems Vi be given, with the condition that

span{Vi} 6= span{Vj} for i 6= j, and define

Ai = V T
i AVi.

The additive projection procedure can be written as

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p ,

xk+1 = xk +

p
∑

i=1

Viyi, (5.22)

which leads to the following algorithm.

ALGORITHM 5.5 Additive Projection Procedure

1. For k = 0, 1, . . . , until convergence, Do:

2. For i = 1, 2, . . . , p Do:

3. Solve Aiyi = V T
i (b−Axk)

4. EndDo

5. Set xk+1 = xk +
∑p

i=1 Viyi
6. EndDo
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Defining rk = b−Axk, the residual vector at step k, then clearly

rk+1 = b−Axk+1

= b−Axk −
p
∑

i=1

AVi
(
V T
i AVi

)−1
V T
i rk

=

[

I −
p
∑

i=1

AVi
(
V T
i AVi

)−1
V T
i

]

rk.

Observe that each of the p operators

Pi = AVi
(
V T
i AVi

)−1
V T
i

represents the projector onto the subspace spanned by AVi, and orthogonal to Vi.
Often, the additive processes are used in conjunction with an acceleration parameter

ω, thus (5.22) is replaced by

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p ,

xk+1 = xk + ω

p
∑

i=1

Viyi.

Even more generally, a different parameter ωi can be used for each projection, i.e.,

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p,

xk+1 = xk +

p
∑

i=1

ωiViyi.

The residual norm in this situation is given by

rk+1 =

(

I −
p
∑

i=1

ωiPi

)

rk, (5.23)

considering the single ω parameter as a particular case. Exercise 15 gives an example

of the choice of ωi which has the effect of producing a sequence with decreasing

residual norms.

We now return to the generic case, where ωi = 1, ∀i. A least-squares option can

be defined by taking for each of the subproblems Li = AKi. In this situation, Pi

becomes an orthogonal projector onto AKi, since

Pi = AVi
(
(AVi)

TAVi
)−1

(AVi)
T .

It is interesting to note that the residual vector obtained after one outer loop is related

to the previous residual by

rk+1 =

(

I −
p
∑

i=1

Pi

)

rk,
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where the Pi’s are now orthogonal projectors. In particular, in the ideal situation

when the AVi’s are orthogonal to each other, and the total rank of the Pi’s is n, then

the exact solution would be obtained in one outer step, since in this situation

I −
p
∑

i=1

Pi = 0.

Thus, the maximum reduction in the residual norm is achieved when the Vi’s are

A-orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, what distinguishes the additive

and multiplicative iterations is that the latter updates the component to be corrected

at step i immediately. Then this updated approximate solution is used to compute the

residual vector needed to correct the next component. The Jacobi iteration uses the

same previous approximation xk to update all the components of the solution. Thus,

the analogue of the block Gauss-Seidel iteration can be defined as follows.

ALGORITHM 5.6 Multiplicative Projection Procedure

1. Until convergence, Do:

2. For i = 1, 2, . . . , p Do:

3. Solve Aiy = V T
i (b−Ax)

4. Set x := x+ Viy
5. EndDo

6. EndDo
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PROBLEMS

P-5.1 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.

a. Consider the sequence of one-dimensional projection processes withK = L = span{ei},
where the sequence of indices i is selected in any fashion. Let xnew be a new it-

erate after one projection step from x and let r = b − Ax, d = A−1b − x, and

dnew = A−1b− xnew. Show that

(Adnew , dnew) = (Ad, d) − (r, ei)
2/aii.

Does this equality, as is, establish convergence of the algorithm?

b. Assume now that i is selected at each projection step to be the index of a component

of largest absolute value in the current residual vector r = b−Ax. Show that

‖dnew‖A ≤
(

1− 1

nκ(A)

)1/2

‖d‖A,

in which κ(A) is the spectral condition number ofA. [Hint: Use the inequality |eTi r| ≥
n−1/2‖r‖2.] Does this prove that the algorithm converges?

P-5.2 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.

Consider a projection step with K = L = span{v} where v is some nonzero vector. Let

xnew be the new iterate after one projection step from x and let d = A−1b− x, and dnew =
A−1b− xnew.

a. Show that

(Adnew , dnew) = (Ad, d) − (r, v)2/(Av, v).

Does this equality establish convergence of the algorithm?

b. In Gastinel’s method, the vector v is selected in such a way that (v, r) = ‖r‖1, e.g., by

defining the components of v to be vi = sign(eTi r), where r = b − Ax is the current

residual vector. Show that

‖dnew‖A ≤
(

1− 1

nκ(A)

)1/2

‖d‖A,

in which κ(A) is the spectral condition number ofA. Does this prove that the algorithm

converges?

c. Compare the cost of one step of this method with that of cyclic Gauss-Seidel (see Ex-

ample 5.1) and that of “optimal” Gauss-Seidel where at each step K = L = span{ei}
and i is a component of largest magnitude in the current residual vector.

P-5.3 In Section 5.3.3, it was shown that taking a one-dimensional projection technique

with K = span {AT r} and L = span{AAT r} is mathematically equivalent to using the

usual steepest descent algorithm applied to the normal equations ATAx = AT b. Show that

an orthogonal projection method for ATAx = AT b using a subspace K is mathematically

equivalent to applying a projection method onto K, orthogonally to L = AK for solving the

system Ax = b.

P-5.4 Consider the matrix

A =





1 −6 0
6 2 3
0 3 2



 .
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a. Find a rectangle or square in the complex plane which contains all the eigenvalues of

A, without computing the eigenvalues.

b. Is the Minimal Residual iteration guaranteed to converge for a linear system with the

matrix A?

P-5.5 Consider the linear system
(
D1 −F
−E −D2

)(
x1
x2

)

=

(
b1
b2

)

in which D1 and D2 are both nonsingular matrices of size m each.

a. Define an orthogonal projection method using the set of vectors e1, . . . , em, i.e., L =
K = span{e1, . . . , em}. Write down the corresponding projection step (x1 is modified

into x̃1). Similarly, write the projection step for the second half of the vectors, i.e.,

when L = K = span{em+1, . . . , en}.
b. Consider an iteration procedure which consists of performing the two successive half-

steps described above until convergence. Show that this iteration is equivalent to a

(standard) Gauss-Seidel iteration applied to the original system.

c. Now consider a similar idea in which K is taken to be the same as before for each

half-step and L = AK. Write down the iteration procedure based on this approach.

Name another technique to which it is mathematically equivalent.

P-5.6 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.

We define a projection method which uses a two-dimensional space at each step. At a given

step, take L = K = span{r, Ar}, where r = b −Ax is the current residual.

a. For a basis of K use the vector r and the vector p obtained by orthogonalizing Ar
against r with respect to the A-inner product. Give the formula for computing p (no

need to normalize the resulting vector).

b. Write the algorithm for performing the projection method described above.

c. Will the algorithm converge for any initial guess x0? Justify the answer. [Hint: Exploit

the convergence results for one-dimensional projection techniques.]

P-5.7 Consider projection methods which update at each step the current solution with lin-

ear combinations from two directions: the current residual r and Ar.

a. Consider an orthogonal projection method, i.e., at each step L = K = span{r, Ar}.
Assuming that A is Symmetric Positive Definite, establish convergence of the algo-

rithm.

b. Consider a least-squares projection method in which at each stepK = span{r, Ar} and

L = AK. Assuming that A is positive definite (not necessarily symmetric), establish

convergence of the algorithm.

[Hint: The convergence results for any of the one-dimensional projection techniques can be

exploited.]

P-5.8 Assume that the (one-dimensional) Minimal Residual iteration of Section 5.3.2 is

applied to a symmetric positive matrix A. Will the method converge? What will the result

(5.15) become in this case? Both (5.15) and (5.14) suggest a linear convergence with an

estimate for the linear convergence rate given by the formulas. How do these estimated rates

compare for matrices with large condition spectral condition numbers?

P-5.9 The “least-squares” Gauss-Seidel relaxation method defines a relaxation step as xnew =
x+ δ ei (same as Gauss-Seidel), but chooses δ to minimize the residual norm of xnew .
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a. Write down the resulting algorithm.

b. Show that this iteration is mathematically equivalent to a Gauss-Seidel iteration applied

to the normal equationsATAx = AT b.

P-5.10 Derive three types of one-dimensional projection algorithms in the same manner as

was done in Section 5.3, by replacing every occurrence of the residual vector r by a vector

ei, a column of the identity matrix.

P-5.11 Derive three types of one-dimensional projection algorithms in the same manner as

was done in Section 5.3, by replacing every occurrence of the residual vector r by a vector

Aei, a column of the matrix A. What would be an “optimal” choice for i at each projection

step? Show that the method is globally convergent in this case.

P-5.12 A minimal residual iteration as defined in Section 5.3.2 can also be defined for an

arbitrary search direction d, not necessarily related to r in any way. In this case, we still

define e = Ad.

a. Write down the corresponding algorithm.

b. Under which condition are all iterates defined?

c. Under which condition on d does the new iterate make no progress, i.e., ‖rk+1‖2 =
‖rk‖2?

d. Write a general sufficient condition which must be satisfied by d at each step in order

to guarantee convergence.

P-5.13 Consider the following real-valued functions of the vector variable x, where A and

b are the coefficient matrix and right-hand system of a given linear system Ax = b and

x∗ = A−1b.

a(x) = ‖x∗ − x‖22,
f(x) = ‖b−Ax‖22,
g(x) = ‖AT b−ATAx‖22,
h(x) = 2(b, x)− (Ax, x).

a. Calculate the gradients of all four functions above.

b. How is the gradient of g related to that of f?

c. How is the gradient of f related to that of h when A is symmetric?

d. How does the function h relate to theA-norm of the error x∗−x whenA is Symmetric

Positive Definite?

P-5.14 The block Gauss-Seidel iteration can be expressed as a method of successive pro-

jections. The subspace K used for each projection is of the form

K = span{ei, ei+1, . . . , ei+p}.

What is L? Not too commonly used an alternative is to take L = AK, which amounts to

solving a least-squares problem instead of a linear system. Develop algorithms for this case.

What are the advantages and disadvantages of the two approaches (ignoring convergence

rates)?

P-5.15 Let the scalars ωi in the additive projection procedure satisfy the constraint

p
∑

i=1

ωi = 1. (5.24)
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It is not assumed that each ωi is positive but only that |ωi| ≤ 1 for all i. The residual vector

is given by the Formula (5.23) or, equivalently,

rk+1 =

p
∑

i=1

ωi(I − Pi)rk.

a. Show that in the least-squares case, we have ‖rk+1‖2 ≤ ‖rk‖2 for any choice of ωi’s

which satisfy the constraint (5.24).

b. We wish to choose a set of ωi’s such that the 2-norm of the residual vector rk+1 is

minimal. Determine this set of ωi’s, assuming that the vectors (I − Pi)rk are all

linearly independent.

c. The “optimal” ωi’s provided in the previous question require the solution of a p × p
Symmetric Positive Definite linear system. Let zi ≡ Viyi be the “search directions”

provided by each of the individual projection steps. To avoid this difficulty, a simpler

strategy is used which consists of performing p successive minimal residual iterations

along these search directions, as is described below.

r := rk
For i = 1, . . . , p Do:

ωi := (r, Azi)/(Azi, Azi)
x := x+ ωizi
r := r − ωiAzi

EndDo

Show that ‖rk+1‖2 ≤ ‖rk‖2. Give a sufficient condition to ensure global convergence.

P-5.16 Consider the iteration: xk+1 = xk +αkdk, where dk is a vector called the direction

of search, and αk is a scalar. It is assumed throughout that dk is a nonzero vector. Consider

a method which determines xk+1 so that the residual ‖rk+1‖2 is the smallest possible.

a. Determine αk so that ‖rk+1‖2 is minimal.

b. Show that the residual vector rk+1 obtained in this manner is orthogonal to Adk .

c. Show that the residual vectors satisfy the relation:

‖rk+1‖2 ≤ ‖rk‖2 sin∠(rk, Adk).

d. Assume that at each step k, we have (rk, Adk) 6= 0. Will the method always converge?

e. Now assume that A is positive definite and select at each step dk ≡ rk. Prove that the

method will converge for any initial guess x0.

P-5.17 Consider the iteration: xk+1 = xk +αkdk, where dk is a vector called the direction

of search, and αk is a scalar. It is assumed throughout that dk is a vector which is selected

in the form dk = AT fk where fk is some nonzero vector. Let x∗ = A−1b be the exact

solution. Now consider a method which at each step k determines xk+1 so that the error

norm ‖x∗ − xk+1‖2 is the smallest possible.

a. Determine αk so that ‖x∗ − xk+1‖2 is minimal and show that the error vector ek+1 =
x∗ − xk+1 is orthogonal to dk. The expression of αk should not contain unknown

quantities (e.g., x∗ or ek).

b. Show that ‖ek+1‖2 ≤ ‖ek‖2 sin∠(ek, dk).

c. Establish the convergence of the algorithm for any x0, when fk ≡ rk for all k.
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NOTES AND REFERENCES. Initially, the term projection methods was used mainly to describe one--

dimensional techniques such as those presented in Section 5.3. An excellent account of what has been

done in the late 1950s and early 1960s can be found in Householder’s book [173] as well as Gastinel

[140]. For more general, including nonlinear, projection processes, a good reference is Kranoselskii

and co-authors [192].

Projection techniques are present in different forms in many other areas of scientific computing

and can be formulated in abstract Hilbert functional spaces. The terms Galerkin and Petrov-Galerkin

techniques are used commonly in finite element methods to describe projection methods on finite ele-

ment spaces. The principles are identical to those seen in this chapter.
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Chapter 6

KRYLOV SUBSPACE METHODS PART I

The next two chapters explore a few methods which are considered currently to be among the

most important iterative techniques available for solving large linear systems. These techniques

are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which

are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these

techniques approximate A−1b by p(A)b, where p is a “good” polynomial. This chapter covers

methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers

methods based on Lanczos biorthogonalization.

6.1 Introduction

Recall from the previous chapter that a general projection method for solving the

linear system

Ax = b, (6.1)

extracts an approximate solution xm from an affine subspace x0 +Km of dimension

m by imposing the Petrov-Galerkin condition

b−Axm ⊥ Lm,

where Lm is another subspace of dimension m. Here, x0 represents an arbitrary

initial guess to the solution. A Krylov subspace method is a method for which the

subspace Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0} ,

where r0 = b − Ax0. When there is no ambiguity, Km(A, r0) will be denoted by

Km. The different versions of Krylov subspace methods arise from different choices

of the subspace Lm and from the ways in which the system is preconditioned, a topic

that will be covered in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approxima-

tions obtained from a Krylov subspace method are of the form

A−1b ≈ xm = x0 + qm−1(A)r0 ,

157
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in which qm−1 is a certain polynomial of degree m − 1. In the simplest case where

x0 = 0, then

A−1b ≈ qm−1(A)b .

In other words, A−1b is approximated by qm−1(A)b.
Although all the techniques provide the same type of polynomial approxima-

tions, the choice of Lm, i.e., the constraints used to build these approximations, will

have an important effect on the iterative technique. Two broad choices for Lm give

rise to the best-known techniques. The first is simply Lm = Km and the minimum-

residual variation Lm = AKm. A few of the numerous methods in this category will

be described in this chapter. The second class of methods is based on defining Lm
to be a Krylov subspace method associated with AT , namely, Lm = Km(AT , r0).
Methods of this class will be covered in the next chapter. There are also block exten-

sions of each of these methods termed block Krylov subspace methods, which will

be discussed only briefly. Note that a projection method may have several differ-

ent implementations, giving rise to different algorithms which are all mathematically

equivalent.

6.2 Krylov Subspaces

In this section we consider projection methods on Krylov subspaces, i.e., subspaces

of the form

Km(A, v) ≡ span {v,Av,A2v, . . . , Am−1v} (6.2)

which will be denoted simply by Km if there is no ambiguity. The dimension of

the subspace of approximants increases by one at each step of the approximation

process. A few elementary properties of Krylov subspaces can be established. A

first property is that Km is the subspace of all vectors in R
n which can be written

as x = p(A)v, where p is a polynomial of degree not exceeding m − 1. Recall that

the minimal polynomial of a vector v is the nonzero monic polynomial p of lowest

degree such that p(A)v = 0. The degree of the minimal polynomial of v with respect

to A is often called the grade of v with respect to A, or simply the grade of v if there

is no ambiguity. A consequence of the Cayley-Hamilton theorem is that the grade of

v does not exceed n. The following proposition is easy to prove.

Proposition 6.1 Let µ be the grade of v. Then Kµ is invariant under A and Km =
Kµ for all m ≥ µ.

It was mentioned above that the dimension of Km is nondecreasing. In fact, the

following proposition determines the dimension of Km in general.

Proposition 6.2 The Krylov subspace Km is of dimension m if and only if the grade

µ of v with respect to A is not less than m, i.e.,

dim(Km) = m ↔ grade(v) ≥ m. (6.3)

Therefore,

dim(Km) = min {m, grade(v)}. (6.4)
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Proof. The vectors v,Av, . . . , Am−1v form a basis of Km if and only if for any

set of m scalars αi, i = 0, . . . ,m − 1, where at least one αi is nonzero, the linear

combination
∑m−1

i=0 αiA
iv is nonzero. This is equivalent to the condition that the

only polynomial of degree ≤ m − 1 for which p(A)v = 0 is the zero polynomial.

The equality (6.4) is a consequence of the previous proposition.

Given a certain subspace X, recall that A|X denotes the restriction of A to X. If

Q is a projector onto X, the section of the operator A in X is the operator from X
onto itself defined by QA|X . The following proposition characterizes the product of

polynomials of A by v in terms of the section of A in Km.

Proposition 6.3 Let Qm be any projector onto Km and let Am be the section of A
to Km, that is, Am = QmA|Km

. Then for any polynomial q of degree not exceeding

m− 1,

q(A)v = q(Am)v ,

and for any polynomial of degree ≤ m,

Qmq(A)v = q(Am)v .

Proof. First we prove that q(A)v = q(Am)v for any polynomial q of degree≤ m−1.

It is sufficient to show the property for the monic polynomials qi(t) ≡ ti, i =
0, . . . ,m − 1. The proof is by induction. The property is true for the polynomial

q0(t) ≡ 1. Assume that it is true for qi(t) ≡ ti:

qi(A)v = qi(Am)v .

Multiplying the above equation by A on both sides yields

qi+1(A)v = Aqi(Am)v .

If i+1 ≤ m− 1 the vector on the left-hand side belongs to Km, and therefore if the

above equation is multiplied on both sides by Qm, then

qi+1(A)v = QmAqi(Am)v.

Looking at the right-hand side we observe that qi(Am)v belongs to Km. Hence,

qi+1(A)v = QmA|Km
qi(Am)v = qi+1(Am)v,

which proves that the property is true for i+1, provided i+1 ≤ m− 1. For the case

i + 1 = m, it only remains to show that Qmqm(A)v = qm(Am)v, which follows

from qm−1(A)v = qm−1(Am)v by simply multiplying both sides by QmA.
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6.3 Arnoldi’s Method

Arnoldi’s method [9] is an orthogonal projection method onto Km for general non-

Hermitian matrices. The procedure was first introduced in 1951 as a means of reduc-

ing a dense matrix into Hessenberg form with a unitary transformation. In his paper,

Arnoldi hinted that the eigenvalues of the Hessenberg matrix obtained from a number

of steps smaller than n could provide accurate approximations to some eigenvalues

of the original matrix. It was later discovered that this strategy leads to an efficient

technique for approximating eigenvalues of large sparse matrices and the technique

was then extended to the solution of large sparse linear systems of equations. The

method will first be described theoretically, i.e., assuming exact arithmetic, then im-

plementation details will be addressed.

6.3.1 The Basic Algorithm

Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov

subspace Km. In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1 Arnoldi

1. Choose a vector v1, such that ‖v1‖2 = 1
2. For j = 1, 2, . . . ,m Do:

3. Compute hij = (Avj , vi) for i = 1, 2, . . . , j

4. Compute wj := Avj −
∑j

i=1 hijvi
5. hj+1,j = ‖wj‖2
6. If hj+1,j = 0 then Stop

7. vj+1 = wj/hj+1,j

8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector vj by A and

then orthonormalizes the resulting vector wj against all previous vi’s by a standard

Gram-Schmidt procedure. It will stop if the vector wj computed in line 4 vanishes.

This case will be examined shortly. Now a few simple properties of the algorithm

are proved.

Proposition 6.4 Assume that Algorithm 6.1 does not stop before the m-th step. Then

the vectors v1, v2, . . . , vm form an orthonormal basis of the Krylov subspace

Km = span{v1, Av1, . . . , Am−1v1}.

Proof. The vectors vj , j = 1, 2, . . . ,m, are orthonormal by construction. That they

span Km follows from the fact that each vector vj is of the form qj−1(A)v1 where

qj−1 is a polynomial of degree j−1. This can be shown by induction on j as follows.

The result is clearly true for j = 1, since v1 = q0(A)v1 with q0(t) ≡ 1. Assume that

the result is true for all integers ≤ j and consider vj+1. We have

hj+1,jvj+1 = Avj −
j
∑

i=1

hijvi = Aqj−1(A)v1 −
j
∑

i=1

hijqi−1(A)v1 (6.5)
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which shows that vj+1 can be expressed as qj(A)v1 where qj is of degree j and

completes the proof.

Proposition 6.5 Denote by Vm, the n ×m matrix with column vectors v1, . . ., vm,

by H̄m, the (m + 1) ×m Hessenberg matrix whose nonzero entries hij are defined

by Algorithm 6.1, and by Hm the matrix obtained from H̄m by deleting its last row.

Then the following relations hold:

AVm = VmHm + wme
T
m (6.6)

= Vm+1H̄m, (6.7)

V T
mAVm = Hm. (6.8)

Proof. The relation (6.7) follows from the following equality which is readily derived

from lines 4, 5, and 7 of Algorithm 6.1,

Avj =

j+1
∑

i=1

hijvi, j = 1, 2, . . . ,m. (6.9)

Relation (6.6) is a matrix reformulation of (6.9). Relation (6.8) follows by multiply-

ing both sides of (6.6) by V T
m and making use of the orthonormality of {v1, . . . , vm}.

The result of the proposition is illustrated in Figure 6.1.

Vm + wme
T
m=A

Hm

Vm

Figure 6.1: The action of A on Vm gives VmHm plus a rank-one matrix.

As was noted earlier, the algorithm may break down in case the norm of wj

vanishes at a certain step j. In this case, the vector vj+1 cannot be computed and the

algorithm stops. Still to be determined are the conditions under which this situation

occurs.

Proposition 6.6 Arnoldi’s algorithm breaks down at step j (i.e., hj+1,j = 0 in Line

5 of Algorithm 6.1), if and only if the minimal polynomial of v1 is of degree j. More-

over, in this case the subspace Kj is invariant under A.
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Proof. If the degree of the minimal polynomial is j, then wj must be equal to zero.

Indeed, otherwise vj+1 can be defined and as a result Kj+1 would be of dimension

j+1. Then Proposition 6.2 would imply that µ ≥ j+1, which is a contradiction. To

prove the converse, assume that wj = 0. Then the degree µ of the minimal polyno-

mial of v1 is such that µ ≤ j. Moreover, it is impossible that µ < j. Otherwise, by

the first part of this proof, the vector wµ would be zero and the algorithm would have

stopped at the earlier step number µ. The rest of the result follows from Proposition

6.1.

A corollary of the proposition is that a projection method onto the subspace Kj

will be exact when a breakdown occurs at step j. This result follows from Proposition

5.6 seen in Chapter 5. It is for this reason that such breakdowns are often called lucky

breakdowns.

6.3.2 Practical Implementations

In the previous description of the Arnoldi process, exact arithmetic was assumed,

mainly for simplicity. In practice, much can be gained by using the Modified Gram-

Schmidt or the Householder algorithm instead of the standard Gram-Schmidt algo-

rithm. With the Modified Gram-Schmidt alternative the algorithm takes the following

form:

ALGORITHM 6.2 Arnoldi-Modified Gram-Schmidt

1. Choose a vector v1 of norm 1

2. For j = 1, 2, . . . ,m Do:

3. Compute wj := Avj
4. For i = 1, . . . , j Do:

5. hij = (wj , vi)
6. wj := wj − hijvi
7. EndDo

8. hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop

9. vj+1 = wj/hj+1,j

10. EndDo

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent.

In the presence of round-off the above formulation is much more reliable. However,

there are cases where cancellations are so severe in the orthogonalization steps that

even the Modified Gram-Schmidt option is inadequate. In this case, two further

improvements can be utilized.

The first improvement resorts to double orthogonalization. Whenever the final

vector wj obtained at the end of the main loop in the above algorithm has been

computed, a test is performed to compare its norm with the norm of the initial wj

(which is ‖Avj‖2). If the reduction falls below a certain threshold, indicating severe

cancellation might have occurred, a second orthogonalization is made. It is known
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from a result by Kahan that additional orthogonalizations are superfluous (see, for

example, Parlett [224]).

The second improvement is to use a different technique altogether. From the

numerical point of view, one of the most reliable orthogonalization techniques is the

Householder algorithm. Recall from Chapter 1 that the Householder orthogonaliza-

tion uses reflection matrices of the form Pk = I − 2wkw
T
k to transform a matrix X

into upper triangular form. In the Arnoldi algorithm, the column vectors of the ma-

trix X to be orthonormalized are not available ahead of time. Instead, the next vector

is obtained as Avj , where vj is the current basis vector. In the Householder algo-

rithm an orthogonal column vi is obtained as P1P2 . . . Piei where P1, . . . , Pi are the

previous Householder matrices. This vector is then multiplied by A and the previous

Householder transforms are applied to it. Then, the next Householder transform is

determined from the resulting vector. This procedure is described in the following

algorithm, which was originally proposed by Walker [303].

ALGORITHM 6.3 Householder Arnoldi

1. Select a nonzero vector v; Set z1 = v
2. For j = 1, . . . ,m,m+ 1 Do:

3. Compute the Householder unit vector wj such that

4. (wj)i = 0, i = 1, . . . , j − 1 and

5. (Pjzj)i = 0, i = j + 1, . . . , n, where Pj = I − 2wjw
T
j

6. hj−1 = Pjzj
7. vj = P1P2 . . . Pjej
8. If j ≤ m compute zj+1 := PjPj−1 . . . P1Avj
9. EndDo

For details regarding the determination of the Householder vector wj in the third

to fifth lines and on its use in the sixth to eight lines, see Chapter 1. Recall that

the matrices Pj need not be formed explicitly. To obtain hj−1 from zj in line 6,

zero out all the components from position j + 1 through n of the n-vector zj and

change its j-th component, leaving all others unchanged. Thus, the n × m matrix

[h0, h1, . . . , hm] will have the same structure as the matrix Xm of equation (1.27)

in Chapter 1. By comparison with the Householder algorithm seen in Chapter 1,

we can infer that the above process computes the QR factorization of the matrix

v,Av1, Av2, Av3, . . . , Avm. Define

Qj = PjPj−1 . . . P1. (6.10)

The definition of zj+1 in line 8 of the algorithm yields the relation,

QjAvj = zj+1.

After the next Householder transformation Pj+1 is applied in line 6, hj satisfies the

relation,

hj = Pj+1zj+1 = Pj+1QjAvj = Qj+1Avj. (6.11)



164 CHAPTER 6. KRYLOV SUBSPACE METHODS PART I

Now observe that since the components j + 2, . . . , n of hj are zero, then Pihj = hj
for any i ≥ j + 2. Hence,

hj = PmPm−1 . . . Pj+2hj = QmAvj , j = 1, . . . ,m.

This leads to the factorization,

Qm[v,Av1, Av2, . . . , Avm] = [h0, h1, . . . , hm] (6.12)

where the matrix [h0, . . . , hm] is n × (m + 1) and is upper triangular and Qm is

unitary.

It is important to relate the vectors vi and hi defined in this algorithm with vectors

of the standard Arnoldi process. Let H̄m be the (m+ 1)× m matrix obtained from

the first m + 1 rows of the n × m matrix [h1, . . . , hm]. Since Qj+1 is unitary we

have Q−1
j+1 = QT

j+1 and hence, from the relation (6.11)

Avj = QT
j+1

j+1
∑

i=1

hijei =

j+1
∑

i=1

hijQ
T
j+1ei

where each ei is the i-th column of the n × n identity matrix. Since Pkei = ei for

i < k, it is not difficult to see that

QT
j+1ei = P1 . . . Pj+1ei = vi, for i ≤ j + 1. (6.13)

This yields the relation Avj =
∑j+1

i=1 hijvi, for j = 1, . . . ,m, which can be written

in matrix form as

AVm = Vm+1H̄m.

This is identical with the relation (6.7) obtained with the Gram-Schmidt or Modified

Gram-Schmidt implementation. The vi’s form an orthonormal basis of the Krylov

subspace Km and are identical with the vi’s defined by the Arnoldi process, apart

from a possible sign difference.

Although the Householder algorithm is numerically more viable than the Gram-

Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of

each of the outer loops, corresponding to the j control variable, is dominated by lines

7 and 8. These apply the reflection matrices Pi for i = 1, . . . , j to a vector, perform

the matrix-vector product Avj , and then apply the matrices Pi for i = j, j − 1, . . . , 1
to a vector. The application of each Pi to a vector is performed as

(I − 2wiw
T
i )v = v − σwi with σ = 2wT

i v.

This is essentially the result of a dot-product of length n− i+1 followed by a vector

update of the same length, requiring a total of about 4(n − i + 1) operations for

each application of Pi. Neglecting the last step, the number of operations due to the

Householder transformations alone approximately totals

m∑

j=1

j
∑

i=1

8(n − i+ 1) = 8
m∑

j=1

(

jn − j(j − 1)

2

)

≈ 4m2n− 4

3
m3.
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The table below shows the costs of different orthogonalization procedures. GS stands

for Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-

Schmidt with reorthogonalization, and HO for Householder.

GS MGS MGSR HO

Flops 2m2n 2m2n 4m2n 4m2n− 4
3m

3

Storage (m+ 1)n (m+ 1)n (m+ 1)n (m+ 1)n− 1
2m

2

The number of operations shown for MGSR corresponds to the worst case scenario

when a second orthogonalization is performed each time. In practice, the number

of operations is usually closer to that of the standard MGS. Regarding storage, the

vectors vi, i = 1, . . . ,m need not be saved. In the algorithms for solving linear

systems, these vectors are needed at the end of the process. This issue will be covered

with the Householder implementations of these algorithms. For now, assume that

only the wi’s are saved. The small gain in memory usage in the Householder version

can be explained by the diminishing lengths of the vectors required at each step of

the Householder transformation. However, this difference is negligible relative to the

whole storage requirement of the algorithm, because m≪ n, typically.

The Householder orthogonalization may be a reasonable choice when developing

general purpose, reliable software packages where robustness is a critical criterion.

This is especially true for solving eigenvalue problems since the cost of orthogo-

nalization is then amortized over several eigenvalue/eigenvector calculations. When

solving linear systems, the Modified Gram-Schmidt orthogonalization, with a re-

orthogonalization strategy based on a measure of the level of cancellation, is more

than adequate in most cases.

6.4 Arnoldi’s Method for Linear Systems (FOM)

Given an initial guess x0 to the original linear system Ax = b, we now consider an

orthogonal projection method as defined in the previous chapter, which takes L =
K = Km(A, r0), with

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}, (6.14)

in which r0 = b − Ax0. This method seeks an approximate solution xm from the

affine subspace x0 +Km of dimension m by imposing the Galerkin condition

b−Axm ⊥ Km. (6.15)

If v1 = r0/‖r0‖2 in Arnoldi’s method, and we set β = ‖r0‖2, then

V T
mAVm = Hm

by (6.8) and

V T
m r0 = V T

m (βv1) = βe1.
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As a result, the approximate solution using the above m-dimensional subspaces is

given by

xm = x0 + Vmym, (6.16)

ym = H−1
m (βe1). (6.17)

A method based on this approach and called the Full Orthogonalization Method

(FOM) is described next. Modified Gram-Schmidt is used in the Arnoldi procedure.

ALGORITHM 6.4 Full Orthogonalization Method (FOM)

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. Define the m×m matrix Hm = {hij}i,j=1,...,m; Set Hm = 0
3. For j = 1, 2, . . . ,m Do:

4. Compute wj := Avj
5. For i = 1, . . . , j Do:

6. hij = (wj , vi)
7. wj := wj − hijvi
8. EndDo

9. Compute hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and Goto 12

10. Compute vj+1 = wj/hj+1,j .

11. EndDo

12. Compute ym = H−1
m (βe1) and xm = x0 + Vmym

The above algorithm depends on a parameter m which is the dimension of the

Krylov subspace. In practice it is desirable to select m in a dynamic fashion. This

would be possible if the residual norm of the solution xm is available inexpensively

(without having to compute xm itself). Then the algorithm can be stopped at the

appropriate step using this information. The following proposition gives a result in

this direction.

Proposition 6.7 The residual vector of the approximate solution xm computed by

the FOM Algorithm is such that

b−Axm = −hm+1,me
T
mymvm+1

and, therefore,

‖b−Axm‖2 = hm+1,m|eTmym|. (6.18)

Proof. We have the relations,

b−Axm = b−A(x0 + Vmym)

= r0 −AVmym
= βv1 − VmHmym − hm+1,me

T
mymvm+1.

By the definition of ym, Hmym = βe1, and so βv1 − VmHmym = 0 from which the

result follows.
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A rough estimate of the cost of each step of the algorithm is determined as fol-

lows. If Nz(A) is the number of nonzero elements of A, then m steps of the Arnoldi

procedure will require m matrix-vector products at the cost of 2m × Nz(A). Each

of the Gram-Schmidt steps costs approximately 4× j × n operations, which brings

the total over the m steps to approximately 2m2n. Thus, on the average, a step of

FOM costs approximately

2Nz(A) + 2mn.

Regarding storage, m vectors of length n are required to save the basis Vm. Addi-

tional vectors must be used to keep the current solution and right-hand side, and a

scratch vector for the matrix-vector product. In addition, the Hessenberg matrix Hm

must be saved. The total is therefore roughly

(m+ 3)n+
m2

2
.

In most situations m is small relative to n, so this cost is dominated by the first term.

6.4.1 Variation 1: Restarted FOM

Consider now the algorithm from a practical viewpoint. As m increases, the com-

putational cost increases at least as O(m2n) because of the Gram-Schmidt orthogo-

nalization. The memory cost increases as O(mn). For large n this limits the largest

value of m that can be used. There are two remedies. The first is to restart the

algorithm periodically and the second is to “truncate” the orthogonalization in the

Arnoldi algorithm. In this section we consider the first of these two options, which

is described below.

ALGORITHM 6.5 Restarted FOM (FOM(m))

1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β.

2. Generate the Arnoldi basis and the matrix Hm using the Arnoldi algorithm

3. starting with v1.

4. Compute ym = H−1
m βe1 and xm = x0 + Vmym. If satisfied then Stop.

5. Set x0 := xm and go to 1.

There are many possible variations to this basic scheme. One that is generally

more economical in practice is based on the observation that sometimes a small m is

sufficient for convergence and sometimes the largest possible m is necessary. Hence,

the idea of averaging over different values of m. Start the algorithm with m = 1 and

increment m by one in line 5 until a certain mmax is reached, after which m is reset

to one, or kept the same. These variations will not be considered here.

Example 6.1. Table 6.1 shows the results of applying FOM(10) with no precon-

ditioning to three of the test problems described in Section 3.7. The column labeled

Iters shows the total actual number of matrix-vector multiplications (matvecs) re-

quired to converge. The stopping criterion used is that the 2-norm of the residual be
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Matrix Iters Kflops Residual Error

F2DA 109 4442 0.36E-03 0.67E-04

F3D 66 11664 0.87E-03 0.35E-03

ORS 300 13558 0.26E+00 0.71E-04

Table 6.1: A test run of FOM with no preconditioning.

reduced by a factor of 107 relative to the 2-norm of the initial residual. A maximum

of 300 matvecs are allowed. Kflops is the total number of floating point operations

performed, in thousands. Residual and Error represent the two-norm of the residual

and error vectors, respectively. Note that the method did not succeed in solving the

third problem.

6.4.2 Variation 2: IOM and DIOM

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an

integer k is selected and the following “incomplete” orthogonalization is performed.

ALGORITHM 6.6 Incomplete Orthogonalization Process

1. For j = 1, 2, . . . ,m Do:

2. Compute wj := Avj
3. For i = max{1, j − k + 1}, . . . , j Do:

4. hi,j = (wj , vi)
5. wj := wj − hijvi
6. EndDo

7. Compute hj+1,j = ‖wj‖2 and vj+1 = wj/hj+1,j

8. EndDo

The number of directions k against which to orthogonalize may be dictated by

memory limitations. The Incomplete Orthogonalization Method (IOM) consists of

performing the above incomplete orthogonalization procedure and computing an ap-

proximate solution using the same formulas (6.16) and (6.17).

ALGORITHM 6.7 IOM Algorithm

Run a modification of Algorithm 6.4 in which the Arnoldi process in lines

3 to 11 is replaced by the Incomplete Orthogonalization process and every

other computation remains unchanged.

It is now necessary to keep only the k previous vi vectors. The others are not

needed in the above process and may be discarded. However, the difficulty re-

mains that when the solution is computed by formula (6.16), all the vectors vi for
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i = 1, 2, . . . ,m are required. One option is to recompute them at the end, but essen-

tially this doubles the cost of the algorithm. Fortunately, a formula can be developed

whereby the current approximate solution xm can be updated from the previous ap-

proximation xm−1 and a small number of vectors that are also updated at each step.

This progressive formulation of the solution leads to an algorithm termed Direct IOM

(DIOM) which we now derive.

The Hessenberg matrixHm obtained from the incomplete orthogonalization pro-

cess has a band structure with a bandwidth of k + 1. For example, when k = 3 and

m = 5, it is of the form

Hm =









h11 h12 h13
h21 h22 h23 h24

h32 h33 h34 h35
h43 h44 h45

h54 h55









. (6.19)

The Direct version of IOM is derived from exploiting the special structure of the

LU factorization, Hm = LmUm, of the matrix Hm. Assuming no pivoting is used,

the matrix Lm is unit lower bidiagonal and Um is banded upper triangular, with k
diagonals. Thus, the above matrix has a factorization of the form

Hm =









1
l21 1

l32 1
l43 1

l54 1









×









u11 u12 u13
u22 u23 u24

u33 u34 u35
u44 u45

u55









.

The approximate solution is then given by

xm = x0 + VmU
−1
m L−1

m (βe1).

Defining

Pm ≡ VmU−1
m

and

zm = L−1
m (βe1),

the approximate solution is given by

xm = x0 + Pmzm. (6.20)

Because of the structure of Um, Pm can be updated easily. Indeed, equating the

last columns of the matrix relation PmUm = Vm yields

m∑

i=m−k+1

uimpi = vm,

which allows the vector pm to be computed from the previous pi’s and vm:

pm =
1

umm

[

vm −
m−1∑

i=m−k+1

uimpi

]

.
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In addition, because of the structure of Lm, we have the relation

zm =

[
zm−1

ζm

]

in which

ζm = −lm,m−1ζm−1.

From (6.20),

xm = x0 + [Pm−1, pm]

[
zm−1

ζm

]

= x0 + Pm−1zm−1 + ζmpm.

Noting that x0 + Pm−1zm−1 = xm−1, it follows that the approximation xm can be

updated at each step by the relation,

xm = xm−1 + ζmpm (6.21)

where pm is defined above. This gives the following algorithm, called the Direct

Incomplete Orthogonalization Method (DIOM).

ALGORITHM 6.8 DIOM

1. Choose x0 and compute r0 = b−Ax0, β := ‖r0‖2, v1 := r0/β.

2. For m = 1, 2, . . ., until convergence Do:

3. Compute him, i = max{1,m − k + 1}, . . . ,m and vm+1 as in

4. lines 2-7 of Algorithm (6.6).

5. Update the LU factorization of Hm, i.e., obtain the last column

6. of Um using the previous k pivots. If umm = 0 Stop.

7. ζm = { if m = 1 then β, else − lm,m−1 ζm−1}
8. pm = u−1

mm

(

vm −
∑m−1

i=m−k+1 uimpi

)

( for i ≤ 0 set uimpi ≡ 0)

9. xm = xm−1 + ζmpm
10. EndDo

The costs of the above algorithm as well as the IOM algorithm are the subject of

Exercise 6.

Observe that (6.6) is still valid and as a consequence, Proposition 6.7, which is

based on it, still holds. That is because the orthogonality properties were not used to

derive the two relations therein. A result of this is that Equation (6.18) still holds and

it is then easy to show that

‖b−Axm‖2 = hm+1,m|eTmym| = hm+1,m

∣
∣
∣
∣

ζm
umm

∣
∣
∣
∣
.

DIOM can also be derived by imposing the properties that are satisfied by the residual

vector and the conjugate directions, i.e., the pi’s. Note that the above algorithm is

based implicitly on Gaussian elimination without pivoting for the solution of the

Hessenberg system Hmym = βe1. This may cause a premature termination in line
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6. Fortunately, an implementation is available which relies on Gaussian elimination

with partial pivoting. The details of this variant can be found in [240].

Since the residual vector is a scalar multiple of vm+1 and since the vi’s are no

longer orthogonal, IOM and DIOM are not orthogonal projection techniques. They

can, however, be viewed as oblique projection techniques onto Km and orthogonal

to an artificially constructed subspace.

Proposition 6.8 IOM and DIOM are mathematically equivalent to a projection pro-

cess onto Km and orthogonally to

Lm = span{z1, z2, . . . , zm}

where

zi = vi − (vi, vm+1)vm+1, i = 1, . . . ,m.

Proof. The proof is an immediate consequence of the fact that rm is a multiple of

vm+1 and by construction, vm+1 is orthogonal to all zi’s defined in the proposition.

The following simple properties can be shown:

• The residual vectors ri, i = 1, . . . ,m, are “locally” orthogonal,

(rj , ri) = 0, for |i− j| ≤ k, i 6= j. (6.22)

• The pj’s are locally A-orthogonal to the Arnoldi vectors, i.e.,

(Apj , vi) = 0 for j − k + 1 < i < j. (6.23)

• For the case k =∞ (full orthogonalization) the pj’s are semi-conjugate, i.e.,

(Apj , pi) = 0 for i < j. (6.24)

6.5 GMRES

The Generalized Minimum Residual Method (GMRES) is a projection method based

on taking K = Km and L = AKm, in which Km is the m-th Krylov subspace with

v1 = r0/‖r0‖2. As seen in Chapter 5, such a technique minimizes the residual norm

over all vectors in x0 + Km. The implementation of an algorithm based on this

approach is similar to that of the FOM algorithm. We first describe the basic idea

and then discuss practical details and a few variations.
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6.5.1 The Basic GMRES Algorithm

There are two ways to derive the algorithm. The first way exploits the optimality

property and the relation (6.7). Any vector x in x0 +Km can be written as

x = x0 + Vmy, (6.25)

where y is an m-vector. Defining

J(y) = ‖b−Ax‖2 = ‖b−A (x0 + Vmy) ‖2, (6.26)

the relation (6.7) results in

b−Ax = b−A (x0 + Vmy)

= r0 −AVmy
= βv1 − Vm+1H̄my

= Vm+1

(
βe1 − H̄my

)
. (6.27)

Since the column-vectors of Vm+1 are orthonormal, then

J(y) ≡ ‖b−A (x0 + Vmy) ‖2 = ‖βe1 − H̄my‖2. (6.28)

The GMRES approximation is the unique vector of x0+Km which minimizes (6.26).

By (6.25) and (6.28), this approximation can be obtained quite simply as xm =
x0 + Vmym where ym minimizes the function J(y) = ‖βe1 − H̄my‖2, i.e.,

xm = x0 + Vmym, where (6.29)

ym = argminy‖βe1 − H̄my‖2. (6.30)

The minimizer ym is inexpensive to compute since it requires the solution of an

(m + 1) × m least-squares problem where m is typically small. This gives the

following algorithm.

ALGORITHM 6.9 GMRES

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. For j = 1, 2, . . . ,m Do:

3. Compute wj := Avj
4. For i = 1, . . . , j Do:

5. hij := (wj , vi)
6. wj := wj − hijvi
7. EndDo

8. hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 11

9. vj+1 = wj/hj+1,j

10. EndDo

11. Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m.

12. Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

The second way to derive the GMRES algorithm is to use the equations (5.7)

with Wm = AVm. This is the subject of Exercise 5.
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6.5.2 The Householder Version

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the

Arnoldi process. Section 6.3.2 described a Householder variant of the Arnoldi pro-

cess which is numerically more robust than Gram-Schmidt. Here, we focus on a

modification of GMRES which retrofits the Householder orthogonalization. Section

6.3.2 explained how to get the vj and the columns of H̄m+1 at each step, from the

Householder-Arnoldi algorithm. Since Vm and H̄m are the only items needed to ex-

tract the approximate solution at the end of the GMRES process, the modification

seems rather straightforward. However, this is only true if the vi’s are stored. In this

case, line 12 would remain the same and the modification to the algorithm would

be in lines 3-11 which are to be replaced by the Householder variant of the Arnoldi

process. It was mentioned in Section 6.3.2 that it is preferable not to store the vi’s
because this would double the storage requirement. In this case, a formula must be

found to generate the approximate solution in line 12, using only the wi’s, i.e., the

Pi’s. Let

ym = (η1, η2, · · · , ηm)T ,

so that the solution is of the form xm = x0 + η1v1 + · · · + ηmvm. Recall that in the

Householder variant of the Arnoldi process, each vj is defined by

vj = P1P2 . . . Pjej .

Using a Horner-like scheme, we obtain

xm = x0 + η1P1e1 + η2P1P2e2 + . . .+ ηmP1P2 . . . Pmem

= x0 + P1 (η1e1 + P2 (η2e2 + . . .+ Pm−1 (ηm−1em−1 + Pmηmem))) .

Therefore, when Householder orthogonalization is used, then line 12 of the GMRES

algorithm should be replaced by a step of the form

z := 0 (6.31)

z := Pj (ηjej + z) , j = m,m− 1, . . . , 1 (6.32)

xm = x0 + z. (6.33)

The above step requires roughly as many operations as computing the last Arnoldi

vector vm. Therefore, its cost is negligible relative to the cost of the Arnoldi loop.
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ALGORITHM 6.10 GMRES with Householder orthogonalization

1. Compute r0 = b−Ax0, z := r0.

2. For j = 1, . . . ,m,m+ 1 Do:

3. Compute the Householder unit vector wj such that

4. (wj)i = 0, i = 1, . . . , j − 1 and

5. (Pjz)i = 0, i = j + 1, . . . , n where Pj = I − 2wjw
T
j ;

6. hj−1 := Pjz; If j = 1 then let β := eT1 h0.

7. v := P1P2 . . . Pjej .
8. If j ≤ m compute z := PjPj−1 . . . P1Av,

9. EndDo

10. Define H̄m = the (m+ 1)×m upper part of the matrix [h1, . . . , hm].
11. Compute ym = Argminy‖βe1 − H̄my‖2. Let ym = (η1, η2, . . . , ηm)T .

12. z := 0

13. For j = m,m− 1, . . . , 1 Do:

14. z := Pj (ηjej + z),
15. EndDo

16. Compute xm = x0 + z

Note that now only the set of wj vectors needs to be saved. The scalar β defined

in line 6 is equal to ±‖r0‖2. This is because P1z = βe1 where β is defined by the

equations (1.26) seen in Chapter 1, which define the first Householder transforma-

tion. As was observed earlier the Householder factorization actually obtains the QR

factorization (6.12) with v = r0. We can also formulate GMRES directly from this

factorization. Indeed, if x = x0 + Vmym, then according to this factorization, the

corresponding residual norm is equal to

‖h0 − η1h1 − η2h2 − . . . − ηmhm‖2

whose minimizer is the same as the one defined by the algorithm.

The details of implementation of the solution of the least-squares problem as well

as the estimate of the residual norm are identical with those of the Gram-Schmidt

versions and are discussed next.

6.5.3 Practical Implementation Issues

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate

solution xm explicitly at each step. As a result, it is not easy to determine when to

stop. One remedy is to compute the approximation solution xm at regular intervals

and check for convergence by a test on the residual, for example. However, there is a

more elegant solution which is related to the way in which the least-squares problem

(6.30) is solved.

A common technique to solve the least-squares problem min ‖βe1−H̄my‖2, is to

transform the Hessenberg matrix into upper triangular form by using plane rotations.
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Define the rotation matrices

Ωi =















1
. . .

1
ci si
−si ci

1
. . .

1















← row i
← row i+ 1

(6.34)

with c2i + s2i = 1. If m steps of the GMRES iteration are performed then these

matrices have dimension (m+ 1)× (m+ 1).
Multiply the Hessenberg matrix H̄m and the corresponding right-hand side ḡ0 ≡

βe1 by a sequence of such matrices from the left. The coefficients si, ci are selected

to eliminate hi+1,i at each time. Thus, if m = 5 we would have

H̄5 =











h11 h12 h13 h14 h15
h21 h22 h23 h24 h25

h32 h33 h34 h35
h43 h44 h45

h54 h55
h65











, ḡ0 =











β
0
0
0
0
0











.

Then premultiply H̄5 by

Ω1 =









c1 s1
−s1 c1

1
1

1









with

s1 =
h21

√

h211 + h221
, c1 =

h11
√

h211 + h221
to obtain the matrix and right-hand side

H̄
(1)
5 =











h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14 h

(1)
15

h
(1)
22 h

(1)
23 h

(1)
24 h

(1)
25

h32 h33 h34 h35
h43 h44 h45

h54 h55
h65











, ḡ1 =











c1β
−s1β
0
0
0
0











. (6.35)

We can now premultiply the above matrix and right-hand side again by a rotation

matrix Ω2 to eliminate h32. This is achieved by taking

s2 =
h32

√

(h
(1)
22 )

2 + h232

, c2 =
h
(1)
22

√

(h
(1)
22 )

2 + h232

.
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This elimination process is continued until the m-th rotation is applied, which trans-

forms the problem into one involving the matrix and right-hand side,

H̄
(5)
5 =












h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25

h
(5)
33 h

(5)
34 h

(5)
35

h
(5)
44 h

(5)
45

h
(5)
55

0












, ḡ5 =











γ1
γ2
γ3
.
.
γ6











. (6.36)

Generally, the scalars ci and si of the ith rotation Ωi are defined as

si =
hi+1,i

√

(h
(i−1)
ii )2 + h2i+1,i

, ci =
h
(i−1)
ii

√

(h
(i−1)
ii )2 + h2i+1,i

. (6.37)

Define Qm the product of matrices Ωi,

Qm = ΩmΩm−1 . . .Ω1 (6.38)

and

R̄m = H̄(m)
m = QmH̄m, (6.39)

ḡm = Qm(βe1) = (γ1, . . . , γm+1)
T . (6.40)

Since Qm is unitary,

min ‖βe1 − H̄my‖2 = min ‖ḡm − R̄my‖2.

The solution to the above least-squares problem is obtained by simply solving the

triangular system resulting from deleting the last row of the matrix R̄m and right-

hand side ḡm in (6.36). In addition, it is clear that for the solution y∗, the “residual”

‖βe1− H̄my∗‖ is nothing but the last element of the right-hand side, i.e., the term γ6
in the above illustration.

Proposition 6.9 Let m ≤ n and Ωi, i = 1, . . . ,m be the rotation matrices used to

transform H̄m into an upper triangular form. Denote byRm, ḡm = (γ1, . . . , γm+1)
T

the resulting matrix and right-hand side, as defined by (6.39), (6.40). and by Rm, gm
them×m upper triangular matrix and m-dimensional vector obtained from R̄m, ḡm
by deleting their last row and component respectively. Then,

1. The rank of AVm is equal to the rank of Rm. In particular, if rmm = 0 then A
must be singular.

2. The vector ym which minimizes ‖βe1 − H̄my‖2 is given by

ym = R−1
m gm.
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3. The residual vector at step m satisfies

b−Axm = Vm+1

(
βe1 − H̄mym

)
= Vm+1Q

T
m(γm+1em+1) (6.41)

and, as a result,

‖b−Axm‖2 = |γm+1|. (6.42)

Proof. To prove first part (1), use (6.7), to obtain the relation

AVm = Vm+1H̄m

= Vm+1Q
T
mQmH̄m

= Vm+1Q
T
mR̄m.

Since Vm+1Q
T
m is unitary, the rank of AVm is that of R̄m, which equals the rank

of Rm since these two matrices differ only by a zero row (the last row of R̄m). If

rmm = 0 then Rm is of rank ≤ m− 1 and as a result AVm is also of rank ≤ m− 1.

Since Vm is of full rank, this means that A must be singular.

The second part (2), was essentially proved before the proposition. For any vec-

tor y,

‖βe1 − H̄my‖22 = ‖Qm(βe1 − H̄my)‖22
= ‖ḡm − R̄my‖22
= |γm+1|2 + ‖gm −Rmy‖22 (6.43)

The minimum of the left-hand side is reached when the second term in the right-hand

side of (6.43) is zero. Since Rm is nonsingular, this is achieved when y = R−1
m gm.

To prove the third part (3), we start with the definitions used for GMRES and the

relation (6.27). For any x = x0 + Vmy,

b−Ax = Vm+1

(
βe1 − H̄my

)

= Vm+1Q
T
m Qm

(
βe1 − H̄my

)

= Vm+1Q
T
m

(
ḡm − R̄my

)
.

As was seen in the proof of the second part above, the 2-norm of ḡm − R̄my is

minimized when y annihilates all components of the right-hand side ḡm except the

last one, which is equal to γm+1. As a result,

b−Axm = Vm+1Q
T
m(γm+1em+1)

which is (6.41). The result (6.42) follows from the orthonormality of the column-

vectors of Vm+1Q
T
m.

So far we have only described a process for computing the least-squares solu-

tion ym of (6.30). Note that this approach with plane rotations can also be used to

solve the linear system (6.17) for the FOM method. The only difference is that the
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last rotation Ωm must be omitted. In particular, a single program can be written to

implement both algorithms using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each

step of the GMRES algorithm. This approach will allow one to obtain the residual

norm at every step, with virtually no additional arithmetic operations. To illustrate

this, start with (6.36), i.e., assume that the firstm rotations have already been applied.

Now the residual norm is available for x5 and the stopping criterion can be applied.

Assume that the test dictates that further steps be taken. One more step of the Arnoldi

algorithm must be executed to get Av6 and the 6-th column of H̄6. This column is

appended to R̄5 which has been augmented by a zero row to match the dimension.

Then the previous rotations Ω1, Ω2, . . ., Ω5 are applied to this last column. After this

is done the following matrix and right-hand side are obtained (superscripts are now

omitted from the hij entries):

H̄
(5)
6 =













h11 h12 h13 h14 h15 h16
h22 h23 h24 h25 h26

h33 h34 h35 h36
h44 h45 h46

h55 h56
0 h66
0 h76













, ḡ
(5)
6 =













γ1
γ2
γ3
.
.
γ6
0













. (6.44)

The algorithm now continues in the same way as before. We need to premultiply the

matrix by a rotation matrix Ω6 (now of size 7× 7) with

s6 =
h76

√

(h66)2 + h276
, c6 =

h
(5)
66

√

(h
(5)
66 )

2 + h276

(6.45)

to get the matrix and right-hand side,

R̄6 =













r11 r12 r13 r14 r15 r16
r22 r23 r24 r25 r26

r33 r34 r35 r36
r44 r45 r46

r55 r56
r66
0













, ḡ6 =













γ1
γ2
γ3
.
.

c6γ6
−s6γ6













. (6.46)

If the residual norm as given by |γm+1| is small enough, the process must be

stopped. The last rows of R̄m and ḡm are deleted and the resulting upper triangular

system is solved to obtain ym. Then the approximate solution xm = x0 + Vmym is

computed.

Note from (6.46) that the following useful relation for γj+1 results

γj+1 = −sjγj . (6.47)

In particular, if sj = 0 then the residual norm must be equal to zero which means

that the solution is exact at step j.
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6.5.4 Breakdown of GMRES

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of

breakdown in GMRES are in the Arnoldi loop, when wj = 0, i.e., when hj+1,j = 0
at a given step j. In this situation, the algorithm stops because the next Arnoldi vec-

tor cannot be generated. However, in this situation, the residual vector is zero, i.e.,

the algorithm will deliver the exact solution at this step. In fact, the converse is also

true: If the algorithm stops at step j with b−Axj = 0, then hj+1,j = 0.

Proposition 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm

breaks down at step j, i.e., hj+1,j = 0, if and only if the approximate solution xj
is exact.

Proof. To show the necessary condition, observe that if hj+1,j = 0, then sj = 0.

Indeed, since A is nonsingular, then rjj = h
(j−1)
jj is nonzero by the first part of

Proposition 6.9 and (6.37) implies sj = 0. Then, the relations (6.42) and (6.47)

imply that rj = 0.

To show the sufficient condition, we use (6.47) again. Since the solution is exact

at step j and not at step j−1, then sj = 0. From the formula (6.37), this implies that

hj+1,j = 0.

6.5.5 Variation 1: Restarting

Similar to the FOM algorithm of the previous section, the GMRES algorithm be-

comes impractical when m is large because of the growth of memory and computa-

tional requirements as m increases. These requirements are identical with those of

FOM. As with FOM, there are two remedies. One is based on restarting and the other

on truncating the Arnoldi orthogonalization. The straightforward restarting option is

described here.

ALGORITHM 6.11 Restarted GMRES

1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2. Generate the Arnoldi basis and the matrix H̄m using the Arnoldi algorithm

3. starting with v1
4. Compute ym which minimizes ‖βe1 − H̄my‖2 and xm = x0 + Vmym
5. If satisfied then Stop, else set x0 := xm and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied,

providing the residual norm at each sub-step j without computing the approximation

xj . This enables the program to exit as soon as this norm is small enough.

A well known difficulty with the restarted GMRES algorithm is that it can stag-

nate when the matrix is not positive definite. The full GMRES algorithm is guaran-

teed to converge in at most n steps, but this would be impractical if there were many
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Matrix Iters Kflops Residual Error

F2DA 95 3841 0.32E-02 0.11E-03

F3D 67 11862 0.37E-03 0.28E-03

ORS 205 9221 0.33E+00 0.68E-04

Table 6.2: A test run of GMRES with no preconditioning.

steps required for convergence. A typical remedy is to use preconditioning tech-

niques (see chapters 9 and 10) whose goal is to reduce the number of steps required

to converge.

Example 6.2. Table 6.2 shows the results of applying the GMRES algorithm with

no preconditioning to three of the test problems described in Section 3.7. See Exam-

ple 6.1 for the meaning of the column headers in the table. In this test, the dimension

of the Krylov subspace is m = 10. Observe that the problem ORS, which could not

be solved by FOM(10), is now solved in 205 steps.

6.5.6 Variation 2: Truncated GMRES Versions

It is possible to derive an Incomplete version of the GMRES algorithm. This algo-

rithm is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with

other algorithms developed in the literature (some of which will be seen in the next

chapter). A direct version called DQGMRES using exactly the same arguments as

in Section 6.4.2 for DIOM can also be derived. We begin by defining a hypotheti-

cal QGMRES algorithm, in simple terms, by replacing the Arnoldi Algorithm with

Algorithm 6.6, the Incomplete Orthogonalization procedure.

ALGORITHM 6.12 Quasi-GMRES

Run a modification of Algorithm 6.9 in which the Arnoldi process in lines

2 to 10 is replaced by the Incomplete Orthogonalization process and all

other computations remain unchanged.

Similar to IOM, only the k previous vi vectors must be kept at any given step.

However, this version of GMRES will potentially save computations but not storage.

This is because computing the solution by formula (6.29) requires the vectors vi for

i = 1, . . . ,m to be accessed. Fortunately, the approximate solution can be updated

in a progressive manner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First,
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note that if H̄m is banded, as for example, when m = 5, k = 2,

H̄5 =











h11 h12
h21 h22 h23

h32 h33 h34
h43 h44 h45

h54 h55
h65











, g =











β
0
0
0
0
0











(6.48)

then the premultiplications by the rotation matrices Ωi as described in the previous

section will only introduce an additional diagonal. For the above case, the resulting

least-squares system is R̄5y = ḡ5 with:

R̄5 =











r11 r12 r13
r22 r23 r24

r33 r34 r35
r44 r45

r55
0











, ḡ5 =











γ1
γ2
γ3
.
.
γ6











. (6.49)

The approximate solution is given by

xm = x0 + VmR
−1
m gm

where Rm and gm are obtained by removing the last row of R̄m and ḡm, respectively.

Defining Pm as in DIOM,

Pm ≡ VmR−1
m

then,

xm = x0 + Pmgm.

Also note that similarly to DIOM,

gm =

[
gm−1

γm

]

in which

γm = cmγ
(m−1)
m ,

where γ
(m−1)
m is the last component of the vector ḡm−1, i.e., the right-hand side

before the m-th rotation is applied. Thus, xm can be updated at each step, via the

relation

xm = xm−1 + γmpm.

ALGORITHM 6.13 DQGMRES

1. Compute r0 = b−Ax0, γ1 := ‖r0‖2, and v1 := r0/γ1
2. For m = 1, 2, . . ., until convergence Do:

3. Compute him, i = max{1,m − k + 1}, . . . ,m and vm+1
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4. as in lines 2 to 6 of Algorithm 6.6

5. Update the QR factorization of H̄m, i.e.,

6. Apply Ωi, i = m− k, . . . ,m− 1 to the m-th column of H̄m

7. Compute the rotation coefficients cm, sm by (6.37)

8. Apply Ωm to H̄m and ḡm, i.e., Compute:

9. γm+1 := −smγm
10. γm := cmγm

11. hmm := cmhmm + smhm+1,m

(

=
√

h2m+1,m + h2mm

)

12. pm =
(

vm −
∑m−1

i=m−k himpi

)

/hmm

13. xm = xm−1 + γmpm
14. If |γm+1| is small enough then Stop

15. EndDo

The above algorithm does not minimize the norm of the residual vector over x0+Km.

Rather, it attempts to perform an approximate minimization. Formula (6.41), which

is still valid since orthogonality was not used to derive it, also yields the following

equaliy for DQGMRES:

‖b−Axm‖2 = ‖Vm+1

(
βe1 − H̄mym

)
‖2

where as before ym minimizes the norm ‖βe1−H̄my‖2 over all vectors y in R
m. The

norm ‖βe1−H̄my‖2 is called the quasi-residual norm of the vector x0+Vmy, which

is a member of x0 + Km. If the vi’s were orthogonal to each other, then the quasi-

residual norm and the actual residual norm would be identical and QGMRES would

be equivalent to GMRES, i.e., the residual norm is minimized over all vectors of the

form x0 +Vmy. Since only an incomplete orthogonalization is used then the vi’s are

only locally orthogonal and, as a result, only an approximate minimization may be

obtained. Now, (6.42) is no longer valid since its proof required the orthogonality of

the vi’s. However, the following relation will be helpful in understand the behavior

of QGMRES

b−Axm = Vm+1Q
T
m(γm+1em+1) ≡ γm+1zm+1 . (6.50)

The actual residual norm is equal to the quasi-residual norm (i.e., |γm+1|), multiplied

by the norm of zm+1. The vector zm+1 is the last column of Vm+1Q
T
m, which is no

longer a unitary matrix. It turns out that in practice, |γm+1| remains a reasonably

good estimate of the actual residual norm because the vi’s are nearly orthogonal.

The following inequality provides an actual upper bound of the residual norm in

terms of computable quantities:

‖b−Axm‖ ≤
√
m− k + 1 |γm+1|. (6.51)

Here, k is to be replaced by m when m ≤ k. The proof of this inequality is a conse-

quence of (6.50). If the unit vector q ≡ QT
mem+1 has components η1, η2, . . . , ηm+1,
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then

‖b−Axm‖2 = |γm+1| ‖Vm+1q‖2

≤ |γm+1|





∥
∥
∥
∥
∥

k+1∑

i=1

ηivi

∥
∥
∥
∥
∥
2

+

∥
∥
∥
∥
∥

m+1∑

i=k+2

ηivi

∥
∥
∥
∥
∥
2





≤ |γm+1|





[
k+1∑

i=1

η2i

]1/2

+
m+1∑

i=k+2

|ηi| ‖vi‖2





≤ |γm+1|





[
k+1∑

i=1

η2i

]1/2

+
√
m− k

[
m+1∑

i=k+2

η2i

]1/2




The orthogonality of the first k+1 vectors vi was used and the last term comes from

using the Cauchy-Schwartz inequality. The desired inequality follows from using the

Cauchy-Schwartz inequality again in the form

1 . a +
√
m− k . b ≤

√
m− k + 1

√

a2 + b2

and from the fact that the vector q is of norm unity. Thus, using |γm+1| as a residual

estimate, we would make an error of a factor of
√
m− k + 1 at most. In general,

this is an overestimate and |γm+1| tends to give an adequate estimate for the residual

norm.

It is also interesting to observe that with a little bit more arithmetic, the exact

residual vector and norm can be obtained. This is based on the observation that,

according to (6.50), the residual vector is γm+1 times the vector zm+1 which is the

last column of the matrix

Zm+1 ≡ Vm+1Q
T
m. (6.52)

It is an easy exercise to see that this last column can be updated from vm+1 and zm.

Indeed, assuming that all the matrices related to the rotation are of size (m + 1) ×
(m + 1), the last row of Qm−1 is the (m + 1) − st row of the identity, so we can

write

Zm+1 = [Vm, vm+1]Q
T
m−1Ω

T
m

= [Zm, vm+1]Ω
T
m .

The result is that

zm+1 = −smzm + cmvm+1. (6.53)

The zi’s can be updated at the cost of one extra vector in memory and 4n operations

at each step. The norm of zm+1 can be computed at the cost of 2n operations and

the exact residual norm for the current approximate solution can then be obtained by

multiplying this norm by |γm+1|.
Because this is a little expensive, it may be preferred to just “correct” the estimate

provided by γm+1 by exploiting the above recurrence relation,

‖zm+1‖2 ≤ |sm|‖zm‖2 + |cm|.
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If ζm ≡ ‖zm‖2 , then the following recurrence relation holds,

ζm+1 ≤ |sm|ζm + |cm|. (6.54)

The above relation is inexpensive to update, yet provides an upper bound that is

sharper than (6.51); see Exercise 25.

Equation (6.53) shows an interesting relation between two successive residual

vectors:

rm = γm+1zm+1

= γm+1[−smzm + cmvm+1]

= s2mrm−1 + cmγm+1vm+1 . (6.55)

This exploits the fact that γm+1 = −smγm and rj = γj+1zj+1.

Relating the DQGMRES and FOM residuals may provide some useful insight.

We will denote by the superscript I all quantities relared to IOM (or DIOM). For

example, the m-th iterate in IOM is denoted by xIm and its residual vector will be

rIm = b− AxIm. It is already known that the IOM residual is a scaled version of the

vector vm+1 obtained by the incomplete Arnoldi process. To be more accurate, the

following equality holds,

rIm = −hm+1,me
T
mymvm+1 = −hm+1,m

γm

h
(m−1)
mm

vm+1 =
hm+1,m

smh
(m−1)
mm

γm+1vm+1 .

The next relation is then obtained by observing that hm+1,m/h
(m)
mm = tan θm. Hence,

γm+1vm+1 = cmr
I
m, (6.56)

from which it follows that

ρQm = |cm| ρm , (6.57)

where ρm = ‖rIm‖2 is the actual residual norm of the m-th IOM iterate. As an

important consequence of (6.56), note that (6.55) becomes,

rm = s2mrm−1 + c2mr
I
m . (6.58)

Example 6.3. Table 6.3 shows the results of applying the DQGMRES algorithm

with no preconditioning to three of the test problems described in Section 3.7. See

Example 6.1 for the meaning of the column headers in the table. In this test the

number k of directions in the recurrence is k = 10.

There exist several other ways to relate the quasi-minimal residual norm to the

actual minimal residual norm provided by GMRES. The following result was proved

by Freund and Nachtigal [136] for the QMR algorithm to be seen in the next chapter.

Theorem 6.11 Assume that Vm+1, the Arnoldi basis associated with DQGMRES,

is of full rank. Let rQm and rGm be the residual norms obtained after m steps of the

DQGMRES and GMRES algorithms, respectively. Then

‖rQm‖2 ≤ κ2(Vm+1)‖rGm‖2. (6.59)
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Matrix Iters Kflops Residual Error

F2DA 98 7216 0.36E-02 0.13E-03

F3D 75 22798 0.64E-03 0.32E-03

ORS 300 24138 0.13E+02 0.25E-02

Table 6.3: A test run of DQGMRES with no preconditioning.

Proof. Consider the subset of Km+1 defined by

R = {r : r = Vm+1t; t = βe1 − H̄my; y ∈ C
m}.

Denote by ym the minimizer of ‖βe1−H̄my‖2 over y and tm = βe1−H̄mym, rm =
Vm+1tm ≡ rQm. By assumption, Vm+1 is of full rank and there is an (m+1)×(m+1)
nonsingular matrix S such that Wm+1 = Vm+1S is unitary. Then, for any member

ofR,

r =Wm+1S
−1t, t = SWH

m+1r

and, in particular,

‖rm‖2 ≤ ‖S−1‖2‖tm‖2. (6.60)

Now ‖tm‖2 is the minimum of the 2-norm of βe1 − H̄my over all y’s and therefore,

‖tm‖2 = ‖SWH
m+1rm‖ ≤ ‖SWH

m+1r‖2 ∀r ∈ R
≤ ‖S‖2‖r‖2 ∀r ∈ R
≤ ‖S‖2‖rG‖2. (6.61)

The result follows from (6.60), (6.61), and the fact that κ2(Vm+1) = κ2(S).

6.5.7 Relations between FOM and GMRES

If the last row of the least-squares system in (6.44) is deleted, instead of the one in

(6.46), i.e., before the last rotation Ω6 is applied, the same approximate solution as

FOM would result. Indeed, this would correspond to solving the system Hmy = βe1
using the QR factorization. As a practical consequence a single subroutine can be

written to handle both cases. This observation can also be helpful in understanding

the relationships between the two algorithms.

In what follows the FOM and GMRES iterates are denoted by the superscripts

F and G, respectively. The residual norm achieved at step j will be denoted by ρFj
for FOM and ρGj for GMRES. An important consequence of (6.47) is that

ρGm = |sm|ρGm−1 ,

which leads to he following equality:

ρGm = |s1s2 . . . sm|β . (6.62)
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Note that formulas (6.37) yield nonnegative si’s, so the absolute values are not re-

quired. They are left only for generality.

Define H̄
(k)
m to be the matrix resulting form applying the first k rotations to

H̄m and, similarly, let ḡ
(k)
m be the vector resulting from applying the first k rota-

tions to the right-hand side βe1. As usual H
(k)
m is the matrix H̄

(k)
m with its last row

deleted and g
(k)
m the vector of size m obtained by removing the last component of

ḡ
(k)
m . By formula (6.18), the residual obtained from the Arnoldi process is given

by ‖rFm‖2 = ‖b − AxFm‖2 = hm+1,m|eTmym|. In addition, ym = H−1
m (βe1) can

be obtained by back-solving H
(m−1)
m y = g(m−1). Therefore, its last component is

eTmg
(m−1)
m /h

(m−1)
mm . Hence,

ρFm = hm+1,m|eTmH−1
m (βe1)| = hm+1,m

∣
∣
∣
∣
∣

eTmg
(m−1)

h
(m−1)
mm

∣
∣
∣
∣
∣
.

As before, let γm denote the last component of ḡm−1, or equivalently, the m-th com-

ponent of g(m−1), i.e., before the last rotation Ωm is applied (See (6.36) and (6.44)

for an illustration). Then,

|eTmg(m−1)| = |sm−1γm| = · · · = |s1s2 . . . sm−1β| .

Therefore, the above expression for ρFm becomes,

ρFm =
hm+1,m

|h(m−1)
mm |

|s1s2 . . . sm−1β|.

Now expressions (6.37) show that hm+1,m/|h(m−1)
mm | is the tangent of the angle defin-

ing the m-th rotation, and therefore,

ρFm =
|sm|
|cm|
|s1s2 . . . sm−1β| .

A comparison with (6.62), yields a revealing relation between the residuals of the

FOM and GMRES algorithms, namely,

ρFm =
1

|cm|
ρGm .

The trigonometric relation 1/ cos2 θ = 1 + tan2 θ, can now be invoked: 1/|cm| =
[1 + (hm+1,m/h

(m−1)
mm )2]1/2. These results are summarized in the following propo-

sition (Brown [66]).

Proposition 6.12 Assume that m steps of the Arnoldi process have been taken and

thatHm is nonsingular. Let ξ ≡ (Qm−1H̄m)mm and h ≡ hm+1,m. Then the residual

norms produced by the FOM and the GMRES algorithms are related by the equality

ρFm =
1

|cm|
ρGm = ρGm

√

1 +
h2

ξ2
. (6.63)
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It is also possible to prove the above result by exploiting the relation (6.75); see

Exercise 14.

The term ξ in the expression (6.63) is not readily available and this results in

an expression that is hard to interpret practically. Another, somewhat more explicit

expression, can be obtained from simply relating cm with two consecutive residual

norms of GMRES. The next result shown by Cullum and Greenbaum [92] follows

immediatly from the above proposition and the relation |sm| = ρGm/ρ
G
m−1 which is a

consequence of (6.62).

Proposition 6.13 Assume that m steps of the Arnoldi process have been taken and

that Hm is nonsingular. Then the residual norms produced by the FOM and the

GMRES algorithms are related by the equality

ρFm =
ρGm

√

1−
(
ρGm/ρ

G
m−1

)2
. (6.64)

The above relation can be recast as

1

(ρFm)
2 +

1
(
ρGm−1

)2 =
1

(ρGm)
2 (6.65)

Consider now these equations for m, m− 1, · · ·, 1,

1

(ρFm)2
+

1
(
ρGm−1

)2 =
1

(ρGm)2

1
(
ρFm−1

)2 +
1

(
ρGm−2

)2 =
1

(
ρGm−1

)2

· · · = · · ·
1

(
ρF1
)2 +

1
(
ρG0
)2 =

1
(
ρG1
)2

Note that ρG0 is simply the initial residual norm and can as well be denoted by ρF0 .

Summing the above equations yields,

m∑

i=0

1
(
ρFi
)2 =

1

(ρGm)
2 . (6.66)

Corollary 6.14 The residual norms produced by the FOM and the GMRES algo-

rithms are related by the equality

ρGm =
1

√
∑m

i=0

(
1/ρFi

)2
(6.67)

The above relation establishes rigorously the intuitive fact that FOM and GM-

RES are never too far away from each other. It is clear that ρGm ≤ ρFm. On the other

hand, let ρFm∗
by the smallest residual norms achieved the firstm steps of FOM. Then

1

(ρGm)
2 =

m∑

i=0

1
(
ρFi
)2 ≤

m+ 1
(
ρFm∗

)2
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An immediate consequence of this inequality is the following proposition.

Proposition 6.15 Assume thatm steps of GMRES and FOM are taken (steps in FOM

with a singular Hm are skipped). Let ρFm∗
be the smallest residual norm achieved by

FOM in the first m steps. Then, the following inequalities hold:

ρGm ≤ ρFm∗
≤ √m ρGm (6.68)

We now establish another interesting relation between the FOM and GMRES

iterates, which will be exploited in the next chapter. A general lemma is first shown

regarding the solutions of the triangular systems

Rmym = gm

obtained from applying successive rotations to the Hessenberg matrices H̄m. As was

stated before, the only difference between the ym vectors obtained in GMRES and

Arnoldi is that the last rotation Ωm is omitted in FOM. In other words, theRm matrix

for the two methods differs only in its (m,m) entry while the right-hand sides differ

only in their last components.

Lemma 6.16 Let R̃m be the m × m upper part of the matrix Qm−1H̄m and, as

before, let Rm be the m ×m upper part of the matrix QmH̄m. Similarly, let g̃m be

the vector of the first m components of Qm−1(βe1) and let gm be the vector of the

first m components of Qm(βe1). Define

ỹm = R̃−1
m g̃m, ym = R−1

m gm

the y vectors obtained for an m-dimensional FOM and GMRES methods, respec-

tively. Then

ym −
(ym−1

0

)

= c2m

(

ỹm −
(ym−1

0

))

(6.69)

in which cm is the cosine used in the m-th rotation Ωm, as defined by (6.37).

Proof. The following relation holds:

Rm =

(
Rm−1 zm
0 ξm

)

, R̃m =

(
Rm−1 zm
0 ξ̃m

)

.

Similarly, for the right-hand sides,

gm =

(
gm−1

γm

)

, g̃m =

(
gm−1

γ̃m

)

with

γm = cmγ̃m. (6.70)

Denoting by λ the scalar
√

ξ̃2m + h2m+1,m, and using the definitions of sm and cm,

we obtain

ξm = cmξ̃m + smhm+1,m =
ξ̃2m
λ

+
h2m+1,m

λ
= λ =

ξ̃m
cm
. (6.71)
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Now,

ym = R−1
m gm =

(
R−1

m−1 − 1
ξm
R−1

m−1zm
0 1

ξm

)(
gm−1

γm

)

(6.72)

which, upon observing that R−1
m−1gm−1 = ym−1, yields,

ym −
(ym−1

0

)

=
γm
ξm

(−R−1
m−1zm
1

)

. (6.73)

Replacing ym, ξm, γm by ỹm, ξ̃m, γ̃m, respectively, in (6.72), a relation similar to

(6.73) would result except that γm/ξm is replaced by γ̃m/ξ̃m which, by (6.70) and

(6.71), satisfies the relation
γm
ξm

= c2m
γ̃m

ξ̃m
.

The result follows immediately.

If the FOM and GMRES iterates are denoted by the superscripts F and G, respec-

tively, then the relation (6.69) implies that

xGm − xGm−1 = c2m
(
xFm − xGm−1

)
,

or,

xGm = s2mx
G
m−1 + c2mx

F
m. (6.74)

This leads to the following relation for the residual vectors obtained by the two meth-

ods,

rGm = s2mr
G
m−1 + c2mr

F
m (6.75)

which indicates that, in general, the two residual vectors will evolve hand in hand.

In particular, if cm = 0, then GMRES will not progress at step m, a phenomenon

known as stagnation. However, in this situation, according to the definitions (6.37)

of the rotations, h
(m−1)
mm = 0 which implies that Hm is singular and, therefore, xFm is

not defined. In fact, the reverse of this is also true, a result due to Brown [66], which

is stated without proof in the following proposition.

Proposition 6.17 If at any given step m, the GMRES iterates make no progress, i.e.,

if xGm = xGm−1 then Hm is singular and xFm is not defined. Conversely, if Hm is

singular at step m, i.e., if FOM breaks down at step m, and A is nonsingular, then

xGm = xGm−1.

Note also that the use of the above lemma is not restricted to the GMRES-FOM

pair. Some of the iterative methods defined in this chapter and the next involve a

least-squares problem of the form (6.30). In such cases, the iterates of the least-

squares method and those of the orthogonal residual (Galerkin) method will be re-

lated by the same equation.
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6.5.8 Residual smoothing

The previous section established strong relations between the GMRES and FOM

iterates. In fact it is possible to derive the GMRES iterates from the FOM iterates,

by simply exploiting the relations (6.74 – 6.75), which we now rewrite as

xGm = xGm−1 + c2m(xFm − xGm−1) ; rGm = rGm−1 + c2m(rFm − rGm−1) .

The above relations are instances of a class of algorithms derived by ‘residual smooth-

ing’, which define a new sequence of iterates, denoted here by xSi from an original

sequence, denoted by xOi . The residual vectors of the two sequences are denoted by

rSi and rOi respectively. The new sequences are as follows:

xSm = xSm−1 + ηm(xOm − xSm−1) ; rSm = rSm−1 + ηm(rOm − rSm−1) .

The parameter ηm is selected so as to make the residual rm behave better than the

original one, in the sense that large variations in the residual are dampened. In Min-

imal Residual Smoothing the ηm’s are selected to minimize the new residual norm

‖rSm‖2. This is in essence a minimal residual projection method in the direction

xOm − xSm−1 and it is achieved by selecting ηm so that the new residual rSm is orthog-

onal to A(xOm − xSm−1) = −(rOm − rSm−1). Thus,

ηm = −(rSm−1, r
O
m − rSm−1)

‖rOm − rSm−1‖22
,

resulting in the following algorithm.

ALGORITHM 6.14 Minimal residual smoothing

1. xS0 = xO0 , rS0 = rO0 ;

2. For m = 1, . . . , Do:

3. Compute xOm and rOm
4. ηm = −

(
rSm−1, r

O
m − rSm−1

)
/‖rOm − rSm−1‖22

5. xSm = xSm−1 + ηm(xOm − xSm−1)
6. rSm = rSm−1 + ηm(rOm − rSm−1)
7. EndDo

In the situation when rOm is orthogonal to rSm−1, then it is possible to show that the

same relation as (6.64) (or equivalently (6.65)) is satisfied. This result is due to

Weiss [307].

Lemma 6.18 If rOm is orthogonal to rSm−1 at each step m ≥ 1, then the residual

norms satisfy the relation

1

‖rSm‖22
=

1

‖rSm−1‖22
+

1

‖rOm‖22
, (6.76)

and the coefficient ηm is given by

ηm =
‖rSm−1‖22

‖rSm−1‖22 + ‖rOm‖22
. (6.77)
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Proof. Since rOm ⊥ rSm−1 it follows that (rSm−1, r
O
m − rSm−1) = −(rSm−1, r

S
m−1) and

‖rOm − rSm−1‖22 = ‖rOm‖22 + ‖rSm−1‖22. This shows (6.77). The orthogonality of rSm
with rSm − rSm−1, implies that

‖rSm‖22 = ‖rSm−1‖22 − η2m‖rOm − rSm−1‖22

= ‖rSm−1‖22 −
‖rSm−1‖42

‖rOm‖22 + ‖rSm−1‖22
=
‖rSm−1‖2‖rOm‖22
‖rOm‖22 + ‖rSm−1‖22

.

The result (6.76) follows by inverting both sides of the above equality.

The assumptions of the lemma are satisfied in particular when the residual vec-

tors of the original algorithm are orthogonal to each other, as is the case for the FOM

method. This can be shown by simple induction, using the fact that each new rSk is

ultimately a linear combination of the rOi ’s, for i ≤ k. Since the relation established

by the lemma is identical with that of the GMRES algorithm, it follows that the

residual norms are identical, since they both satisfy (6.67). Because the approximate

solutions belong to the same subspace and GMRES minimizes the residual norm, it

is clear that the resulting approximate solutions are identical.

This result can also be shown in a different way. Induction shows that the vectors

pj = xOj − xSj−1 are ATA - orthogonal, i.e., (Api, Apj) = 0 for i 6=. Then a lemma

to be seen in Section 6.9 (Lemma 6.21) can be expoited to prove the same result.

This is left as an exercise (Exercise 26).

The computation of the scalar ηm is likely to be subject to large errors when

the residuals become small because there may be a substantial difference between

the actual residual and the one computed recursively by the algorithm. One remedy

is to explicitly use the directions pj mentioned above. The formulas and the actual

update will then follow closely those seen in Section 5.3, with v replaced by pm,

and w by Apm. Speficially, lines 5 and 6 of Algorithm 6.14 are repaced by xSm =
xSm−1 + ηmpm and rSm = rSm−1 − ηmApm, respectively, while the coefficient ηm
is computed as ηm = (rSm−1, Apm)/(Apm, Apm). Details are omitted but may be

found in [324].

Lemma 6.18 yields the following equality, in which ρj denotes ‖rOj ‖2 and τj
denotes ‖rSj ‖2,

rSm =
ρ2m

ρ2m + τ2m−1

rSm−1 +
τ2m−1

ρ2m + τ2m−1

rOm

=
1

1
τ2m−1

+ 1
ρ2m

[
1

τ2m−1

rSm−1 +
1

ρ2m
rOm

]

. (6.78)

Summing up the relations (6.76), yields an expression similar to (6.66),

1

τ2j
=

j
∑

i=0

1

ρ2j
.
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Combining this with (6.78) and using induction immediatly yields the following ex-

pression which holds under the assumptions of Lemma 6.18 :

rSm =
1

∑m
j=1

1
ρ2j

m∑

j=1

rOj
ρ2j

. (6.79)

The smoothed residual is a convex combination of the residuals obtained by the orig-

inal algorithm (e.g., FOM). The coefficient used for a given residual is inversely

proportional to its norm squared. In other words, residual smoothing will tend to

dampen wide variations in the original residuals. If the original residual moves up

very high then (6.79) or (6.78) show that the next S-residual will tend to stagnate. If

the other hand, the original residual decreases very rapidly at a given step, then the

smoothed residual will be close to it. In other words, stagnation and fast convergence

of the S-residual goes hand in hand with poor convergence and fast convergence, re-

spectively, of the original scheme.

Consider now the general situation when the residual vectors do not satisfy the

conditions of Lemma 6.18. In this case the above results are not valid. However,

one may ask whether or not it is possible to still select the ηm’s by an alternative

formula such that the nice relation (6.79) remains valid. A hint at a possible answer

is provided by a look at Equations (6.76) and (6.77). These are the only relations

used to establish (6.79). This suggests computing the ηm’s recursively as follows

ηm =
τ2m−1

τ2m−1 + ρ2m
;

1

τ2m
=

1

τ2m−1

+
1

ρ2m

It is only when the conditions of Lemma 6.18 are satisfied, that τk is the norm of the

residuals rSk . What is important is that the relation (6.78) can be shown to be valid

with ‖rSj ‖22 replaced by τ2j . As result, the same induction proof as before will show

that (6.79) is also valid. Replacing the ηm of Algorithm 6.14 by the one defined above

gives rise to an algorithm known as quasi-minimal residual smoothing, or QMRS.

It can easily be shown that when applied to the sequence of iterates produced

by IOM/DIOM, then QMRS will, in exact arithmetic, yield the same sequence as

QMRES/DQGMRES. The key relations are (6.47), which is still valid, and (6.57).

The quasi-residual norm which replaces the actual norm rSm is now equal to γm+1.

By (6.57), the cosine used in the m-th step of QGMRES/DQGMES satisfies: |cm| =
|γm+1|/ρ2m. By formula (6.47), |sm| = |γm+1/γm|. Writing c2m+ s2m = 1 and using

the notation τm ≡ γm+1, yields

γ2m+1

γ2m
+
γ2m+1

ρ2m
= 1 → 1

τ2m
=

1

τ2m−1

+
1

ρ2m

This, along with the relation (6.58), shows that the residual vectors computed by

QGMRES-/DQGMRES obey the exact same recurrence as those defined by QMRS.

Quasi-minimal residual smoothing is related to several other algorithms to be de-

scribed in the next sections.
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6.5.9 GMRES for complex systems

Complex linear systems arise in many important applications. Perhaps the best

known of these is when solving Maxwell’s equations in electromagnetics. The most

common method used in this context gives rise to large dense and complex linear

systems.

Adapting GMRES to the complex case is fairly straightforward. The guiding

principle is that the method should minimize the 2-norm of the residual on the affine

Krylov subspace. This is achieved by Algorithm 6.9 in which the inner products are

now the complex inner produts in C
n, defined by (1.3) of Chapter 1. The only part

requiring some attention is the solution of the least-squares problem in Line 12 of the

Algorithm or rather, the practical implementation using Givens rotations outlined in

Section 6.5.3.

Complex Givens rotations are defined in the following way instead of (6.34):

Ωi =















1
. . .

1
c̄i s̄i
−si ci

1
. . .

1















← row i
← row i+ 1

(6.80)

with |ci|2 + |si|2 = 1. The description of Section 6.5.3 can be followed in the same

way. In particular the sine and cosine defined in (6.37) for the Givens rotation matrix

at step i are given by

si =
hi+1,i

√

|h(i−1)
ii |2 + h2i+1,i

, ci =
h
(i−1)
ii

√

|h(i−1)
ii |2 + h2i+1,i

. (6.81)

A slight simplification takes place when applying the successive rotations. Since

hj+1,j is the 2-norm of a vector, it is real (nonnegative), and so si is also a real

(nonnegative) number while, in general, ci is complex. The rest of the development

is identical, though it is worth noting that the diagonal entries of the upper triangular

matrix R are (nonnegative) real and that the scalars γi are real.

6.6 The Symmetric Lanczos Algorithm

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi’s

method for the particular case when the matrix is symmetric. When A is symmetric,

then the Hessenberg matrix Hm becomes symmetric tridiagonal. This leads to a

three-term recurrence in the Arnoldi process and short-term recurrences for solution

algorithms such as FOM and GMRES. On the theoretical side, there is also much

more that can be said on the resulting approximation in the symmetric case.
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6.6.1 The Algorithm

To introduce the Lanczos algorithm we begin by making the observation stated in the

following theorem.

Theorem 6.19 Assume that Arnoldi’s method is applied to a real symmetric matrix

A. Then the coefficients hij generated by the algorithm are such that

hij = 0, for 1 ≤ i < j − 1, (6.82)

hj,j+1 = hj+1,j, j = 1, 2, . . . ,m. (6.83)

In other words, the matrix Hm obtained from the Arnoldi process is tridiagonal and

symmetric.

Proof. The proof is an immediate consequence of the fact that Hm = V T
mAVm is

a symmetric matrix which is also a Hessenberg matrix by construction. Therefore,

Hm must be a symmetric tridiagonal matrix.

The standard notation used to describe the Lanczos algorithm is obtained by setting

αj ≡ hjj , βj ≡ hj−1,j,

and if Tm denotes the resulting Hm matrix, it is of the form,

Tm =









α1 β2
β2 α2 β3

. . .
βm−1 αm−1 βm

βm αm









. (6.84)

This leads to the following form of the Modified Gram-Schmidt variant of Arnoldi’s

method, namely, Algorithm 6.2.

ALGORITHM 6.15 The Lanczos Algorithm

1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For j = 1, 2, . . . ,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj , vj)
5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact

arithmetic, that the vectors vi, i = 1, 2, . . . , are orthogonal. In reality, exact orthogo-

nality of these vectors is only observed at the beginning of the process. At some point



6.6. THE SYMMETRIC LANCZOS ALGORITHM 195

the vi’s start losing their global orthogonality rapidly. There has been much research

devoted to finding ways to either recover the orthogonality, or to at least diminish its

effects by partial or selective orthogonalization; see Parlett [224].

The major practical differences with Arnoldi’s method are that the matrix Hm is

tridiagonal and, more importantly, that only three vectors must be saved, unless some

form of reorthogonalization is employed.

6.6.2 Relation with Orthogonal Polynomials

In exact arithmetic, the core of Algorithm 6.15 is a relation of the form

βj+1vj+1 = Avj − αjvj − βjvj−1.

This three-term recurrence relation is reminiscent of the standard three-term recur-

rence relation of orthogonal polynomials. In fact, there is indeed a strong relationship

between the Lanczos algorithm and orthogonal polynomials. To begin, recall that if

the grade of v1 is ≥ m, then the subspace Km is of dimension m and consists of all

vectors of the form q(A)v1, where q is a polynomial with degree(q) ≤ m−1. In this

case there is even an isomorphism between Km and Pm−1, the space of polynomials

of degree ≤ m− 1, which is defined by

q ∈ Pm−1 → x = q(A)v1 ∈ Km.

Moreover, we can consider that the subspace Pm−1 is provided with the inner product

< p, q >v1= (p(A)v1, q(A)v1). (6.85)

This is indeed a nondegenerate bilinear form under the assumption that m does not

exceed µ, the grade of v1. Now observe that the vectors vi are of the form

vi = qi−1(A)v1

and the orthogonality of the vi’s translates into the orthogonality of the polynomials

with respect to the inner product (6.85).

It is known that real orthogonal polynomials satisfy a three-term recurrence.

Moreover, the Lanczos procedure is nothing but the Stieltjes algorithm; (see, for

example, Gautschi [141]) for computing a sequence of orthogonal polynomials with

respect to the inner product (6.85). It is known [246] that the characteristic poly-

nomial of the tridiagonal matrix produced by the Lanczos algorithm minimizes the

norm ‖.‖v1 over the monic polynomials. The recurrence relation between the char-

acteristic polynomials of tridiagonal matrices also shows that the Lanczos recurrence

computes the sequence of vectors pTm(A)v1, where pTm is the characteristic polyno-

mial of Tm.
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6.7 The Conjugate Gradient Algorithm

The Conjugate Gradient algorithm is one of the best known iterative techniques for

solving sparse Symmetric Positive Definite linear systems. Described in one sen-

tence, the method is a realization of an orthogonal projection technique onto the

Krylov subspace Km(r0, A) where r0 is the initial residual. It is therefore mathemat-

ically equivalent to FOM. However, because A is symmetric, some simplifications

resulting from the three-term Lanczos recurrence will lead to more elegant algo-

rithms.

6.7.1 Derivation and Theory

We first derive the analogue of FOM, or Arnoldi’s method, for the case when A is

symmetric. Given an initial guess x0 to the linear system Ax = b and the Lanczos

vectors vi, i = 1, . . . ,m together with the tridiagonal matrix Tm, the approximate

solution obtained from an orthogonal projection method onto Km, is given by

xm = x0 + Vmym, ym = T−1
m (βe1). (6.86)

ALGORITHM 6.16 Lanczos Method for Linear Systems

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 := r0/β
2. For j = 1, 2, . . . ,m Do:

3. wj = Avj − βjvj−1 (If j = 1 set β1v0 ≡ 0)

4. αj = (wj , vj)
5. wj := wj − αjvj
6. βj+1 = ‖wj‖2. If βj+1 = 0 set m := j and go to 9

7. vj+1 = wj/βj+1

8. EndDo

9. Set Tm = tridiag (βi, αi, βi+1), and Vm = [v1, . . . , vm].
10. Compute ym = T−1

m (βe1) and xm = x0 + Vmym

Many of the results obtained from Arnoldi’s method for linear systems are still valid.

For example, the residual vector of the approximate solution xm is such that

b−Axm = −βm+1e
T
mymvm+1. (6.87)

The Conjugate Gradient algorithm can be derived from the Lanczos algorithm in

the same way DIOM was derived from IOM. In fact, the Conjugate Gradient algo-

rithm can be viewed as a variation of DIOM(2) for the case whenA is symmetric. We

will follow the same steps as with DIOM, except that the notation will be simplified

whenever possible.

First write the LU factorization of Tm as Tm = LmUm. The matrix Lm is unit

lower bidiagonal and Um is upper bidiagonal. Thus, the factorization of Tm is of the
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form

Tm =









1
λ2 1

λ3 1
λ4 1

λ5 1









×









η1 β2
η2 β3

η3 β4
η4 β5

η5









.

The approximate solution is then given by,

xm = x0 + VmU
−1
m L−1

m (βe1).

Letting

Pm ≡ VmU−1
m

and

zm = L−1
m βe1,

then,

xm = x0 + Pmzm.

As for DIOM, pm, the last column of Pm, can be computed from the previous pi’s
and vm by the simple update

pm = η−1
m [vm − βmpm−1].

Note that βm is a scalar computed from the Lanczos algorithm, while ηm results from

the m-th Gaussian elimination step on the tridiagonal matrix, i.e.,

λm =
βm
ηm−1

, (6.88)

ηm = αm − λmβm. (6.89)

In addition, following again what has been shown for DIOM,

zm =

[
zm−1

ζm

]

,

in which ζm = −λmζm−1. As a result, xm can be updated at each step as

xm = xm−1 + ζmpm

where pm is defined above.

This gives the following algorithm, which we call the direct version of the Lanc-

zos algorithm for linear systems.

ALGORITHM 6.17 D-Lanczos



198 CHAPTER 6. KRYLOV SUBSPACE METHODS PART I

1. Compute r0 = b−Ax0, ζ1 := β := ‖r0‖2, and v1 := r0/β
2. Set λ1 = β1 = 0, p0 = 0
3. For m = 1, 2, . . ., until convergence Do:

4. Compute w := Avm − βmvm−1 and αm = (w, vm)

5. If m > 1 then compute λm = βm

ηm−1
and ζm = −λmζm−1

6. ηm = αm − λmβm
7. pm = η−1

m (vm − βmpm−1)
8. xm = xm−1 + ζmpm
9. If xm has converged then Stop

10. w := w − αmvm
11. βm+1 = ‖w‖2, vm+1 = w/βm+1

12. EndDo

This algorithm computes the solution of the tridiagonal system Tmym = βe1
progressively by using Gaussian elimination without pivoting. However, as was ex-

plained for DIOM, partial pivoting can also be implemented at the cost of having to

keep an extra vector. In fact, Gaussian elimination with partial pivoting is sufficient

to ensure stability for tridiagonal systems. The more complex LQ factorization has

also been exploited in this context and gave rise to an algorithm known as SYMMLQ

[223].

The two algorithms 6.16 and 6.17 are mathematically equivalent, that is, they

deliver the same approximate solution if they are both executable. However, since

Gaussian elimination without pivoting is being used implicitly to solve the tridiago-

nal system Tmy = βe1, the direct version may be more prone to breakdowns.

Observe that the residual vector for this algorithm is in the direction of vm+1 due

to equation (6.87). Therefore, the residual vectors are orthogonal to each other as

in FOM. Likewise, the vectors pi are A-orthogonal, or conjugate. These results are

established in the next proposition.

Proposition 6.20 Let rm = b−Axm,m = 0, 1, . . ., be the residual vectors produced

by the Lanczos and the D-Lanczos algorithms (6.16 and 6.17) and pm,m = 0, 1, . . . ,
the auxiliary vectors produced by Algorithm 6.17. Then,

1. Each residual vector rm is such that rm = σmvm+1 where σm is a certain

scalar. As a result, the residual vectors are orthogonal to each other.

2. The auxiliary vectors pi form anA-conjugate set, i.e., (Api, pj) = 0, for i 6= j.

Proof. The first part of the proposition is an immediate consequence of the relation

(6.87). For the second part, it must be proved that P T
mAPm is a diagonal matrix,

where Pm = VmU
−1
m . This follows from

P T
mAPm = U−T

m V T
mAVmU

−1
m

= U−T
m TmU

−1
m

= U−T
m Lm.
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Now observe that U−T
m Lm is a lower triangular matrix which is also symmetric since

it is equal to the symmetric matrix P T
mAPm. Therefore, it must be a diagonal matrix.

A consequence of the above proposition is that a version of the algorithm can be

derived by imposing the orthogonality and conjugacy conditions. This gives the Con-

jugate Gradient algorithm which we now derive. The vector xj+1 can be expressed

as

xj+1 = xj + αjpj . (6.90)

In order to conform with standard notation used in the literature to describe the algo-

rithm, the indexing of the p vectors now begins at zero instead of one as was done so

far. This explains the difference between the above formula and formula (6.21) used

for DIOM. Now, the residual vectors must satisfy the recurrence

rj+1 = rj − αjApj . (6.91)

If the rj’s are to be orthogonal, then it is necessary that (rj − αjApj, rj) = 0 and as

a result

αj =
(rj , rj)

(Apj , rj)
. (6.92)

Also, it is known that the next search direction pj+1 is a linear combination of rj+1

and pj , and after rescaling the p vectors appropriately, it follows that

pj+1 = rj+1 + βjpj . (6.93)

Thus, a first consequence of the above relation is that

(Apj, rj) = (Apj , pj − βj−1pj−1) = (Apj, pj)

because Apj is orthogonal to pj−1. Then, (6.92) becomes αj = (rj , rj)/(Apj , pj).
In addition, writing that pj+1 as defined by (6.93) is orthogonal to Apj yields

βj = −
(rj+1, Apj)

(pj , Apj)
.

Note that from (6.91)

Apj = −
1

αj
(rj+1 − rj) (6.94)

and therefore,

βj =
1

αj

(rj+1, (rj+1 − rj))
(Apj, pj)

=
(rj+1, rj+1)

(rj , rj)
.

Putting these relations together gives the following algorithm.

ALGORITHM 6.18 Conjugate Gradient
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1. Compute r0 := b−Ax0, p0 := r0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj , rj)/(Apj , pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, rj+1)/(rj , rj)
7. pj+1 := rj+1 + βjpj
8. EndDo

It is important to note that the scalars αj , βj in this algorithm are different from those

of the Lanczos algorithm. The vectors pj are multiples of the pj’s of Algorithm 6.17.

In terms of storage, in addition to the matrix A, four vectors (x, p,Ap, and r) must be

saved in Algorithm 6.18, versus five vectors (vm, vm−1, w, p, and x) for Algorithm

6.17.

6.7.2 Alternative Formulations

Algorithm 6.18 is the best known formulation of the Conjugate Gradient algorithm.

There are, however, several alternative formulations. Here, only one such formula-

tion is shown, which can be derived once more from the Lanczos algorithm.

The residual polynomial rm(t) associated with the m-th CG iterate must satisfy

a three-term recurrence, implied by the three-term recurrence of the Lanczos vectors.

Indeed, these vectors are just the scaled versions of the residual vectors. Therefore,

we must seek a three-term recurrence of the form

rm+1(t) = ρm(rm(t)− γmtrm(t)) + δmrm−1(t).

In addition, the consistency condition rm(0) = 1 must be maintained for each m,

leading to the recurrence,

rm+1(t) = ρm(rm(t)− γmtrm(t)) + (1− ρm)rm−1(t). (6.95)

Observe that if rm(0) = 1 and rm−1(0) = 1, then rm+1(0) = 1, as desired. Trans-

lating the above relation into the sequence of residual vectors yields

rm+1 = ρm(rm − γmArm) + (1− ρm)rm−1. (6.96)

Recall that the vectors ri’s are multiples of the Lanczos vectors vi’s. As a result,

γm should be the inverse of the scalar αm of the Lanczos algorithm. In terms of the

r-vectors this means

γm =
(rm, rm)

(Arm, rm)
.

Equating the inner products of both sides of (6.96) with rm−1, and using the orthog-

onality of the r-vectors, gives the following expression for ρm, after some algebraic

calculations,

ρm =

[

1− γm
γm−1

(rm, rm)

(rm−1, rm−1)

1

ρm−1

]−1

. (6.97)
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The recurrence relation for the approximate solution vectors can be extracted

from the recurrence relation for the residual vectors. This is found by starting from

(6.95) and using the relation rm(t) = 1− tsm−1(t) between the solution polynomial

sm−1(t) and the residual polynomial rm(t). Thus,

sm(t) =
1− rm+1(t)

t

= ρm

(
1− rm(t)

t
− γmrm(t)

)

+ (1− ρm)
1− rm−1(t)

t

= ρm (sm−1(t)− γmrm(t)) + (1− ρm)sm−2(t).

This gives the recurrence,

xm+1 = ρm(xm − γmrm) + (1− ρm)xm−1. (6.98)

All that is left for the recurrence to be determined completely is to define the first

two iterates. The initial iterate x0 is given. The first vector should be of the form

x1 = x0 − γ0r0,

to ensure that r1 is orthogonal to r0. This means that the two-term recurrence can be

started with ρ0 = 1, and by setting x−1 ≡ 0. Putting these relations and definitions

together gives the following algorithm.

ALGORITHM 6.19 CG – Three-Term Recurrence Variant

1. Compute r0 = b−Ax0. Set x−1 ≡ 0 and ρ0 = 1.

2. For j = 0, 1, . . ., until convergence Do:

3. Compute Arj and γj =
(rj ,rj)
(Arj ,rj)

4. If (j > 0) compute ρj =
[

1− γj
γj−1

(rj ,rj)
(rj−1,rj−1)

1
ρj−1

]−1

5. Compute xj+1 = ρj (xj − γjrj) + (1− ρj)xj−1

6. Compute rj+1 = ρj(rj − γjArj) + (1− ρj)rj−1

7. EndDo

This algorithm requires slightly more storage than the standard formulation: in addi-

tion to A, the vectors rj , Arj , rj−1, xj and xj−1 must be kept. It is possible to avoid

keeping rj−1 by computing the residual rj+1 directly as rj+1 = b−Axj+1 in line 6

of the algorithm, but this would entail an additional matrix-vector product.

6.7.3 Eigenvalue Estimates from the CG Coefficients

Sometimes, it is useful to be able to obtain the tridiagonal matrix Tm related to the

underlying Lanczos iteration from the coefficients of the Conjugate Gradient algo-

rithm 6.18. This tridiagonal matrix can provide valuable eigenvalue information on

the matrix A. For example, the largest and smallest eigenvalues of the tridiagonal

matrix can approximate the smallest and largest eigenvalues of A. This could be
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used to compute an estimate of the condition number of A which in turn can help

provide estimates of the error norm from the residual norm. Since the Greek letters

αi and βi have been used in both algorithms, notations must be changed. Denote by

Tm = tridiag [ηj, δj , ηj+1],

the tridiagonal matrix (6.84) associated with the m-th step of the Lanczos algorithm.

We must seek expressions of the coefficients ηj , δj in terms of the coefficients αj , βj ,

obtained from the CG algorithm. The key information regarding the correspondence

between the two pairs of coefficients resides in the correspondence between the vec-

tors generated by the two algorithms.

From (6.87) it is known that

rj = scalar × vj+1. (6.99)

As a result,

δj+1 =
(Avj+1, vj+1)

(vj+1, vj+1)
=

(Arj , rj)

(rj , rj)
.

The denominator (rj , rj) is readily available from the coefficients of the CG algo-

rithm, but the numerator (Arj , rj) is not. The relation (6.93) can be exploited to

obtain

rj = pj − βj−1pj−1 (6.100)

which is then substituted in (Arj , rj) to get

(Arj , rj) = (A(pj − βj−1pj−1), pj − βj−1pj−1) .

Note that the terms βj−1pj−1 are defined to be zero when j = 0. Because the p
vectors are A-orthogonal,

(Arj , rj) = (Apj, pj) + β2j−1 (Apj−1, pj−1) ,

from which we finally obtain for j > 0,

δj+1 =
(Apj, pj)

(rj , rj)
+ β2j−1

(Apj−1, pj−1)

(rj, rj)
=

1

αj
+
βj−1

αj−1
. (6.101)

The above expression is only valid for j > 0. For j = 0, the second term in the

right-hand side should be omitted as was observed above. Therefore, the diagonal

elements of Tm are given by

δj+1 =

{
1
αj

for j = 0,
1
αj

+
βj−1

αj−1
for j > 0.

(6.102)

Now an expression for the co-diagonal elements ηj+1 is needed. From the defi-

nitions in the Lanczos algorithm,

ηj+1 = (Avj , vj+1) =
|(Arj−1, rj)|
‖rj−1‖2‖rj‖2

.
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Using (6.100) again and the relation (6.94) as well as orthogonality properties of the

CG algorithm, the following sequence of equalities results:

(Arj−1, rj) = (A(pj−1 − βj−2pj−2), rj)

= (Apj−1, rj)− βj−2(Apj−2, rj)

=
−1
αj−1

(rj − rj−1, rj) +
βj−2

αj−2
(rj−1 − rj−2, rj)

=
−1
αj−1

(rj , rj).

Therefore,

ηj+1 =
1

αj−1

(rj , rj)

‖rj−1‖2‖rj‖2
=

1

αj−1

‖rj‖2
‖rj−1‖2

=

√
βj−1

αj−1
.

This finally gives the general form of the m-dimensional Lanczos tridiagonal matrix

in terms of the CG coefficients,

Tm =











1
α0

√
β0

α0√
β0

α0

1
α1

+ β0

α0

√
β1

α1

. . .

. .

√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2











. (6.103)

6.8 The Conjugate Residual Method

In the previous section we derived the Conjugate Gradient algorithm as a special

case of FOM for Symmetric Positive Definite matrices. Similarly, a new algorithm

can be derived from GMRES for the particular case where A is Hermitian. In this

case, the residual vectors should be A-orthogonal, i.e., conjugate. In addition, the

vectors Api’s i = 0, 1, . . . , are orthogonal. When looking for an algorithm with the

same structure as CG, but satisfying these conditions, we find the Conjugate Residual

algorithm. Notice that the residual vectors are now conjugate to each other, hence,

the name of the algorithm.

ALGORITHM 6.20 Conjugate Residual Algorithm

1. Compute r0 := b−Ax0, p0 := r0
2. For j = 0, 1, . . . , until convergence Do:

3. αj := (rj , Arj)/(Apj , Apj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, Arj+1)/(rj , Arj)
7. pj+1 := rj+1 + βjpj
8. Compute Apj+1 = Arj+1 + βjApj
9. EndDo
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Line 8 in the above algorithm computes Apj+1 from Arj+1 without an additional

matrix-vector product. Five vectors of storage are needed in addition to the matrix A:

x, p, Ap, r, Ar. The algorithm requires one more vector update, i.e., 2n more opera-

tions than the Conjugate Gradient method and one more vector of storage. Since the

two methods exhibit typically similar convergence, the Conjugate Gradient method

is often preferred.

6.9 GCR, ORTHOMIN, and ORTHODIR

All algorithms developed in this chapter are strongly related to, as well as defined

by, the choice of a basis of the Krylov subspace. The GMRES algorithm uses an or-

thonormal basis. In the Conjugate Gradient algorithm, the p’s are A-orthogonal, i.e.,

conjugate. In the Conjugate Residual method just described, the Api’s are orthog-

onal, i.e., the pi’s are ATA-orthogonal. A number of algorithms can be developed

using a basis of this form in the nonsymmetric case as well. The main result that is

exploited in all these algorithms is the following lemma.

Lemma 6.21 Let p0, p1, . . . , pm−1, be a sequence of vectors such that each set {p0, p1,-
. . . , pj−1} for j ≤ m is a basis of the Krylov subspace Kj(A, r0) which is ATA-

orthogonal, i.e., such that

(Api, Apk) = 0, for i 6= k.

Then the approximate solution xm which has the smallest residual norm in the affine

space x0 +Km(A, r0) is given by

xm = x0 +

m−1∑

i=0

(r0, Api)

(Api, Api)
pi. (6.104)

In addition, xm can be computed from xm−1 by

xm = xm−1 +
(rm−1, Apm−1)

(Apm−1, Apm−1)
pm−1. (6.105)

Proof. The approximate solution and the associated residual vector can be written in

the form

xm = x0 +
m−1∑

i=0

αipi, rm = r0 −
m−1∑

i=0

αiApi. (6.106)

According to the optimality result of Proposition 5.3, in order for ‖rm‖2 to be mini-

mum, the orthogonality relations

(rm, Api) = 0, i = 0, . . . ,m− 1

must be enforced. Using (6.106) and the orthogonality of the Api’s gives immedi-

ately,

αi = (r0, Api)/(Api, Api).
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This proves the first part of the lemma. Assume now that xm−1 is known and that xm
must be determined. According to formula (6.104), and the fact that p0, . . . , pm−2 is

a basis of Km−1(A, r0), we can write xm = xm−1 +αm−1pm−1 with αm−1 defined

above. Note that from the second part of (6.106),

rm−1 = r0 −
m−2∑

j=0

αjApj

so that

(rm−1, Apm−1) = (r0, Apm−1)−
m−2∑

j=0

αj(Apj , Apm−1) = (r0, Apm−1)

exploiting, once more, the orthogonality of the vectors Apj , j = 0, . . . ,m−1. Thus,

αm−1 =
(rm−1, Apm−1)

(Apm−1, Apm−1)
,

which proves the expression (6.105).

This lemma opens up many different ways to obtain algorithms that are mathe-

matically equivalent to the full GMRES. The simplest option computes the next basis

vector pm+1 as a linear combination of the current residual rm and all previous pi’s.

The approximate solution is updated by using (6.105). This is called the Generalized

Conjugate Residual (GCR) algorithm.

ALGORITHM 6.21 GCR

1. Compute r0 = b−Ax0. Set p0 = r0.

2. For j = 0, 1, . . . , until convergence Do:

3. αj =
(rj ,Apj)
(Apj ,Apj)

4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj

6. Compute βij = − (Arj+1,Api)
(Api,Api)

, for i = 0, 1, . . . , j

7. pj+1 = rj+1 +
∑j

i=0 βijpi
8. EndDo

To compute the scalars βij in the above algorithm, the vector Arj and the previous

Api’s are required. In order to limit the number of matrix-vector products per step to

one, we can proceed as follows. Follow line 5 by a computation of Arj+1 and then

compute Apj+1 after line 7 from the relation

Apj+1 = Arj+1 +

j
∑

i=0

βijApi.
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Both the set of pi’s and that of the Api’s need to be saved. This doubles the storage

requirement compared with GMRES. The number of arithmetic operations per step

is also roughly 50% higher than GMRES.

The above version of GCR suffers from the same practical limitations as GM-

RES and FOM. A restarted version called GCR(m) can be trivially defined. Also,

a truncation of the orthogonalization of the Api’s, similar to IOM, leads to an algo-

rithm known as ORTHOMIN(k). Specifically, lines 6 and 7 of Algorithm 6.21 are

replaced by

6a. Compute βij = − (Arj+1,Api)
(Api,Api)

, for i = j − k + 1, . . . , j

7a. pj+1 = rj+1 +
∑j

i=j−k+1 βijpi .

Another class of algorithms is defined by computing the next basis vector pj+1

as

pj+1 = Apj +

j
∑

i=0

βijpi (6.107)

in which, as before, the βij’s are selected to make the Api’s orthogonal, i.e.,

βij = −
(A2pj, Api)

(Api, Api)
.

The resulting algorithm is called ORTHODIR [178]. Restarted and truncated ver-

sions of ORTHODIR can also be defined.

6.10 The Faber-Manteuffel Theorem

As was seen in Section 6.6 when A is symmetric, the Arnoldi algorithm simplifies

into the Lanczos procedure, which is defined through a three-term recurrence. As

a consequence, FOM is mathematically equivalent to the Conjugate Gradient algo-

rithm in this case. Similarly, the full GMRES algorithm gives rise to the Conjugate

Residual algorithm. It is clear that the CG-type algorithms, i.e., algorithms defined

through short-term recurrences, are more desirable than those algorithms which re-

quire storing entire sequences of vectors as in the GMRES process. These algorithms

require less memory and operations per step.

Therefore, the question is: Is it possible to define algorithms which are based

on optimal Krylov subspace projection and which give rise to sequences involving

short-term recurrences? An optimal Krylov subspace projection means a technique

which minimizes a certain norm of the error, or residual, on the Krylov subspace.

Such methods can be defined from the Arnoldi process.

It is sufficient to consider the Arnoldi process. If Arnoldi’s algorithm reduces

to the s-term Incomplete Orthogonalization Algoritm (Algorithm 6.6 with k ≡ s),
i.e., if hij = 0 for i < j − s + 1, then an (s − 1)-term recurrence can be defined

for updating the iterates, as was done in Section 6.4.2. Conversely, if the solution is

updated as xj+1 = xj + αjpj and pj satisfies a short recurrence, then the residual
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vectors will satisfy an s-term recurrence, i.e., hij = 0 for i < j − s + 1. A similar

argument can be used for the the (full) GMRES algorithm when it simplifies into

DQGMRES. For all purposes, it is therefore sufficient to analyze what happens to

the Arnoldi process (or FOM). We start by generalizing the CG result in a simple

way, by considering the DIOM algorithm.

Proposition 6.22 Let A be a matrix such that

AT v ∈ Ks(A, v)

for any vector v. Then, DIOM(s) is mathematically equivalent to the FOM algorithm.

Proof. The assumption is equivalent to the statement that, for any v, there is a poly-

nomial qv of degree ≤ s − 1, such that AT v = qv(A)v. In the Arnoldi process, the

scalars hij are defined by hij = (Avj , vi) and therefore

hij = (Avj , vi) = (vj , A
T vi) = (vj , qvi(A)vi). (6.108)

Since qvi is a polynomial of degree ≤ s− 1, the vector qvi(A)vi is a linear combina-

tion of the vectors vi, vi+1, . . . , vi+s−1. As a result, if i < j − s + 1, then hij = 0.

Therefore, DIOM(s) will give the same approximate solution as FOM.

In particular, if

AT = q(A)

where q is a polynomial of degree ≤ s − 1, then the result holds. However, since

Aq(A) = q(A)A for any polynomial q, the above relation implies that A is normal.

As it turns out, the reverse is also true. That is, when A is normal, then there is a

polynomial of degree ≤ n − 1 such that AH = q(A). Proving this is easy because

when A = QΛQH where Q is unitary and Λ diagonal, then q(A) = Qq(Λ)QH .

Choosing the polynomial q so that

q(λj) = λ̄j , j = 1, . . . , n

results in q(A) = QΛ̄QH = AH as desired.

Let ν(A) be the smallest degree of all polynomials q such thatAH = q(A). Then

the following lemma due to Faber and Manteuffel [121] states an interesting relation

between s and ν(A).

Lemma 6.23 A nonsingular matrix A is such that

AHv ∈ Ks(A, v)

for every vector v if and only if A is normal and ν(A) ≤ s− 1.
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Proof. The sufficient condition is trivially true. To prove the necessary condition,

assume that, for any vector v, AHv = qv(A)v where qv is a polynomial of degree

≤ s − 1. Then it is easily seen that any eigenvector of A is also an eigenvector

of AH . Therefore, from Lemma 1.15, A is normal. Let µ be the degree of the

minimal polynomial for A. Then, since A has µ distinct eigenvalues, there is a

polynomial q of degree µ − 1 such that q(λi) = λ̄i for i = 1, . . . , µ. According to

the above argument, for this q, it holds AH = q(A) and therefore ν(A) ≤ µ − 1.

Now it must be shown that µ ≤ s. Let w be a (nonzero) vector whose grade is

µ. By assumption, AHw ∈ Ks(A,w). On the other hand, we also have AHw =
q(A)w. Since the vectors w,Aw, . . . , Aµ−1w are linearly independent, µ − 1 must

not exceed s − 1. Otherwise, two different expressions for AHw with respect to the

basis w,Aw, . . . , Aµ−1w would result and this would imply that AHw = 0. Since

A is nonsingular, then w = 0, which is a contradiction.

Proposition 6.22 gives a sufficient condition for DIOM(s) to be equivalent to

FOM. According to Lemma 6.23, this condition is equivalent to A being normal and

ν(A) ≤ s − 1. Now consider the reverse result. Faber and Manteuffel define CG(s)

to be the class of all matrices such that for every v1, it is true that (Avj , vi) = 0 for

all i, j such that i + s ≤ j ≤ µ(v1) − 1. The inner product can be different from

the canonical Euclidean dot product. With this definition it is possible to show the

following theorem [121] which is stated without proof.

Theorem 6.24 A ∈ CG(s), if and only if the minimal polynomial of A has degree

≤ s, or A is normal and ν(A) ≤ s− 1.

It is interesting to consider the particular case where ν(A) ≤ 1, which is the case

of the Conjugate Gradient method. In fact, it is easy to show that in this case A either

has a minimal degree ≤ 1, or is Hermitian, or is of the form

A = eiθ (ρI +B)

where θ and ρ are real and B is skew-Hermitian, i.e., BH = −B. Thus, the cases

in which DIOM simplifies into an (optimal) algorithm defined from a three-term

recurrence are already known. The first is the Conjugate Gradient method. The

second is a version of the CG algorithm for skew-Hermitian matrices which can be

derived from the Lanczos algorithm in the same way as CG. This algorithm will be

seen in Chapter 9.

6.11 Convergence Analysis

The convergence behavior of the different algorithms seen in this chapter can be

analyzed by exploiting optimality properties whenever such properties exist. This

is the case for the Conjugate Gradient and the GMRES algorithms. On the other

hand, the non-optimal algorithms such as FOM, IOM, and QGMRES will be harder

to analyze.
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One of the main tools used in the analysis of these methods is Chebyshev poly-

nomials. These polynomials are useful both in theory, when studying convergence,

and in practice, as a means of accelerating single-vector iterations or projection pro-

cesses. In the following, real and complex Chebyshev polynomials are discussed

separately.

6.11.1 Real Chebyshev Polynomials

The Chebyshev polynomial of the first kind of degree k is defined by

Ck(t) = cos[k cos−1(t)] for − 1 ≤ t ≤ 1. (6.109)

That this is a polynomial with respect to t can be shown easily by induction from the

trigonometric relation

cos[(k + 1)θ] + cos[(k − 1)θ] = 2 cos θ cos kθ,

and the fact that C1(t) = t, C0(t) = 1. Incidentally, this also shows the important

three-term recurrence relation

Ck+1(t) = 2 t Ck(t)− Ck−1(t).

The definition (6.109) can be extended to cases where |t| > 1 with the help of the

following formula:

Ck(t) = cosh [k cosh−1(t)], |t| ≥ 1. (6.110)

This is readily seen by passing to complex variables and using the definition cos θ =
(eiθ + e−iθ)/2. As a result of (6.110) the following expression can be derived:

Ck(t) =
1

2

[(

t+
√

t2 − 1
)k

+
(

t+
√

t2 − 1
)−k

]

, (6.111)

which is valid for |t| ≥ 1 but can also be extended to the case of |t| < 1. The

following approximation, valid for large values of k, will be sometimes used:

Ck(t) '
1

2

(

t+
√

t2 − 1
)k

for |t| ≥ 1. (6.112)

In what follows we denote by Pk the set of all polynomials of degree k. An

important result from approximation theory is the following theorem.

Theorem 6.25 Let [α, β] be a non-empty interval in R and let γ be any real scalar

outside the interval [α, β]. Then the minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached by the polynomial

Ĉk(t) ≡
Ck

(

1 + 2 t−β
β−α

)

Ck

(

1 + 2 γ−β
β−α

) . (6.113)
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For a proof, see Cheney [77]. The maximum of Ck for t in [−1, 1] is 1 and a

corollary of the above result is

min
p∈Pk, p(γ)=1

max
t∈[α,β]

|p(t)| = 1

|Ck(1 + 2 γ−β
β−α )|

=
1

|Ck(2
γ−µ
β−α )|

in which µ ≡ (α + β)/2 is the middle of the interval. The absolute values in the

denominator are needed only when γ is to the left of the interval, i.e., when γ ≤ α.

For this case, it may be more convenient to express the best polynomial as

Ĉk(t) ≡
Ck

(

1 + 2 α−t
β−α

)

Ck

(

1 + 2α−γ
β−α

) .

which is obtained by exchanging the roles of α and β in (6.113).

6.11.2 Complex Chebyshev Polynomials

The standard definition of real Chebyshev polynomials given by equation (6.109)

extends without difficulty to complex variables. First, as was seen before, when t is

real and |t| > 1, the alternative definition, Ck(t) = cosh[k cosh−1(t)], can be used.

These definitions can be unified by switching to complex variables and writing

Ck(z) = cosh(kζ), where cosh(ζ) = z .

Defining the variable w = eζ , the above formula is equivalent to

Ck(z) =
1

2
[wk + w−k] where z =

1

2
[w + w−1]. (6.114)

The above definition for Chebyshev polynomials will be used in C. Note that the

equation 1
2(w + w−1) = z has two solutions w which are inverse of each other. As

a result, the value of Ck(z) does not depend on which of these solutions is chosen.

It can be verified directly that the Ck’s defined by the above equations are indeed

polynomials in the z variable and that they satisfy the three-term recurrence

Ck+1(z) = 2 zCk(z)− Ck−1(z), (6.115)

C0(z) ≡ 1, C1(z) ≡ z.

As is now explained, Chebyshev polynomials are intimately related to ellipses in

the complex plane. Let Cρ be the circle of radius ρ centered at the origin. Then the

so-called Joukowski mapping

J(w) =
1

2
[w + w−1]

transforms Cρ into an ellipse centered at the origin, with foci −1, 1, major semi-axis
1
2 [ρ+ ρ−1] and minor semi-axis 1

2 |ρ− ρ−1|. This is illustrated in Figure 6.2.
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There are two circles which have the same image by the mapping J(w), one

with the radius ρ and the other with the radius ρ−1. So it is sufficient to consider

only those circles with radius ρ ≥ 1. Note that the case ρ = 1 is a degenerate case in

which the ellipse E(0, 1,−1) reduces to the interval [−1, 1] traveled through twice.

An important question is whether or not a generalization of the min-max result of

Theorem 6.25 holds for the complex case. Here, the maximum of |p(z)| is taken over

the ellipse boundary and γ is some point not enclosed by the ellipse. The answer to

the question is no; Chebyshev polynomials are only optimal in some cases. However,

Chebyshev polynomials are asymptotically optimal, which is all that is needed in

practice.

✲

✻

ℜe(w)

ℑm(w)

w = ρeiθ•

✲
J(w)

✲

✻

ℜe(z)

ℑm(z)

z = w+w−1

2•

Figure 6.2: The Joukowski mapping transforms a circle into an ellipse in the complex

plane.

To prove the asymptotic optimality, we begin with a lemma due to Zarantonello,

which deals with the particular case where the ellipse reduces to a circle. This par-

ticular case is important in itself.

Lemma 6.26 (Zarantonello) Let C(0, ρ) be a circle of center the origin and radius

ρ and let γ be a point of C not enclosed by C(0, ρ). Then

min
p∈Pk, p(γ)=1

max
z ∈ C(0,ρ)

|p(z)| =
(
ρ

|γ|

)k

, (6.116)

the minimum being achieved for the polynomial (z/γ)k .

Proof. See reference [232] for a proof.

Note that by changing variables, shifting, and rescaling the polynomial, then for

any circle centered at c and for any scalar γ such that |γ| > ρ, the following min-max

result holds:

min
p∈Pk p(γ)=1

max
z ∈ C(c,ρ)

|p(z)| =
(

ρ

|γ − c|

)k

.

Now consider the case of an ellipse centered at the origin, with foci 1,−1 and

semi-major axis a, which can be considered as mapped by J from the circle C(0, ρ),
with the convention that ρ ≥ 1. Denote by Eρ such an ellipse.
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Theorem 6.27 Consider the ellipse Eρ mapped from C(0, ρ) by the mapping J and

let γ be any point in the complex plane not enclosed by it. Then

ρk

|wγ |k
≤ min

p∈Pk p(γ)=1
max
z ∈ Eρ

|p(z)| ≤ ρk + ρ−k

|wk
γ + w−k

γ |
(6.117)

in which wγ is the dominant root of the equation J(w) = γ.

Proof. We start by showing the second inequality. Any polynomial p of degree k
satisfying the constraint p(γ) = 1 can be written as

p(z) =

∑k
j=0 ξjz

j

∑k
j=0 ξjγ

j
.

A point z on the ellipse is transformed by J from a certain w in C(0, ρ). Similarly,

let wγ be one of the two inverse transforms of γ by the mapping, namely, the one

with largest modulus. Then, p can be rewritten as

p(z) =

∑k
j=0 ξj(w

j + w−j)
∑k

j=0 ξj(w
j
γ + w−j

γ )
. (6.118)

Consider the particular polynomial obtained by setting ξk = 1 and ξj = 0 for j 6= k,

p∗(z) =
wk + w−k

wk
γ + w−k

γ

which is a scaled Chebyshev polynomial of the first kind of degree k in the variable z.

It is apparent that the maximum modulus of this polynomial is reached in particular

when w = ρeiθ is real, i.e., when w = ρ. Thus,

max
z∈Eρ

|p∗(z)| = ρk + ρ−k

|wk
γ + w−k

γ |

which proves the second inequality.

To prove the left inequality, we rewrite (6.118) as

p(z) =

(

w−k

w−k
γ

) ∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

and take the modulus of p(z),

|p(z)| = ρ−k

|wγ |−k

∣
∣
∣
∣
∣

∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

∣
∣
∣
∣
∣
.

The polynomial inw of degree 2k inside the large modulus bars in the right-hand side

is such that its value at wγ is one. By Lemma 6.26, the modulus of this polynomial
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over the circle C(0, ρ) is not less than (ρ/|wγ |)2k, i.e., for any polynomial, satisfying

the constraint p(γ) = 1,

max
z∈ Eρ

|p(z)| ≥ ρ−k

|wγ |−k

ρ2k

|wγ |2k
=

ρk

|wγ |k
.

This proves that the minimum over all such polynomials of the maximum modulus

on the ellipse Eρ is ≥ (ρ/|wγ |)k.

The difference between the left and right bounds in (6.117) tends to zero as k
increases to infinity. Thus, the important point made by the theorem is that for large

k, the Chebyshev polynomial

p∗(z) =
wk + w−k

wk
γ + w−k

γ

, where z =
w + w−1

2

is close to the optimal polynomial. More specifically, Chebyshev polynomials are

asymptotically optimal.

For a more general ellipse E(c, d, a) centered at c, and with focal distance d and

semi-major axis a, a simple change of variables shows that the near-best polynomial

is given by

Ĉk(z) =
Ck

(
c−z
d

)

Ck

( c−γ
d

) . (6.119)

In addition, by examining the expression (wk + w−k)/2 for w = ρeiθ it is easily

seen that the maximum modulus of Ĉk(z), i.e., the infinity norm of this polynomial

over the ellipse, is reached at the point c + a located on the real axis. From this we

get,

max
z ∈ E(c,d,a)

|Ĉk(z)| =
Ck

(
a
d

)

|Ck

( c−γ
d

)
|

Here, we point out that d and a both can be purely imaginary [for an example, see part

(B) of Figure 6.3]. In this case a/d is real and the numerator in the above expression

is always real. Using the definition for Ck we obtain the following useful expression

and approximation:

Ck

(
a
d

)

Ck

( c−γ
d

) =

(

a
d +

√
(
a
d

)2 − 1

)k

+

(

a
d +

√
(
a
d

)2 − 1

)−k

(

c−γ
d +

√
( c−γ

d

)2 − 1

)k

+

(

c−γ
d +

√
( c−γ

d

)2 − 1

)−k
(6.120)

≈
(

a+
√
a2 − d2

c− γ +
√

(c− γ)2 − d2

)k

(6.121)

Finally, we note that an alternative and more detailed result has been proven by

Fischer and Freund in [127].
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6.11.3 Convergence of the CG Algorithm

As usual, ‖x‖A denotes the norm defined by

‖x‖A = (Ax, x)1/2.

The following lemma characterizes the approximation obtained from the Conjugate

Gradient algorithm.

Lemma 6.28 Let xm be the approximate solution obtained from the m-th step of the

CG algorithm, and let dm = x∗ − xm where x∗ is the exact solution. Then, xm is of

the form

xm = x0 + qm(A)r0

where qm is a polynomial of degree m− 1 such that

‖(I −Aqm(A))d0‖A = min
q ∈ Pm−1

‖(I −Aq(A))d0‖A.

Proof. This is a consequence of the fact that xm minimizes the A-norm of the error

in the affine subspace x0 + Km, a result of Proposition 5.2, and the fact that Km is

the set of all vectors of the form x0 + q(A)r0, where q is a polynomial of degree

≤ m− 1.

From this, the following theorem can be proved.

Theorem 6.29 Let xm be the approximate solution obtained at the m-th step of the

Conjugate Gradient algorithm, and x∗ the exact solution and define

η =
λmin

λmax − λmin
. (6.122)

Then,

‖x∗ − xm‖A ≤
‖x∗ − x0‖A
Cm(1 + 2η)

, (6.123)

in which Cm is the Chebyshev polynomial of degree m of the first kind.

Proof. From the previous lemma, it is known that ‖x∗ − xm‖A minimizes A-norm

of the error over polynomials r(t) which take the value one at 0, i.e.,

‖x∗ − xm‖A = min
r∈ Pm, r(0)=1

‖r(A)d0‖A.

If λi, i = 1, . . . , n are the eigenvalues of A, and ξi, i = 1, . . . , n the components of

the initial error d0 in the eigenbasis, then

‖r(A)d0‖2A =

n∑

i=1

λir(λi)
2(ξi)

2 ≤ max
i

(r(λi))
2‖d0‖2A

≤ max
λ ∈[λmin,λmax]

(r(λ))2‖d0‖2A.
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Therefore,

‖x∗ − xm‖A ≤ min
r∈ Pm, r(0)=1

max
λ ∈[λmin,λmax]

|r(λ)|‖d0‖A.

The result follows immediately by using the well known result of Theorem 6.25 from

approximation theory. This gives the polynomial r which minimizes the right-hand

side.

A slightly different formulation of inequality (6.123) can be derived. Using the

relation,

Cm(t) =
1

2

[(

t+
√

t2 − 1
)m

+
(

t+
√

t2 − 1
)−m

]

≥ 1

2

(

t+
√

t2 − 1
)m

then

Cm(1 + 2η) ≥ 1

2

(

1 + 2η +
√

(1 + 2η)2 − 1
)m

≥ 1

2

(

1 + 2η + 2
√

η(η + 1)
)m

.

Now notice that

1 + 2η + 2
√

η(η + 1) =
(√

η +
√

η + 1
)2

(6.124)

=

(√
λmin +

√
λmax

)2

λmax − λmin
(6.125)

=

√
λmax +

√
λmin√

λmax −
√
λmin

(6.126)

=

√
κ+ 1√
κ− 1

(6.127)

in which κ is the spectral condition number κ = λmax/λmin.

Substituting this in (6.123) yields,

‖x∗ − xm‖A ≤ 2

[√
κ− 1√
κ+ 1

]m

‖x∗ − x0‖A. (6.128)

This bound is similar to that of the steepest descent algorithm except that the condi-

tion number of A is now replaced by its square root.

6.11.4 Convergence of GMRES

We begin by stating a global convergence result. Recall that a matrix A is called

positive definite if its symmetric part (A + AT )/2 is Symmetric Positive Definite.

This is equivalent to the property that (Ax, x) > 0 for all nonzero real vectors x.
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Theorem 6.30 If A is a positive definite matrix, then GMRES(m) converges for any

m ≥ 1.

Proof. This is true because the subspace Km contains the initial residual vector at

each restart. Since the algorithm minimizes the residual norm in the subspace Km,

at each outer iteration, the residual norm will be reduced by as much as the result of

one step of the Minimal Residual method seen in the previous chapter. Therefore, the

inequality (5.15) is satisfied by residual vectors produced after each outer iteration

and the method converges.

Next we wish to establish a result similar to the one for the Conjugate Gradient

method, which would provide an upper bound on the convergence rate of the GMRES

iterates. We begin with a lemma similar to Lemma 6.28.

Lemma 6.31 Let xm be the approximate solution obtained from the m-th step of the

GMRES algorithm, and let rm = b−Axm. Then, xm is of the form

xm = x0 + qm(A)r0

and

‖rm‖2 = ‖(I −Aqm(A))r0‖2 = min
q ∈ Pm−1

‖(I −Aq(A))r0‖2.

Proof. This is true because xm minimizes the 2-norm of the residual in the affine

subspace x0 + Km, a result of Proposition 5.3, and the fact that Km is the set of all

vectors of the form x0 + q(A)r0, where q is a polynomial of degree ≤ m− 1.

Unfortunately, it not possible to prove a simple result such as Theorem 6.29 unless

A is normal.

Proposition 6.32 Assume that A is a diagonalizable matrix and let A = XΛX−1

where Λ = diag {λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues. Define,

ǫ(m) = min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|.

Then, the residual norm achieved by the m-th step of GMRES satisfies the inequality

‖rm‖2 ≤ κ2(X)ǫ(m)‖r0‖2.

where κ2(X) ≡ ‖X‖2‖X−1‖2.

Proof. Let p be any polynomial of degree ≤ m which satisfies the constraint p(0) =
1, and x the vector in Km to which it is associated via b−Ax = p(A)r0. Then,

‖b−Ax‖2 = ‖Xp(Λ)X−1r0‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2‖p(Λ)‖2
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Since Λ is diagonal, observe that

‖p(Λ)‖2 = max
i=1,...,n

|p(λi)|.

Since xm minimizes the residual norm over x0 + Km, then for any consistent poly-

nomial p,

‖b−Axm‖ ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2 max
i=1,...,n

|p(λi)|.

Now the polynomial p which minimizes the right-hand side in the above inequality

can be used. This yields the desired result,

‖b−Axm‖ ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2ǫ(m).

✲

✻

ℜe(z)

ℑm(z)

c c+ dc− d c+ a

c− a■

(A)

✲

✻

ℜe(z)

ℑm(z)

c

c+ d

c− d

c+ a

c− a

(B)

Figure 6.3: Ellipses containing the spectrum of A. Case (A): real d; case (B): purely

imaginary d.

The results of Section 6.11.2 on near-optimal Chebyshev polynomials in the

complex plane can now be used to obtain an upper bound for ǫ(m). Assume that

the spectrum of A in contained in an ellipse E(c, d, a) with center c, focal distance

d, and major semi axis a. In addition it is required that the origin lie outside this

ellipse. The two possible cases are shown in Figure 6.3. Case (B) corresponds to

the situation when d is purely imaginary, i.e., the major semi-axis is aligned with the

imaginary axis.

Corollary 6.33 Let A be a diagonalizable matrix, i.e, let A = XΛX−1 where Λ =
diag {λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues. Assume that all the
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eigenvalues ofA are located in the ellipseE(c, d, a) which excludes the origin. Then,

the residual norm achieved at the m-th step of GMRES satisfies the inequality,

‖rm‖2 ≤ κ2(X)
Cm

(
a
d

)

∣
∣Cm

(
c
d

)∣
∣
‖r0‖2.

Proof. All that is needed is an upper bound for the scalar ǫ(m) under the assumptions.

By definition,

ǫ(m) = min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|

≤ min
p∈Pm,p(0)=1

max
λ ∈ E(c,d,a)

|p(λ)|.

The second inequality is due to the fact that the maximum modulus of a complex

analytical function is reached on the boundary of the domain. We can now use as a

trial polynomial Ĉm defined by (6.119), with γ = 0:

ǫ(m) ≤ min
p∈Pm,p(0)=1

max
λ ∈ E(c,d,a)

|p(λ)|

≤ max
λ ∈ E(c,d,a)

|Ĉm(λ)| = Cm

(
a
d

)

∣
∣Cm

(
c
d

)∣
∣
.

This completes the proof.

An explicit expression for the coefficient Cm

(
a
d

)
/ Cm

(
c
d

)
and an approximation

are readily obtained from (6.120-6.121) by taking γ = 0:

Cm

(
a
d

)

Cm

(
c
d

) =

(

a
d +

√
(
a
d

)2 − 1

)m

+

(

a
d +

√
(
a
d

)2 − 1

)−m

(

c
d +

√
(
c
d

)2 − 1

)m

+

(

c
d +

√
(
c
d

)2 − 1

)−m

≈
(

a+
√
a2 − d2

c+
√
c2 − d2

)m

.

Since the condition number κ2(X) of the matrix of eigenvectors X is typically

not known and can be very large, results of the nature of the corollary are of limited

practical interest. They can be useful only when it is known that the matrix is nearly

normal, in which case, κ2(X) ≈ 1.

6.12 Block Krylov Methods

In many circumstances, it is desirable to work with a block of vectors instead of

a single vector. For example, out-of-core finite-element codes are more efficient

when they are programmed to exploit the presence of a block of the matrix A in fast

memory, as much as possible. This can be achieved by using block generalizations of
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Krylov subspace methods, for which A always operates on a group of vectors instead

of a single vector. We begin by describing a block version of the Arnoldi algorithm.

ALGORITHM 6.22 Block Arnoldi

1. Choose a unitary matrix V1 of dimension n× p.

2. For j = 1, 2, . . . ,m Do:

3. Compute Hij = V T
i AVj i = 1, 2, . . . , j

4. Compute Wj = AVj −
∑j

i=1 ViHij

5. Compute the Q-R factorization of Wj: Wj = Vj+1Hj+1,j

6. EndDo

The above algorithm is a straightforward block analogue of Algorithm 6.1. By

construction, the blocks generated by the algorithm are orthogonal blocks that are

also orthogonal to each other. In the following we denote by Ik the k × k identity

matrix and use the following notation:

Um = [V1, V2, . . . , Vm],

Hm = (Hij)1≤i,j≤m, Hij ≡ 0, for i > j + 1,

Em = matrix of the last p columns of Imp.

Then, the following analogue of the relation (6.6) is easily proved:

AUm = UmHm + Vm+1Hm+1,mE
T
m. (6.129)

Here, the matrix Hm is no longer Hessenberg, but band-Hessenberg, meaning that it

has p subdiagonals instead of only one. Note that the dimension of the subspace in

which the solution is sought is not m but m.p.

A second version of the algorithm uses a modified block Gram-Schmidt proce-

dure instead of the simple Gram-Schmidt procedure used above. This leads to a block

generalization of Algorithm 6.2, the Modified Gram-Schmidt version of Arnoldi’s

method.

ALGORITHM 6.23 Block Arnoldi with Block MGS

1. Choose a unitary matrix V1 of size n× p
2. For j = 1, 2, . . . ,m Do:

3. Compute Wj := AVj
4. For i = 1, 2, . . . , j do:

5. Hij := V T
i Wj

6. Wj :=Wj − ViHij

7. EndDo

8. Compute the Q-R decomposition Wj = Vj+1Hj+1,j

9. EndDo

Again, in practice the above algorithm is more viable than its predecessor. Fi-

nally, a third version, developed by A. Ruhe [236] for the symmetric case (block
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Lanczos), yields a variant that is quite similar to the original Arnoldi algorithm. As-

sume that the initial block of p orthonormal vectors, v1, . . . , vp is available. The first

step of the algorithm is to multiply v1 by A and orthonormalize the resulting vector

w against v1, . . . , vp. The resulting vector is defined to be vp+1. In the second step

it is v2 that is multiplied by A and orthonormalized against all available vi’s. Thus,

the algorithm works similarly to Algorithm 6.2 except for a delay in the vector that

is multiplied by A at each step.

ALGORITHM 6.24 Block Arnoldi–Ruhe’s variant

1. Choose p initial orthonormal vectors {vi}i=1,...,p.

2. For j = p, p+ 1, . . . ,m+ p− 1 Do:

3. Set k := j − p+ 1;

4. Compute w := Avk;

5. For i = 1, 2, . . . , j Do:

6. hi,k := (w, vi)
7. w := w − hi,kvi
8. EndDo

9. Compute hj+1,k := ‖w‖2 and vj+1 := w/hj+1,k.

10. EndDo

Observe that the particular case p = 1 coincides with the usual Arnoldi process.

Also, the dimension m of the subspace of approximants, is no longer restricted to

being a multiple of the block-size p as in the previous algorithms. The mathematical

equivalence of Algorithms 6.23 and 6.24 when m is a multiple of p is straightfor-

ward to show. The advantage of the above formulation is its simplicity. A slight

disadvantage is that it gives up some potential parallelism. In the original version,

the columns of the matrix AVj can be computed in parallel whereas in the new algo-

rithm, they are computed in sequence. This can be remedied, however, by performing

p matrix-by-vector products every p steps.

At the end of the loop consisting of lines 5 through 8 of Algorithm 6.24, the

vector w satisfies the relation

w = Avk −
j
∑

i=1

hikvi,

where k and j are related by k = j − p + 1. Line 9 gives w = hj+1,kvj+1 which

results in

Avk =

k+p
∑

i=1

hikvi.

As a consequence, the analogue of the relation (6.7) for Algorithm 6.24 is

AVm = Vm+pH̄m. (6.130)

As before, for any j the matrix Vj represents the n×j matrix with columns v1, . . . vj .
The matrix H̄m is now of size (m+ p)×m.
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Now the block generalizations of FOM and GMRES can be defined in a straight-

forward way. These block algorithms can solve linear systems with multiple right-

hand sides,

Ax(i) = b(i), i = 1, · · · , p, (6.131)

or, in matrix form

AX = B, (6.132)

where the columns of the n × p matrices B and X are the b(i)’s and x(i)’s, respec-

tively. Given an initial block of initial guesses x
(i)
0 for i = 1, . . . , p, we define R0 the

block of initial residuals

R0 ≡ [r
(1)
0 , r

(2)
0 , . . . , r

(p)
0 ],

where each column is r
(i)
0 = b(i) − Ax(i)0 . It is preferable to use the unified notation

derived from Algorithm 6.24. In this notation, m is not restricted to being a multiple

of the block-size p and the same notation is used for the vi’s as in the scalar Arnoldi

Algorithm. Thus, the first step of the block-FOM or block-GMRES algorithm is to

compute the QR factorization of the block of initial residuals:

R0 = [v1, v2, . . . , vp] R.

Here, the matrix [v1, . . . , vp] is unitary and R is p × p upper triangular. This factor-

ization provides the first p vectors of the block-Arnoldi basis.

Each of the approximate solutions has the form

x(i) = x
(i)
0 + Vmy

(i), (6.133)

and, grouping these approximations x(i) in a block X and the y(i) in a block Y , we

can write

X = X0 + VmY. (6.134)

It is now possible to imitate what was done for the standard FOM and GMRES

algorithms. The only missing link is the vector βe1 in (6.27) which now becomes a

matrix. Let E1 be the (m + p) × p matrix whose upper p × p principal block is an

identity matrix. Then, the relation (6.130) results in

B −AX = B −A (X0 + VmY )

= R0 −AVmY
= [v1, . . . , vp]R− Vm+pH̄mY

= Vm+p

(
E1R− H̄mY

)
. (6.135)

The vector

ḡ(i) ≡ E1Rei

is a vector of length m+pwhose components are zero except those from 1 to i which

are extracted from the i-th column of the upper triangular matrix R. The matrix H̄m
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is an (m+ p)×m matrix. The block-FOM approximation would consist of deleting

the last p rows of ḡ(i) and H̄m and solving the resulting system,

Hmy
(i) = g(i).

The approximate solution x(i) is then computed by (6.133).

The block-GMRES approximation x(i) is the unique vector of the form x
(i)
0 +

Vmy
(i) which minimizes the 2-norm of the individual columns of the block-residual

(6.135). Since the column-vectors of Vm+p are orthonormal, then from (6.135) we

get,

‖b(i) −Ax(i)‖2 = ‖ḡ(i) − H̄my
(i)‖2. (6.136)

To minimize the residual norm, the function on the right hand-side must be min-

imized over y(i). The resulting least-squares problem is similar to the one encoun-

tered for GMRES. The only differences are in the right-hand side and the fact that

the matrix is no longer Hessenberg, but band-Hessenberg. Rotations can be used in a

way similar to the scalar case. However, p rotations are now needed at each new step

instead of only one. Thus, if m = 6 and p = 2, the matrix H̄6 and block right-hand

side would be as follows:

H̄6 =















h11 h12 h13 h14 h15 h16
h21 h22 h23 h24 h25 h26
h31 h32 h33 h34 h35 h36

h42 h43 h44 h45 h46
h53 h54 h55 h56

h64 h65 h66
h75 h76

h86















Ḡ =















g11 g12
g22















.

For each new column generated in the block-Arnoldi process, p rotations are

required to eliminate the elements hk,j , for k = j + p down to k = j + 1. This

backward order is important. In the above example, a rotation is applied to eliminate

h3,1 and then a second rotation is used to eliminate the resulting h2,1, and similarly

for the second, third step, etc. This complicates programming slightly since two-

dimensional arrays must now be used to save the rotations instead of one-dimensional

arrays in the scalar case. After the first column of H̄m is processed, the block of right-

hand sides will have a diagonal added under the diagonal of the upper triangular

matrix. Specifically, the above two matrices will have the structure,

H̄6 =















⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆















Ḡ =















⋆ ⋆
⋆ ⋆

⋆















,
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where a ⋆ represents a nonzero element. After all columns are processed, the follow-

ing least-squares system is obtained.

H̄6 =
















⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆
















Ḡ =
















⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆
















.

To obtain the least-squares solutions for each right-hand side, ignore anything below

the horizontal lines in the above matrices and solve the resulting triangular systems.

The residual norm of the i-th system for the original problem is the 2-norm of the

vector consisting of the components m+ 1, through m+ i in the i-th column of the

above block of right-hand sides.

Generally speaking, the block methods are of great practical value in applica-

tions involving linear systems with multiple right-hand sides. However, they are

not as well studied from the theoretical point of view. Perhaps, one of the reasons

is the lack of a convincing analogue for the relationship with orthogonal polyno-

mials, established in subsection 6.6.2 for the single-vector Lanczos algorithm. The

block version of the Lanczos algorithm has not been covered but the generalization

is straightforward.

PROBLEMS

P-6.1 In the Householder implementation of the Arnoldi algorithm, show the following

points of detail:

a. Qj+1 is unitary and its inverse is QT
j+1.

b. QT
j+1 = P1P2 . . . Pj+1.

c. QT
j+1ei = vi for i < j.

d. Qj+1AVm = Vm+1[e1, e2, . . . , ej+1]H̄m, where ei is the i-th column of the n × n
identity matrix.

e. The vi’s are orthonormal.

f. The vectors v1, . . . , vj are equal to the Arnoldi vectors produced by the Gram-Schmidt

version, except possibly for a scaling factor.

P-6.2 Rewrite the Householder implementation of the Arnoldi algorithm with more detail.

In particular, define precisely the Householder vector wj used at step j (lines 3-5).

P-6.3 Consider the Householder implementation of the Arnoldi algorithm. Give a detailed

operation count of the algorithm and compare it with the Gram-Schmidt and Modified Gram-

Schmidt algorithm.
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P-6.4 Consider a variant of the GMRES algorithm in which the Arnoldi process starts with

v1 = Av0/‖Av0‖2 where v0 ≡ r0. The Arnoldi process is performed the same way as

before to build an orthonormal system v1, v2, . . . , vm−1. Now the approximate solution is

expressed in the basis {v0, v1, . . . , vm−1}.
a. Show that the least squares problem that must be solved to obtain the approximate

solution is now triangular instead of Hessemberg.

b. Show that the residual vector rk is orthogonal to v1, v2, . . . , vk−1.

c. Find a formula which computes the residual norm (without computing the approximate

solution) and write the complete algorithm.

P-6.5 Derive the basic version of GMRES by using the standard formula (5.7) with V = Vm
and W = AVm.

P-6.6 Analyze the arithmic cost, i.e., the number of operations, of Algorithms 6.7 and 6.8.

Similarly analyse the memory requirement of both algorithms.

P-6.7 Derive a version of the DIOM algorithm which includes partial pivoting in the solu-

tion of the Hessenberg system.

P-6.8 Show how the GMRES and FOM methods will converge on the linear systemAx = b
when

A =








1
1

1
1

1







, b =








1
0
0
0
0








and with x0 = 0.

P-6.9 Give a full proof of Proposition 6.17.

P-6.10 Let a matrix A have the form

A =

(
I Y
0 I

)

.

Assume that (full) GMRES is used to solve a linear system, with the coefficient matrix A.

What is the maximum number of steps that GMRES would require to converge?

P-6.11 Let a matrix A have the form:

A =

(
I Y
0 S

)

.

Assume that (full) GMRES is used to solve a linear system with the coefficient matrixA. Let

r0 =

(
r
(1)
0

r
(2)
0

)

be the initial residual vector. It is assumed that the degree of the minimal polynomial of r
(2)
0

with respect to S (i.e., its grade) is k. What is the maximum number of steps that GMRES

would require to converge for this matrix? [Hint: Evaluate the sum
∑k

i=0 βi(A
i+1 − Ai)r0

where
∑k

i=0 βit
i is the minimal polynomial of r

(2)
0 with respect to S.]
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P-6.12 Let

A =











I Y2
I Y3

I
. . .

I Yk−1

I Yk
I











.

a. Show that (I −A)k = 0.

b. Assume that (full) GMRES is used to solve a linear system with the coefficient matrix

A. What is the maximum number of steps that GMRES would require to converge?

P-6.13 Show that if Hm is nonsingular, i.e., when the FOM iterate xFm is defined, and if the

GMRES iterate xGm is such that xGm = xFm, then rGm = rFm = 0, i.e., both the GMRES and

FOM solutions are exact. [Hint: use the relation (6.74) and Proposition 6.17 or Proposition

6.12.]

P-6.14 Derive the relation (6.63) from (6.75). [Hint: Use the fact that the vectors on the

right-hand side of (6.75) are orthogonal.]

P-6.15 In the Householder-GMRES algorithm the approximate solution can be computed

by formulas (6.31-6.33). What is the exact cost of this alternative (compare memory as well

as arithmetic requirements)? How does it compare with the cost of keeping the vi’s?

P-6.16 An alternative to formulas (6.31-6.33) for accumulating the approximate solution in

the Householder-GMRES algorithm without keeping the vi’s is to compute xm as

xm = x0 + P1P2 . . . Pmy

where y is a certain n-dimensional vector to be determined. (1) What is the vector y for

the above formula in order to compute the correct approximate solution xm? [Hint: Exploit

(6.13).] (2) Write down an alternative to formulas (6.31-6.33) derived from this approach.

(3) Compare the cost of this approach with the cost of using (6.31-6.33).

P-6.17 Obtain the formula (6.97) from (6.96).

P-6.18 Show that the determinant of the matrix Tm in (6.103) is given by

det (Tm) =
1

∏m−1
i=0 αi

.

P-6.19 The Lanczos algorithm is more closely related to the implementation of Algorithm

6.19 of the Conjugate Gradient algorithm. As a result the Lanczos coefficients δj+1 and ηj+1

are easier to extract from this algorithm than from Algorithm 6.18. Obtain formulas for these

coefficients from the coefficients generated by Algorithm 6.19, as was done in Section 6.7.3

for the standard CG algorithm.

P-6.20 What can be said of the Hessenberg matrix Hm when A is skew-symmetric? What

does this imply on the Arnoldi algorithm?

P-6.21 Consider a matrix of the form

A = I + αB (6.137)

where B is skew-symmetric (real), i.e., such that BT = −B.

a. Show that (Ax, x)/(x, x) = 1 for all nonzero x.
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b. Consider the Arnoldi process for A. Show that the resulting Hessenberg matrix will

have the following tridiagonal form

Hm =








1 −η2
η2 1 −η3

. . .
ηm−1 1 −ηm

ηm 1







.

c. Using the result of the previous question, explain why the CG algorithm applied as is

to a linear system with the matrix A, which is nonsymmetric, will still yield residual

vectors that are orthogonal to each other.

P-6.22 Establish the three relations (6.22), (6.23), and (6.24).

P-6.23 Show that if the rotations generated in the course of the GMRES (and DQGMRES)

algorithm are such that

|cm| ≥ c > 0,

then GMRES, DQGMRES, and FOM will all converge.

P-6.24 Show the exact expression of the residual vector in the basis v1, v2, . . . , vm+1 for

either GMRES or DQGMRES. [Hint: A starting point is (6.50).]

P-6.25 Prove that the inequality (6.54) is sharper than (6.51), in the sense that ζm+1 ≤√
m− k + 1 (for m ≥ k). [Hint: Use Cauchy-Schwarz inequality on (6.54).]

P-6.26 Consider the minimal residual smoothing algorithm (Algorithm 7.5) in the situation

when the residual vectors rOj of the original sequence are orthogonal to each other. Show

that the vectors

rOj − rSj−1 = −A(xOj − xSj−1)

are orthogonal to each other [Hint: use induction]. Then use Lemma 6.21 to conclude that

the iterates of the algorithm are identical with those of ORTHOMIN and GMRES.

P-6.27 Consider the complex GMRES algorithm in Section 6.5.9. Show at least two other

ways of defining complex Givens rotations (the requirement is that Ωi be a unitary matrix,

i.e., that ΩH
i Ωi = I). Which among the three possible choices give (s) a nonnegative real

diagonal for the resulting Rm matrix?

P-6.28 Work out the details of a Householder implementation of the GMRES algorithm for

complex linear systems (The Householder matrices are now of the form I−2wwH ; part of the

practical implementation details is already available for the complex case in Section 6.5.9.)

P-6.29 Denote by Sm the unit upper triangular matrix S in the proof of Theorem 6.11

which is obtained from the Gram-Schmidt process (exact arithmetic assumed) applied to the

incomplete orthogonalization basis Vm. Show that the Hessenberg matrix H̄Q
m obtained in

the incomplete orthogonalization process is related to the Hessenberg matrix H̄G
m obtained

from the (complete) Arnoldi process by

H̄G
m = S−1

m+1H̄
Q
mSm.

NOTES AND REFERENCES. The Conjugate Gradient method was developed independently and in

different forms by Lanczos [197] and Hestenes and Stiefel [167]. The method was essentially viewed

as a direct solution technique and was abandoned early on because it did not compare well with other

existing techniques. For example, in inexact arithmetic, the method does not terminate in n steps as
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is predicted by the theory. This is caused by the severe loss of of orthogonality of vector quantities

generated by the algorithm. As a result, research on Krylov-type methods remained dormant for over

two decades thereafter. This changed in the early 1970s when several researchers discovered that this

loss of orthogonality did not prevent convergence. The observations were made and explained for

eigenvalue problems [222, 147] as well as linear systems [231]. The early to the middle 1980s saw

the development of a new class of methods for solving nonsymmetric linear systems [12, 13, 178, 238,

239, 251, 298]. The works of Faber and Manteuffel [121] and Voevodin [299] showed that one could

not find optimal methods which, like CG, are based on short-term recurrences. Many of the methods

developed are mathematically equivalent, in the sense that they realize the same projection process,

with different implementations.

Lemma 6.16 was proved by Roland Freund [134] in a slightly different form. Proposition 6.12 is

due to Brown [66] who proved a number of other theoretical results, including Proposition 6.17. The

inequality (6.64), which can be viewed as a reformulation of Brown’s result, was proved by Cullum

and Greenbaum [92]. This result is equivalent to Equation (6.67) which was shown in a very different

way by Zhou and Walker [324].

The Householder version of GMRES is due to Walker [303]. The Quasi-GMRES algorithm de-

scribed in Section 6.5.6 was initially described by Brown and Hindmarsh [67], and the direct version

DQGMRES was discussed in [255]. The proof of Theorem 6.11 for DQGMRES is adapted from the

result shown in [213] for the QMR algorithm.

Schönauer [260] seems to have been the originator or Minimal Residual Smoothing methods,

but Weiss [307] established much of the theory and connections with other techniques. The Quasi-

minimization extension of these techniques (QMRS) was developed by Zhou and Walker [324].

The non-optimality of the Chebyshev polynomials on ellipses in the complex plane was estab-

lished by Fischer and Freund [128]. Prior to this, a 1963 paper by Clayton [86] was believed to have

established the optimality for the special case where the ellipse has real foci and γ is real.

Various types of Block Krylov methods were considered. In addition to their attraction for solving

linear systems with several right-hand sides [243, 267], one of the other motivations for these techniques

is that they can also help reduce the effect of the sequential inner products in parallel environments

and minimize I/O costs in out-of-core implementations. A block Lanczos algorithm was developed

by Underwood [287] for the symmetric eigenvalue problem, while O’Leary discussed a block CG

algorithm [215]. The block-GMRES algorithm is analyzed by Simoncini and Gallopoulos [266] and in

[250]. Besides the straightforward extension presented in Section 6.12, a variation was developed by

Jbilou et al., in which a ‘global’ inner product for the blocks was considered instead of the usual scalar

inner product for each column [176].

Alternatives to GMRES which require fewer inner products have been proposed by Sadok [256]

and Jbilou [175]. Sadok investigated a GMRES-like method based on the Hessenberg algorithm [317],

while Jbilou proposed a multi-dimensional generalization of Gastinel’s method seen in Exercise 2 of

Chapter 5.
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Chapter 7

KRYLOV SUBSPACE METHODS PART II

The previous chapter considered a number of Krylov subspace methods which relied on some

form of orthogonalization of the Krylov vectors in order to compute an approximate solution.

This chapter will describe a class of Krylov subspace methods which are instead based on a bi-

orthogonalization algorithm due to Lanczos. These are projection methods that are intrinsically

non-orthogonal. They have some appealing properties, but are harder to analyze theoretically.

7.1 Lanczos Biorthogonalization

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matri-

ces of the symmetric Lanczos algorithm seen in the previous chapter. One such

extension, the Arnoldi procedure, has already been seen. However, the nonsymmet-

ric Lanczos algorithm is quite different in concept from Arnoldi’s method because it

relies on biorthogonal sequences instead of orthogonal sequences.

7.1.1 The Algorithm

The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of bi-

orthogonal bases for the two subspaces

Km(A, v1) = span{v1, Av1, . . . , Am−1v1}

and

Km(AT , w1) = span{w1, A
Tw1, . . . , (A

T )m−1w1}.
The algorithm that achieves this is the following.

ALGORITHM 7.1 The Lanczos Biorthogonalization Procedure

1. Choose two vectors v1, w1 such that (v1, w1) = 1.

2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0
3. For j = 1, 2, . . . ,m Do:

4. αj = (Avj , wj)
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

229
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7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop

8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

Note that there are numerous ways to choose the scalars δj+1, βj+1 in lines 7 and

8. These two parameters are scaling factors for the two vectors vj+1 and wj+1 and

can be selected in any manner to ensure that (vj+1, wj+1) = 1. As a result of lines

9 and 10 of the algorithm, it is only necessary to choose two scalars βj+1, δj+1 that

satisfy the equality

δj+1βj+1 = (v̂j+1, ŵj+1). (7.1)

The choice taken in the above algorithm scales the two vectors so that they are di-

vided by two scalars which have the same modulus. Both vectors can also be scaled

by their 2-norms. In that case, the inner product of vj+1 and wj+1 is no longer equal

to 1 and the algorithm must be modified accordingly; see Exercise 3.

Consider the case where the pair of scalars δj+1, βj+1 is any pair that satisfies

the relation (7.1). Denote by Tm the tridiagonal matrix

Tm =









α1 β2
δ2 α2 β3

. . .
δm−1 αm−1 βm

δm αm









. (7.2)

If the determinations of βj+1, δj+1 of lines 7–8 are used, then the δj’s are positive

and βj = ±δj .

Observe from the algorithm that the vectors vi belong to Km(A, v1), while the

wj’s are in Km(AT , w1). In fact, the following proposition can be proved.

Proposition 7.1 If the algorithm does not break down before stepm, then the vectors

vi, i = 1, . . . ,m, and wj , j = 1, . . . ,m, form a biorthogonal system, i.e.,

(vj , wi) = δij 1 ≤ i, j ≤ m.

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m is a basis of

Km(AT , w1) and the following relations hold,

AVm = VmTm + δm+1vm+1e
T
m, (7.3)

ATWm =WmT
T
m + βm+1wm+1e

T
m, (7.4)

W T
mAVm = Tm. (7.5)

Proof. The biorthogonality of the vectors vi, wi will be shown by induction. By

assumption (v1, w1) = 1. Assume now that the vectors v1, . . . vj and w1, . . . wj
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are biorthogonal, and let us prove that the vectors v1, . . . vj+1 and w1, . . . wj+1 are

biorthogonal.

First, we show that (vj+1, wi) = 0 for i ≤ j. When i = j, then

(vj+1, wj) = δ−1
j+1[(Avj , wj)− αj(vj , wj)− βj(vj−1, wj)].

The last inner product in the above expression vanishes by the induction hypothe-

sis. The two other terms cancel each other by the definition of αj and the fact that

(vj , wj) = 1. Consider now the inner product (vj+1, wi) with i < j,

(vj+1, wi) = δ−1
j+1[(Avj , wi)− αj(vj , wi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , A

Twi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , βi+1wi+1 + αiwi + δiwi−1)− βj(vj−1, wi)].

For i < j − 1, all of the inner products in the above expression vanish, by the

induction hypothesis. For i = j − 1, the inner product is

(vj+1, wj−1) = δ−1
j+1[(vj , βjwj + αj−1wj−1 + δj−1wj−2)− βj(vj−1, wj−1)]

= δ−1
j+1[βj(vj , wj)− βj(vj−1, wj−1)]

= 0.

It can be proved in an identical way that (vi, wj+1) = 0 for i ≤ j. Finally, by

construction (vj+1, wj+1) = 1. This completes the induction proof. The proof of

the matrix relations (7.3–7.5) is similar to that of the relations (6.6–6.8) in Arnoldi’s

method.

The relations (7.3–7.5) allow us to interpret the algorithm. The matrix Tm is

the projection of A obtained from an oblique projection process onto Km(A, v1)
and orthogonally to Km(AT , w1). Similarly, T T

m represents the projection of AT

on Km(AT , w1) and orthogonally to Km(A, v1). Thus, an interesting new feature

here is that the operators A and AT play a dual role because similar operations are

performed with them. In fact, two linear systems are solved implicitly, one with A
and the other with AT . If there were two linear systems to solve, one with A and

the other with AT , then this algorithm is suitable. Otherwise, the operations with

AT are essentially wasted. Later a number of alternative techniques developed in the

literature will be introduced that avoid the use of AT .

From a practical point of view, the Lanczos algorithm has a significant advan-

tage over Arnoldi’s method because it requires only a few vectors of storage, if no

reorthogonalization is performed. Specifically, six vectors of length n are needed,

plus some storage for the tridiagonal matrix, no matter how large m is.

On the other hand, there are potentially more opportunities for breakdown with

the nonsymmetric Lanczos method. The algorithm will break down whenever δj+1

as defined in line 7 vanishes. This is examined more carefully in the next section. In

practice, the difficulties are more likely to be caused by the near occurrence of this

phenomenon. A look at the algorithm indicates that the Lanczos vectors may have
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to be scaled by small quantities when this happens. After a few steps the cumulated

effect of these scalings may introduce excessive rounding errors.

Since the subspace from which the approximations are taken is identical to that

of Arnoldi’s method, the same bounds for the distance ‖(I − Pm)u‖2 are valid.

However, this does not mean in any way that the approximations obtained by the two

methods are likely to be similar in quality. The theoretical bounds shown in Chapter

5 indicate that the norm of the projector may play a significant role.

7.1.2 Practical Implementations

There are various ways to improve the standard nonsymmetric Lanczos algorithm

which we now discuss briefly. A major concern here is the potential breakdowns

or “near breakdowns” in the algorithm. There exist a number of approaches that

have been developed to avoid such breakdowns. Other approaches do not attempt to

eliminate the breakdown, but rather try to deal with it. The pros and cons of these

strategies will be discussed after the various existing scenarios are described.

Algorithm 7.1 will abort in line 7 whenever,

(v̂j+1, ŵj+1) = 0. (7.6)

This can arise in two different ways. Either one of the two vectors v̂j+1 or ŵj+1

vanishes, or they are both nonzero, but their inner product is zero. The first case is

the “lucky breakdown” scenario which has been seen for symmetric matrices. Thus,

if v̂j+1 = 0 then span{Vj} is invariant and, as was seen in Chapter 5, the approximate

solution is exact. If ŵj+1 = 0 then span{Wj} is invariant. However, in this situation

nothing can be said about the approximate solution for the linear system with A. If

the algorithm is being used to solve a pair of linear systems, one with A and a dual

system with AT , then the approximate solution for the dual system will be exact

in this case. The second scenario in which (7.6) can occur is when neither of the

two vectors is zero, but their inner product is zero. Wilkinson (see [317], p. 389)

called this a serious breakdown. Fortunately, there are cures for this problem which

allow the algorithm to continue in most cases. The corresponding modifications of

the algorithm are often put under the denomination Look-Ahead Lanczos algorithms.

There are also rare cases of incurable breakdowns which will not be discussed here

(see references [225] and [284]).

The main idea of Look-Ahead variants of the Lanczos algorithm is that the pair

vj+2, wj+2 can often be defined even though the pair vj+1, wj+1 is not defined. The

algorithm can be pursued from that iterate as before until a new breakdown is en-

countered. If the pair vj+2, wj+2 cannot be defined then the pair vj+3, wj+3 can be

tried, and so on. To better explain the idea, it is best to refer to the connection with or-

thogonal polynomials mentioned earlier for the symmetric case. The relationship can

be extended to the nonsymmetric case by defining the bilinear form on the subspace

Pm−1

< p, q >= (p(A)v1, q(A
T )w1). (7.7)
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Unfortunately, this is now an “indefinite inner product” in general since < p, p >
can be zero or even negative. Note that there is a polynomial pj of degree j such that

v̂j+1 = pj(A)v1 and, in fact, the same polynomial intervenes in the equivalent ex-

pression of wj+1. More precisely, there is a scalar γj such that ŵj+1 = γjpj(A
T )v1.

Similar to the symmetric case, the nonsymmetric Lanczos algorithm attempts to com-

pute a sequence of polynomials that are orthogonal with respect to the indefinite inner

product defined above. If we define the moment matrix

Mk = {< xi−1, xj−1 >}i,j=1,...,k

then this process is mathematically equivalent to the computation of the factorization

Mk = LkUk

of the moment matrix Mk, in which Uk is upper triangular and Lk is lower triangular.

Note that Mk is a Hankel matrix, i.e., its coefficients mij are constant along anti-

diagonals, i.e., for i+ j = constant.
Because

< pj, pj >= γj(pj(A)v1, pj(A
T )w1),

we observe that there is a serious breakdown at step j if and only if the indefinite

norm of the polynomial pj at step j vanishes. If this polynomial is skipped, it may

still be possible to compute pj+1 and continue to generate the sequence. To explain

this simply, consider

qj(t) = xpj−1(t) and qj+1(t) = x2pj−1(t).

Both qj and qj+1 are orthogonal to the polynomials p1, . . . , pj−2. We can define

(somewhat arbitrarily) pj = qj , and then pj+1 can be obtained by orthogonalizing

qj+1 against pj−1 and pj . It is clear that the resulting polynomial will then be orthog-

onal against all polynomials of degree ≤ j; see Exercise 5. Therefore, the algorithm

can be continued from step j +1 in the same manner. Exercise 5 generalizes this for

the case where k polynomials are skipped rather than just one. This is a simplified

description of the mechanism which underlies the various versions of Look-Ahead

Lanczos algorithms proposed in the literature. The Parlett-Taylor-Liu implementa-

tion [225] is based on the observation that the algorithm breaks because the pivots

encountered during the LU factorization of the moment matrix Mk vanish. Then,

divisions by zero are avoided by performing implicitly a pivot with a 2 × 2 matrix

rather than using a standard 1× 1 pivot.

The drawback of Look-Ahead implementations is the nonnegligible added com-

plexity. Besides the difficulty of identifying these near breakdown situations, the

matrix Tm ceases to be tridiagonal. Indeed, whenever a step is skipped, elements

are introduced above the superdiagonal positions, in some subsequent step. In the

context of linear systems, near breakdowns are rare and their effect generally benign.

Therefore, a simpler remedy, such as restarting the Lanczos procedure, may well be

adequate. For eigenvalue problems, Look-Ahead strategies may be more justified.
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7.2 The Lanczos Algorithm for Linear Systems

We present in this section a brief description of the Lanczos method for solving

nonsymmetric linear systems. Consider the (single) linear system:

Ax = b (7.8)

where A is n × n and nonsymmetric. Suppose that a guess x0 to the solution is

available and let its residual vector be r0 = b − Ax0. Then the Lanczos algorithm

for solving (7.8) can be described as follows.

ALGORITHM 7.2 Two-sided Lanczos Algorithm for Linear Systems

1. Compute r0 = b−Ax0 and β := ‖r0‖2
2. Run m steps of the nonsymmetric Lanczos Algorithm, i.e.,

3. Start with v1 := r0/β, and any w1 such that (v1, w1) = 1
4. Generate the Lanczos vectors v1, . . . , vm, w1, . . . , wm

5. and the tridiagonal matrix Tm from Algorithm 7.1.

6. Compute ym = T−1
m (βe1) and xm := x0 + Vmym.

Note that it is possible to incorporate a convergence test when generating the

Lanczos vectors in the second step without computing the approximate solution ex-

plicitly. This is due to the following formula, which is similar to Equation (6.87) for

the symmetric case,

‖b−Axj‖2 = |δj+1e
T
j yj| ‖vj+1‖2, (7.9)

and which can be proved in the same way, by using (7.3). This formula gives us the

residual norm inexpensively without generating the approximate solution itself.

7.3 The BCG and QMR Algorithms

The Biconjugate Gradient (BCG) algorithm can be derived from Algorithm 7.1 in ex-

actly the same way as the Conjugate Gradient method was derived from Algorithm

6.15. The algorithm was first proposed by Lanczos [197] in 1952 and then in a differ-

ent form (Conjugate Gradient-like version) by Fletcher [130] in 1974. Implicitly, the

algorithm solves not only the original system Ax = b but also a dual linear system

ATx∗ = b∗ with AT . This dual system is often ignored in the formulations of the

algorithm.

7.3.1 The Biconjugate Gradient Algorithm

The Biconjugate Gradient (BCG) algorithm is a projection process onto

Km = span{v1, Av1, · · · , Am−1v1}

orthogonally to

Lm = span{w1, A
Tw1, · · · , (AT )m−1w1}
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taking, as usual, v1 = r0/‖r0‖2. The vector w1 is arbitrary, provided (v1, w1) 6= 0,

but it is often chosen to be equal to v1. If there is a dual system ATx∗ = b∗ to solve

with AT , then w1 is obtained by scaling the initial residual b∗ −ATx∗0.

Proceeding in the same manner as for the derivation of the Conjugate Gradient

algorithm from the symmetric Lanczos algorithm, we write the LDU decomposition

of Tm as

Tm = LmUm (7.10)

and define

Pm = VmU
−1
m . (7.11)

The solution is then expressed as

xm = x0 + VmT
−1
m (βe1)

= x0 + VmU
−1
m L−1

m (βe1)

= x0 + PmL
−1
m (βe1).

Notice that the solution xm is updatable from xm−1 in a similar way to the Conjugate

Gradient algorithm. Like the Conjugate Gradient algorithm, the vectors rj and r∗j are

in the same direction as vj+1 and wj+1, respectively. Hence, they form a biortho-

gonal sequence. Define similarly the matrix

P ∗
m =WmL

−T
m . (7.12)

Clearly, the column-vectors p∗i of P ∗
m and those pi of Pm are A-conjugate, since,

(P ∗
m)TAPm = L−1

m W T
mAVmU

−1
m = L−1

m TmU
−1
m = I.

Utilizing this information, a Conjugate Gradient–like algorithm can be easily derived

from the Lanczos procedure.

ALGORITHM 7.3 Biconjugate Gradient (BCG)

1. Compute r0 := b−Ax0. Choose r∗0 such that (r0, r
∗
0) 6= 0.

2. Set, p0 := r0, p∗0 := r∗0
3. For j = 0, 1, . . ., until convergence Do:

4. αj := (rj , r
∗
j )/(Apj , p

∗
j )

5. xj+1 := xj + αjpj
6. rj+1 := rj − αjApj
7. r∗j+1 := r∗j − αjA

T p∗j
8. βj := (rj+1, r

∗
j+1)/(rj , r

∗
j )

9. pj+1 := rj+1 + βjpj
10. p∗j+1 := r∗j+1 + βjp

∗
j

11. EndDo

If a dual system with AT is being solved, then in line 1 r∗0 should be defined as

r∗0 = b∗−ATx∗0 and the update x∗j+1 := x∗j +αjp
∗
j to the dual approximate solution

must beinserted after line 5. The vectors produced by this algorithm satisfy a few

biorthogonality properties stated in the following proposition.
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Proposition 7.2 The vectors produced by the Biconjugate Gradient algorithm satisfy

the following orthogonality properties:

(rj , r
∗
i ) = 0, for i 6= j, (7.13)

(Apj , p
∗
i ) = 0, for i 6= j. (7.14)

Proof. The proof is either by induction or by simply exploiting the relations between

the vectors rj , r∗j , pj , p
∗
j , and the vector columns of the matrices Vm, Wm, Pm, P ∗

m.

This is left as an exercise.

Example 7.1. Table 7.1 shows the results of applying the BCG algorithm with no

preconditioning to three of the test problems described in Section 3.7. See Exam-

ple 6.1 for the meaning of the column headers in the table. Recall that Iters really

represents the number of matrix-by-vector multiplications rather the number of Bi-

conjugate Gradient steps.

Matrix Iters Kflops Residual Error

F2DA 163 2974 0.17E-03 0.86E-04

F3D 123 10768 0.34E-04 0.17E-03

ORS 301 6622 0.50E-01 0.37E-02

Table 7.1: A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps of BCG, which require

81 × 2 matrix-by-vector products in the iteration, and an extra one to compute the

initial residual.

7.3.2 Quasi-Minimal Residual Algorithm

The result of the Lanczos algorithm is a relation of the form

AVm = Vm+1T̄m (7.15)

in which T̄m is the (m+ 1)×m tridiagonal matrix

T̄m =

(
Tm

δm+1e
T
m

)

.

Now (7.15) can be exploited in the same way as was done to develop GMRES. If v1
is defined as a multiple of r0, i.e., if v1 = βr0, then the residual vector associated

with an approximate solution of the form

x = x0 + Vmy
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is given by

b−Ax = b−A (x0 + Vmy)

= r0 −AVmy
= βv1 − Vm+1T̄my

= Vm+1

(
βe1 − T̄my

)
. (7.16)

The norm of the residual vector is therefore

‖b−Ax‖ = ‖Vm+1

(
βe1 − T̄my

)
‖2. (7.17)

If the column-vectors of Vm+1 were orthonormal, then we would have ‖b − Ax‖ =
‖βe1 − T̄my‖2, as in GMRES. Therefore, a least-squares solution could be obtained

from the Krylov subspace by minimizing ‖βe1 − T̄my‖2 over y. In the Lanczos

algorithm, the vi’s are not orthonormal. However, it is still a reasonable idea to

minimize the function

J(y) ≡ ‖βe1 − T̄my‖2
over y and compute the corresponding approximate solution x0+Vmy. The resulting

solution is called the Quasi-Minimal Residual approximation. The norm ‖J(y)‖2 is

called the quasi-residual norm for the approximation x0 + Vmy.

Thus, the Quasi-Minimal Residual (QMR) approximation from the m-th Krylov

subspace is obtained as xm = x0+Vmym, which minimizes the quasi residual norm

J(y) = ‖βe1 − T̄my‖2, i.e., just as in GMRES, except that the Arnoldi process is

replaced by the Lanczos process. Because of the structure of the matrix T̄m, it is easy

to adapt the DQGMRES algorithm (Algorithm 6.13), and obtain an efficient version

of the QMR method. The algorithm is presented next.

ALGORITHM 7.4 QMR

1. Compute r0 = b−Ax0 and γ1 := ‖r0‖2, w1 := v1 := r0/γ1
2. For m = 1, 2, . . ., until convergence Do:

3. Compute αm, δm+1 and vm+1, wm+1 as in Algorithm 7.1

4. Update the QR factorization of T̄m, i.e.,

5. Apply Ωi, i = m− 2,m− 1 to the m-th column of T̄m
6. Compute the rotation coefficients cm, sm by (6.37)

7. Apply rotation Ωm, to last column of T̄m and to ḡm, i.e., compute:

8. γm+1 := −smγm,

9. γm := cmγm, and,

10. αm := cmαm + smδm+1

(

=
√

δ2m+1 + α2
m

)

11. pm =
(

vm −
∑m−1

i=m−2 timpi

)

/tmm

12. xm = xm−1 + γmpm
13. If |γm+1| is small enough then Stop

14. EndDo
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It is clear that the matrix Tm is not actually saved. Only the two most recent rotations

need to be saved. For the remainder of this subsection, it is assumed (without loss of

generality) that the vi’s are normalized to have unit two norms. Then, the situation is

similar with that of DQGMRES, in that the “quasi-residual” norm defined by

ρQm = ‖βe1 − T̄mym‖2 ≡ min
y ∈ Rm

‖βe1 − T̄my‖2

is usually a fairly good estimate of the actual residual norm. Following the same

arguments as in Section 6.5.3 in Chapter 6, it is easily seen that

ρQm = |s1s2 . . . sm| ‖r0‖2 = |sm|ρQm−1 (7.18)

If the same notation as in Sections 6.5.3 and 6.5.7 is employed, then the actual resid-

ual rm = b−Axm obtained at the m-th step of BCG satisfies

rm = −hm+1,me
T
mymvm+1 = −hm+1,m

γm

h
(m−1)
mm

vm+1 =
hm+1,m

smh
(m−1)
mm

γm+1vm+1 .

For convenience, we have kept the notation hij used in Chapter 6, for the entries of

the matrix T̂m. The next relation is then obtained by noticing, as in Section 6.5.7,

that hm+1,m/h
(m)
mm = tan θm

γm+1vm+1 = cmrm, (7.19)

from which it follows that

ρQm = |cm| ρm , (7.20)

where ρm = ‖rm‖2 is the actual residual norm of the m-th BCG iterate.

The following proposition, which is similar to Proposition 6.9, establishes a re-

sult on the actual residual norm of the solution.

Proposition 7.3 The residual norm of the approximate solution xm satisfies the re-

lation

‖b−Axm‖ ≤ ‖Vm+1‖2 |s1s2 . . . sm| ‖r0‖2. (7.21)

Proof. According to (7.16) the residual norm is given by

b−Axm = Vm+1[βe1 − T̄mym] (7.22)

and using the same notation as in Proposition 6.9, referring to (6.43)

‖βe1 − H̄my‖22 = |γm+1|2 + ‖gm −Rmy‖22

in which gm − Rmy = 0 by the minimization procedure. In addition, by (6.47) we

have

γm+1 = (−1)ms1 . . . smγ1, γ1 = β.

The result follows immediately using (7.22).
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A simple upper bound for ‖Vm+1‖2 can be derived from the Cauchy Schwarz in-

equality:

‖Vm+1‖2 ≤
√
m+ 1.

A comparison theorem which is similar to that of Theorem 6.11 can also be stated

for QMR.

Theorem 7.4 Assume that the Lanczos algorithm does not break down on or before

step m and let Vm+1 be the Lanczos basis obtained at step m. Let rQm and rGm
be the residual norms obtained after m steps of the QMR and GMRES algorithms,

respectively. Then,

‖rQm‖2 ≤ κ2(Vm+1)‖rGm‖2.

The proof of this theorem is essentially identical with that of Theorem 6.11. Note

that Vm+1 is now known to be of full rank, so we need not make this assumption as

in Theorem 6.11.

It is not easy to analyze the QMR algorithm in terms of the exact residual norms,

but the quasi residual norms yield interesting properties. For example, an expression

similar to (6.65) relates the actual BCG residual norm ρj with the “quasi-residual”

norm ρQj obtained by QMR:

1
(

ρQj

)2 =
1

(

ρQj−1

)2 +
1

(ρj)
2 . (7.23)

The proof of this result is identical with that of (6.65): it is an immediate consequence

of (7.18) and (7.20). An argument similar to the one used to derive (6.67) leads to a

similar conclusion:

ρQm =
1

√
∑m

i=0 (1/ρi)
2

(7.24)

The above equality underlines the smoothing property of the QMR algorithm since

it shows that the quasi residual norm is akin to an (harmonic) average of the BCG

residual norms.

It is clear from (7.20) that ρQm ≤ ρm. An argument similar to that used to derive

Proposition 6.15 can be be made. If ρm∗ is the smallest residual norms achieved

among those of the first m steps of BCG, then,

1
(

ρQm
)2 =

m∑

i=0

1

(ρi)
2 ≤

m+ 1

(ρm∗)
2 .

This proves the following result.

Proposition 7.5 Assume that m steps of QMR and BCG are taken and let ρm∗ be

the smallest residual norm achieved by BCG in the first m steps. Then, the following

inequalities hold:

ρQm ≤ ρm∗ ≤
√
m+ 1 ρQm (7.25)
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The above results deal with quasi residuals instead of the actual residuals. However,

it is possible to proceed as for DQGMRES, see Equation (6.50) and (6.53), to express

the actual residual as

b−AxQm = γm+1zm+1 (7.26)

where, as before, γm+1 is the last component of the right-hand side βe1 after the

m Givens rotations have been applied to it. Therefore γm+1 satisfies the recurrence

(6.47) starting with γ1 = β. The vector zm+1 can be updated by the same relation,

namely

zm+1 = −smzm + cmvm+1. (7.27)

The sequence zm+1 can be updated and the norm of zm+1 computed to yield the

exact residual norm, but this entails nonnegligible additional operations (5n in total)

and the compromise based on updating an upper bound seen for DQGMRES can be

used here as well.

It is interesting to explore (7.27) further. Denote by rQm the actual residual vector

b−AxQm obtained from QMR. Then from (7.26), (7.27), and (6.47), it follows that

rQm = s2mr
Q
m−1 + cmγm+1vm+1 (7.28)

When combined with (7.19), the above equality leads to the following relation be-

tween the actual residuals rQm produced at the m-th step of QMR and the residuals

rm obtained from BCG,

rQm = s2mr
Q
m−1 + c2mrm (7.29)

from which follows the same relation on the iterates:

xQm = s2mx
Q
m−1 + c2mxm . (7.30)

When sm is close to zero, which corresponds to fast convergence of BCG, then QMR

will be close to the BCG iterate. On the other hand when sm is close to one, then

QMR will tend to make little progress – just as was shown by Brown [66] for the

FOM/GMRES pair. A more pictural way of stating this is that peaks of the BCG

residual norms will correspond to plateaus of the QMR quasi-residuals. The above

relations can be rewritten as follows:

xQm = xQm−1 + c2m(xm − xQm−1) rQm = rQm−1 + c2m(rm − rQm−1) (7.31)

Schemes of the above general form, where now c2m can be considered a parameter, are

known as residual smoothing methods, and were also considered in Chapter 6. The

minimal residual smoothing seen in Chapter 6, is now replaced by a quasi-minimal

residual smoothing. Indeed, what the above relation shows is that it is possible to

implement QMR as a quasi-minimal residual smoothing algorithm. The only miss-

ing ingredient for completing the description of the algorithm is an expression of

the smoothing parameter c2m in terms of quantities that do not refer to the Givens

rotatioms. This expression can be derived from (7.20) which relates the cosine cj
with the ratio of the quasi-residual norm and the actual residual norm of BCG and

from (7.23) which allows to compute ρQj recursively. The quasi-minimal residual

smoothing algorithm, developed by Zhou and Walker [324], can now be sketched.
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ALGORITHM 7.5 Quasi Minimal Residual Smoothing

1. Set r0 = b−Ax0, xQ0 = x0; Set ρ0 = ρQ0 = ‖r0‖2
2. For j = 1, 2, . . . , Do:

3. Compute xj , and the associated residual rj , and residual norm ρj

4. Compute ρQj from (7.23) and set ηj =
(

ρQj /ρj

)2

5. Compute xQj = xQj−1 + ηj(xj − xQj−1)

6. EndDo

7.4 Transpose-Free Variants

Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-

vector product with both A and AT . However, observe that the vectors p∗i or wj

generated with AT do not contribute directly to the solution. Instead, they are used

only to obtain the scalars needed in the algorithm, e.g., the scalars αj and βj for

BCG.

The question arises as to whether or not it is possible to bypass the use of the

transpose of A and still generate iterates that are related to those of the BCG algo-

rithm. One of the motivations for this question is that, in some applications, A is

available only through some approximations and not explicitly. In such situations,

the transpose of A is usually not available. A simple example is when a CG-like

algorithm is used in the context of Newton’s iteration for solving F (u) = 0.

The linear system that arises at each Newton step can be solved without hav-

ing to compute the Jacobian J(uk) at the current iterate uk explicitly, by using the

difference formula

J(uk)v =
F (uk + ǫv)− F (uk)

ǫ
.

This allows the action of this Jacobian to be computed on an arbitrary vector v. Un-

fortunately, there is no similar formula for performing operations with the transpose

of J(uk).

7.4.1 Conjugate Gradient Squared

The Conjugate Gradient Squared algorithm was developed by Sonneveld in 1984

[272], mainly to avoid using the transpose of A in the BCG and to gain faster con-

vergence for roughly the same computational cost. The main idea is based on the

following simple observation. In the BCG algorithm, the residual vector at step j
can be expressed as

rj = φj(A)r0 (7.32)

where φj is a certain polynomial of degree j satisfying the constraint φj(0) = 1.

Similarly, the conjugate-direction polynomial πj(t) is given by

pj = πj(A)r0, (7.33)
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in which πj is a polynomial of degree j. From the algorithm, observe that the direc-

tions r∗j and p∗j are defined through the same recurrences as rj and pj in which A is

replaced by AT and, as a result,

r∗j = φj(A
T )r∗0 , p∗j = πj(A

T )r∗0 .

Also, note that the scalar αj in BCG is given by

αj =
(φj(A)r0, φj(A

T )r∗0)

(Aπj(A)r0, πj(AT )r∗0)
=

(φ2j (A)r0, r
∗
0)

(Aπ2j (A)r0, r
∗
0)

which indicates that if it is possible to get a recursion for the vectors φ2j (A)r0 and

π2j (A)r0, then computing αj and, similarly, βj causes no problem. Hence, the idea of

seeking an algorithm which would give a sequence of iterates whose residual norms

r′j satisfy

r′j = φ2j (A)r0. (7.34)

The derivation of the method relies on simple algebra only. To establish the

desired recurrences for the squared polynomials, start with the recurrences that define

φj and πj , which are,

φj+1(t) = φj(t)− αjtπj(t), (7.35)

πj+1(t) = φj+1(t) + βjπj(t). (7.36)

If the above relations are squared we get

φ2j+1(t) = φ2j (t)− 2αjtπj(t)φj(t) + α2
j t

2π2j (t),

π2j+1(t) = φ2j+1(t) + 2βjφj+1(t)πj(t) + β2jπj(t)
2.

If it were not for the cross terms πj(t)φj(t) and φj+1(t)πj(t) on the right-hand sides,

these equations would form an updatable recurrence system. The solution is to intro-

duce one of these two cross terms, namely, φj+1(t)πj(t), as a third member of the

recurrence. For the other term, i.e., πj(t)φj(t), we can exploit the relation

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t)) = φ2j(t) + βj−1φj(t)πj−1(t).

By putting these relations together the following recurrences can be derived, in which

the variable (t) is omitted where there is no ambiguity:

φ2j+1 = φ2j − αjt
(
2φ2j + 2βj−1φjπj−1 − αjt π

2
j

)
(7.37)

φj+1πj = φ2j + βj−1φjπj−1 − αjt π
2
j (7.38)

π2j+1 = φ2j+1 + 2βjφj+1πj + β2j π
2
j . (7.39)

These recurrences are at the basis of the algorithm. If we define

rj = φ2j (A)r0, (7.40)

pj = π2j (A)r0, (7.41)

qj = φj+1(A)πj(A)r0, (7.42)
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then the above recurrences for the polynomials translate into

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) , (7.43)

qj = rj + βj−1qj−1 − αjA pj, (7.44)

pj+1 = rj+1 + 2βjqj + β2j pj . (7.45)

It is convenient to define the auxiliary vector

dj = 2rj + 2βj−1qj−1 − αjApj.

With this we obtain the following sequence of operations to compute the approximate

solution, starting with r0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

• αj = (rj , r
∗
0)/(Apj , r

∗
0)

• dj = 2rj + 2βj−1qj−1 − αjApj

• qj = rj + βj−1qj−1 − αjApj

• xj+1 = xj + αjdj

• rj+1 = rj − αjAdj

• βj = (rj+1, r
∗
0)/(rj , r

∗
0)

• pj+1 = rj+1 + βj(2qj + βjpj).

A slight simplification to the algorithm can be made by using the auxiliary vector

uj = rj + βj−1qj−1. This definition leads to the relations

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

and as a result the vector dj is no longer needed. The resulting algorithm is given

below.

ALGORITHM 7.6 Conjugate Gradient Squared

1. Compute r0 := b−Ax0; r∗0 arbitrary.

2. Set p0 := u0 := r0.

3. For j = 0, 1, 2 . . ., until convergence Do:

4. αj = (rj , r
∗
0)/(Apj , r

∗
0)

5. qj = uj − αjApj
6. xj+1 = xj + αj(uj + qj)
7. rj+1 = rj − αjA(uj + qj)
8. βj = (rj+1, r

∗
0)/(rj , r

∗
0)

9. uj+1 = rj+1 + βjqj
10. pj+1 = uj+1 + βj(qj + βjpj)
11. EndDo
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Observe that there are no matrix-by-vector products with the transpose of A. Instead,

two matrix-by-vector products with the matrix A are now performed at each step. In

general, one should expect the resulting algorithm to converge twice as fast as BCG.

Therefore, what has essentially been accomplished is to replace the matrix-by-vector

products with AT by more useful work.

The Conjugate Gradient Squared algorithm works quite well in many cases.

However, one difficulty is that, since the polynomials are squared, rounding errors

tend to be more damaging than in the standard BCG algorithm. In particular, very

high variations of the residual vectors often cause the residual norms computed from

the result of line 7 of the above algorithm to become inaccurate.

7.4.2 BICGSTAB

The CGS algorithm is based on squaring the residual polynomial, and, in cases of

irregular convergence, this may lead to substantial build-up of rounding errors, or

possibly even overflow. The Biconjugate Gradient Stabilized (BICGSTAB) algo-

rithm is a variation of CGS which was developed to remedy this difficulty. Instead of

seeking a method which delivers a residual vector of the form r′j defined by (7.34),

BICGSTAB produces iterates whose residual vectors are of the form

r′j = ψj(A)φj(A)r0, (7.46)

in which, as before, φj(t) is the residual polynomial associated with the BCG algo-

rithm and ψj(t) is a new polynomial which is defined recursively at each step with

the goal of “stabilizing” or “smoothing” the convergence behavior of the original

algorithm. Specifically, ψj(t) is defined by the simple recurrence,

ψj+1(t) = (1− ωjt)ψj(t) (7.47)

in which the scalar ωj is to be determined. The derivation of the appropriate recur-

rence relations is similar to that of CGS. Ignoring the scalar coefficients at first, we

start with a relation for the residual polynomial ψj+1φj+1. We immediately obtain

ψj+1φj+1 = (1− ωjt)ψj(t)φj+1 (7.48)

= (1− ωjt) (ψjφj − αjtψjπj) (7.49)

which is updatable provided a recurrence relation is found for the products ψjπj . For

this, write

ψjπj = ψj(φj + βj−1πj−1) (7.50)

= ψjφj + βj−1(1− ωj−1t)ψj−1πj−1. (7.51)

Define,

rj = ψj(A)φj(A)r0,

pj = ψj(A)πj(A)r0.
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According to the above formulas, these vectors can be updated from a double recur-

rence provided the scalars αj and βj were computable. This recurrence is

rj+1 = (I − ωjA)(rj − αjApj) (7.52)

pj+1 = rj+1 + βj(I − ωjA)pj.

Consider now the computation of the scalars needed in the recurrence. Accord-

ing to the original BCG algorithm, βj = ρj+1/ρj with

ρj = (φj(A)r0, φj(A
T )r∗0) = (φj(A)

2r0, r
∗
0)

Unfortunately, ρj is not computable from these formulas because none of the vectors

φj(A)r0, φj(A
T )r∗0 or φj(A)

2r0 is available. However, ρj can be related to the scalar

ρ̃j = (φj(A)r0, ψj(A
T )r∗0)

which is computable via

ρ̃j = (φj(A)r0, ψj(A
T )r∗0) = (ψj(A)φj(A)r0, r

∗
0) = (rj , r

∗
0).

To relate the two scalars ρj and ρ̃j , expand ψj(A
T )r∗0 explicitly in the power basis,

to obtain

ρ̃j =
(

φj(A)r0, η
(j)
1 (AT )jr∗0 + η

(j)
2 (AT )j−1r∗0 + . . .

)

.

Since φj(A)r0 is orthogonal to all vectors (AT )kr∗0, with k < j, only the leading

power is relevant in the expansion on the right side of the above inner product. In

particular, if γ
(j)
1 is the leading coefficient for the polynomial φj(t), then

ρ̃j =

(

φj(A)r0,
η
(j)
1

γ
(j)
1

φj(A
T )r0

)

=
η
(j)
1

γ
(j)
1

ρj .

When examining the recurrence relations for φj+1 and ψj+1, leading coefficients for

these polynomials are found to satisfy the relations

η
(j+1)
1 = −ωjη

(j)
1 , γ

(j+1)
1 = −αjγ

(j)
1 ,

and as a result
ρ̃j+1

ρ̃j
=
ωj

αj

ρj+1

ρj

which yields the following relation for βj :

βj =
ρ̃j+1

ρ̃j
× αj

ωj
. (7.53)

Similarly, a simple recurrence formula for αj can be derived. By definition,

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, πj(AT )r∗0)
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and as in the previous case, the polynomials in the right sides of the inner products

in both the numerator and denominator can be replaced by their leading terms. How-

ever, in this case the leading coefficients for φj(A
T )r∗0 and πj(A

T )r∗0 are identical,

and therefore,

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, φj(AT )r∗0)

=
(φj(A)r0, ψj(A

T )r∗0)
(Aπj(A)r0, ψj(AT )r∗0)

=
(ψj(A)φj(A)r0, r

∗
0)

(Aψj(A)πj(A)r0, r∗0)
.

Since pj = ψj(A)πj(A)r0, this yields,

αj =
ρ̃j

(Apj , r∗0)
. (7.54)

Next, the parameter ωj must be defined. This can be thought of as an additional

free parameter. One of the simplest choices, and perhaps the most natural, is to

select ωj to achieve a steepest descent step in the residual direction obtained before

multiplying the residual vector by (I − ωjA) in (7.52). In other words, ωj is chosen

to minimize the 2-norm of the vector (I − ωjA)ψj(A)φj+1(A)r0. Equation (7.52)

can be rewritten as

rj+1 = (I − ωjA)sj

in which

sj ≡ rj − αjApj.

Then the optimal value for ωj is given by

ωj =
(Asj, sj)

(Asj, Asj)
. (7.55)

Finally, a formula is needed to update the approximate solution xj+1 from xj .
Equation (7.52) can be rewritten as

rj+1 = sj − ωjAsj = rj − αjApj − ωjAsj

which yields

xj+1 = xj + αjpj + ωjsj.

After putting these relations together, we obtain the final form of the BICGSTAB

algorithm, due to van der Vorst [290].

ALGORITHM 7.7 BICGSTAB

1. Compute r0 := b−Ax0; r∗0 arbitrary;

2. p0 := r0.

3. For j = 0, 1, . . ., until convergence Do:
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4. αj := (rj , r
∗
0)/(Apj , r

∗
0)

5. sj := rj − αjApj
6. ωj := (Asj, sj)/(Asj , Asj)
7. xj+1 := xj + αjpj + ωjsj
8. rj+1 := sj − ωjAsj

9. βj :=
(rj+1,r

∗
0)

(rj ,r∗0)
× αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)
11. EndDo

Example 7.2. Table 7.2 shows the results of applying the BICGSTAB algorithm

with no preconditioning to three of the test problems described in Section 3.7. See

Matrix Iters Kflops Residual Error

F2DA 96 2048 0.14E-02 0.77E-04

F3D 64 6407 0.49E-03 0.17E-03

ORS 208 5222 0.22E+00 0.68E-04

Table 7.2: A test run of BICGSTAB with no preconditioning.

Example 6.1 for the meaning of the column headers in the table. As in Example 7.1,

’Iters’ is the number of matrix-by-vector multiplications required to converge. As can

be seen it is less than with BCG. Thus, using the number of matrix-by-vector products

as a criterion, BCG is more expensive than BICGSTAB in all three examples. For

problem 3, the number matvecs exceeds the 300 limit with BCG. If the number of

actual iterations is used as a criterion, then the two methods come close for the second

problem [61 steps for BCG versus 64 for BICGSTAB] while BCG is slightly faster

for Problem 1. Observe also that the total number of operations favors BICGSTAB.

This illustrates the main weakness of BCG as well as QMR, namely, the matrix-by-

vector products with the transpose are essentially wasted unless a dual system with

AT must be solved simultaneously.

7.4.3 Transpose-Free QMR (TFQMR)

The Transpose-Free QMR algorithm of Freund [134] is derived from the CGS algo-

rithm. Observe that xj can be updated in two half-steps in line 6 of Algorithm 7.6,

namely, xj+ 1
2
= xj + αjuj and xj+1 = xj+ 1

2
+ αjqj . This is only natural since

the actual update from one iterate to the next involves two matrix-by-vector multi-

plications, i.e., the degree of the residual polynomial is increased by two. In order

to avoid indices that are multiples of 1
2 , it is convenient when describing TFQMR to

double all subscripts in the CGS algorithm. With this change of notation, the main

steps of the Algorithm 7.6 (CGS) become
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α2j = (r2j , r
∗
0)/(Ap2j , r

∗
0) (7.56)

q2j = u2j − α2jAp2j (7.57)

x2j+2 = x2j + α2j(u2j + q2j) (7.58)

r2j+2 = r2j − α2jA(u2j + q2j) (7.59)

β2j = (r2j+2, r
∗
0)/(r2j , r

∗
0) (7.60)

u2j+2 = r2j+2 + β2jq2j (7.61)

p2j+2 = u2j+2 + β2j(q2j + βp2j). (7.62)

The initialization is identical with that of Algorithm 7.6. The update of the ap-

proximate solution in (7.58) can now be split into the following two half-steps:

x2j+1 = x2j + α2ju2j (7.63)

x2j+2 = x2j+1 + α2jq2j. (7.64)

This can be simplified by defining the vectors um for odd m as u2j+1 = q2j . Simi-

larly, the sequence of αm is defined for odd values ofm as α2j+1 = α2j . In summary,

for m odd define:

{
um ≡ qm−1

αm ≡ αm−1
. (7.65)

With these definitions, the relations (7.63–7.64) are translated into the single equation

xm = xm−1 + αm−1um−1,

which is valid whether m is even or odd. The intermediate iterates xm, with m odd,

which are now defined do not exist in the original CGS algorithm. For even values

of m the sequence xm represents the original sequence or iterates from the CGS

algorithm. It is convenient to introduce the N ×m matrix,

Um = [u0, . . . , um−1]

and the m-dimensional vector

zm = (α0, α1, . . . , αm−1)
T .

The general iterate xm satisfies the relation

xm = x0 + Umzm (7.66)

= xm−1 + αm−1um−1. (7.67)

From the above equation, it is clear that the residual vectors rm are related to the

u-vectors by the relations

rm = r0 −AUmzm (7.68)

= rm−1 − αm−1Aum−1. (7.69)
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Next, a relation similar to the relation (6.7) seen for FOM and GMRES will be

extracted using the matrix AUm. As a result of (7.69), the following relation holds:

Aui =
1

αi
(ri − ri+1) .

Translated in matrix form, this relation becomes

AUm = Rm+1B̄m (7.70)

where

Rk = [r0, r1, . . . , rk−1] (7.71)

and where B̄m is the (m+ 1)×m matrix,

B̄m =












1 0 . . . . . . 0

−1 1
...

0 −1 1 . . .
...

. . .
. . .

...
... −1 1
0 . . . −1












× diag

{
1

α0
,
1

α1
, . . .

1

αm−1

}

. (7.72)

The columns of Rm+1 can be rescaled, for example, to make each of them have a

2-norm equal to one, by multiplying Rm+1 to the right by a diagonal matrix. Let this

diagonal matrix be the inverse of the matrix

∆m+1 = diag [δ0, δ1, . . . , δm] .

Then,

AUm = Rm+1∆
−1
m+1∆m+1B̄m. (7.73)

With this, equation (7.68) becomes

rm = r0 −AUmzm = Rm+1

[
e1 − B̄mzm

]
(7.74)

= Rm+1∆
−1
m+1

[
δ0e1 −∆m+1B̄mzm

]
. (7.75)

By analogy with the GMRES algorithm, define

H̄m ≡ ∆m+1B̄m.

Similarly, define Hm to be the matrix obtained from H̄m by deleting its last row. It is

easy to verify that the CGS iterates xm (now defined for all integers m = 0, 1, 2, . . .)
satisfy the same definition as FOM, i.e.,

xm = x0 + UmH
−1
m (δ0e1). (7.76)

It is also possible to extract a GMRES-like solution from the relations (7.73) and

(7.75), similar to DQGMRES. In order to minimize the residual norm over the Krylov

subspace, the 2-norm of the right-hand side of (7.75) would have to be minimized,
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but this is not practical since the columns of Rm+1∆
−1
m+1 are not orthonormal as in

GMRES. However, the 2-norm of δ0e1 − ∆m+1B̄mz can be minimized over z, as

was done for the QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. However, it is now necessary to

find a formula for expressing the iterates in a progressive way. There are two ways

to proceed. The first follows DQGMRES closely, defining the least-squares solution

progressively and exploiting the structure of the matrix Rm to obtain a formula for

xm from xm−1. Because of the special structure of H̄m, this is equivalent to using the

DQGMRES algorithm with k = 1. The second way to proceed exploits Lemma 6.16

seen in the previous chapter. This lemma, which was shown for the FOM/GMRES

pair, is also valid for the CGS/TFQMR pair. There is no fundamental difference

between the two situations. Thus, the TFQMR iterates satisfy the relation

xm − xm−1 = c2m (x̃m − xm−1) (7.77)

where the tildes are now used to denote the CGS iterate. Setting

dm ≡
1

αm−1
(x̃m − xm−1) =

1

c2mαm−1
(xm − xm−1) (7.78)

ηm ≡ c2mαm−1,

the above expression for xm becomes

xm = xm−1 + ηmdm. (7.79)

Now observe from (7.67) that the CGS iterates x̃m satisfy the relation

x̃m = x̃m−1 + αm−1um−1. (7.80)

From the above equations, a recurrence relation from dm can be extracted. The

definition of dm and the above relations yield

dm =
1

αm−1
(x̃m − x̃m−1 + x̃m−1 − xm−1)

= um−1 +
1

αm−1
(x̃m−1 − xm−2 − (xm−1 − xm−2))

= um−1 +
1− c2m−1

αm−1
(x̃m−1 − xm−2) .

Therefore,

dm = um−1 +
(1− c2m−1)ηm−1

c2m−1αm−1
dm−1.

The term (1−c2m−1)/c
2
m−1 is the squared tangent of the angle used in the (m−1)−st

rotation. This tangent will be denoted by θm−1, and we have

θm =
sm
cm
, c2m =

1

1 + θ2m
, dm+1 = um +

θ2mηm
αm

dm.
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The angle used in the m-th rotation, or equivalently cm, can be obtained by examin-

ing the matrix H̄m:

H̄m =












δ0 0 . . . . . . 0

−δ1 δ1
...

0 −δ2 δ2 . . .
...

. . .
. . .

...
... −δm δm
0 . . . −δm+1












× diag

{
1

αi

}

i=0,...,m−1

. (7.81)

The diagonal matrix in the right-hand side scales the columns of the matrix. It is easy

to see that it has no effect on the determination of the rotations. Ignoring this scaling,

the above matrix becomes, after j rotations,
















⋆ ⋆
⋆ ⋆

. . .
. . .

τj 0
−δj+1 δj+1

. . .
. . .

−δm δm
−δm+1
















.

The next rotation is then determined by,

sj+1 =
−δj+1

√

τ2j + δ2j+1

, cj+1 =
τj

√

τ2j + δ2j+1

, θj+1 =
−δj+1

τj
.

In addition, after this rotation is applied to the above matrix, the diagonal element

δj+1 which is in position (j + 1, j + 1) is transformed into

τj+1 = δj+1 × cj+1 =
τjδj+1

√

τ2j + δ2j+1

= −τjsj+1 = −τjθj+1cj+1. (7.82)

The above relations enable us to update the direction dm and the required quantities

cm and ηm. Since only the squares of these scalars are invoked in the update of the

direction dm+1, a recurrence for their absolute values is sufficient. This gives the

following recurrences which will be used in the algorithm:

dm+1 = um + (θ2m/αm)ηmdm

θm+1 = δm+1/τm

cm+1 =
(
1 + θ2m+1

)− 1
2

τm+1 = τmθm+1cm+1

ηm+1 = c2m+1αm.
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Before writing down the algorithm, a few relations must be exploited. Since the

vectors rm are no longer the actual residuals in the algorithm, we change the notation

to wm. These residual vectors can be updated by the formula

wm = wm−1 − αm−1Aum−1.

The vectors Aui can be used to update the vectors

v2j ≡ Ap2j

which are needed in the CGS algorithm. Multiplying (7.62) by A results in

Ap2j = Au2j + β2j−2(Aq2j−2 + βjAp2j−2)

which, upon substituting the relation

q2j = u2j+1

translates into

v2j = Au2j + β2j−2(Au2j−1 + β2j−2v2j−2).

Also, observe that the recurrences in (7.57) and (7.61) for q2j and u2j+2, respectively,

become

u2j+1 = u2j − α2jv2j

u2j+2 = w2j+2 + β2ju2j+1.

The first equation should be used to compute um+1 when m is even, and the second

when m is odd. In the following algorithm, the normalization δm = ‖wm‖2, which

normalize each column of Rm to have 2-norm unity, is used.

ALGORITHM 7.8 Transpose-Free QMR (TFQMR)

1. Compute w0 = u0 = r0 = b−Ax0, v0 = Au0, d0 = 0;

2. τ0 = ‖r0‖2, θ0 = η0 = 0.

3. Choose r∗0 such that ρ0 ≡ (r∗0, r0) 6= 0.

4. For m = 0, 1, 2, . . . , until convergence Do:

5. If m is even then

6. αm+1 = αm = ρm/(vm, r
∗
0)

7. um+1 = um − αmvm
8. EndIf

9. wm+1 = wm − αmAum
10. dm+1 = um + (θ2m/αm)ηmdm

11. θm+1 = ‖wm+1‖2/τm; cm+1 =
(
1 + θ2m+1

)− 1
2

12. τm+1 = τmθm+1cm+1 ; ηm+1 = c2m+1αm

13. xm+1 = xm + ηm+1dm+1

14. If m is odd then
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15. ρm+1 = (wm+1, r
∗
0); βm−1 = ρm+1/ρm−1

16. um+1 = wm+1 + βm−1um
17. vm+1 = Aum+1 + βm−1(Aum + βm−1vm−1)
18. EndIf

19. EndDo

Notice that the quantities in the odd m loop are only defined for even values of

m. The residual norm of the approximate solution xm is not available from the

above algorithm as it is described. However, good estimates can be obtained using

similar strategies to those used for DQGMRES. Referring to GMRES, an interesting

observation is that the recurrence (6.47) is identical with the recurrence of the scalars

τj’s. In addition, these two sequences start with the same values, δ0 for the τ ’s and β
for the γ’s. Therefore,

γm+1 = τm.

Recall that γm+1 is the residual for the (m+ 1)×m least-squares problem

min
z
‖δ0e1 − H̄mz‖2.

Hence, a relation similar to that for DQGMRES holds, namely,

‖b−Axm‖ ≤
√
m+ 1τm. (7.83)

This provides a readily computable estimate of the residual norm. Another point that

should be made is that it is possible to use the scalars sm, cm in the recurrence instead

of the pair cm, θm, as was done above. In this case, the proper recurrences are

dm+1 = um + (s2m/αm)αm−1dm

sm+1 = δm+1/
√

τ2m + δ2m+1

cm+1 = τm/
√

τ2m + δ2m+1

τm+1 = τmsm+1

ηm+1 = c2m+1αm.

Table 7.3 shows the results when TFQMR algorithm without preconditioning is ap-

plied to three of the test problems described in Section 3.7.

Example 7.3.

Matrix Iters Kflops Residual Error

F2DA 112 2736 0.46E-04 0.68E-04

F3D 78 8772 0.52E-04 0.61E-03

ORS 252 7107 0.38E-01 0.19E-03

Table 7.3: A test run of TFQMR with no preconditioning.
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See Example 6.1 for the meaning of the column headers in the table. As with

previous examples, ’Iters’ represents the number of matrix-by-vector multiplications

rather the number of Biconjugate Gradient steps. This number is slightly higher than

that of BICGSTAB.

Using the number of matrix-by-vector products as a criterion, TFQMR is more

expensive that BICGSTAB in all three cases, and it is also less expensive than BCG

for all cases. If the number of actual iterations is used as a criterion, then BCG is

just slightly better for Problems 1 and 2. A comparison is not possible for Problem

3, since the number of matrix-by-vector products required for convergence exceeds

the limit of 300. In general, the number of steps required for convergence is similar

for BICGSTAB and TFQMR. A comparison with the methods seen in the previous

chapter indicates that in many cases, GMRES will be faster if the problem is well

conditioned, resulting in a moderate number of steps required to converge. If many

steps (say, in the hundreds) are required, then BICGSTAB and TFQMR may perform

better. If memory is not an issue, GMRES or DQGMRES, with a large number

of directions, is often the most reliable choice. The issue then is one of trading

robustness for memory usage. In general, a sound strategy is to focus on finding a

good preconditioner rather than the best accelerator.

PROBLEMS

P-7.1 Consider the following modification of the Lanczos algorithm, Algorithm 7.1. We

replace line 6 by

ŵj+1 = ATwj −
j
∑

i=1

hijwi

where the scalars hij are arbitrary. Lines 5 and 7 through 10 remain the same but line 4 in

which αj is computed must be changed.

a. Show how to modify line 4 to ensure that the vector v̂j+1 is orthogonal against the

vectors wi, for i = 1, . . . , j.

b. Prove that the vectors vi’s and the matrix Tm do not depend on the choice of the hij’s.

c. Consider the simplest possible choice, namely, hij ≡ 0 for all i, j. What are the

advantages and potential difficulties with this choice?

P-7.2 Assume that the Lanczos algorithm does not break down before step m, i.e., that it is

possible to generate v1, . . . vm+1. Show that Vm+1 and Wm+1 are both of full rank.

P-7.3 Develop a modified version of the non-Hermitian Lanczos algorithm that produces

a sequence of vectors vi, wi such that each vi is orthogonal to every wj with j 6= i and

‖vi‖2 = ‖wi‖2 = 1 for all i. What does the projected problem become?

P-7.4 Develop a version of the non-Hermitian Lanczos algorithm that produces a sequence

of vectors vi, wi which satisfy

(vi, wj) = ±δij ,
but such that the matrix Tm is Hermitian tridiagonal. What does the projected problem

become in this situation?
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P-7.5 Using the notation of Section 7.1.2 prove that qj+k(t) = tkpj(t) is orthogonal to

the polynomials p1, p2, . . . , pj−k , assuming that k ≤ j. Show that if qj+k is orthogonalized

against p1, p2, . . . , pj−k, the result would be orthogonal to all polynomials of degree< j+k.

Derive a general Look-Ahead non-Hermitian Lanczos procedure based on this observation.

P-7.6 Consider the matrices Vm = [v1, . . . , vm] and Wm = [w1, . . . , wm] obtained from

the Lanczos biorthogonalization algorithm. (a) What are the matrix representations of the

(oblique) projector onto Km(A, v1) orthogonal to the subspace Km(AT , w1), and the pro-

jector onto Km(AT , w1) orthogonally to the subspace Km(A, v1)? (b) Express a general

condition for the existence of an oblique projector ontoK , orthogonal to L. (c) How can this

condition be interpreted using the Lanczos vectors and the Lanczos algorithm?

P-7.7 Show a three-term recurrence satisfied by the residual vectors rj of the BCG algo-

rithm. Include the first two iterates to start the recurrence. Similarly, establish a three-term

recurrence for the conjugate direction vectors pj in BCG.

P-7.8 Let φj(t) and πj(t) be the residual polynomial and the conjugate direction polyno-

mial, respectively, for the BCG algorithm, as defined in Section 7.4.1. Let ψj(t) be any other

polynomial sequence which is defined from the recurrence

ψ0(t) = 1, ψ1(t) = (1− ξ0t)ψ0(t)

ψj+1(t) = (1 + ηj − ξjt)ψj(t)− ηjψj−1(t)

a. Show that the polynomials ψj are consistent, i.e., ψj(0) = 1 for all j ≥ 0.

b. Show the following relations

ψj+1φj+1 = ψjφj+1 − ηj(ψj−1 − ψj)φj+1 − ξjtψjφj+1

ψjφj+1 = ψjφj − αjtψjπj

(ψj−1 − ψj)φj+1 = ψj−1φj − ψjφj+1 − αjtψj−1πj

ψj+1πj+1 = ψj+1φj+1 − βjηjψj−1πj + βj(1 + ηj)ψjπj − βjξjtψjπj

ψjπj+1 = ψjφj+1 + βjψjπj .

c. Defining,

tj = ψj(A)φj+1(A)r0, yj = (ψj−1(A) − ψj(A))φj+1(A)r0,
pj = ψj(A)πj(A)r0, sj = ψj−1(A)πj(A)r0

show how the recurrence relations of the previous question translate for these vectors.

d. Find a formula that allows one to update the approximation xj+1 from the vectors

xj−1, xj and tj , pj , yj, sj defined above.

e. Proceeding as in BICGSTAB, find formulas for generating the BCG coefficients αj

and βj from the vectors defined in the previous question.

P-7.9 Prove the expression (7.76) for the CGS approximation defined by (7.66–7.67). Is

the relation valid for any choice of scaling ∆m+1?

P-7.10 Prove that the vectors rj and r∗i produced by the BCG algorithm are orthogonal to

each other when i 6= j, while the vectors pi and p∗j are A-orthogonal, i.e., (Apj , p
∗
i ) = 0 for

i 6= j.

P-7.11 The purpose of this exercise is to develop block variants of the Lanczos algorithm.

Consider a two-sided analogue of the Block-Arnoldi algorithm, in its variant of Algorithm

6.24. Formally, the general step that defines the biorthogonalization process, for j ≥ p, is as

follows:
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1. OrthogonalizeAvj−p+1 versus w1, w2, . . . , wj (by subtracting a linear combination

of v1, . . . , vj from Avj−p+1). Call v the resulting vector.

2. OrthogonalizeATwj−p+1 versus v1, v2, . . . , vj (by subtracting a linear combination

of w1, . . . , wj from ATwj−p+1). Call w the resulting vector.

3. Normalize the two vectors v and w so that (v, w) = 1 to get vj+1 and wj+1.

Here, p is the block size and it is assumed that the initial blocks are biorthogonal: (vi, wj) =
δij for i, j ≤ p.

a. Show that Avj−p+1 needs only to be orthogonalized against the 2p previous wi’s in-

stead of all of them. Similarly, ATwj−p+1 must be orthogonalized only against the 2p
previous vi’s.

b. Write down the algorithm completely. Show the orthogonality relations satisfied by

the vectors vi and wj . Show also relations similar to (7.3) and (7.4).

c. We now assume that the two sets of vectors vi and wj have different block sizes. Call

q the block-size for the w’s. Line 2 of the above formal algorithm is changed into:

2a. OrthogonalizeATwj−q+1 versus v1, v2, . . . , vj (· · ·). Call w the resulting vector.

and the rest remains unchanged. The initial vectors are again biorthogonal: (vi, wj) =
δij for i ≤ p and j ≤ q. Show that now Avj−p+1 needs only to be orthogonalized

against the q+p previouswi’s instead of all of them. Show a simlar result for the wj ’s.

d. Show how a block version of BCG and QMR can be developed based on the algorithm

resulting from question (c).

NOTES AND REFERENCES. The pioneering paper by Lanczos [197], on what is now referred to as

Bi-CG, did not receive the attention it deserved. Fletcher [130] who developed the modern version of

the algorithm mentions the 1950 Lanczos paper [195] which is devoted mostly to eigenvalue problems,

but seemed unaware of the second [197] which is devoted to linear systems. Likewise, the paper by

Sonneveld [272] which proved for the first time that the AT operations were not necessary, received

little attention for several years (the first reference to the method [312] dates back to 1980). TFQMR

(Freund and Nachtigal [136]) and BICGSTAB (van der Vorst [290]) were later developed to cure

some of the numerical problems that plague CGS. Many additions and variations to the basic BCG,

BICGSTAB, and TFQMR techniques appeared, see, e.g., [63, 72, 160, 161, 260], among others. Some

variations were developed to cope with the breakdown of the underlying Lanczos or BCG algorithm;

see, for example, [62, 27, 135, 260, 321]. Finally, block methods of these algorithms have also been

developed, see, e.g., [5].

The Lanczos-type algorithms developed for solving linear systems are rooted in the theory of

orthogonal polynomials and Padé approximation. Lanczos himself certainly used this viewpoint when

he wrote his breakthrough papers [195, 197] in the early 1950s. The monograph by Brezinski [59]

gives an excellent coverage of the intimate relations between approximation theory and the Lanczos-

type algorithms. Freund [133] establishes these relations for quasi-minimal residual methods. A few

optimality properties for the class of methods presented in this chapter can be proved using a variable

metric, i.e., an inner product which is different at each step [29]. A survey by Weiss [308] presents a

framework for Krylov subspace methods explaining some of these optimality properties and the inter-

relationships between Krylov subspace methods. Several authors discuss a class of techniques known

as residual smoothing; see for example [259, 324, 308, 61]. These techniques can be applied to any

iterative sequence xk to build a new sequence of iterates yk by combining yk−1 with the difference

xk − yk−1. A remarkable result shown by Zhou and Walker [324] is that the iterates of the QMR

algorithm can be obtained from those of the BCG as a particular case of residual smoothing.
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A number of projection-type methods on Krylov subspaces, other than those seen in this chapter

and the previous one are described in [1]. The group of rank-k update methods discussed by Eirola

and Nevanlinna [113] and Deuflhard et al. [100] is closely related to Krylov subspace methods. In

fact, GMRES can be viewed as a particular example of these methods. Also of interest and not

covered in this book are the vector extrapolation techniques which are discussed, for example, in the

books Brezinski [59], Brezinski and Radivo Zaglia [60] and the articles [270] and [177]. Connections

between these methods and Krylov subspace methods, have been uncovered, and are discussed by

Brezinski [59] and Sidi [263].
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Chapter 8

METHODS RELATED TO THE NORMAL
EQUATIONS

There are a number of techniques for converting a non-symmetric linear system into a symmetric

one. One such technique solves the equivalent linear system ATAx = AT b, called the normal

equations. Often, this approach is avoided in practice because the coefficient matrix ATA is

much worse conditioned than A. However, the normal equations approach may be adequate in

some situations. Indeed, there are even applications in which it is preferred to the usual Krylov

subspace techniques. This chapter covers iterative methods which are either directly or implicitly

related to the normal equations.

8.1 The Normal Equations

In order to solve the linear system Ax = b when A is nonsymmetric, we can solve

the equivalent system

ATA x = AT b (8.1)

which is Symmetric Positive Definite. This system is known as the system of the

normal equations associated with the least-squares problem,

minimize ‖b−Ax‖2. (8.2)

Note that (8.1) is typically used to solve the least-squares problem (8.2) for over-

determined systems, i.e., when A is a rectangular matrix of size n×m, m < n.

A similar well known alternative sets x = ATu and solves the following equation

for u:

AATu = b. (8.3)

Once the solution u is computed, the original unknown x could be obtained by mul-

tiplying u by AT . However, most of the algorithms we will see do not invoke the u
variable explicitly and work with the original variable x instead. The above system

of equations can be used to solve under-determined systems, i.e., those systems in-

volving rectangular matrices of size n ×m, with n < m. It is related to (8.1) in the

following way. Assume that n ≤ m and that A has full rank. Let x∗ be any solution

to the underdetermined system Ax = b. Then (8.3) represents the normal equations

for the least-squares problem,

minimize ‖x∗ −ATu‖2. (8.4)

259
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Since by definition ATu = x, then (8.4) will find the solution vector x that is closest

to x∗ in the 2-norm sense. What is interesting is that when n < m there are infinitely

many solutions x∗ to the system Ax = b, but the minimizer u of (8.4) does not

depend on the particular x∗ used.

The system (8.1) and methods derived from it are often labeled with NR (N

for “Normal” and R for “Residual”) while (8.3) and related techniques are labeled

with NE (N for “Normal” and E for “Error”). If A is square and nonsingular, the

coefficient matrices of these systems are both Symmetric Positive Definite, and the

simpler methods for symmetric problems, such as the Conjugate Gradient algorithm,

can be applied. Thus, CGNE denotes the Conjugate Gradient method applied to the

system (8.3) and CGNR the Conjugate Gradient method applied to (8.1).

There are several alternative ways to formulate symmetric linear systems having

the same solution as the original system. For instance, the symmetric linear system
(

I A
AT O

)(
r
x

)

=

(
b
0

)

(8.5)

with r = b − Ax, arises from the standard necessary conditions satisfied by the

solution of the constrained optimization problem,

minimize
1

2
‖r − b‖22 (8.6)

subject to AT r = 0. (8.7)

The solution x to (8.5) is the vector of Lagrange multipliers for the above problem.

Another equivalent symmetric system is of the form
(
O A
AT O

)(
Ax
x

)

=

(
b

AT b

)

.

The eigenvalues of the coefficient matrix for this system are ±σi, where σi is an

arbitrary singular value of A. Indefinite systems of this sort are not easier to solve

than the original nonsymmetric system in general. Although not obvious immedi-

ately, this approach is similar in nature to the approach (8.1) and the corresponding

Conjugate Gradient iterations applied to them should behave similarly.

A general consensus is that solving the normal equations can be an inefficient

approach in the case when A is poorly conditioned. Indeed, the 2-norm condition

number of ATA is given by

Cond2(A
TA) = ‖ATA‖2 ‖(ATA)−1‖2.

Now observe that ‖ATA‖2 = σ2max(A) where σmax(A) is the largest singular value

of A which, incidentally, is also equal to the 2-norm of A. Thus, using a similar

argument for the inverse (ATA)−1 yields

Cond2(A
TA) = ‖A‖22 ‖A−1‖22 = Cond22(A). (8.8)

The 2-norm condition number for ATA is exactly the square of the condition number

of A, which could cause difficulties. For example, if originally Cond2(A) = 108,
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then an iterative method may be able to perform reasonably well. However, a con-

dition number of 1016 can be much more difficult to handle by a standard iterative

method. That is because any progress made in one step of the iterative procedure

may be annihilated by the noise due to numerical errors.

On the other hand, if the original matrix has a good 2-norm condition number,

then the normal equation approach should not cause any serious difficulties. In the

extreme case when A is unitary, i.e., when AHA = I , then the normal equations

are clearly the best approach (the Conjugate Gradient method will converge in zero

step!).

8.2 Row Projection Methods

When implementing a basic relaxation scheme, such as Jacobi or SOR, to solve the

linear system

ATAx = AT b, (8.9)

or

AATu = b, (8.10)

it is possible to exploit the fact that the matrices ATA or AAT need not be formed

explicitly. As will be seen, only a row or a column of A at a time is needed at a given

relaxation step. These methods are known as row projection methods since they are

indeed projection methods on rows of A or AT . Block row projection methods can

also be defined similarly.

8.2.1 Gauss-Seidel on the Normal Equations

It was stated above that in order to use relaxation schemes on the normal equations,

only access to one column of A at a time is needed for (8.9) and one row at a time

for (8.10). This is now explained for (8.10) first. Starting from an approximation

to the solution of (8.10), a basic relaxation-based iterative procedure modifies its

components in a certain order using a succession of relaxation steps of the simple

form

unew = u+ δiei (8.11)

where ei is the i-th column of the identity matrix. The scalar δi is chosen so that the

i-th component of the residual vector for (8.10) becomes zero. Therefore,

(b−AAT (u+ δiei), ei) = 0 (8.12)

which, setting r = b−AATu, yields,

δi =
(r, ei)

‖AT ei‖22
. (8.13)

Denote by βi the i-th component of b. Then a basic relaxation step consists of taking

δi =
βi − (ATu,AT ei)

‖AT ei‖22
. (8.14)
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Also, (8.11) can be rewritten in terms of x-variables as follows:

xnew = x+ δiA
T ei. (8.15)

The auxiliary variable u has now been removed from the scene and is replaced by

the original variable x = ATu.

Consider the implementation of a forward Gauss-Seidel sweep based on (8.15)

and (8.13) for a general sparse matrix. The evaluation of δi from (8.13) requires the

inner product of the current approximation x = ATu with AT ei, the i-th row of A.

This inner product is inexpensive to compute because AT ei is usually sparse. If an

acceleration parameter ω is used, we only need to change δi into ωδi. Therefore, a

forward SOR sweep would be as follows.

ALGORITHM 8.1 Forward NE-SOR Sweep

1. Choose an initial x.

2. For i = 1, 2, . . . , n Do:

3. δi = ω βi−(AT ei,x)
‖AT ei‖22

4. x := x+ δiA
T ei

5. EndDo

Note that AT ei is a vector equal to the transpose of the i-th row of A. All that is

needed is the row data structure for A to implement the above algorithm. Denoting

by nzi the number of nonzero elements in the i-th row of A, then each step of the

above sweep requires 2nzi + 2 operations in line 3, and another 2nzi operations in

line 4, bringing the total to 4nzi+2. The total for a whole sweep becomes 4nz+2n
operations, where nz represents the total number of nonzero elements of A. Twice as

many operations are required for the Symmetric Gauss-Seidel or the SSOR iteration.

Storage consists of the right-hand side, the vector x, and possibly an additional vector

to store the 2-norms of the rows of A. A better alternative would be to rescale each

row by its 2-norm at the start.

Similarly, Gauss-Seidel for (8.9) would consist of a sequence of steps of the form

xnew = x+ δiei. (8.16)

Again, the scalar δi is to be selected so that the i-th component of the residual vector

for (8.9) becomes zero, which yields

(AT b−ATA(x+ δiei), ei) = 0. (8.17)

With r ≡ b−Ax, this becomes (AT (r − δiAei), ei) = 0, which yields

δi =
(r,Aei)

‖Aei‖22
. (8.18)

Then the following algorithm is obtained.



8.2. ROW PROJECTION METHODS 263

ALGORITHM 8.2 Forward NR-SOR Sweep

1. Choose an initial x, compute r := b−Ax.

2. For i = 1, 2, . . . , n Do:

3. δi = ω (r,Aei)
‖Aei‖22

4. x := x+ δiei
5. r := r − δiAei
6. EndDo

In contrast with Algorithm 8.1, the column data structure of A is now needed for

the implementation instead of its row data structure. Here, the right-hand side b can

be overwritten by the residual vector r, so the storage requirement is essentially the

same as in the previous case. In the NE version, the scalar βi− (x, ai) is just the i-th
component of the current residual vector r = b − Ax. As a result, stopping criteria

can be built for both algorithms based on either the residual vector or the variation

in the solution. Note that the matrices AAT and ATA can be dense or generally

much less sparse than A, yet the cost of the above implementations depends only

on the nonzero structure of A. This is a significant advantage of relaxation-type

preconditioners over incomplete factorization preconditioners when using Conjugate

Gradient methods to solve the normal equations.

One question remains concerning the acceleration of the above relaxation schemes

by under- or over-relaxation. If the usual acceleration parameter ω is introduced, then

we only have to multiply the scalars δi in the previous algorithms by ω. One serious

difficulty here is to determine the optimal relaxation factor. If nothing in particu-

lar is known about the matrix AAT , then the method will converge for any ω lying

strictly between 0 and 2, as was seen in Chapter 4, because the matrix is positive def-

inite. Moreover, another unanswered question is how convergence can be affected

by various reorderings of the rows. For general sparse matrices, the answer is not

known.

8.2.2 Cimmino’s Method

In a Jacobi iteration for the system (8.9), the components of the new iterate satisfy

the following condition:

(AT b−ATA(x+ δiei), ei) = 0. (8.19)

This yields

(b−A(x+ δiei), Aei) = 0 or (r − δiAei, Aei) = 0

in which r is the old residual b−Ax. As a result, the i-component of the new iterate

xnew is given by

xnew,i = xi + δiei, (8.20)

δi =
(r,Aei)

‖Aei‖22
. (8.21)
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Here, be aware that these equations do not result in the same approximation as that

produced by Algorithm 8.2, even though the modifications are given by the same

formula. Indeed, the vector x is not updated after each step and therefore the scalars

δi are different for the two algorithms. This algorithm is usually described with an

acceleration parameter ω, i.e., all δi’s are multiplied uniformly by a certain ω. If d
denotes the vector with coordinates δi, i = 1, . . . , n, the following algorithm results.

ALGORITHM 8.3 Cimmino-NR

1. Choose initial guess x0. Set x = x0, r = b−Ax0
2. Until convergence Do:

3. For i = 1, . . . , n Do:

4. δi = ω (r,Aei)
‖Aei‖22

5. EndDo

6. x := x+ d where d =
∑n

i=1 δiei
7. r := r −Ad
8. EndDo

Notice that all the coordinates will use the same residual vector r to compute

the updates δi. When ω = 1, each instance of the above formulas is mathematically

equivalent to performing a projection step for solving Ax = b with K = span{ei},
and L = AK. It is also mathematically equivalent to performing an orthogonal

projection step for solving ATAx = AT b with K = span{ei}.
It is interesting to note that when each column Aei is normalized by its 2-norm,

i.e., if ‖Aei‖2 = 1, i = 1, . . . , n, then δi = ω(r,Aei) = ω(AT r, ei). In this situation,

d = ωAT r = ωAT (b−Ax)

and the main loop of the algorithm takes the vector form

d := ωAT r

x := x+ d

r := r −Ad.

Each iteration is therefore equivalent to a step of the form

xnew = x+ ω
(
AT b−ATAx

)

which is nothing but the Richardson iteration applied to the normal equations (8.1).

In particular, as was seen in Example 4.1, convergence is guaranteed for any ω which

satisfies,

0 < ω <
2

λmax
(8.22)

where λmax is the largest eigenvalue of ATA. In addition, the best acceleration

parameter is given by

ωopt =
2

λmin + λmax
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in which, similarly, λmin is the smallest eigenvalue of ATA. If the columns are not

normalized by their 2-norms, then the procedure is equivalent to a preconditioned

Richardson iteration with diagonal preconditioning. The theory regarding conver-

gence is similar but involves the preconditioned matrix or, equivalently, the matrix

A′ obtained from A by normalizing its columns.

The algorithm can be expressed in terms of projectors. Observe that the new

residual satisfies

rnew = r −
n∑

i=1

ω
(r,Aei)

‖Aei‖22
Aei. (8.23)

Each of the operators

Pi : r −→ (r,Aei)

‖Aei‖22
Aei ≡ Pir (8.24)

is an orthogonal projector onto Aei, the i-th column of A. Hence, we can write

rnew =

(

I − ω
n∑

i=1

Pi

)

r. (8.25)

There are two important variations to the above scheme. First, because the point

Jacobi iteration can be very slow, it may be preferable to work with sets of vectors

instead. Let π1, π2, . . . , πp be a partition of the set {1, 2, . . . , n} and, for each πj ,
let Ej be the matrix obtained by extracting the columns of the identity matrix whose

indices belong to πj . Going back to the projection framework, define Ai = AEi. If

an orthogonal projection method is used onto Ej to solve (8.1), then the new iterate

is given by

xnew = x+ ω

p
∑

i

Eidi (8.26)

di = (ET
i A

TAEi)
−1ET

i A
T r = (AT

i Ai)
−1AT

i r. (8.27)

Each individual block-component di can be obtained by solving a least-squares prob-

lem

min
d
‖r −Aid‖2.

An interpretation of this indicates that each individual substep attempts to reduce the

residual as much as possible by taking linear combinations from specific columns of

Ai. Similar to the scalar iteration, we also have

rnew =

(

I − ω
n∑

i=1

Pi

)

r

where Pi now represents an orthogonal projector onto the span of Ai.

Note that A1, A2, . . . , Ap is a partition of the column-set {Aei}i=1,...,n and this

partition can be arbitrary. Another remark is that the original Cimmino method was

formulated for rows instead of columns, i.e., it was based on (8.1) instead of (8.3).

The alternative algorithm based on columns rather than rows is easy to derive.
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8.3 Conjugate Gradient and Normal Equations

A popular combination to solve nonsymmetric linear systems applies the Conjugate

Gradient algorithm to solve either (8.1) or (8.3). As is shown next, the resulting algo-

rithms can be rearranged because of the particular nature of the coefficient matrices.

8.3.1 CGNR

We begin with the Conjugate Gradient algorithm applied to (8.1). Applying CG

directly to the system and denoting by zi the residual vector at step i (instead of ri)
results in the following sequence of operations:

• αj := (zj , zj)/(A
TApj , pj) = (zj , zj)/(Apj , Apj)

• xj+1 := xj + αjpj

• zj+1 := zj − αjA
TApj

• βj := (zj+1, zj+1)/(zj , zj)

• pj+1 := zj+1 + βjpj .

If the original residual ri = b−Axi must be available at every step, we may compute

the residual zi+1 in two parts: rj+1 := rj − αjApj and then zi+1 = AT ri+1 which

is the residual for the normal equations (8.1). It is also convenient to introduce the

vector wi = Api. With these definitions, the algorithm can be cast in the following

form.

ALGORITHM 8.4 CGNR

1. Compute r0 = b−Ax0, z0 = AT r0, p0 = z0.

2. For i = 0, . . ., until convergence Do:

3. wi = Api
4. αi = ‖zi‖2/‖wi‖22
5. xi+1 = xi + αipi
6. ri+1 = ri − αiwi

7. zi+1 = AT ri+1

8. βi = ‖zi+1‖22/‖zi‖22,

9. pi+1 = zi+1 + βipi
10. EndDo

In Chapter 6, the approximation xm produced at the m-th step of the Conjugate

Gradient algorithm was shown to minimize the energy norm of the error over an

affine Krylov subspace. In this case, xm minimizes the function

f(x) ≡ (ATA(x∗ − x), (x∗ − x))

over all vectors x in the affine Krylov subspace

x0 +Km(ATA,AT r0) = x0 + span{AT r0, A
TAAT r0, . . . , (A

TA)m−1AT r0},
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in which r0 = b − Ax0 is the initial residual with respect to the original equations

Ax = b, and AT r0 is the residual with respect to the normal equations ATAx =
AT b. However, observe that

f(x) = (A(x∗ − x), A(x∗ − x)) = ‖b−Ax‖22.

Therefore, CGNR produces the approximate solution in the above subspace which

has the smallest residual norm with respect to the original linear system Ax = b. The

difference with the GMRES algorithm seen in Chapter 6, is the subspace in which

the residual norm is minimized.

Example 8.1. Table 8.1 shows the results of applying the CGNR algorithm with

no preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 300 4847 0.23E+02 0.62E+00

F3D 300 23704 0.42E+00 0.15E+00

ORS 300 5981 0.30E+02 0.60E-02

Table 8.1: A test run of CGNR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The method

failed to converge in less than 300 steps for all three problems. Failures of this

type, characterized by very slow convergence, are rather common for CGNE and

CGNR applied to problems arising from partial differential equations. Precondition-

ing should improve performance somewhat but, as will be seen in Chapter 10, normal

equations are also difficult to precondition.

8.3.2 CGNE

A similar reorganization of the CG algorithm is possible for the system (8.3) as well.

Applying the CG algorithm directly to (8.3) and denoting by qi the conjugate direc-

tions, the actual CG iteration for the u variable would be as follows:

• αj := (rj , rj)/(AA
T qj, qj) = (rj , rj)/(A

T qj, A
T qj)

• uj+1 := uj + αjqj

• rj+1 := rj − αjAA
T qj

• βj := (rj+1, rj+1)/(rj , rj)

• qj+1 := rj+1 + βjqj .
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Notice that an iteration can be written with the original variable xi = x0 +AT (ui −
u0) by introducing the vector pi = AT qi. Then, the residual vectors for the vectors

xi and ui are the same. No longer are the qi vectors needed because the pi’s can

be obtained as pj+1 := AT rj+1 + βjpj . The resulting algorithm described below,

the Conjugate Gradient for the normal equations (CGNE), is also known as Craig’s

method.

ALGORITHM 8.5 CGNE (Craig’s Method)

1. Compute r0 = b−Ax0, p0 = AT r0.

2. For i = 0, 1, . . . , until convergence Do:

3. αi = (ri, ri)/(pi, pi)
4. xi+1 = xi + αipi
5. ri+1 = ri − αiApi
6. βi = (ri+1, ri+1)/(ri, ri)
7. pi+1 = AT ri+1 + βipi
8. EndDo

We now explore the optimality properties of this algorithm, as was done for

CGNR. The approximation um related to the variable xm by xm = ATum is the

actual m-th CG approximation for the linear system (8.3). Therefore, it minimizes

the energy norm of the error on the Krylov subspace Km. In this case, um minimizes

the function

f(u) ≡ (AAT (u∗ − u), (u∗ − u))
over all vectors u in the affine Krylov subspace,

u0 +Km(AAT , r0) = u0 + span{r0, AAT r0, . . . , (AA
T )m−1r0}.

Notice that r0 = b−AATu0 = b−Ax0. Also, observe that

f(u) = (AT (u∗ − u), AT (u∗ − u)) = ‖x∗ − x‖22,

where x = ATu. Therefore, CGNE produces the approximate solution in the sub-

space

x0 +ATKm(AAT , r0) = x0 +Km(ATA,AT r0)

which has the smallest 2-norm of the error. In addition, note that the subspace x0 +
Km(ATA,AT r0) is identical with the subspace found for CGNR. Therefore, the

two methods find approximations from the same subspace which achieve different

optimality properties: minimal residual for CGNR and minimal error for CGNE.

8.4 Saddle-Point Problems

Now consider the equivalent system
(

I A
AT O

)(
r
x

)

=

(
b
0

)



8.4. SADDLE-POINT PROBLEMS 269

with r = b−Ax. This system can be derived from the necessary conditions applied

to the constrained least-squares problem (8.6–8.7). Thus, the 2-norm of b− r = Ax
is minimized implicitly under the constraint AT r = 0. Note that A does not have to

be a square matrix.

This can be extended into a more general constrained quadratic optimization

problem as follows:

minimize f(x) ≡ 1

2
(Ax, x) − (x, b) (8.28)

subject to BTx = c. (8.29)

The necessary conditions for optimality yield the linear system

(
A B
BT O

)(
x
y

)

=

(
b
c

)

(8.30)

in which the names of the variables r, x are changed into x, y for notational con-

venience. It is assumed that the column dimension of B does not exceed its row

dimension. The Lagrangian for the above optimization problem is

L(x, y) =
1

2
(Ax, x)− (x, b) + (y, (BTx− c))

and the solution of (8.30) is the saddle point of the above Lagrangian. Optimization

problems of the form (8.28–8.29) and the corresponding linear systems (8.30) are

important and arise in many applications. Because they are intimately related to the

normal equations, we discuss them briefly here.

In the context of fluid dynamics, a well known iteration technique for solving

the linear system (8.30) is Uzawa’s method, which resembles a relaxed block SOR

iteration.

ALGORITHM 8.6 Uzawa’s Method

1. Choose x0, y0
2. For k = 0, 1, . . . , until convergence Do:

3. xk+1 = A−1(b−Byk)
4. yk+1 = yk + ω(BTxk+1 − c)
5. EndDo

The algorithm requires the solution of the linear system

Axk+1 = b−Byk (8.31)

at each iteration. By substituting the result of line 3 into line 4, the xk iterates can be

eliminated to obtain the following relation for the yk’s,

yk+1 = yk + ω
(
BTA−1(b−Byk)− c

)
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which is nothing but a Richardson iteration for solving the linear system

BTA−1By = BTA−1b− c. (8.32)

Apart from a sign, this system is the reduced system resulting from eliminating the

x variable from (8.30). Convergence results can be derived from the analysis of the

Richardson iteration.

Corollary 8.1 Let A be a Symmetric Positive Definite matrix and B a matrix of

full rank. Then S = BTA−1B is also Symmetric Positive Definite and Uzawa’s

algorithm converges, if and only if

0 < ω <
2

λmax(S)
. (8.33)

In addition, the optimal convergence parameter ω is given by

ωopt =
2

λmin(S) + λmax(S)
.

Proof. The proof of this result is straightforward and is based on the results seen in

Example 4.1.

It is interesting to observe that when c = 0 and A is Symmetric Positive Defi-

nite, then the system (8.32) can be regarded as the normal equations for minimizing

the A−1-norm of b − By. Indeed, the optimality conditions are equivalent to the

orthogonality conditions

(b−By,Bw)A−1 = 0, ∀ w,

which translate into the linear system BTA−1By = BTA−1b. As a consequence,

the problem will tend to be easier to solve if the columns of B are almost orthogonal

with respect to the A−1 inner product. This is true when solving the Stokes problem

where B represents the discretization of the gradient operator while BT discretizes

the divergence operator, and A is the discretization of a Laplacian. In this case, if

it were not for the boundary conditions, the matrix BTA−1B would be the identity.

This feature can be exploited in developing preconditioners for solving problems

of the form (8.30). Another particular case is when A is the identity matrix and

c = 0. Then, the linear system (8.32) becomes the system of the normal equations for

minimizing the 2-norm of b − By. These relations provide insight in understanding

that the block form (8.30) is actually a form of normal equations for solving By = b
in the least-squares sense. However, a different inner product is used.

In Uzawa’s method, a linear system at each step must be solved, namely, the sys-

tem (8.31). Solving this system is equivalent to finding the minimum of the quadratic

function

minimize fk(x) ≡
1

2
(Ax, x) − (x, b−Byk). (8.34)
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Apart from constants, fk(x) is the Lagrangian evaluated at the previous y iterate.

The solution of (8.31), or the equivalent optimization problem (8.34), is expensive.

A common alternative replaces the x-variable update (8.31) by taking one step in the

gradient direction for the quadratic function (8.34), usually with fixed step-length ǫ.
The gradient of fk(x) at the current iterate is Axk − (b − Byk). This results in the

Arrow-Hurwicz Algorithm.

ALGORITHM 8.7 The Arrow-Hurwicz algorithm

1. Select an initial guess x0, y0 to the system (8.30)

2. For k = 0, 1, . . . , until convergence Do:

3. Compute xk+1 = xk + ǫ(b−Axk −Byk)
4. Compute yk+1 = yk + ω(BTxk+1 − c)
5. EndDo

The above algorithm is a block-iteration of the form

(
I O

−ωBT I

)(
xk+1

yk+1

)

=

(
I − ǫA −ǫB
O I

)(
xk
yk

)

+

(
ǫb
−ωc

)

.

Uzawa’s method, and many similar techniques for solving (8.30), are based on

solving the reduced system (8.32). An important observation here is that the Schur

complement matrix S ≡ BTA−1B need not be formed explicitly. This can be useful

if this reduced system is to be solved by an iterative method. The matrixA is typically

factored by a Cholesky-type factorization. The linear systems with the coefficient

matrix A can also be solved by a preconditioned Conjugate Gradient method. Of

course these systems must then be solved accurately.

Sometimes it is useful to “regularize” the least-squares problem (8.28) by solving

the following problem in its place:

minimize f(x) ≡ 1

2
(Ax, x) − (x, b) + ρ(Cy, y)

subject to BTx = c

in which ρ is a scalar parameter. For example, C can be the identity matrix or the

matrix BTB. The matrix resulting from the Lagrange multipliers approach then

becomes (
A B
BT ρC

)

.

The new Schur complement matrix is

S = ρC −BTA−1B.

Example 8.2. In the case where C = BTB, the above matrix takes the form

S = BT (ρI −A−1)B.
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Assuming that A is SPD, S is also positive definite when

ρ ≥ 1

λmin(A)
.

However, it is also negative definite for

ρ ≤ 1

λmax
(A),

a condition which may be easier to satisfy on practice.

PROBLEMS

P-8.1 Derive the linear system (8.5) by expressing the standard necessary conditions for the

problem (8.6–8.7).

P-8.2 It was stated in Section 8.2.2 that when ‖AT ei‖2 = 1 for i = 1, . . . , n, the vector d
defined in Algorithm 8.3 is equal to ωAT r.

a. What does this become in the general situation when ‖AT ei‖2 6= 1?

b. Is Cimmino’s method still equivalent to a Richardson iteration?

c. Show convergence results similar to those of the scaled case.

P-8.3 In Section 8.2.2, Cimmino’s algorithm was derived based on the Normal Residual

formulation, i.e., on (8.1). Derive an “NE” formulation, i.e., an algorithm based on Jacobi’s

method for (8.3).

P-8.4 What are the eigenvalues of the matrix (8.5)? Derive a system whose coefficient

matrix has the form

B(α) =

(
2αI A
AT O

)

.

and which is also equivalent to the original system Ax = b. What are the eigenvalues of

B(α)? Plot the spectral norm of B(α) as a function of α.

P-8.5 It was argued in Section 8.4 that when c = 0 the system (8.32) is nothing but the

normal equations for minimizing the A−1-norm of the residual r = b−By.

a. Write the associated CGNR approach for solving this problem. Find a variant that

requires only one linear system solution with the matrix A at each CG step [Hint:

Write the CG algorithm for the associated normal equations and see how the resulting

procedure can be reorganized to save operations]. Find also a variant that is suitable

for the case where the Cholesky factorization of A is available.

b. Derive a method for solving the equivalent system (8.30) for the case when c = 0 and

then for the general case wjen c 6= 0. How does this technique compare with Uzawa’s

method?

P-8.6 Consider the linear system (8.30) in which c = 0 and B is of full rank. Define the

matrix

P = I −B(BTB)−1BT .
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a. Show that P is a projector. Is it an orthogonal projector? What are the range and null

spaces of P ?

b. Show that the unknown x can be found by solving the linear system

PAPx = Pb, (8.35)

in which the coefficient matrix is singular but the system is consistent, i.e., there is a

nontrivial solution because the right-hand side is in the range of the matrix (see Chapter

1).

c. What must be done toadapt the Conjugate Gradient Algorithm for solving the above

linear system (which is symmetric, but not positive definite)? In which subspace are

the iterates generated from the CG algorithm applied to (8.35)?

d. Assume that the QR factorization of the matrix B is computed. Write an algorithm

based on the approach of the previous questions for solving the linear system (8.30).

P-8.7 Show that Uzawa’s iteration can be formulated as a fixed-point iteration associated

with the splitting C =M −N with

M =

(
A O

−ωBT I

)

, N =

(
O −B
O I

)

.

Derive the convergence result of Corollary 8.1 .

P-8.8 Show that each new vector iterate in Cimmino’s method is such that

xnew = x+ ωA−1
∑

i

Pir,

where Pi is defined by (8.24).

P-8.9 In Uzawa’s method a linear system with the matrix A must be solved at each step.

Assume that these systems are solved inaccurately by an iterative process. For each linear

system the iterative process is applied until the norm of the residual rk+1 = (b − Byk) −
Axk+1 is less than a certain threshold ǫk+1.

a. Assume that ω is chosen so that (8.33) is satisfied and that ǫk converges to zero as k
tends to infinity. Show that the resulting algorithm converges to the solution.

b. Give an explicit upper bound of the error on yk in the case when ǫi is chosen of the

form ǫ = αi, where α < 1.

P-8.10 Assume ‖b − Ax‖2 is to be minimized, in which A is n ×m with n > m. Let x∗
be the minimizer and r = b−Ax∗. What is the minimizer of ‖(b+ αr)−Ax‖2, where α is

an arbitrary scalar?

P-8.11

P-8.12 Consider a saddle-point linear system of the form Ax = b, where

A =

(
B C
CT 0

)

; x =

(
u
p

)

; b =

(
f
0

)

in which B is symmetric positive definite. It is assumed that A is nonsingular (which is

equivalent to assuming that C is of full rank).

1. Prove that A has both negative and positive eigenvalues by showing how to select

vectors x =
(

u
p

)

so that (Ax, x) > 0 and vectors x so that (Ax, x) < 0.
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2. Show how to select an initial guess of the form x0 =
(
u0

0

)
if we want its corresponding

residual vector r0 = b−Ax0 to be of the form r0 =
(

0
s0

)

. What happens if we attempt

to use the steepest descent algorithm with this initial guess?

3. What happens if the Minimal Residual iteration is applied using the same initial guess

as in the previous question?

4. By eliminating the unknown u find a linear system Sp = g that must be satisfied by

the variable p Is the coefficient matrix of this system Symmetric Positive Definite (or

Symmetric Negative Definite)?

5. We now want to solve the linear system by the following iteration:

uk+1 = B−1(f − Cpk)
pk+1 = pk + αkC

Tuk+1

Show that pk+1 is of the form pk+1 = pk + αksk where sk is the residual relative

to pk for the reduced linear system found in the previous question. How should αk

be selected if we want pk+1 to correspond to the iterate of steepest descent for this

reduced system.

NOTES AND REFERENCES. Methods based on the normal equations have been among the first to

be used for solving nonsymmetric linear systems by iterative methods [181, 85]. The work by Bjork

and Elfing [39], and Sameh et al. [182, 53, 52] revived these techniques by showing that they have

some advantages from the implementation point of view, and that they can offer good performance for

a broad class of problems. In addition, they are also attractive for parallel computers. In [240], a few

preconditioning ideas for normal equations were described and these will be covered in Chapter 10. It

would be helpful to be able to determine whether or not it is preferable to use the normal equations ap-

proach rather than the “direct equations” for a given system, but this may require an eigenvalue/singular

value analysis.

It is sometimes argued that the normal equations approach is always better than the standard

approach, because it has a quality of robustness which outweighs the additional cost due to the slowness

of the method in the generic elliptic case. Unfortunately, this is not true. Although variants of the

Kaczmarz and Cimmino algorithms deserve a place in any robust iterative solution package, they cannot

be viewed as a panacea. In most realistic examples arising from Partial Differential Equations, the

normal equations route gives rise to much slower convergence than the Krylov subspace approach for

the direct equations. For ill-conditioned problems, these methods will simply fail to converge, unless a

good preconditioner is available.



Chapter 9

PRECONDITIONED ITERATIONS

Although the methods seen in previous chapters are well founded theoretically, they are all likely

to suffer from slow convergence for problems which arise from typical applications such as fluid

dynamics or electronic device simulation. Preconditioning is a key ingredient for the success

of Krylov subspace methods in these applications. This chapter discusses the preconditioned

versions of the iterative methods already seen, but without being specific about the particu-

lar preconditioners used. The standard preconditioning techniques will be covered in the next

chapter.

9.1 Introduction

Lack of robustness is a widely recognized weakness of iterative solvers, relative to

direct solvers. This drawback hampers the acceptance of iterative methods in indus-

trial applications despite their intrinsic appeal for very large linear systems. Both

the efficiency and robustness of iterative techniques can be improved by using pre-

conditioning. A term introduced in Chapter 4, preconditioning is simply a means

of transforming the original linear system into one which has the same solution, but

which is likely to be easier to solve with an iterative solver. In general, the relia-

bility of iterative techniques, when dealing with various applications, depends much

more on the quality of the preconditioner than on the particular Krylov subspace ac-

celerators used. We will cover some of these preconditioners in detail in the next

chapter. This chapter discusses the preconditioned versions of the Krylov subspace

algorithms already seen, using a generic preconditioner.

To begin with, it is worthwhile to consider the options available for precondi-

tioning a system. The first step in preconditioning is to find a preconditioning matrix

M . The matrix M can be defined in many different ways but it must satisfy a few

minimal requirements. From a practical point of view, the most requirement for M is

that it is inexpensive to solve linear systems Mx = b. This is because the precondi-

tioned algorithms will all require a linear system solution with the matrix M at each

step. Also M should close to A in some sense and it should clearly be nonsingular.

Chapter 10 explores in detail the problem of finding preconditioners M for a given

matrix S, while this chapter considers only the ways in which the preconditioner is

applied to solve the original system.

Once a preconditioning matrix M is available there are three known ways of ap-

275
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plying the preconditioner. The precondiotioner can be applied from the left, leading

to the preconditioned system

M−1Ax =M−1b (9.1)

Alternatively, it can also be applied to the right:

AM−1u = b, x ≡M−1u . (9.2)

Note that the above formulation amounts to making the change of variables u =Mx,

and solving the system with respect to the unknown u. Finally, a common situation

is when the preconditioner is available in the factored form

M =MLMR

where, typically ML and MR are triangular matrices. In this situation, the precondi-

tioning can be split:

M−1
L AM−1

R u =M−1
L b, x ≡M−1

R u . (9.3)

It is imperative to preserve symmetry when the original matrix is symmetric, so the

split preconditioner seems mandatory this case. However, there are other ways of pre-

serving symmetry, or rather to take advantage of symmetry, even ifM is not available

in a factored form. This is discussed next for the Conjugate Gradient method.

9.2 Preconditioned Conjugate Gradient

Consider a matrix A that is symmetric and positive definite and assume that a pre-

conditioner M is available. The preconditioner M is a matrix which approximates

A in some yet-undefined sense. It is assumed that M is also Symmetric Positive

Definite. Then, one can precondition the system in the three ways shown in the pre-

vious section, i.e., as in (9.1), (9.2), or (9.3). Note that the first two systems are no

longer symmetric in general. The next section considers strategies for preserving

symmetry. Then, efficient implementations will be described for particular forms of

the preconditioners.

9.2.1 Preserving Symmetry

When M is available in the form of an incomplete Cholesky factorization, i.e., when

M = LLT ,

then a simple way to preserve symmetry is to use the “split” the preconditioning

option (9.3) which yields the Symmetric Positive Definite matrix,

L−1AL−Tu = L−1b, x = L−Tu. (9.4)
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However, it is not necessary to split the preconditioner in this manner in order to

preserve symmetry. Observe that M−1A is self-adjoint for the M -inner product,

(x, y)M ≡ (Mx, y) = (x,My)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M .

Therefore, an alternative is to replace the usual Euclidean inner product in the Con-

jugate Gradient algorithm by the M -inner product.

If the CG algorithm is rewritten for this new inner product, denoting by rj =
b−Axj the original residual and by zj =M−1rj the residual for the preconditioned

system, the following sequence of operations is obtained, ignoring the initial step:

1. αj := (zj , zj)M/(M
−1Apj , pj)M

2. xj+1 := xj + αjpj

3. rj+1 := rj − αjApj and zj+1 :=M−1rj+1

4. βj := (zj+1, zj+1)M/(zj , zj)M

5. pj+1 := zj+1 + βjpj

Since (zj , zj)M = (rj , zj) and (M−1Apj , pj)M = (Apj , pj), the M -inner products

do not have to be computed explicitly. With this observation, the following algorithm

is obtained.

ALGORITHM 9.1 Preconditioned Conjugate Gradient

1. Compute r0 := b−Ax0, z0 =M−1r0, and p0 := z0
2. For j = 0, 1, . . ., until convergence Do:

3. αj := (rj , zj)/(Apj , pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. zj+1 :=M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)
8. pj+1 := zj+1 + βjpj
9. EndDo

It is interesting to observe that M−1A is also self-adjoint with respect to the A
inner-product. Indeed,

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

and a similar algorithm can be written for this dot product (see Exercise 2).

In the case whereM is a Cholesky product M = LLT , two options are available,

namely, the split preconditioning option (9.4), or the above algorithm. An immediate



278 CHAPTER 9. PRECONDITIONED ITERATIONS

question arises about the iterates produced by these two options: Is one better than

the other? Surprisingly, the answer is that the iterates are identical. To see this, start

from Algorithm 9.1 and define the following auxiliary vectors and matrix from it:

p̂j = LT pj

uj = LTxj

r̂j = LT zj = L−1rj

Â = L−1AL−T .

Observe that

(rj , zj) = (rj , L
−TL−1rj) = (L−1rj, L

−1rj) = (r̂j , r̂j).

Similarly,

(Apj , pj) = (AL−T p̂j, L
−T p̂j)(L

−1AL−T p̂j, p̂j) = (Âp̂j, p̂j).

All the steps of the algorithm can be rewritten with the new variables, yielding the

following sequence of operations:

1. αj := (r̂j , r̂j)/(Âp̂j, p̂j)

2. uj+1 := uj + αj p̂j

3. r̂j+1 := r̂j − αjÂp̂j

4. βj := (r̂j+1, r̂j+1)/(r̂j , r̂j)

5. p̂j+1 := r̂j+1 + βj p̂j .

This is precisely the Conjugate Gradient algorithm applied to the preconditioned

system

Âu = L−1b

where u = LTx. It is common when implementing algorithms which involve a right

preconditioner to avoid the use of the u variable, since the iteration can be written

with the original x variable. If the above steps are rewritten with the original x and p
variables, the following algorithm results.

ALGORITHM 9.2 Split Preconditioner Conjugate Gradient

1. Compute r0 := b−Ax0; r̂0 = L−1r0; and p0 := L−T r̂0.

2. For j = 0, 1, . . ., until convergence Do:

3. αj := (r̂j , r̂j)/(Apj , pj)
4. xj+1 := xj + αjpj
5. r̂j+1 := r̂j − αjL

−1Apj
6. βj := (r̂j+1, r̂j+1)/(r̂j , r̂j)
7. pj+1 := L−T r̂j+1 + βjpj
8. EndDo
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The iterates xj produced by the above algorithm and Algorithm 9.1 are identical,

provided the same initial guess is used.

Consider now the right preconditioned system (9.2). The matrix AM−1 is not

Hermitian with either the Standard inner product or the M -inner product. However,

it is Hermitian with respect to the M−1-inner product. If the CG-algorithm is written

with respect to the u-variable and for this new inner product, the following sequence

of operations would be obtained, ignoring again the initial step:

1. αj := (rj , rj)M−1/(AM−1pj, pj)M−1

2. uj+1 := uj + αjpj

3. rj+1 := rj − αjAM
−1pj

4. βj := (rj+1, rj+1)M−1/(rj , rj)M−1

5. pj+1 := rj+1 + βjpj .

Recall that the u vectors and the x vectors are related by x = M−1u. Since the

u vectors are not actually needed, the update for uj+1 in the second step can be

replaced by xj+1 := xj + αjM
−1pj . Then observe that the whole algorithm can be

recast in terms of qj =M−1pj and zj =M−1rj .

1. αj := (zj , rj)/(Aqj , qj)

2. xj+1 := xj + αjqj

3. rj+1 := rj − αjAqj and zj+1 =M−1rj+1

4. βj := (zj+1, rj+1)/(zj , rj)

5. qj+1 := zj+1 + βjqj .

Notice that the same sequence of computations is obtained as with Algorithm

9.1, the left preconditioned Conjugate Gradient. The implication is that the left pre-

conditioned CG algorithm with the M -inner product is mathematically equivalent to

the right preconditioned CG algorithm with the M−1-inner product.

9.2.2 Efficient Implementations

When applying a Krylov subspace procedure to a preconditioned linear system, an

operation of the form

v → w =M−1Av

or some similar operation is performed at each step. The most natural way to perform

this operation is to multiply the vector v by A and then apply M−1 to the result.

However, since A and M are related, it is sometimes possible to devise procedures

that are more economical than this straightforward approach. For example, it is often

the case that

M = A−R
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in which the number of nonzero elements in R is much smaller than in A. In this

case, the simplest scheme would be to compute w =M−1Av as

w =M−1Av =M−1(M +R)v = v +M−1Rv.

This requires that R be stored explicitly. In approximate LU factorization tech-

niques, R is the matrix of the elements that are dropped during the incomplete fac-

torization. An even more efficient variation of the preconditioned Conjugate Gradient

algorithm can be derived for some common forms of the preconditioner in the special

situation where A is symmetric. Write A in the form

A = D0 − E − ET (9.5)

in which −E is the strict lower triangular part of A and D0 its diagonal. In many

cases, the preconditioner M can be written in the form

M = (D − E)D−1(D −ET ) (9.6)

in whichE is the same as above andD is some diagonal, not necessarily equal toD0.

For example, in the SSOR preconditioner with ω = 1, D ≡ D0. Also, for certain

types of matrices, the IC(0) preconditioner can be expressed in this manner, where

D can be obtained by a recurrence formula.

Eisenstat’s implementation consists of applying the Conjugate Gradient algo-

rithm to the linear system

Âu = (D − E)−1b (9.7)

with

Â ≡ (D − E)−1A(D − ET )−1, x = (D − ET )−1u. (9.8)

This does not quite correspond to a preconditioning with the matrix (9.6). In order

to produce the same iterates as Algorithm 9.1, the matrix Â must be further pre-

conditioned with the diagonal matrix D−1. Thus, the preconditioned CG algorithm,

Algorithm 9.1, is actually applied to the system (9.7) in which the preconditioning

operation is M−1 = D. Alternatively, we can initially scale the rows and columns of

the linear system and preconditioning to transform the diagonal to the identity. See

Exercise 7.

Now note that

Â = (D − E)−1A(D −ET )−1

= (D − E)−1(D0 − E − ET )(D − ET )−1

= (D − E)−1
(
D0 − 2D + (D − E) + (D − ET )

)
(D − ET )−1

≡ (D − E)−1D1(D − ET )−1 + (D − E)−1 + (D − ET )−1,

in which D1 ≡ D0 − 2D. As a result,

Âv = (D − E)−1
[
v +D1(D − ET )−1v

]
+ (D − ET )−1v.

Thus, the vector w = Âv can be computed by the following procedure:



9.2. PRECONDITIONED CONJUGATE GRADIENT 281

z := (D − ET )−1v
w := (D − E)−1(v +D1z)
w := w + z.

One product with the diagonal D can be saved if the matricesD−1E andD−1ET

are stored. Indeed, by setting D̂1 = D−1D1 and v̂ = D−1v, the above procedure

can be reformulated as follows.

ALGORITHM 9.3 Computation of w = Âv

1. v̂ := D−1v
2. z := (I −D−1ET )−1v̂

3. w := (I −D−1E)−1(v̂ + D̂1z)
4. w := w + z .

Note that the matrices D−1E and D−1ET are not the transpose of one another, so

we actually need to increase the storage requirement for this formulation if these

matrices are stored. However, there is a more economical variant which works with

the matrix D−1/2ED−1/2 and its transpose. This is left as Exercise 8.

Denoting by Nz(X) the number of nonzero elements of a sparse matrix X, the

total number of operations (additions and multiplications) of this procedure is n for

(1), 2Nz(E
T ) for (2), 2Nz(E) + 2n for (3), and n for (4). The cost of the precondi-

tioning operation by D−1, i.e., n operations, must be added to this, yielding the total

number of operations:

Nop = n+ 2Nz(E) + 2Nz(E
T ) + 2n+ n+ n

= 3n + 2(Nz(E) +Nz(E
T ) + n)

= 3n + 2Nz(A).

For the straightforward approach, 2Nz(A) operations are needed for the product with

A, 2Nz(E) for the forward solve, and n + 2Nz(E
T ) for the backward solve giving

a total of

2Nz(A) + 2Nz(E) + n+ 2Nz(E
T ) = 4Nz(A)− n.

Thus, Eisenstat’s scheme is always more economical, when Nz is large enough, al-

though the relative gains depend on the total number of nonzero elements in A. One

disadvantage of this scheme is that it is limited to a special form of the preconditioner.

Example 9.1. For a 5-point finite difference matrix, Nz(A) is roughly 5n, so that

with the standard implementation 19n operations are performed, while with Eisen-

stat’s implementation only 13n operations would be performed, a savings of about 1
3 .

However, if the other operations of the Conjugate Gradient algorithm are included,

for a total of about 10n operations, the relative savings become smaller. Now the

original scheme will require 29n operations, versus 23n operations for Eisenstat’s

implementation.
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9.3 Preconditioned GMRES

In the case of GMRES, or other nonsymmetric iterative solvers, the same three

options for applying the preconditioning operation as for the Conjugate Gradient

(namely, left, split, and right preconditioning) are available. However, there will be

one fundamental difference – the right preconditioning versions will give rise to what

is called a flexible variant, i.e., a variant in which the preconditioner can change at

each step. This capability can be very useful in some applications.

9.3.1 Left-Preconditioned GMRES

As before, define the left preconditioned GMRES algorithm, as the GMRES algo-

rithm applied to the system,

M−1Ax =M−1b. (9.9)

The straightforward application of GMRES to the above linear system yields the

following preconditioned version of GMRES.

ALGORITHM 9.4 GMRES with Left Preconditioning

1. Compute r0 =M−1(b−Ax0), β = ‖r0‖2 and v1 = r0/β
2. For j = 1, . . . ,m Do:

3. Compute w :=M−1Avj
4. For i = 1, . . . , j, Do:

5 . hi,j := (w, vi)
6. w := w − hi,jvi
7. EndDo

8. Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. EndDo

10. Define Vm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

11. Compute ym = argminy‖βe1 − H̄my‖2, and xm = x0 + Vmym
12. If satisfied Stop, else set x0 := xm and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov

subspace

Span{r0,M−1Ar0, . . . , (M
−1A)m−1r0}.

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonal-

ized is obtained from the previous vector in the process. All residual vectors and their

norms that are computed by the algorithm correspond to the preconditioned residuals,

namely, zm = M−1(b − Axm), instead of the original (unpreconditioned) residuals

b − Axm. In addition, there is no easy access to these unpreconditioned residuals,

unless they are computed explicitly, e.g., by multiplying the preconditioned residu-

als by M .This can cause some difficulties if a stopping criterion based on the actual

residuals, instead of the preconditioned ones, is desired.



9.3. PRECONDITIONED GMRES 283

Sometimes a Symmetric Positive Definite preconditioning M for the nonsym-

metric matrix A may be available. For example, if A is almost SPD, then (9.9)

would not take advantage of this. It would be wiser to compute an approximate fac-

torization to the symmetric part and use GMRES with split preconditioning. This

raises the question as to whether or not a version of the preconditioned GMRES can

be developed, which is similar to Algorithm 9.1, for the CG algorithm. This version

would consist of using GMRES with the M -inner product for the system (9.9).

At step j of the preconditioned GMRES algorithm, the previous vj is multiplied

by A to get a vector

wj = Avj . (9.10)

Then this vector is preconditioned to get

zj =M−1wj. (9.11)

This vector must be M -orthogonalized against all previous vi’s. If the standard

Gram-Schmidt process is used, we first compute the inner products

hij = (zj , vi)M = (Mzj , vi) = (wj, vi), i = 1, . . . , j, (9.12)

and then modify the vector zj into the new vector

ẑj := zj −
j
∑

i=1

hijvi. (9.13)

To complete the orthonormalization step, the final ẑj must be normalized. Because

of the orthogonality of ẑj versus all previous vi’s, observe that

(ẑj , ẑj)M = (zj , ẑj)M = (M−1wj , ẑj)M = (wj , ẑj). (9.14)

Thus, the desired M -norm could be obtained from (9.14), and then we would set

hj+1,j := (ẑj , wj)
1/2 and vj+1 = ẑj/hj+1,j. (9.15)

One serious difficulty with the above procedure is that the inner product (ẑj , ẑj)M
as computed by (9.14) may be negative in the presence of round-off. There are two

remedies. First, this M -norm can be computed explicitly at the expense of an addi-

tional matrix-vector multiplication with M . Second, the set of vectors Mvi can be

saved in order to accumulate inexpensively both the vector ẑj and the vector Mẑj ,

via the relation

Mẑj = wj −
j
∑

i=1

hijMvi.

A modified Gram-Schmidt version of this second approach can be derived easily.

The details of the algorithm are left as Exercise 13.
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9.3.2 Right-Preconditioned GMRES

The right preconditioned GMRES algorithm is based on solving

AM−1u = b, u =Mx. (9.16)

As we now show, the new variable u never needs to be invoked explicitly. Indeed,

once the initial residual b−Ax0 = b−AM−1u0 is computed, all subsequent vectors

of the Krylov subspace can be obtained without any reference to the u-variables.

Note that u0 is not needed at all. The initial residual for the preconditioned system

can be computed from r0 = b−Ax0, which is the same as b−AM−1u0. In practice,

it is usually x0 that is available, not u0. At the end, the u-variable approximate

solution to (9.16) is given by,

um = u0 +

m∑

i=1

viηi

with u0 = Mx0. Multiplying through by M−1 yields the desired approximation in

terms of the x-variable,

xm = x0 +M−1

[
m∑

i=1

viηi

]

.

Thus, one preconditioning operation is needed at the end of the outer loop, instead

of at the beginning in the case of the left preconditioned version.

ALGORITHM 9.5 GMRES with Right Preconditioning

1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2. For j = 1, . . . ,m Do:

3. Compute w := AM−1vj
4. For i = 1, . . . , j, Do:

5. hi,j := (w, vi)
6. w := w − hi,jvi
7. EndDo

8. Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. Define Vm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

10. EndDo

11. Compute ym = argminy‖βe1 − H̄my‖2, and xm = x0 +M−1Vmym.

12. If satisfied Stop, else set x0 := xm and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis of the right preconditioned

Krylov subspace

Span{r0, AM−1r0, . . . , (AM
−1)m−1r0}.

Note that the residual norm is now relative to the initial system, i.e., b−Axm, since

the algorithm obtains the residual b− Axm = b − AM−1um, implicitly. This is an

essential difference with the left preconditioned GMRES algorithm.
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9.3.3 Split Preconditioning

In many cases, M is the result of a factorization of the form

M = LU.

Then, there is the option of using GMRES on the split-preconditioned system

L−1AU−1u = L−1b, x = U−1u.

In this situation, it is clear that we need to operate on the initial residual by L−1 at

the start of the algorithm and by U−1 on the linear combination Vmym in forming

the approximate solution. The residual norm available is that of L−1(b−Axm).
A question arises on the differences between the right, left, and split precondi-

tioning options. The fact that different versions of the residuals are available in each

case may affect the stopping criterion and may cause the algorithm to stop either

prematurely or with delay. This can be particularly damaging in case M is very

ill-conditioned. The degree of symmetry, and therefore performance, can also be

affected by the way in which the preconditioner is applied. For example, a split

preconditioner may be much better if A is nearly symmetric. Other than these two

situations, there is little difference generally between the three options. The next

section establishes a theoretical connection between left and right preconditioned

GMRES.

9.3.4 Comparison of Right and Left Preconditioning

When comparing the left, right, and split preconditioning options, a first observa-

tion to make is that the spectra of the three associated operators M−1A, AM−1, and

L−1AU−1 are identical. Therefore, in principle one should expect convergence to

be similar, although, as is known, eigenvalues do not always govern convergence. In

this section, we compare the optimality properties achieved by left- and right precon-

ditioned GMRES.

For the left preconditioning option, GMRES minimizes the residual norm

‖M−1b−M−1Ax‖2,

among all vectors from the affine subspace

x0 +KL
m = x0 + Span {z0,M−1Az0, . . . , (M

−1A)m−1z0} (9.17)

in which z0 is the initial preconditioned residual z0 = M−1r0. Thus, the approxi-

mate solution can be expressed as

xm = x0 +M−1sm−1(M
−1A)z0

where sm−1 is the polynomial of degree m− 1 which minimizes the norm

‖z0 −M−1A s(M−1A)z0‖2
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among all polynomials s of degree ≤ m − 1. It is also possible to express this

optimality condition with respect to the original residual vector r0. Indeed,

z0 −M−1A s(M−1A)z0 =M−1
[
r0 −A s(M−1A)M−1r0

]
.

A simple algebraic manipulation shows that for any polynomial s,

s(M−1A)M−1r = M−1s(AM−1)r, (9.18)

from which we obtain the relation

z0 −M−1As(M−1A)z0 =M−1
[
r0 −AM−1s(AM−1)r0

]
. (9.19)

Consider now the situation with the right preconditioned GMRES. Here, it is

necessary to distinguish between the original x variable and the transformed variable

u related to x by x = M−1u. For the u variable, the right preconditioned GMRES

process minimizes the 2-norm of r = b−AM−1u where u belongs to

u0 +KR
m = u0 + Span {r0, AM−1r0, . . . , (AM

−1)m−1r0} (9.20)

in which r0 is the residual r0 = b−AM−1u0. This residual is identical to the resid-

ual associated with the original x variable since M−1u0 = x0. Multiplying (9.20)

through to the left by M−1 and exploiting again (9.18), observe that the generic vari-

able x associated with a vector of the subspace (9.20) belongs to the affine subspace

M−1u0 +M−1KR
m = x0 + Span {z0,M−1Az0 . . . , (M

−1A)m−1z0}.
This is identical to the affine subspace (9.17) invoked in the left preconditioned vari-

ant. In other words, for the right preconditioned GMRES, the approximate x-solution

can also be expressed as

xm = x0 + sm−1(AM
−1)r0.

However, now sm−1 is a polynomial of degree m− 1 which minimizes the norm

‖r0 −AM−1 s(AM−1)r0‖2 (9.21)

among all polynomials s of degree ≤ m − 1. What is surprising is that the two

quantities which are minimized, namely, (9.19) and (9.21), differ only by a multi-

plication by M−1. Specifically, the left preconditioned GMRES minimizes M−1r,

whereas the right preconditioned variant minimizes r, where r is taken over the same

subspace in both cases.

Proposition 9.1 The approximate solution obtained by left or right preconditioned

GMRES is of the form

xm = x0 + sm−1(M
−1A)z0 = x0 +M−1sm−1(AM

−1)r0

where z0 = M−1r0 and sm−1 is a polynomial of degree m − 1. The polynomial

sm−1 minimizes the residual norm ‖b − Axm‖2 in the right preconditioning case,

and the preconditioned residual norm ‖M−1(b−Axm)‖2 in the left preconditioning

case.
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In most practical situations, the difference in the convergence behavior of the

two approaches is not significant. The only exception is when M is ill-conditioned

which could lead to substantial differences.

9.4 Flexible Variants

In the discussion of preconditioning techniques so far, it is implicitly assumed that

the preconditioning matrix M is fixed, i.e., it does not change from step to step.

However, in some cases, no matrix M is available. Instead, the operation M−1x is

the result of some unspecified computation, possibly another iterative process. In

such cases, it may well happen that M−1 is not a constant operator. The previous

preconditioned iterative procedures will not converge if M is not constant. There

are a number of variants of iterative procedures developed in the literature that can

accommodate variations in the preconditioner, i.e., that allow the preconditioner to

vary from step to step. Such iterative procedures are called “flexible” iterations. One

of these iterations, a flexible variant of the GMRES algorithm, is described next.

9.4.1 Flexible GMRES

We begin by examining the right preconditioned GMRES algorithm. In line 11 of

Algorithm 9.5 the approximate solution xm is expressed as a linear combination

of the preconditioned vectors zi = M−1vi, i = 1, . . . ,m. These vectors are also

computed in line 3, prior to their multiplication by A to obtain the vector w. They

are all obtained by applying the same preconditioning matrix M−1 to the vi’s. As a

result it is not necessary to save them. Instead, we only need to apply M−1 to the

linear combination of the vi’s, i.e., to Vmym in line 11.

Suppose now that the preconditioner could change at every step, i.e., that zj is

given by

zj =M−1
j vj .

Then it would be natural to compute the approximate solution as

xm = x0 + Zmym

in which Zm = [z1, . . . , zm], and ym is computed as before, as the solution to the

least-squares problem in line 11. These are the only changes that lead from the right

preconditioned algorithm to the flexible variant, described below.

ALGORITHM 9.6 Flexible GMRES (FGMRES)

1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2. For j = 1, . . . ,m Do:

3. Compute zj :=M−1
j vj

4. Compute w := Azj
5. For i = 1, . . . , j, Do:

6. hi,j := (w, vi)
7. w := w − hi,jvi
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8. EndDo

9. Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10. Define Zm := [z1, . . . , zm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

11. EndDo

12. Compute ym = argminy‖βe1 − H̄my‖2, and xm = x0 + Zmym.

13. If satisfied Stop, else set x0 ← xm and GoTo 1.

As can be seen, the main difference with the right preconditioned version, Al-

gorithm 9.5, is that the preconditioned vectors zj = M−1
j vj must be saved and the

solution updated using these vectors. It is clear that whenMj =M for j = 1, . . . ,m,

then this method is equivalent mathematically to Algorithm 9.5. It is important to ob-

serve that zj can be defined in line 3 without reference to any preconditioner. That

is, any given new vector zj can be chosen. This added flexibility may cause the algo-

rithm some problems. Indeed, zj may be so poorly selected that a breakdown could

occur, as in the worst-case scenario when zj is zero.

One difference between FGMRES and the usual GMRES algorithm is that the

action of AM−1
j on a vector v of the Krylov subspace is no longer in the span of

Vm+1. Instead, it is easy to show that

AZm = Vm+1H̄m (9.22)

in replacement of the simpler relation (AM−1)Vm = Vm+1 H̄m which holds for

the standard preconditioned GMRES; see (6.7). As before, Hm denotes the m ×m
matrix obtained from H̄m by deleting its last row and v̂j+1 is the vector w which is

normalized in line 9 of Algorithm 9.6 to obtain vj+1. Then, the following alternative

formulation of (9.22) is valid, even when hm+1,m = 0:

AZm = VmHm + v̂m+1e
T
m. (9.23)

An optimality property similar to the one which defines GMRES can be proved.

Consider the residual vector for an arbitrary vector z = x0+Zmy in the affine space

x0 + span{Zm}. This optimality property is based on the relations

b−Az = b−A(x0 + Zmy)

= r0 −AZmy (9.24)

= βv1 − Vm+1H̄my

= Vm+1[βe1 − H̄my]. (9.25)

If Jm(y) denotes the function

Jm(y) = ‖b−A[x0 + Zmy]‖2,
observe that by (9.25) and the fact that Vm+1 is unitary,

Jm(y) = ‖βe1 − H̄my‖2. (9.26)

Since the algorithm minimizes this norm over all vectors u in R
m to yield ym, it is

clear that the approximate solution xm = x0+Zmym has the smallest residual norm

in x0 + Span{Zm}. Thus, the following result is proved.
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Proposition 9.2 The approximate solution xm obtained at step m of FGMRES min-

imizes the residual norm ‖b−Axm‖2 over x0 + Span{Zm}.

Next, consider the possibility of breakdown in FGMRES. A breakdown oc-

curs when the vector vj+1 cannot be computed in line 9 of Algorithm 9.6 because

hj+1,j = 0. For the standard GMRES algorithm, this is not a problem because when

this happens then the approximate solution xj is exact. The situation for FGMRES

is slightly different.

Proposition 9.3 Assume that β = ‖r0‖2 6= 0 and that j − 1 steps of FGMRES have

been successfully performed, i.e., that hi+1,i 6= 0 for i < j. In addition, assume that

the matrix Hj is nonsingular. Then xj is exact, if and only if hj+1,j = 0.

Proof. If hj+1,j = 0, then AZj = VjHj , and as a result

Jj(y) = ‖βv1 −AZjyj‖2 = ‖βv1 − VjHjyj‖2 = ‖βe1 −Hjyj‖2.

If Hj is nonsingular, then the above function is minimized for yj = H−1
j (βe1) and

the corresponding minimum norm reached is zero, i.e., xj is exact.

Conversely, if xj is exact, then from (9.23) and (9.24),

0 = b−Axj = Vj [βe1 −Hjyj] + v̂j+1e
T
j yj. (9.27)

We must show, by contraction, that v̂j+1 = 0. Assume that v̂j+1 6= 0. Since v̂j+1,

v1, v2, . . ., vm, form an orthogonal system, then it follows from (9.27) that βe1 −
Hjyj = 0 and eTj yj = 0. The last component of yj is equal to zero. A simple back-

substitution for the system Hjyj = βe1, starting from the last equation, will show

that all components of yj are zero. Because Hm is nonsingular, this would imply that

β = 0 and contradict the assumption.

The only difference between this result and that of Proposition 6.10 for the GM-

RES algorithm is that the additional assumption must be made that Hj is nonsingular

since it is no longer implied by the nonsingularity of A. However, Hm is guaranteed

to be nonsingular when all the zj’s are linearly independent and A is nonsingular.

This is a consequence of a modification of the first part of Proposition 6.9. That same

proof shows that the rank of AZm is equal to the rank of the matrix Rm therein. If

Rm is nonsingular and hm+1,m = 0, then Hm is also nonsingular.

A consequence of the above proposition is that if Azj = vj , at a certain step, i.e.,

if the preconditioning is “exact,” then the approximation xj will be exact provided

that Hj is nonsingular. This is because w = Azj would depend linearly on the

previous vi’s (it is equal to vj), and as a result the orthogonalization process would

yield v̂j+1 = 0.

A difficulty with the theory of the new algorithm is that general convergence

results, such as those seen in earlier chapters, cannot be proved. That is because the

subspace of approximants is no longer a standard Krylov subspace. However, the
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optimality property of Proposition 9.2 can be exploited in some specific situations.

For example, if within each outer iteration at least one of the vectors zj is chosen to

be a steepest descent direction vector, e.g., for the function F (x) = ‖b−Ax‖22, then

FGMRES is guaranteed to converge independently of m.

The additional cost of the flexible variant over the standard algorithm is only in

the extra memory required to save the set of vectors {zj}j=1,...,m. Yet, the added

advantage of flexibility may be worth this extra cost. A few applications can benefit

from this flexibility, especially in developing robust iterative methods or precondi-

tioners on parallel computers. Thus, any iterative technique can be used as a pre-

conditioner: block-SOR, SSOR, ADI, Multi-grid, etc. More interestingly, iterative

procedures such as GMRES, CGNR, or CGS can also be used as preconditioners.

Also, it may be useful to mix two or more preconditioners to solve a given problem.

For example, two types of preconditioners can be applied alternatively at each FGM-

RES step to mix the effects of “local” and “global” couplings in the PDE context.

9.4.2 DQGMRES

Recall that the DQGMRES algorithm presented in Chapter 6 uses an incomplete

orthogonalization process instead of the full Arnoldi orthogonalization. At each step,

the current vector is orthogonalized only against the k previous ones. The vectors

thus generated are “locally” orthogonal to each other, in that (vi, vj) = δij for |i −
j| < k. The matrix H̄m becomes banded and upper Hessenberg. Therefore, the

approximate solution can be updated at step j from the approximate solution at step

j − 1 via the recurrence

pj =
1

rjj



vj −
j−1
∑

i=j−k+1

rijpi



 , xj = xj−1 + γjpj (9.28)

in which the scalars γj and rij are obtained recursively from the Hessenberg matrix

H̄j .

An advantage of DQGMRES is that it is also flexible. The principle is the same

as in FGMRES. In both cases the vectors zj = M−1
j vj must be computed. In the

case of FGMRES, these vectors must be saved and this requires extra storage. For

DQGMRES, it can be observed that the preconditioned vectors zj only affect the

update of the vector pj in the preconditioned version of the update formula (9.28),

yielding

pj =
1

rjj



M−1
j vj −

j−1
∑

i=j−k+1

rijpi



 .

As a result, M−1
j vj can be discarded immediately after it is used to update pj . The

same memory locations can store this vector and the vector pj . This contrasts with

FGMRES which requires additional vectors of storage.
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9.5 Preconditioned CG for the Normal Equations

There are several versions of the preconditioned Conjugate Gradient method applied

to the normal equations. Two versions come from the NR/NE options, and three other

variations from the right, left, or split preconditioning options. Here, we consider

only the left preconditioned variants.

The left preconditioned CGNR algorithm is easily derived from Algorithm 9.1.

Denote by rj the residual for the original system, i.e., rj = b − Axj , and by r̃j =
AT rj the residual for the normal equations system. The preconditioned residual zj
is zj =M−1r̃j . The scalar αj in Algorithm 9.1 is now given by

αj =
(r̃j , zj)

(ATApj, pj)
=

(r̃j , zj)

(Apj , Apj)
.

This suggests employing the auxiliary vector wj = Apj in the algorithm which takes

the following form.

ALGORITHM 9.7 Left-Preconditioned CGNR

1. Compute r0 = b−Ax0, r̃0 = AT r0, z0 =M−1r̃0, p0 = z0.

2. For j = 0, . . ., until convergence Do:

3. wj = Apj
4. αj = (zj , r̃j)/‖wj‖22
5. xj+1 = xj + αjpj
6. rj+1 = rj − αjwj

7. r̃j+1 = AT rj+1

8. zj+1 =M−1r̃j+1

9. βj = (zj+1, r̃j+1)/(zj , r̃j)
10. pj+1 = zj+1 + βjpj
11. EndDo

Similarly, the linear system AATu = b, with x = ATu, can also be precondi-

tioned from the left, and solved with the preconditioned Conjugate Gradient algo-

rithm. Here, it is observed that the update of the u variable, the associated x variable,

and two residuals take the form

αj =
(rj , zj)

(AAT pj, pj)
=

(rj , zj)

(AT pj, AT pj)

uj+1 = uj + αjpj ↔ xj+1 = xj + αjA
T pj

rj+1 = rj − αjAA
T pj

zj+1 =M−1rj+1

Thus, if the algorithm for the unknown x is to be written, then the vectors AT pj can

be used instead of the vectors pj , which are not needed. To update these vectors at

the end of the algorithm the relation pj+1 = zj+1 + βj+1pj in line 8 of Algorithm

9.1 must be multiplied through by AT . This leads to the left preconditioned version

of CGNE, in which the notation has been changed to denote by pj the vector AT pj
invoked in the above derivation.
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ALGORITHM 9.8 Left-Preconditioned CGNE

1. Compute r0 = b−Ax0, z0 =M−1r0, p0 = AT z0.

2. For j = 0, 1, . . . , until convergence Do:

3. wj = Apj
4. αj = (zj , rj)/(pj , pj)
5. xj+1 = xj + αjpj
6. rj+1 = rj − αjwj

7. zj+1 =M−1rj+1

8. βj = (zj+1, rj+1)/(zj , rj)
9. pj+1 = AT zj+1 + βjpj

10. EndDo

Not shown here are the right and split preconditioned versions which are considered

in Exercise 4.

9.6 The Concus, Golub, and Widlund Algorithm

When the matrix is nearly symmetric, we can think of preconditioning the system

with the symmetric part of A. This gives rise to a few variants of a method known as

the CGW method, from the names of the three authors Concus and Golub [88], and

Widlund [313] who proposed this technique in the middle of the 1970s. Originally,

the algorithm was not viewed from the angle of preconditioning. Writing A =M −
N , with M = 1

2(A+AH), the authors observed that the preconditioned matrix

M−1A = I −M−1N

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect

to the M -inner product. It is not too difficult to show that the tridiagonal matrix

corresponding to the Lanczos algorithm, applied to A with the M -inner product, has

the form

Tm =









1 −η2
η2 1 −η3

. . .
ηm−1 1 −ηm

ηm 1









. (9.29)

As a result, a three-term recurrence in the Arnoldi process is obtained, which results

in a solution algorithm that resembles the standard preconditioned CG algorithm

(Algorithm 9.1).

A version of the algorithm can be derived easily. The developments in Section

6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, show that

the vector xj+1 can be expressed as

xj+1 = xj + αjpj .

The preconditioned residual vectors must then satisfy the recurrence

zj+1 = zj − αjM
−1Apj
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and if the zj’s are to beM -orthogonal, then we must have (zj−αjM
−1Apj, zj)M =

0. As a result,

αj =
(zj , zj)M

(M−1Apj , zj)M
=

(rj , zj)

(Apj, zj)
.

Also, the next search direction pj+1 is a linear combination of zj+1 and pj ,

pj+1 = zj+1 + βjpj.

Since M−1Apj is orthogonal to all vectors in Kj−1, a first consequence is that

(Apj , zj) = (M−1Apj, pj − βj−1pj−1)M = (M−1Apj, pj)M = (Apj, pj).

In addition, M−1Apj+1 must be M -orthogonal to pj , so that

βj = −(M−1Azj+1, pj)M/(M
−1Apj , pj)M .

The relation M−1A = I−M−1N , the fact that NH = −N , and that (zj+1, pj)M =
0 yield,

(M−1Azj+1, pj)M = −(M−1Nzj+1, pj)M = (zj+1,M
−1Npj)M

= −(zj+1,M
−1Apj)M .

Finally, note that M−1Apj = − 1
αj
(zj+1 − zj) and therefore we have (note the sign

difference with the standard PCG algorithm)

βj = −
(zj+1, zj+1)M
(zj , zj)M

= −(zj+1, rj+1)

(zj , rj)
.

PROBLEMS

P-9.1 Show that the preconditioned matrix has the same eigenvalues for all three precondi-

tioning options (left, right, and split) described in Section 9.1

P-9.2 Let a matrix A and its preconditioner M be SPD. Observing that M−1A is self-

adjoint with respect to the A inner-product, write an algorithm similar to Algorithm 9.1 for

solving the preconditioned linear system M−1Ax =M−1b, using the A-inner product. The

algorithm should employ only one matrix-by-vector product per CG step.

P-9.3 In Section 9.2.1, the split-preconditioned Conjugate Gradient algorithm, Algorithm

9.2, was derived from the Preconditioned Conjugate Gradient Algorithm 9.1. The opposite

can also be done. Derive Algorithm 9.1 starting from Algorithm 9.2, providing a different

proof of the equivalence of the two algorithms.

P-9.4 Six versions of the CG algorithm applied to the normal equations can be defined. Two

versions come from the NR/NE options, each of which can be preconditioned from left, right,

or on two sides. The left preconditioned variants have been given in Section 9.5. Describe the

four other versions: Right P-CGNR, Right P-CGNE, Split P-CGNR, Split P-CGNE. Suitable

inner products may be used to preserve symmetry.
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P-9.5 When preconditioning the normal equations, whether the NE or NR form, two options

are available in addition to the left, right and split preconditioners. These are “centered”

versions:

AM−1ATu = b, x =M−1ATu

for the NE form, and

ATM−1Ax = ATM−1b

for the NR form. The coefficient matrices in the above systems are all symmetric. Write

down the adapted versions of the CG algorithm for these options.

P-9.6 Let a matrix A and its preconditioner M be SPD. The standard result about the rate

of convergence of the CG algorithm is not valid for the Preconditioned Conjugate Gradient

algorithm, Algorithm 9.1. Show how to adapt this result by exploiting the M -inner product.

Show how to derive the same result by using the equivalence between Algorithm 9.1 and

Algorithm 9.2.

P-9.7 In Eisenstat’s implementation of the PCG algorithm, the operation with the diagonal

D causes some difficulties when describing the algorithm. This can be avoided.

a. Assume that the diagonal D of the preconditioning (9.6) is equal to the identity ma-

trix. How many operations are needed to perform one step of the PCG algorithm with

Eisenstat’s implementation? Formulate the PCG scheme for this case carefully.

b. The rows and columns of the preconditioning matrixM can be scaled so that the matrix

D of the transformed preconditioner, written in the form (9.6), is equal to the identity

matrix. What scaling should be used (the resulting M should also be SPD)?

c. Assume that the same scaling of question b is also applied to the original matrix A.

Is the resulting iteration mathematically equivalent to using Algorithm 9.1 to solve the

system (9.7) preconditioned with the diagonalD?

P-9.8 In order to save operations, the two matricesD−1E andD−1ET must be stored when

computing Âv by Algorithm 9.3. This exercise considers alternatives.

a. Consider the matrix B ≡ DÂD. Show how to implement an algorithm similar to 9.3

for multiplying a vector v by B. The requirement is that only ED−1 must be stored.

b. The matrixB in the previous question is not the proper preconditioned version ofA by

the preconditioning (9.6). CG is used on an equivalent system involvingB but a further

preconditioning by a diagonal must be applied. Which one? How does the resulting

algorithm compare in terms of cost and storage with an Algorithm based on 9.3?

c. It was mentioned in Section 9.2.2 that Â needed to be further preconditioned by D−1.

Consider the split-preconditioning option: CG is to be applied to the preconditioned

system associated with C = D1/2ÂD1/2. Defining Ê = D−1/2ED−1/2 show that,

C = (I − Ê)−1D2(I − Ê)−T + (I − Ê)−1 + (I − Ê)−T

where D2 is a certain matrix to be determined. Then write an analogue of Algo-

rithm 9.3 using this formulation. How does the operation count compare with that

of Algorithm 9.3?

P-9.9 Assume that the number of nonzero elements of a matrix A is parameterized by

Nz(Z) = αn. How small should α be before it does not pay to use Eisenstat’s imple-

mentation for the PCG algorithm? What if the matrix A is initially scaled so that D is the

identity matrix?
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P-9.10 Let M = LU be a preconditioner for a matrix A. Show that the left, right, and

split preconditioned matrices all have the same eigenvalues. Does this mean that the corre-

sponding preconditioned iterations will converge in (a) exactly the same number of steps?

(b) roughly the same number of steps for any matrix? (c) roughly the same number of steps,

except for ill-conditioned matrices?

P-9.11 Show that the relation (9.18) holds for any polynomial s and any vector r.

P-9.12 Write the equivalent of Algorithm 9.1 for the Conjugate Residual method.

P-9.13 Assume that a Symmetric Positive Definite matrix M is used to precondition GM-

RES for solving a nonsymmetric linear system. The main features of the P-GMRES algo-

rithm exploiting this were given in Section 9.2.1. Give a formal description of the algorithm.

In particular give a Modified Gram-Schimdt implementation. [Hint: The vectorsMvi’s must

be saved in addition to the vi’s.] What optimality property does the approximate solution sat-

isfy? What happens if the original matrixA is also symmetric? What is a potential advantage

of the resulting algorithm?

NOTES AND REFERENCES. The preconditioned version of CG described in Algorithm 9.1 is due to

Meijerink and van der Vorst [208]. Eisenstat’s implementation was developed in [114] and is often

referred to as Eisenstat’s trick. A number of other similar ideas are described in [217].

Several flexible variants of nonsymmetric Krylov subspace methods have been developed by sev-

eral authors simultaneously; see, e.g., [22], [247], and [291]. There does not seem to exist a similar

technique for left preconditioned variants of the Krylov subspace methods. This is because the right-

hand side M−1
j b of the preconditioned system now changes at each step. A rigorous flexible variant

of the BCG methods cannot be developed because the short recurrences of these algorithms rely on the

preconditioned operator being constant. However, it is possible to develop an analogue of DQGMRES

for QMR (or other quasi-minimization methods) using identical arguments, see e.g., [282], though,

as is expected, the global biorthogonality of the Lanczos basis vectors is sacrificed. Similarly, flex-

ible variants of the CG method have been developed by sacrificing global optimality properties but

by tightening the flexibilty of the preconditioner, in an attempt to preserve good, possibly superlinear,

convergence; see [214] and [153].

The CGW algorithm can be useful in some instances, such as when the symmetric part of A can

be inverted easily, e.g., using fast Poisson solvers. Otherwise, its weakness is that linear systems with

the symmetric part must be solved exactly. Inner-outer variations that do not require exact solutions

have been described by Golub and Overton [150].
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Chapter 10

PRECONDITIONING TECHNIQUES

Finding a good preconditioner to solve a given sparse linear system is often viewed as a com-

bination of art and science. Theoretical results are rare and some methods work surprisingly

well, often despite expectations. A preconditioner can be defined as any subsidiary approximate

solver which is combined with an outer iteration technique, typically one of the Krylov subspace

iterations seen in previous chapters. This chapter covers some of the most successful techniques

used to precondition a general sparse linear system. Note at the outset that there are virtually

no limits to available options for obtaining good preconditioners. For example, preconditioners

can be derived from knowledge of the original physical problems from which the linear system

arises. However, a common feature of the preconditioners discussed in this chapter is that they

are built from the original coefficient matrix.

10.1 Introduction

Roughly speaking, a preconditioner is any form of implicit or explicit modification of

an original linear system which makes it “easier” to solve by a given iterative method.

For example, scaling all rows of a linear system to make the diagonal elements equal

to one is an explicit form of preconditioning. The resulting system can be solved by

a Krylov subspace method and may require fewer steps to converge than with the

original system (although this is not guaranteed). As another example, solving the

linear system

M−1Ax =M−1b

where M−1 is some complicated mapping that may involve FFT transforms, inte-

gral calculations, and subsidiary linear system solutions, may be another form of

preconditioning. Here, it is unlikely that the matrix M and M−1A can be computed

explicitly. Instead, the iterative processes operate with A and with M−1 whenever

needed. In practice, the preconditioning operation M−1 should be inexpensive to

apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform an incomplete

factorization of the original matrix A. This entails a decomposition of the form

A = LU − R where L and U have the same nonzero structure as the lower and

upper parts of A respectively, and R is the residual or error of the factorization. This

incomplete factorization known as ILU(0) is rather easy and inexpensive to compute.

On the other hand, it often leads to a crude approximation which may result in the

297
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Krylov subspace accelerator requiring

many iterations to converge. To remedy this, several alternative incomplete fac-

torizations have been developed by allowing more fill-in in L and U . In general, the

more accurate ILU factorizations require fewer iterations to converge, but the pre-

processing cost to compute the factors is higher. However, if only because of the

improved robustness, these trade-offs generally favor the more accurate factoriza-

tions. This is especially true when several systems with the same matrix must be

solved because the preprocessing cost can be amortized.

This chapter considers the most common preconditioners used for solving large

sparse matrices and compares their performance. It begins with the simplest precon-

ditioners (SOR and SSOR) and then discusses the more accurate variants such as

ILUT.

10.2 Jacobi, SOR, and SSOR Preconditioners

As was seen in Chapter 4, a fixed-point iteration for solving a linear system

Ax = b

takes the general form

xk+1 =M−1Nxk +M−1b (10.1)

where M and N realize the splitting of A into

A =M −N. (10.2)

The above iteration is of the form

xk+1 = Gxk + f (10.3)

where f =M−1b and

G = M−1N =M−1(M −A)
= I −M−1A. (10.4)

Thus, for Jacobi and Gauss Seidel it has been shown that

GJA(A) = I −D−1A (10.5)

GGS(A) = I − (D − E)−1A, (10.6)

where A = D − E − F is the splitting defined in Chapter 4.

The iteration (10.3) is attempting to solve

(I −G)x = f (10.7)

which, because of the expression (10.4) for G, can be rewritten as

M−1Ax =M−1b. (10.8)



10.2. JACOBI, SOR, AND SSOR PRECONDITIONERS 299

The above system is the preconditioned system associated with the splitting A =
M −N , and the iteration (10.3) is nothing but a fixed-point iteration on this precon-

ditioned system.

Similarly, a Krylov subspace method, e.g., GMRES, can be used to solve (10.8),

leading to a preconditioned version of the Krylov subspace method, e.g., precon-

ditioned GMRES. The preconditioned versions of some Krylov subspace methods

have been discussed in the previous chapter with a generic preconditioner M . In

theory, any general splitting in which M is nonsingular can be used. Ideally, M
should be close to A in some sense. However, note that a linear system with the ma-

trix M must be solved at each step of the iterative procedure. Therefore, a practical

and admittedly somewhat vague requirement is that these solutions steps should be

inexpensive.

As was seen in Chapter 4, the SSOR preconditioner is defined by

MSSOR = (D − ωE)D−1(D − ωF ).

Typically, when this matrix is used as a preconditioner, it is not necessary to choose

ω as carefully as for the underlying fixed-point iteration. Taking ω = 1 leads to the

Symmetric Gauss-Seidel (SGS) iteration,

MSGS = (D − E)D−1(D − F ). (10.9)

An interesting observation is thatD−E is the lower part ofA, including the diagonal,

and D − F is, similarly, the upper part of A. Thus,

MSGS = LU,

with

L ≡ (D − E)D−1 = I − ED−1, U = D − F.
The matrix L is unit lower triangular and U is upper triangular. One question that

may arise concerns the implementation of the preconditioning operation. To compute

w =M−1
SGSx, proceed as follows:

solve (I − ED−1)z = x,

solve (D − F )w = z.

A FORTRAN implementation of this preconditioning operation is illustrated in the

following code, for matrices stored in the MSR format described in Chapter 3.

FORTRAN CODE

subroutine lusol (n,rhs,sol,luval,lucol,luptr,uptr)
real*8 sol(n), rhs(n), luval(*)
integer n, luptr(*), uptr(n)

c-----------------------------------------------------------
c Performs a forward and a backward solve for an ILU or
c SSOR factorization, i.e., solves (LU) sol = rhs where LU
c is the ILU or the SSOR factorization. For SSOR, L and U
c should contain the matrices L = I - omega E inv(D), and U
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c = D - omega F, respectively with -E = strict lower
c triangular part of A, -F = strict upper triangular part
c of A, and D = diagonal of A.
c-----------------------------------------------------------
c PARAMETERS:
c n = Dimension of problem
c rhs = Right hand side; rhs is unchanged on return
c sol = Solution of (LU) sol = rhs.
c luval = Values of the LU matrix. L and U are stored
c together in CSR format. The diagonal elements of
c U are inverted. In each row, the L values are
c followed by the diagonal element (inverted) and
c then the other U values.
c lucol = Column indices of corresponding elements in luval
c luptr = Contains pointers to the beginning of each row in
c the LU matrix.
c uptr = pointer to the diagonal elements in luval, lucol
c------------------------------------------------------------

integer i,k
c
c FORWARD SOLVE. Solve L . sol = rhs
c

do i = 1, n
c
c compute sol(i) := rhs(i) - sum L(i,j) x sol(j)
c

sol(i) = rhs(i)
do k=luptr(i),uptr(i)-1

sol(i) = sol(i) - luval(k)* sol(lucol(k))
enddo

enddo
c
c BACKWARD SOLVE. Compute sol := inv(U) sol
c

do i = n, 1, -1
c
c compute sol(i) := sol(i) - sum U(i,j) x sol(j)
c

do k=uptr(i)+1, luptr(i+1)-1
sol(i) = sol(i) - luval(k)*sol(lucol(k))

enddo
c
c compute sol(i) := sol(i)/ U(i,i)
c

sol(i) = luval(uptr(i))*sol(i)
enddo
return
end

As was seen above, the SSOR or SGS preconditioning matrix is of the form

M = LU where L and U have the same pattern as the L-part and the U -part of A,

respectively. Here, L-part means lower triangular part and, similarly, the U -part is

the upper triangular part. If the error matrix A− LU is computed, then for SGS, for

example, we would find

A− LU = D −E − F − (I − ED−1)(D − F ) = −ED−1F.

If L is restricted to have the same structure as the L-part of A and U is to have the

same structure as the U -part of A, the question is whether or not it is possible to find
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L and U that yield an error that is smaller in some sense than the one above. We can,

for example, try to find such an incomplete factorization in which the residual matrix

A− LU has zero elements in locations where A has nonzero entries.

This turns out to be possible in general and yields the ILU(0) factorization to be

discussed later. Generally, a pattern for L and U can be specified and L and U may

be sought so that they satisfy certain conditions. This leads to the general class of

incomplete factorization techniques which are discussed in the next section.

Example 10.1. Table 10.1 shows the results of applying the GMRES algorithm

with SGS (SSOR with ω = 1) preconditioning to the five test problems described

in Section 3.7. See Example 6.1 for the meaning of the column headers in the table.

Matrix Iters Kflops Residual Error

F2DA 38 1986 0.76E-03 0.82E-04

F3D 20 4870 0.14E-02 0.30E-03

ORS 110 6755 0.31E+00 0.68E-04

F2DB 300 15907 0.23E+02 0.66E+00

FID 300 99070 0.26E+02 0.51E-01

Table 10.1: A test run of GMRES with SGS preconditioning.

Notice here that the method did not converge in 300 steps for the last two problems.

The number of iterations for the first three problems is reduced substantially from

those required by GMRES without preconditioning shown in Table 6.2. The total

number of operations required is also reduced, but not proportionally because each

step now costs more due to the preconditioning operation.

10.3 ILU Factorization Preconditioners

Consider a general sparse matrix A whose elements are aij , i, j = 1, . . . , n. A

general Incomplete LU (ILU) factorization process computes a sparse lower trian-

gular matrix L and a sparse upper triangular matrix U so that the residual matrix

R = LU − A satisfies certain constraints, such as having zero entries in some lo-

cations. We first describe a general ILU preconditioner geared toward M -matrices.

Then we discuss the ILU(0) factorization, the simplest form of the ILU precondition-

ers. Finally, we will show how to obtain more accurate factorizations.

10.3.1 Incomplete LU Factorizations

A general algorithm for building Incomplete LU factorizations can be derived by per-

forming Gaussian elimination and dropping some elements in predetermined nondi-
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agonal positions. To analyze this process and establish existence for M -matrices, the

following result of Ky Fan [122] is needed.

Theorem 10.1 Let A be an M -matrix and let A1 be the matrix obtained from the

first step of Gaussian elimination. Then A1 is an M -matrix.

Proof. Theorem 1.32 will be used to establish that properties 1, 2, and 3 therein are

satisfied. First, consider the off-diagonal elements of A1:

a1ij = aij −
ai1a1j
a11

.

Since aij, ai1, a1j are nonpositive and a11 is positive, it follows that a1ij ≤ 0 for

i 6= j.
Second, the fact that A1 is nonsingular is a trivial consequence of the following

standard relation of Gaussian elimination

A = L1A1 where L1 =

[
A∗,1
a11

, e2, e3, . . . en

]

. (10.10)

Finally, we establish that A−1
1 is nonnegative by examining A−1

1 ej for j =
1, . . . , n. For j = 1, it is clear that A−1

1 e1 = 1
a11
e1 because of the structure of

A1. For the case j 6= 1, (10.10) can be exploited to yield

A−1
1 ej = A−1L−1

1 ej = A−1ej ≥ 0.

Therefore, all the columns of A−1
1 are nonnegative by assumption and this completes

the proof.

Clearly, the (n− 1)× (n− 1) matrix obtained from A1 by removing its first row and

first column is also an M -matrix.

Assume now that some elements are dropped from the result of Gaussian Elim-

ination outside of the main diagonal. Any element that is dropped is a nonpositive

entry which is transformed into a zero. Therefore, the resulting matrix Ã1 is such

that

Ã1 = A1 +R,

where the elements of R are such that rii = 0, rij ≥ 0. Thus,

A1 ≤ Ã1

and the off-diagonal elements of Ã1 are nonpositive. Since A1 is an M -matrix,

theorem 1.33 shows that Ã1 is also an M -matrix. The process can now be repeated

on the matrix Ã(2 : n, 2 : n), and then continued until the incomplete factorization

of A is obtained. The above arguments shows that at each step of this construction,

we obtain an M -matrix and that the process does not break down.

The elements to drop at each step have not yet been specified. This can be done

statically, by choosing some non-zero pattern in advance. The only restriction on the
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zero pattern is that it should exclude diagonal elements because this assumption was

used in the above proof. Therefore, for any zero pattern set P , such that

P ⊂ {(i, j) | i 6= j; 1 ≤ i, j ≤ n}, (10.11)

an Incomplete LU factorization, ILUP , can be computed as follows.

ALGORITHM 10.1 General Static Pattern ILU

0. For each (i, j) ∈ P set aij = 0
1. For k = 1, . . . , n− 1 Do:

2. For i = k + 1, n and if (i, k) /∈ P Do:

3. aik := aik/akk
4. For j = k + 1, . . . , n and for (i, j) /∈ P Do:

5. aij := aij − aik ∗ akj
6. EndDo

7. EndDo

8. EndDo

The initial step (step 0) is necessary for the case, rare in practice, when the zero

pattern of A does not include the zero pattern defined by P . The For loop in line 4

should be interpreted as follows: For j = k + 1, . . . , n and only for those indices j
that are not in P execute the next line. In practice, it is wasteful to scan j from k+1
to n because there is an inexpensive mechanism for identifying those indices j that

are in the complement of P . Using the above arguments, the following result can be

proved.

Theorem 10.2 Let A be an M -matrix and P a given zero pattern defined as in

(10.11). Then Algorithm 10.1 does not break down and produces an incomplete

factorization,

A = LU −R
which is a regular splitting of A.

Proof. At each step of the process, we have

Ãk = Ak +Rk, Ak = LkÃk−1

where, using Ok to denote a zero vector of dimension k, and Am:n,j to denote the

vector of components ai,j, i = m, . . . , n,

Lk = I − 1

a
(k)
kk

(
Ok

A(k + 1 : n, k)

)

eTk .

From this follow the relations

Ãk = Ak +Rk = LkÃk−1 +Rk.
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Applying this relation recursively, starting from k = n − 1 up to k = 1, it is found

that

Ãn−1 = Ln−1 . . . L1A+ Ln−1 . . . L2R1 + . . . + Ln−1Rn−2 +Rn−1. (10.12)

Now define

L = (Ln−1 . . . L1)
−1, U = Ãn−1.

Then, U = L−1A+ S with

S = Ln−1 . . . L2R1 + . . .+ Ln−1Rn−2 +Rn−1.

Observe that at stage k, elements are dropped only in the (n − k) × (n − k) lower

part of Ak. Hence, the first k rows and columns of Rk are zero and as a result

Ln−1 . . . Lk+1Rk = Ln−1 . . . L1Rk

so that S can be rewritten as

S = Ln−1 . . . L2(R1 +R2 + . . .+Rn−1).

If R denotes the matrix

R = R1 +R2 + . . .+Rn−1,

then we obtain the factorization A = LU − R, where (LU)−1 = U−1L−1 is a

nonnegative matrix, R is nonnegative. This completes the proof.

Not accessed 

Accessed but not

Accessed and 
modified 

modified 

Figure 10.1: IKJvariant of the LU factorization.

Now consider a few practical aspects. An ILU factorization based on Algo-

rithm 10.1 is difficult to implement because at each step k, all rows k + 1 to n are

being modified. However, ILU factorizations depend on the implementation of Gaus-

sian elimination which is used. Several variants of Gaussian elimination are known
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which depend on the order of the three loops associated with the control variables i,
j, and k in the algorithm. Thus, Algorithm 10.1 is derived from what is known as the

k, i, j variant. In the context of Incomplete LU factorization, the variant that is most

commonly used for a row-contiguous data structure is the i, k, j variant, described

next for dense matrices.

ALGORITHM 10.2 Gaussian Elimination – IKJ Variant

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 Do:

3. aik := aik/akk
4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj
6. EndDo

7. EndDo

8. EndDo

The above algorithm is in place in the sense that the i-th row of A can be over-

written by the i-th rows of the L and U matrices of the factorization (since L is unit

lower triangular, its diagonal entries need not be stored). Step i of the algorithm gen-

erates the i-th row of L and the i-th row of U at the same time. The previous rows

1, 2, . . . , i − 1 of L and U are accessed at step i but they are not modified. This is

illustrated in Figure 10.1.

Adapting this version for sparse matrices is easy because the rows of L and U
are generated in succession. These rows can be computed one at a time and accu-

mulated in a row-oriented data structure such as the CSR format. This constitutes an

important advantage. Based on this, the general ILU factorization takes the following

form.

ALGORITHM 10.3 General ILU Factorization, IKJVersion

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 and if (i, k) /∈ P Do:

3. aik := aik/akk
4. For j = k + 1, . . . , n and for (i, j) /∈ P , Do:

5. aij := aij − aikakj .
6. EndDo

7. EndDo

8. EndDo

It is not difficult to see that this more practical IKJvariant of ILU is equivalent to the

KIJversion which can be defined from Algorithm 10.1.

Proposition 10.3 Let P be a zero pattern satisfying the condition (10.11). Then the

ILU factors produced by the KIJ-based Algorithm 10.1 and the IKJ-based Algo-

rithm 10.3 are identical if they can both be computed.
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Proof. Algorithm 10.3 is obtained from Algorithm 10.1 by switching the order of the

loops k and i. To see that this gives indeed the same result, reformulate the first two

loops of Algorithm 10.1 as

For k = 1, n Do:

For i = 1, n Do:

if k < i and for (i, k) /∈ P Do:

ope(row(i),row(k))

. . . . . .

in which ope(row(i),row(k)) is the operation represented by lines 3 through 6 of both

Algorithm 10.1 and Algorithm 10.3. In this form, it is clear that the k and i loops

can be safely permuted. Then the resulting algorithm can be reformulated to yield

exactly Algorithm 10.3.

Note that this is only true for a static pattern ILU. If the pattern is dynamically de-

termined as the Gaussian elimination algorithm proceeds, then the patterns obtained

with different versions of GE may be different.

It is helpful to interpret the result of one incomplete elimination step. Denoting

by li∗, ui∗, and ai∗ the i-th rows of L, U , and A, respectively, then the k-loop starting

at line 2 of Algorithm 10.3 can be interpreted as follows. Initially, we have ui∗ = ai∗.

Then, each elimination step is an operation of the form

ui∗ := ui∗ − likuk∗.
However, this operation is performed only on the nonzero pattern, i.e., the comple-

ment of P . This means that, in reality, the elimination step takes the form

ui∗ := ui∗ − likuk∗ + r
(k)
i∗ ,

in which r
(k)
ij is zero when (i, j) /∈ P and equals likukj when (i, j) ∈ P . Thus,

the row r
(k)
i∗ cancels out the terms likukj that would otherwise be introduced in the

zero pattern. In the end the following relation is obtained:

ui∗ = ai∗ −
i−1∑

k=1

(

likuk∗ − r(k)i∗

)

.

Note that lik = 0 for (i, k) ∈ P . We now sum up all the r
(k)
i∗ ’s and define

ri∗ =
i−1∑

k=1

r
(k)
i∗ . (10.13)

The row ri∗ contains the elements that fall inside the P pattern at the completion of

the k-loop. Using the fact that lii = 1, we obtain the relation,

ai∗ =
i∑

k=1

likuk∗ − ri∗. (10.14)

Therefore, the following simple property can be stated.
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Proposition 10.4 Algorithm 10.3 produces factors L and U such that

A = LU −R

in which −R is the matrix of the elements that are dropped during the incomplete

elimination process. When (i, j) ∈ P , an entry rij of R is equal to the value of

−aij obtained at the completion of the k loop in Algorithm 10.3. Otherwise, rij is

zero.

10.3.2 Zero Fill-in ILU (ILU(0))

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), takes

the zero pattern P to be precisely the zero pattern of A. In the following, we denote

by bi,∗ the i-th row of a given matrix B, and by NZ(B), the set of pairs (i, j), 1 ≤
i, j ≤ n such that bi,j 6= 0. The ILU(0) factorization is best illustrated by the case for

which it was discovered originally, namely, for 5-point and 7-point matrices related

to finite difference discretization of elliptic PDEs. Consider one such matrix A as

illustrated in the bottom left corner of Figure 10.2.

The A matrix represented in this figure is a 5-point matrix of size n = 32 corre-

sponding to an nx × ny = 8× 4 mesh. Consider now any lower triangular matrix L
which has the same structure as the lower part of A, and any matrix U which has the

same structure as that of the upper part of A. Two such matrices are shown at the top

of Figure 10.2. If the product LU were performed, the resulting matrix would have

the pattern shown in the bottom right part of the figure. It is impossible in general

to match A with this product for any L and U . This is due to the extra diagonals in

the product, namely, the diagonals with offsets nx − 1 and −nx + 1. The entries in

these extra diagonals are called fill-in elements. However, if these fill-in elements are

ignored, then it is possible to find L and U so that their product is equal to A in the

other diagonals.

The ILU(0) factorization has just been defined in general terms: Any pair of

matrices L (unit lower triangular) and U (upper triangular) so that the elements of

A − LU are zero in the locations of NZ(A). These constraints do not define the

ILU(0) factors uniquely since there are, in general, infinitely many pairs of matrices

L and U which satisfy these requirements. However, the standard ILU(0) is defined

constructively using Algorithm 10.3 with the pattern P equal to the zero pattern of

A.

ALGORITHM 10.4 ILU(0)

1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i− 1 and for (i, k) ∈ NZ(A) Do:

3. Compute aik = aik/akk
4. For j = k + 1, . . . , n and for (i, j) ∈ NZ(A), Do:

5. Compute aij := aij − aikakj .
6. EndDo

7. EndDo
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A

L U

LU

Figure 10.2: The ILU(0) factorization for a five-point matrix.

8. EndDo

In some cases, it is possible to write the ILU(0) factorization in the form

M = (D − E)D−1(D − F ), (10.15)

where −E and −F are the strict lower and strict upper triangular parts of A, and D
is a certain diagonal matrix, different from the diagonal of A, in general. In these

cases it is sufficient to find a recursive formula for determining the elements in D.

A clear advantage is that only an extra diagonal of storage is required. This form of

the ILU(0) factorization is equivalent to the incomplete factorizations obtained from

Algorithm 10.4 when the product of the strict-lower part and the strict-upper part of

A consists only of diagonal elements and fill-in elements. This is true, for example,

for standard 5-point difference approximations to second order partial differential

operators; see Exercise 4. In these instances, both the SSOR preconditioner with

ω = 1 and the ILU(0) preconditioner can be cast in the form (10.15), but they differ

in the way the diagonal matrix D is defined. For SSOR(ω = 1), D is the diagonal of

the matrix A itself. For ILU(0), it is defined by a recursion so that the diagonal of the

product of matrices (10.15) equals the diagonal of A. By definition, together the L
and U matrices in ILU(0) have the same number of nonzero elements as the original

matrix A.
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Example 10.2. Table 10.2 shows the results of applying the GMRES algorithm

with ILU(0) preconditioning to the five test problems described in Section 3.7. See

Example 6.1 for the meaning of the column headers in the table.

Matrix Iters Kflops Residual Error

F2DA 28 1456 0.12E-02 0.12E-03

F3D 17 4004 0.52E-03 0.30E-03

ORS 20 1228 0.18E+00 0.67E-04

F2DB 300 15907 0.23E+02 0.67E+00

FID 206 67970 0.19E+00 0.11E-03

Table 10.2: A test run of GMRES with ILU(0) preconditioning.

Observe that for the first two problems, the gains relative to the performance of

the SSOR preconditioner in Table 10.1 are rather small. For the other three problems,

which are a little harder, the gains are more substantial. For the last problem, the

algorithm achieves convergence in 205 steps whereas SSOR did not convergence in

the 300 steps allowed. The fourth problem (F2DB) is still not solvable by ILU(0)

within the maximum number of steps allowed.

For the purpose of illustration, below is a sample FORTRAN code for computing

the incomplete L and U factors for general sparse matrices stored in the usual CSR

format. The real values of the resulting L,U factors are stored in the array luval,

except that entries of ones of the main diagonal of the unit lower triangular matrix

L are not stored. Thus, one matrix is needed to store these factors together. This

matrix is denoted by L/U . Note that since the pattern of L/U is identical with that

of A, the other integer arrays of the CSR representation for the LU factors are not

needed. Thus, ja(k), which is the column position of the element a(k) in the input

matrix, is also the column position of the element luval(k) in the L/U matrix. The

code below assumes that the nonzero elements in the input matrix A are sorted by

increasing column numbers in each row.

FORTRAN CODE

subroutine ilu0 (n, a, ja, ia, luval, uptr, iw, icode)
integer n, ja(*), ia(n+1), uptr(n), iw(n)
real*8 a(*), luval(*)

c-----------------------------------------------------------
c Set-up routine for ILU(0) preconditioner. This routine
c computes the L and U factors of the ILU(0) factorization
c of a general sparse matrix A stored in CSR format. Since
c L is unit triangular, the L and U factors can be stored
c as a single matrix which occupies the same storage as A.
c The ja and ia arrays are not needed for the LU matrix
c since the pattern of the LU matrix is identical with
c that of A.
c-----------------------------------------------------------
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c INPUT:
c ------
c n = dimension of matrix
c a, ja, ia = sparse matrix in general sparse storage format
c iw = integer work array of length n
c OUTPUT:
c -------
c luval = L/U matrices stored together. On return luval,
c ja, ia is the combined CSR data structure for
c the LU factors
c uptr = pointer to the diagonal elements in the CSR
c data structure luval, ja, ia
c icode = integer indicating error code on return
c icode = 0: normal return
c icode = k: encountered a zero pivot at step k
c
c-----------------------------------------------------------
c initialize work array iw to zero and luval array to a

do 30 i = 1, ia(n+1)-1
luval(i) = a(i)

30 continue
do 31 i=1, n

iw(i) = 0
31 continue

c----------------------- Main loop
do 500 k = 1, n

j1 = ia(k)
j2 = ia(k+1)-1
do 100 j=j1, j2

iw(ja(j)) = j
100 continue

j=j1
150 jrow = ja(j)

c----------------------- Exit if diagonal element is reached
if (jrow .ge. k) goto 200

c----------------------- Compute the multiplier for jrow.
tl = luval(j)*luval(uptr(jrow))
luval(j) = tl

c----------------------- Perform linear combination
do 140 jj = uptr(jrow)+1, ia(jrow+1)-1

jw = iw(ja(jj))
if (jw .ne. 0) luval(jw)=luval(jw)-tl*luval(jj)

140 continue
j=j+1
if (j .le. j2) goto 150

c----------------------- Store pointer to diagonal element
200 uptr(k) = j

if (jrow .ne. k .or. luval(j) .eq. 0.0d0) goto 600
luval(j) = 1.0d0/luval(j)

c----------------------- Refresh all entries of iw to zero.
do 201 i = j1, j2

iw(ja(i)) = 0
201 continue
500 continue

c----------------------- Normal return
icode = 0
return

c----------------------- Error: zero pivot
600 icode = k

return
end
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10.3.3 Level of Fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an

adequate rate of convergence as shown in Example 10.2. More accurate Incomplete

LU factorizations are often more efficient as well as more reliable. These more ac-

curate factorizations will differ from ILU(0) by allowing some fill-in. Thus, ILU(1)

keeps the “first order fill-ins,” a term which will be explained shortly.

To illustrate ILU(p) with the same example as before, the ILU(1) factorization

results from taking P to be the zero pattern of the product LU of the factors L,U
obtained from ILU(0). This pattern is shown at the bottom right of Figure 10.2. Pre-

tend that the original matrix has this “augmented” pattern NZ1(A). In other words,

the fill-in positions created in this product belong to the augmented pattern NZ1(A),
but their actual values are zero. The new pattern of the matrix A is shown at the

bottom left part of Figure 10.3. The factors L1 and U1 of the ILU(1) factorization are

obtained by performing an ILU(0) factorization on this “augmented pattern” matrix.

The patterns of L1 and U1 are illustrated at the top of Figure 10.3. The new LU

matrix shown at the bottom right of the figure has now two additional diagonals in

the lower and upper parts.

One problem with the construction defined in this illustration is that it does not

extend to general sparse matrices. It can be generalized by introducing the concept of

level of fill. A level of fill is attributed to each element that is processed by Gaussian

elimination, and dropping will be based on the value of the level of fill. Algorithm

10.2 will be used as a model, although any other form of GE can be used.

The rationale is that the level of fill should be indicative of the size: the higher

the level, the smaller the elements. A very simple model is employed to justify the

definition: A size of ǫk is attributed to any element whose level of fill is k, where

ǫ < 1. Initially, a nonzero element has a level of fill of one (this will be changed

later) and a zero element has a level of fill of∞. An element aij is updated in line 5

of Algorithm 10.2 by the formula

aij = aij − aik × akj. (10.16)

If levij is the current level of the element aij , then our model tells us that the size of

the updated element should be

size(aij) := ǫlevij − ǫlevik × ǫlevkj = ǫlevij − ǫlevik+levkj .

Therefore, roughly speaking, the size of aij will be the maximum of the two

sizes ǫlevij and ǫlevik+levkj , and it is natural to define the new level of fill as,

levij := min{levij , levik + levkj}.
In the common definition used in the literature, all the levels of fill are actually shifted

by −1 from the definition used above. This is purely for convenience of notation and

to conform with the definition used for ILU(0). Thus, initially levij = 0 if aij 6= 0,

and levij =∞ otherwise. Thereafter, define recursively

levij = min{levij , levik + levkj + 1}.
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Augmented A

L1 U1

L1U1

Figure 10.3: The ILU(1) factorization for a five-point matrix.

Definition 10.5 The initial level of fill of an element aij of a sparse matrix A is

defined by

levij =

{

0 if aij 6= 0, or i = j
∞ otherwise.

Each time this element is modified in line 5 of Algorithm 10.2, its level of fill must be

updated by

levij = min{levij , levik + levkj + 1}. (10.17)

Observe that the level of fill of an element will never increase during the elimination.

Thus, if aij 6= 0 in the original matrix A, then the element in location i, j will have a

level of fill equal to zero throughout the elimination process.

An alternative way of interpreting the above definition of fill-level can be drawn

from the graph model of Gaussian elimination, which is a standard tool used in sparse

direct solvers. Consider the adjacency graph G(A) = (V,E) of the matrix A. At

the completion of step k − 1 of Gaussian elimination, nodes 1, 2, . . . , k − 1 have

been eliminated. Let Vk−1 the set of the k − 1 vertices that are eliminated so far and

let vi, vj two vertices not in Vk, i.e., such that i, j > k. The vertex vi is said to be

reachable from the vertex vj through Vk−1 if there is a path in the (original) graph

G(A) which connects vi to vj , in which all intermediate vertices are in Vk−1. The set

of all nodes v that are reachable from u through Vk−1 is denoted byReach(u, Vk−1).
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i

V k-1

j

k

Figure 10.4: Shortest path from i to j when k is added to Vk−1.

The fill-level of (i, j) at step k − 1 is simply the length of the shortest path through

Vk−1 between vi and vj , minus 1. The initial fill-levels are defined as before, to be

zero when (i, j) ∈ V0 and infinity otherwise. At the next step (k), node k will be

added to Vk−1 to get Vk. Now more paths are available and so the path lengths may

be shortened by taking paths that go through the new node vk.

If we use the shifted levels (all levels are increased by one, so that the lev(i, j) is

the actual minimum path length) then, the shortest path is now the shortest of the old

shortest path and new possible paths through vk. A path through vk is a path from

i to vk continued by a path from vk to j. Therefore, the new pathlength is indeed

min{levij , levik + levkj}. This is illustrated in Figure 10.4.

Another useful concept in sparse direct solution methods is that of fill-path,

which is a path between two vertices i and j, such that all the vertices in the path,

except the end points i and j, are numbered less than i and j. The following result is

well-known in sparse direct solution methods.

Theorem 10.6 There is a fill-in in entry (i, j) at the completion of the Gaussian

elimination process if and only if, there exists a fill-path between i and j.

For a proof see [144, 233]. As it turns out, a fill-in entry which has level-of-fill value

p corresponds to fill-paths whose length is p+ 1.

Theorem 10.7 At the completion of the ILU process, a fill-in entry in position (i, j)
has level-of-fill value p if and only if there exists a fill-path of length p+ 1 between i
and j.

Proof. If there is a fill-path of length p, then from what said above on reachable sets,

it is clear that lev(aij) ≤ p. However, lev(aij) cannot be< p, otherwise at some step

k we would have a path between i and j that is of length < p. Since path lengths do

not increase, this would lead to a contradiction. The converse is also true. If lev(aij)
is equal to p then at the last step k when lev(aij) was modified there was a path of

length p between i and j.

The above systematic definition gives rise to a natural strategy for discarding ele-

ments. In ILU(p), all fill-in elements whose level of fill does not exceed p are kept.
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So using the definition of zero patterns introduced earlier, the zero pattern for ILU(p)

is the set

Pp = {(i, j) | levij > p},
where levij is the level of fill value after all updates (10.17) have been performed.

The case p = 0 coincides with the ILU(0) factorization and is consistent with the

earlier definition.

Since fill levels are is essentially path-lengths in the graph, they are bounded

from above by δ(G)+1 where the diameter δ(G) of a graph G is maximum possible

distance d(x, y) between two vertices x and y of the graph

δ(G) = max{d(x, y) | x ∈ V, y ∈ V }.

Recall that the distance d(x, y) between vertices x and y in the graph is the length of

the shortest path between x and y.

Definition 10.5 of fill levels is not the only one used in practice. An alternative

definition replaces the updating formula (10.17) by

levij = min{levij ,max{levik, levkj}+ 1}. (10.18)

In practical implementations of the ILU(p) factorization it is common to separate

the symbolic phase (where the structure of the L and U factors are determined) from

the numerical factorization, when the numerical values are computed. Here, a variant

is described which does not separate these two phases. In the following description,

ai∗ denotes the i-th row of the matrix A, and aij the (i, j)-th entry of A.

ALGORITHM 10.5 ILU(p)

1. For all nonzero elements aij define lev(aij) = 0
2. For i = 2, . . . , n Do:

3. For each k = 1, . . . , i− 1 and for lev(aik) ≤ p Do:

4. Compute aik := aik/akk
5. Compute ai∗ := ai∗ − aikak∗.

6. Update the levels of fill of the nonzero ai,j’s using (10.17)

7. EndDo

8. Replace any element in row i with lev(aij) > p by zero

9. EndDo

There are a number of drawbacks to the above algorithm. First, the amount of fill-in

and computational work for obtaining the ILU(p) factorization is not predictable for

p > 0. Second, the cost of updating the levels can be high. Most importantly, the

level of fill-in for indefinite matrices may not be a good indicator of the size of the

elements that are being dropped. Thus, the algorithm may drop large elements and

result in an inaccurate incomplete factorization, in that R = LU − A is not small.

Experience reveals that on the average this will lead to a larger number of iterations

to achieve convergence. The techniques which will be described in Section 10.4 have

been developed to remedy these difficulties by producing incomplete factorizations

with small error R and controlled fill-in.
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10.3.4 Matrices with Regular Structure

Often, the original matrix has a regular structure which can be exploited to formu-

late the ILU preconditioners in a simpler way. Historically, incomplete factorization

preconditioners were developed first for such matrices, rather than for general sparse

matrices. Here, we call a regularly structured matrix a matrix consisting of a small

number of diagonals. As an example, consider the diffusion-convection equation,

with Dirichlet boundary conditions

−∆u+~b.∇u = f in Ω

u = 0 on ∂Ω

where Ω is simply a rectangle. As seen in Chapter 2, if the above problem is dis-

cretized using centered differences, a linear system is obtained whose coefficient

matrix has the structure shown in Figure 10.5. In terms of the stencils seen in Chap-

ter 4, the representation of this matrix is rather simple. Each row expresses the

coupling between unknown i and unknowns i+ 1, i− 1 which are in the horizontal,

or x direction, and the unknowns i + m and i − m which are in the vertical, or y
direction. This stencil is represented in Figure 10.7. The desired L and U matrices

in the ILU(0) factorization are shown in Figure 10.6. Now the respective stencils of

these L and U matrices can be represented at a mesh point i as shown in Figure 10.8.

The stencil of the product LU can be obtained easily by manipulating stencils

directly rather than working with the matrices they represent.

δ1 γ2 ϕm+1

β2 δ2 γ3
β3 δ3

ηm+1

ηi βi δi γi+1 ϕi+m

ϕn

ηn βn δn

γn

Figure 10.5: Matrix resulting from the discretization of an elliptic problem on a

rectangle.

Indeed, the i-th row of LU is obtained by performing the following operation:

rowi(LU) = 1× rowi(U) + bi × rowi−1(U) + ei × rowi−m(U).

This translates into a combination of the stencils associated with the rows:

stencili(LU) = 1× stencili(U) + bi × stencili−1(U) + ei × stencili−m(U)
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1
b2

bn 1

em+1

en

d1 g2

dn

gn

fm+1

fn

L U

Figure 10.6: L and U factors of the ILU(0) factorization for the 5-point matrix shown

in Figure 10.5.

in which stencilj(X) represents the stencil of the matrix X based at the mesh point

labeled j.
This gives the stencil for the LU matrix represented in Figure 10.9.

γi+1δiβi

ηi

ϕi+m

Figure 10.7: Stencil associated with the 5-point matrix shown in Figure 10.5.

In the figure, the fill-in elements are represented by squares and all other nonzero

elements of the stencil are filled circles. The ILU(0) process consists of identifying

LU withA in locations where the original aij’s are nonzero. In the Gaussian elimina-

tion process, this is done from i = 1 to i = n. This provides the following equations

obtained directly from comparing the stencils of LU and A (going from lowest to

highest indices)

eidi−m = ηi

bidi−1 = βi

di + bigi + eifi = δi

gi+1 = γi+1

fi+m = ϕi+m.
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ei

1bi

fi+m

di gi+1

Figure 10.8: Stencils associated with the L and U factors shown in Figure 10.6.

gi+1

di + bigi + eifi✠

bidi−1

fi+m

eidi−m

bifi+m−1

eigi−m+1

Figure 10.9: Stencil associated with the product of the L and U factors shown in

Figure 10.6.

Observe that the elements gi+1 and fi+m are identical with the corresponding ele-

ments of the A matrix. The other values are obtained from the following recurrence:

ei =
ηi

di−m

bi =
βi
di−1

di = δi − bigi − eifi.

The above recurrence can be simplified further by making the observation that the

quantities ηi/di−m and βi/di−1 need not be saved since they are scaled versions of

the corresponding elements in A. With this observation, only a recurrence for the

diagonal elements di is needed. This recurrence is:

di = δi −
βiγi
di−1

− ηiϕi

di−m
, i = 1, . . . , n, (10.19)

with the convention that any dj with a non-positive index j is replaced by 1, the

entries βi, i ≤ 1, γi, i ≤ 1, φi, i ≤ m, and ηi, i ≤ m, are zero. The factorization
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obtained takes the form

M = (D − E)D−1(D − F ) (10.20)

in which −E is the strict lower diagonal of A, −F is the strict upper triangular part

of A, and D is the diagonal obtained with the above recurrence. Note that an ILU(0)

based on the IKJversion of Gaussian elimination would give the same result.

For a general sparse matrix A with irregular structure, one can also determine

a preconditioner in the form (10.20) by requiring only that the diagonal elements

of M match those of A (see Exercise 10). However, this will not give the same

ILU factorization as the one based on the IKJvariant of Gaussian elimination seen

earlier. Why the ILU(0) factorization gives rise to the same factorization as that of

(10.20) is simple to understand: The product of L and U does not change the values

of the existing elements in the upper part, except for the diagonal. This also can be

interpreted on the adjacency graph of the matrix.

This approach can now be extended to determine the ILU(1) factorization as well

as factorizations with higher levels of fill. The stencils of the L and U matrices in

the ILU(1) factorization are the stencils of the lower part and upper parts of the LU

matrix obtained from ILU(0). These are shown in Figure 10.10. In the illustration,

the meaning of a given stencil is not in the usual graph theory sense. Instead, all

the marked nodes at a stencil based at node i represent those nodes coupled with

unknown i by an equation. Thus, all the filled circles in the picture are adjacent to

the central node. Proceeding as before and combining stencils to form the stencil

associated with the LU matrix, we obtain the stencil shown in Figure 10.11.

ei

1bi

ci

fi+m

di gi+1

hi+m−1

Figure 10.10: Stencils of the L and U factors for the ILU(0) factorization of the

matrix represented by the stencil of Figure 10.9.

As before, the fill-in elements are represented by squares and all other elements

are filled circles. A typical row of the matrix associated with the above stencil has

nine nonzero elements. Two of these are fill-ins, i.e., elements that fall outside the

original structure of the L and U matrices. It is now possible to determine a recur-

rence relation for obtaining the entries of L and U . There are seven equations in all

which, starting from the bottom, are

eidi−m = ηi
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bihi+m−2

hi+m−1 + bifi+m−1

❄ fi+m

bidi−1 + eihi−1

di + bigi + eifi + cihi

☛ gi+1 + cifi+1

eidi−m
eigi−m+1 + cidi−m+1

✻ cigi−m+1

Figure 10.11: Stencil associated with the product of the L and U matrices whose

stencils are shown in Figure 10.10.

eigi−m+1 + cidi−m+1 = 0

bidi−1 + eihi−1 = βi

di + bigi + eifi + cihi = δi

gi+1 + cifi+1 = γi+1

hi+m−1 + bifi+m−1 = 0

fi+m = ϕi+m.

This immediately yields the following recurrence relation for the entries of the L and

U factors:

ei = ηi/di−m

ci = −eigi−m+1/di−m+1

bi = (βi − eihi−1) /di−1

di = δi − bigi − eifi − cihi
gi+1 = γi+1 − cifi+1

hi+m−1 = −bifi+m−1

fi+m = ϕi+m.

In proceeding from the nodes of smallest index to those of largest index, we are in

effect performing implicitly the IKJversion of Gaussian elimination. The result of

the ILU(1) obtained in this manner is therefore identical with that obtained by using

Algorithms 10.1 and 10.3.

10.3.5 Modified ILU (MILU)

In all the techniques thus far, the elements that were dropped out during the incom-

plete elimination process are simply discarded. There are also techniques which at-
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tempt to reduce the effect of dropping by compensating for the discarded entries. For

example, a popular strategy is to add up all the elements that have been dropped at

the completion of the k-loop of Algorithm 10.3. Then this sum is subtracted from the

diagonal entry in U . This diagonal compensation strategy gives rise to the Modified

ILU (MILU) factorization.

Thus, in equation (10.13), the final row ui∗ obtained after completion of the k-

loop of Algorithm 10.3 undergoes one more modification, namely,

uii := uii − (ri∗e)

in which e ≡ (1, 1, . . . , 1)T . Note that ri∗ is a row and ri∗e is the sum of the elements

in this row, i.e., its row sum. The above equation can be rewritten in row form as

ui∗ := ui∗ − (ri∗e)eTi and equation (10.14) becomes

ai∗ =
i∑

k=1

likuk∗ + (ri∗e)e
T
i − ri∗. (10.21)

Observe that

ai∗e =
i∑

k=1

likuk∗e+ (ri∗e)e
T
i e− ri∗e =

i−1∑

k=1

likuk∗e = LU e.

This establishes that Ae = LUe. As a result, this strategy guarantees that the row

sums of A are equal to those of LU . For PDEs, the vector of all ones represents

the discretization of a constant function. This additional constraint forces the ILU

factorization to be exact for constant functions in some sense. Therefore, it is not

surprising that often the algorithm does well for such problems. For other problems

or problems with discontinuous coefficients, MILU algorithms usually are not better

than their ILU counterparts, in general.

Example 10.3. For regularly structured matrices there are two elements dropped

at the i-th step of ILU(0). These are bifi+m−1 and eigi−m+1 located on the north-

west and south-east corners of the stencil, respectively. Thus, the row sum ri,∗e
associated with step i is

si =
βiφi+m−1

di−1
+
ηiγm−i+1

di−m

and the MILU variant of the recurrence (10.19) is

si =
βiφi+m−1

di−1
+
ηiγm−i+1

di−m

di = δi −
βiγi
di−1

− ηiϕi

di−m
− si.
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The new ILU factorization is now such that A = LU − R in which according to

(10.21) the i-th row of the new remainder matrix R is given by

r
(new)
i,∗ = (ri∗e)e

T
i − ri∗

whose row sum is zero.

This generic idea of lumping together all the elements dropped in the elimination

process and adding them to the diagonal of U can be used for any form of ILU

factorization. In addition, there are variants of diagonal compensation in which only

a fraction of the dropped elements are added to the diagonal. Thus, the term si in

the above example would be replaced by ωsi before being added to uii, where ω
is typically between 0 and 1. Other strategies distribute the sum si among nonzero

elements of L and U , other than the diagonal.

10.4 Threshold Strategies and ILUT

Incomplete factorizations which rely on the levels of fill are blind to numerical values

because elements that are dropped depend only on the structure of A. This can cause

some difficulties for realistic problems that arise in many applications. A few alter-

native methods are available which are based on dropping elements in the Gaussian

elimination process according to their magnitude rather than their locations. With

these techniques, the zero pattern P is determined dynamically. The simplest way

to obtain an incomplete factorization of this type is to take a sparse direct solver

and modify it by adding lines of code which will ignore “small” elements. How-

ever, most direct solvers have a complex implementation involving several layers of

data structures that may make this approach ineffective. It is desirable to develop a

strategy which is more akin to the ILU(0) approach. This section describes one such

technique.

10.4.1 The ILUT Approach

A generic ILU algorithm with threshold can be derived from the IKJversion of Gaus-

sian elimination, Algorithm 10.2, by including a set of rules for dropping small el-

ements. In what follows, applying a dropping rule to an element will only mean

replacing the element by zero if it satisfies a set of criteria. A dropping rule can be

applied to a whole row by applying the same rule to all the elements of the row. In

the following algorithm, w is a full-length working row which is used to accumulate

linear combinations of sparse rows in the elimination and wk is the k-th entry of this

row. As usual, ai∗ denotes the i-th row of A.

ALGORITHM 10.6 ILUT

1. For i = 1, . . . , n Do:

2. w := ai∗
3. For k = 1, . . . , i− 1 and when wk 6= 0 Do:

4. wk := wk/akk
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5. Apply a dropping rule to wk

6. If wk 6= 0 then

7. w := w − wk ∗ uk∗
8. EndIf

9. EndDo

10. Apply a dropping rule to row w
11. li,j := wj for j = 1, . . . , i− 1
12. ui,j := wj for j = i, . . . , n
13. w := 0
14. EndDo

Now consider the operations involved in the above algorithm. Line 7 is a sparse

update operation. A common implementation of this is to use a full vector for w and

a companion pointer which points to the positions of its nonzero elements. Similarly,

lines 11 and 12 are sparse-vector copy operations. The vector w is filled with a few

nonzero elements after the

completion of each outer loop i, and therefore it is necessary to zero out those

elements at the end of the Gaussian elimination loop as is done in line 13. This is a

sparse set-to-zero operation.

ILU(0) can be viewed as a particular case of the above algorithm. The dropping

rule for ILU(0) is to drop elements that are in positions not belonging to the original

structure of the matrix.

In the factorization ILUT(p, τ ), the following rule is used.

1. In line 5, an element wk is dropped (i.e., replaced by zero) if it is less than the

relative tolerance τi obtained by multiplying τ by the original norm of the i-th
row (e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again

any element in the row with a magnitude that is below the relative tolerance

τi. Then, keep only the p largest elements in the L part of the row and the p
largest elements in the U part of the row in addition to the diagonal element,

which is always kept.

The goal of the second dropping step is to control the number of elements per row.

Roughly speaking, p can be viewed as a parameter that helps control memory usage,

while τ helps to reduce computational cost. There are several possible variations

on the implementation of dropping step 2. For example we can keep a number of

elements equal to nu(i) + p in the upper part and nl(i) + p in the lower part of the

row, where nl(i) and nu(i) are the number of nonzero elements in the L part and the

U part of the i-th row of A, respectively. This variant is adopted in the ILUT code

used in the examples.

Note that no pivoting is performed. Partial (column) pivoting may be incor-

porated at little extra cost and will be discussed later. It is also possible to combine

ILUT with one of the many standard reorderings, such as the nested dissection order-

ing or the reverse Cuthill-McKee ordering. Reordering in the context of incomplete



10.4. THRESHOLD STRATEGIES AND ILUT 323

factorizations can also be helpful for improving robustness, provided enough accu-

racy is used. For example, when a red-black ordering is used, ILU(0) may lead to

poor performance compared with the natural ordering ILU(0). On the other hand,

if ILUT is used by allowing gradually more fill-in, then the performance starts im-

proving again. In fact, in some examples, the performance of ILUT for the red-black

ordering eventually outperforms that of ILUT for the natural ordering using the same

parameters p and τ .

10.4.2 Analysis

Existence theorems for the ILUT factorization are similar to those of other incom-

plete factorizations. If the diagonal elements of the original matrix are positive while

the off-diagonal elements are negative, then under certain conditions of diagonal

dominance the matrices generated during the elimination will have the same prop-

erty. If the original matrix is diagonally dominant, then the transformed matrices will

also have the property of being diagonally dominant under certain conditions. These

properties are analyzed in detail in this section.

The row vector w resulting from line 4 of Algorithm 10.6 will be denoted by

uk+1
i,∗ . Note that uk+1

i,j = 0 for j ≤ k. Lines 3 to 10 in the algorithm involve a

sequence of operations of the form

lik := ukik/ukk (10.22)

if |lik| small enough set lik = 0

else:

uk+1
i,j := uki,j − likuk,j − rkij j = k + 1, . . . , n (10.23)

for k = 1, . . . , i − 1, in which initially u1i,∗ := ai,∗ and where rkij is an element

subtracted from a fill-in element which is being dropped. It should be equal either to

zero (no dropping) or to ukij − likukj when the element uk+1
i,j is being dropped. At

the end of the i-th step of Gaussian elimination (outer loop in Algorithm 10.6), we

obtain the i-th row of U ,

ui,∗ ≡ uii−1,∗ (10.24)

and the following relation is satisfied:

ai,∗ =
i∑

k=1

lk,ju
k
i,∗ + ri,∗,

where ri,∗ is the row containing all the fill-ins.

The existence result which will be proved is valid only for certain modifications

of the basic ILUT(p, τ) strategy. We consider an ILUT strategy which uses the fol-

lowing modification:

• Drop Strategy Modification. For any i < n, let ai,ji be the element of largest

modulus among the elements ai,j , j = i + 1, . . . n, in the original matrix.
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Then elements generated in position (i, ji) during the ILUT procedure are not

subject to the dropping rule.

This modification prevents elements generated in position (i, ji) from ever being

dropped. Of course, there are many alternative strategies that can lead to the same

effect.

A matrix H whose entries hij satisfy the following three conditions:

hii > 0 for 1 ≤ i < n and hnn ≥ 0 (10.25)

hij ≤ 0 for i, j = 1, . . . , n and i 6= j; (10.26)
n∑

j=i+1

hij < 0, for 1 ≤ i < n (10.27)

will be referred to as an M̂ matrix. The third condition is a requirement that there be

at least one nonzero element to the right of the diagonal element, in each row except

the last. The row sum for the i-th row is defined by

rs(hi,∗) = hi,∗e =
n∑

j=1

hi,j.

A given row of an M̂ matrixH is diagonally dominant, if its row sum is nonnegative.

An M̂ matrix H is said to be diagonally dominant if all its rows are diagonally

dominant. The following theorem is an existence result for ILUT. The underlying

assumption is that an ILUT strategy is used with the modification mentioned above.

Theorem 10.8 If the matrix A is a diagonally dominant M̂ matrix, then the rows

uki,∗, k = 0, 1, 2, . . . , i defined by (10.23) starting with u0i,∗ = 0 and u1i,∗ = ai,∗
satisfy the following relations for k = 1, . . . , l

ukij ≤ 0 j 6= i (10.28)

rs(uki,∗) ≥ rs(uk−1
i,∗ ) ≥ 0, (10.29)

ukii > 0 when i < n and uknn ≥ 0. (10.30)

Proof. The result can be proved by induction on k. It is trivially true for k = 0. To

prove that the relation (10.28) is satisfied, start from the relation

uk+1
i,∗ := uki,∗ − likuk,∗ − rki∗

in which lik ≤ 0, uk,j ≤ 0. Either rkij is zero which yields uk+1
ij ≤ ukij ≤ 0, or

rkij is nonzero which means that uk+1
ij is being dropped, i.e., replaced by zero, and

therefore again uk+1
ij ≤ 0. This establishes (10.28). Note that by this argument

rkij = 0 except when the j-th element in the row is dropped, in which case uk+1
ij = 0
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and rkij = ukij− likuk,j ≤ 0. Therefore, rkij ≤ 0, always. Moreover, when an element

in position (i, j) is not dropped, then

uk+1
i,j := uki,j − likuk,j ≤ uki,j

and in particular by the rule in the modification of the basic scheme described above,

for i < n, we will always have for j = ji,

uk+1
i,ji
≤ uki,ji (10.31)

in which ji is defined in the statement of the modification.

Consider the row sum of uk+1
i∗ . We have

rs(uk+1
i,∗ ) = rs(uki,∗)− lik rs(uk,∗)− rs(rki∗)

≥ rs(uki,∗)− lik rs(uk,∗) (10.32)

≥ rs(uki,∗) (10.33)

which establishes (10.29) for k + 1.

It remains to prove (10.30). From (10.29) we have, for i < n,

uk+1
ii ≥

∑

j=k+1,n

− uk+1
i,j =

∑

j=k+1,n

|uk+1
i,j | (10.34)

≥ |uk+1
i,ji
| ≥ |uki,ji | ≥ . . . (10.35)

≥ |u1i,ji | = |ai,ji |. (10.36)

Note that the inequalities in (10.35) are true because uki,ji is never dropped by as-

sumption and, as a result, (10.31) applies. By the condition (10.27), which defines

M̂ matrices, |ai,ji | is positive for i < n. Clearly, when i = n, we have by (10.34)

unn ≥ 0. This completes the proof.

The theorem does not mean that the factorization is effective only when its condi-

tions are satisfied. In practice, the preconditioner is efficient under fairly general

conditions.

10.4.3 Implementation Details

A poor implementation of ILUT may well lead to an expensive factorization phase,

and possibly an impractical algorithm. The following is a list of the potential diffi-

culties that may cause inefficiencies in the implementation of ILUT.

1. Generation of the linear combination of rows of A (Line 7 in Algorithm 10.6).

2. Selection of the p largest elements in L and U .

3. Need to access the elements of L in increasing order of columns (in line 3 of

Algorithm 10.6).
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For (1), the usual technique is to generate a full row and accumulate the linear com-

bination of the previous rows in it. The row is zeroed again after the whole loop is

finished using a sparse set-to-zero operation. A variation on this technique uses only

a full integer array jr(1 : n), the values of which are zero except when there is a

nonzero element. With this full row, a short real vector w(1 : maxw) must be main-

tained which contains the real values of the row, as well as a corresponding short

integer array jw(1 : maxw) which points to the column position of the real values

in the row. When a nonzero element resides in position j of the row, then jr(j) is set

to the address k in w, jw where the nonzero element is stored. Thus, jw(k) points

to jr(j), and jr(j) points to jw(k) and w(k). This is illustrated in Figure 10.12.

1

2

0 0 2

4

0 0 3

7

0 4

9

0 0 0 0

x x x x w: real values

jw: pointer to nonzero elements

jr: nonzero
indicator

Figure 10.12: Illustration of data structure used for the working row in ILUT.

Note that jr holds the information on the row consisting of both the L part and

the U part of the LU factorization. When the linear combinations of the rows are

performed, first determine the pivot. Then, unless it is small enough to be dropped

according to the dropping rule being used, proceed with the elimination. If a new

element in the linear combination is not a fill-in, i.e., if jr(j) = k 6= 0, then update

the real value w(k). If it is a fill-in (jr(j) = 0), then append an element to the arrays

w, jw and update jr accordingly.

For (2), the natural technique is to employ a heap-sort strategy. The cost of this

implementation would be O(m+ p × log2m), i.e., O(m) for the heap construction

and O(log2m) for each extraction. Another implementation is to use a modified

quick-sort strategy based on the fact that sorting the array is not necessary.

Only the largest p elements must be extracted. This is a quick-split technique to

distinguish it from the full quick-sort. The method consists of choosing an element,

e.g., x = w(1), in the array w(1 : m), then permuting the data so that |w(k)| ≤ |x| if
k ≤ mid and |w(k)| ≥ |x| if k ≥ mid, where mid is some split point. If mid = p,

then exit. Otherwise, split one of the left or right sub-arrays recursively, depending

on whether mid is smaller or larger than p. The cost of this strategy on the average

is O(m). The savings relative to the simpler bubble sort or insertion sort schemes

are small for small values of p, but they become rather significant for large p and m.

The next implementation difficulty is that the elements in the L part of the row

being built are not in an increasing order of columns. Since these elements must be

accessed from left to right in the elimination process, all elements in the row after

those already eliminated must be scanned. The one with smallest column number
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is then picked as the next element to eliminate. This operation can be efficiently

organized as a binary search tree which allows easy insertions and searches. This

improvement can bring substantial gains in the case when accurate factorizations are

computed.

Example 10.4. Tables 10.3 and 10.4 show the results of applying GMRES(10)

preconditioned with ILUT(1, 10−4) and ILUT(5, 10−4), respectively, to the five test

problems described in Section 3.7. See Example 6.1 for the meaning of the column

headers in the table. As shown, all linear systems are now solved in a relatively

small number of iterations, with the exception of F2DB which still takes 130 steps

to converge with lfil = 1 (but only 10 with lfil = 5.) In addition, observe a marked

improvement in the operation count and error norms. Note that the operation counts

shown in the column Kflops do not account for the operations required in the set-up

phase to build the preconditioners. For large values of lfil , this may be large.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.60E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 59 19112 0.19E+00 0.11E-03

Table 10.3: A test run of GMRES(10)-ILUT(1, 10−4) preconditioning.

If the total time to solve one linear system with A is considered, a typical curve

of the total time required to solve a linear system when the lfil parameter varies would

look like the plot shown in Figure 10.13. As lfil increases, a critical value is reached

where the preprocessing time and the iteration time are equal. Beyond this critical

point, the preprocessing time dominates the total time. If there are several linear

systems to solve with the same matrix A, then it is advantageous to use a more accu-

rate factorization, since the cost of the factorization will be amortized. Otherwise, a

smaller value of lfil will result in a more efficient, albeit also less reliable, run.

10.4.4 The ILUTP Approach

The ILUT approach may fail for many of the matrices that arise from real applica-

tions, for one of the following reasons.

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because

of an exponential growth of the entries of the factors;
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Matrix Iters Kflops Residual Error

F2DA 7 478 0.13E-02 0.90E-04

F3D 9 2855 0.58E-03 0.35E-03

ORS 4 270 0.92E-01 0.43E-04

F2DB 10 724 0.62E-03 0.26E-03

FID 40 14862 0.11E+00 0.11E-03

Table 10.4: A test run of GMRES(10)-ILUT(5, 10−4) preconditioning.

level of fill-in
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e
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Figure 10.13: Typical CPU time as a function of lfil. Dashed line: ILUT. Dotted line:

GMRES. Solid line: total.

3. The ILUT preconditioner terminates normally but the incomplete factorization

preconditioner which is computed is unstable.

An unstable ILU factorization is one for which M−1 = U−1L−1 has a very large

norm leading to poor convergence or divergence of the outer iteration. The case (1)

can be overcome to a certain degree by assigning an arbitrary nonzero value to a zero

diagonal element that is

encountered. Clearly, this is not a satisfactory remedy because of the loss in

accuracy in the preconditioner. The ideal solution in this case is to use pivoting.

However, a form of pivoting is desired which leads to an algorithm with similar cost

and complexity to ILUT. Because of the data structure used in ILUT, row pivoting is

not practical. Instead, column pivoting can be implemented rather easily.

Here are a few of the features that characterize the new algorithm which is termed

ILUTP (“P” stands for pivoting). ILUTP uses a permutation array perm to hold the

new orderings of the variables, along with the reverse permutation array. At step i
of the elimination process the largest entry in a row is selected and is defined to be
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the new i-th variable. The two permutation arrays are then updated accordingly. The

matrix elements of L and U are kept in their original numbering. However, when

expanding the L-U row which corresponds to the i-th outer step of Gaussian elim-

ination, the elements are loaded with respect to the new labeling, using the array

perm for the translation. At the end of the process, there are two options. The first

is to leave all elements labeled with respect to the original labeling. No additional

work is required since the variables are already in this form in the algorithm, but the

variables must then be permuted at each preconditioning step. The second solution

is to apply the permutation to all elements of A as well as L/U . This does not re-

quire applying a permutation at each step, but rather produces a permuted solution

which must be permuted back at the end of the iteration phase. The complexity of

the ILUTP procedure is virtually identical to that of ILUT. A few additional options

can be provided. A tolerance parameter called permtol may be included to help

determine whether or not to permute variables: A nondiagonal element aij is candi-

date for a permutation only when tol × |aij | > |aii|. Furthermore, pivoting may be

restricted to take place only within diagonal blocks of a fixed size. The size mbloc
of these blocks must be provided. A value of mbloc ≥ n indicates that there are no

restrictions on the pivoting.

For difficult matrices, the following strategy seems to work well:

1. Apply a scaling to all the rows (or columns) e.g., so that their 1-norms are all

equal to 1; then apply a scaling of the columns (or rows).

2. Use a small drop tolerance (e.g., ǫ = 10−4 or ǫ = 10−5) and take a large fill-in

parameter (e.g., lf il = 20).

3. Do not take a small value for permtol. Reasonable values are between 0.5 and

0.01, with 0.5 being the best in many cases.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.61E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 50 16224 0.17E+00 0.18E-03

Table 10.5: A test run of GMRES with ILUTP preconditioning.

Example 10.5. Table 10.5 shows the results of applying the GMRES algorithm

with ILUTP(1, 10−4) preconditioning to the five test problems described in Sec-

tion 3.7. The permtol parameter is set to 1.0 in this case. See Example 6.1 for
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the meaning of the column headers in the table. The results are identical with those

of ILUT(1, 10−4) shown in Table 10.3, for the first four problems, but there is an

improvement for the fifth problem.

10.4.5 The ILUS Approach

The ILU preconditioners discussed so far are based mainly on the the IKJvariant

of Gaussian elimination. Different types of ILUs can be derived using other forms

of Gaussian elimination. The main motivation for the version to be described next

is that ILUT does not take advantage of symmetry. If A is symmetric, then the

resulting M = LU is nonsymmetric in general. Another motivation is that in many

applications including computational fluid dynamics and structural engineering, the

resulting matrices are stored in a sparse skyline (SSK) format rather than the standard

Compressed Sparse Row format.

sparse row→

← sparse column

Figure 10.14: Illustration of the sparse skyline format.

In this format, the matrix A is decomposed as

A = D + L1 + LT
2

in which D is a diagonal of A and L1, L2 are strictly lower triangular matrices. Then

a sparse representation of L1 and L2 is used in which, typically, L1 and L2 are stored

in the CSR format and D is stored separately.

Incomplete Factorization techniques may be developed for matrices in this for-

mat without having to convert them into the CSR format. Two notable advantages of

this approach are (1) the savings in storage for structurally symmetric matrices, and

(2) the fact that the algorithm gives a symmetric preconditioner when the original

matrix is symmetric.



10.4. THRESHOLD STRATEGIES AND ILUT 331

Consider the sequence of matrices

Ak+1 =

(
Ak vk
wk αk+1

)

,

where An = A. If Ak is nonsingular and its LDU factorization

Ak = LkDkUk

is already available, then the LDU factorization of Ak+1 is

Ak+1 =

(
Lk 0
yk 1

)(
Dk 0
0 dk+1

)(
Uk zk
0 1

)

in which

zk = D−1
k L−1

k vk (10.37)

yk = wkU
−1
k D−1

k (10.38)

dk+1 = αk+1 − ykDkzk. (10.39)

Hence, the last row/column pairs of the factorization can be obtained by solving

two unit lower triangular systems and computing a scaled dot product. This can be

exploited for sparse matrices provided an appropriate data structure is used to take

advantage of the sparsity of the matrices Lk, Uk as well as the vectors vk, wk, yk,

and zk. A convenient data structure for this is to store the rows/columns pairs wk, v
T
k

as a single row in sparse mode. All these pairs are stored in sequence. The diagonal

elements are stored separately. This is called the Unsymmetric Sparse Skyline (USS)

format. Each step of the ILU factorization based on this approach will consist of two

approximate sparse linear system solutions and a sparse dot product. The question

that arises is: How can a sparse triangular system be solved inexpensively? It would

seem natural to solve the triangular systems (10.37) and (10.38) exactly and then

drop small terms at the end, using a numerical dropping strategy. However, the total

cost of computing the ILU factorization with this strategy would beO(n2) operations

at least, which is not acceptable for very large problems. Since only an approximate

solution is required, the first idea that comes to mind is the truncated Neumann series,

zk = D−1
k L−1

k vk = D−1
k (I + Ek + E2

k + . . .+ Ep
k)vk (10.40)

in which Ek ≡ I − Lk. In fact, by analogy with ILU(p), it is interesting to note that

the powers of Ek will also tend to become smaller as p increases. A close look at the

structure of Ep
kvk shows that there is indeed a strong relation between this approach

and ILU(p) in the symmetric case. Now we make another important observation,

namely, that the vector Ej
kvk can be computed in sparse-sparse mode, i.e., in terms

of operations involving products of sparse matrices by sparse vectors. Without ex-

ploiting this, the total cost would still be O(n2). When multiplying a sparse matrix

A by a sparse vector v, the operation can best be done by accumulating the linear

combinations of the columns of A. A sketch of the resulting ILUS algorithm is as

follows.
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ALGORITHM 10.7 ILUS(ǫ, p)

1. Set A1 = D1 = a11, L1 = U1 = 1
2. For i = 1, . . . , n− 1 Do:

3. Compute zk by (10.40) in sparse-sparse mode

4. Compute yk in a similar way

5. Apply numerical dropping to yk and zk
6. Compute dk+1 via (10.39)

7. EndDo

If there are only i nonzero components in the vector v and an average of ν nonzero

elements per column, then the total cost per step will be 2 × i × ν on the average.

Note that the computation of dk via (10.39) involves the inner product of two sparse

vectors which is often implemented by expanding one of the vectors into a full vector

and computing the inner product of a sparse vector by this full vector. As mentioned

before, in the symmetric case ILUS yields the Incomplete Cholesky factorization.

Here, the work can be halved since the generation of yk is not necessary.

Also note that a simple iterative procedure such as MR or GMRES(m) can be

used to solve the triangular systems in sparse-sparse mode. Similar techniques will

be seen in Section 10.5. Experience shows that these alternatives are not much better

than the Neumann series approach [79].

10.4.6 The Crout ILU Approach

A notable disadvantage of the standard delayed-update IKJ factorization is that

it requires access to the entries in the k-th row of L in sorted order of columns.

This is further complicated by the fact that the working row (denoted by w in Algo-

rithm 10.6), is dynamically modified by fill-in as the elimination proceeds. Searching

for the leftmost entry in the k-th row of L is usually not a problem when the fill-in

allowed is small. Otherwise, when an accurate factorization is sought, it can become

a significant burden and may ultimately even dominate the cost of the factorization.

Sparse direct solution methods that are based on the IKJ form of Gaussian elimina-

tion obviate this difficulty by a technique known as the Gilbert-Peierls method [146].

Because of dropping, this technique cannot, however, be used as is. Another possible

option is to reduce the cost of the searches through the use of clever data structures

and algorithms, such as binary search trees or heaps [90].

The Crout formulation provides the most elegant solution to the problem. In fact

the Crout version of Gaussian elimination has other advantages which make it one of

the most appealing ways of implementing incomplete LU factorizations.

The Crout form of Gaussian elimination consists of computing, at step k, the

entries ak+1:n,k (in the unit lower triangular factor, L) and ak,k:n (in the upper trian-

gular factor, U ). This is done by post-poning the rank-one update in a way similar

to the IKJ variant. In Figure 10.15 the parts of the factors being computed at the

k-th step are shown in black and those being accessed are in the shaded areas. At the

k-th step, all the updates of the previous steps are applied to the entries ak+1:n,k and

ak,k:n and it is therefore convenient to store L by columns and U by rows.
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Figure 10.15: Computational pattern of the Crout algorithm.

ALGORITHM 10.8 Crout LU Factorization

1. For k = 1 : n Do :

2. For i = 1 : k − 1 and if aki 6= 0 Do :

3. ak,k:n = ak,k:n − aki ∗ ai,k:n
4. EndDo

5. For i = 1 : k − 1 and if aik 6= 0 Do :

6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo

8. aik = aik/akk for i = k + 1, ..., n
9. EndDo

The k-th step of the algorithm generates the k-th row of U and the k-th column of

L. This step is schematically represented in Figure 10.16. The above Algorithm will

now be adapted to the sparse case. Sparsity is taken into account and a dropping

strategy is included, resulting in the following Crout version of ILU (termed ILUC).

ALGORITHM 10.9 ILUC - Crout version of ILU

1. For k = 1 : n Do :

2. Initialize row z: z1:k−1 = 0, zk:n = ak,k:n
3. For {i | 1 ≤ i ≤ k − 1 and lki 6= 0} Do :

4. zk:n = zk:n − lki ∗ ui,k:n
5. EndDo

6. Initialize column w: w1:k = 0, wk+1:n = ak+1:n,k

7. For {i | 1 ≤ i ≤ k − 1 and uik 6= 0} Do :

8. wk+1:n = wk+1:n − uik ∗ lk+1:n,i

9. EndDo

10. Apply a dropping rule to row z
11. Apply a dropping rule to column w
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12. uk,: = z
13. l:,k = w/ukk, lkk = 1
14. Enddo

Two potential sources of difficulty will require a careful and somewhat complex

implementation. First, looking at Lines 4 and 8, only the section (k : n) of the i-th
row of U is required, and similarly, only the section (k+1 : n) of the i-th column of

L is needed. Second, Line 3 requires access to the k-th row of L which is stored by

columns while Line 7 requires access to the k-th column of U which is accessed by

rows.

The first issue can be easily handled by keeping pointers that indicate where the

relevant part of each row of U (resp. column of L) starts. An array Ufirst is used

to store for each row i of U the index of the first column that will used next. If k is

the current step number, this means that Ufirst(i) holds the first column index > k
of all nonzero entries in the the i-th row of U . These pointers are easily updated after

each elimination step, assuming that column indices (resp. column indices for L) are

in increasing order.

Figure 10.16: Computing the k-th row of U (left side) and the k-column of L (right

side).

For the second issue, consider the situation with the U factor. The problem is

that the k-th column of U is required for the update of L, but U is stored row-wise.

An elegant solution to this problem is known since the pioneering days of sparse di-

rect methods [115, 144]. Before discussing this idea, consider the simpler solution

of including a linked list for each column of U . These linked lists would be easy

to update because the rows of U are computed one at a time. Each time a new row

is computed, the nonzero entries of this row are queued to the linked lists of their

corresponding columns. However, this scheme would entail nonnegligible additional

storage. A clever alternative is to exploit the array Ufirst mentioned above to form

incomplete linked lists of each column. Every time k is incremented the Ufirst
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array is updated. When Ufirst(i) is updated to point to a new nonzero with column

index j, then the row index i is added to the linked list for column i. What is interest-

ing is that though the columns structures constructed in this manner are incomplete,

they become complete as soon as they are needed. A similar technique is used for

the rows of the L factor.

In addition to avoiding searches, the Crout version of ILU has another important

advantage. It enables some new dropping strategies which may be viewed as more

rigorous than the standard ones seen so far. The straightforward dropping rules used

in ILUT can be easily adapted for ILUC. In addition, the data structure of ILUC

allows options which are based on estimating the norms of the inverses of L and U .

For ILU preconditioners, the error made in the inverses of the factors is more

important to control than the errors in the factors themselves. This is because when

A = LU , and

L̃−1 = L−1 +X Ũ−1 = U−1 + Y,

then the preconditioned matrix is given by

L̃−1AŨ−1 = (L−1 +X)A(U−1 + Y ) = I +AY +XA+XY.

If the errors X and Y in the inverses of L and U are small, then the preconditioned

matrix will be close to the identity matrix. On the other hand, small errors in the

factors themselves may yield arbitrarily large errors in the preconditioned matrix.

Let Lk denote the matrix composed of the first k rows of L and the last n − k
rows of the identity matrix. Consider a term ljk with j > k that is dropped at step

k. Then, the resulting perturbed matrix L̃k differs from Lk by ljkeje
T
k . Noticing that

Lkej = ej then,

L̃k = Lk − ljkejeTk = Lk(I − ljkejeTk )
from which this relation between the inverses follows:

L̃−1
k = (I − ljkejeTk )−1L−1

k = L−1
k + ljkeje

T
kL

−1
k .

Therefore, the inverse of Lk will be perturbed by ljk times the k-th row of L−1
k . This

perturbation will affect the j-th row of L−1
k . Hence, using the infinity norm for exam-

ple, it is important to limit the norm of this perturbing row which is ‖ljkejeTkL−1
k ‖∞.

It follows that it is a good strategy to drop a term in L when

|ljk| ‖eTk L−1
k ‖∞ < ǫ.

A similar criterion can be used for the upper triangular factor U .

This strategy is not complete because the matrix L−1 is not available. However,

standard techniques used for estimating condition numbers [149] can be adapted for

estimating the norm of the k-th row of L−1 (resp. k-th column of U−1). The idea

is to construct a vector b one component at a time, by following a greedy strategy

to make L−1b large at each step. This is possible because the first k − 1 columns

of L are available at the k-th step. The simplest method constructs a vector b of

components βk = ±1 at each step k, in such a way as to maximize the norm of the
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k-th component of L−1b. Since the first k − 1 columns of L are available at step k,

the k-th component of the solution x is given by

ξk = βk − eTkLk−1xk−1 .

This makes the choice clear: if ξk is to be large in modulus, then the sign of βk should

be opposite that of eTkLk−1xk−1. If b is the current right-hand side at step k, then

‖eTk L−1‖∞ can be estimated by the k-th component of the solution x of the system

Lx = b:

‖eTk L−1‖∞ ≈
|eTkL−1b|
‖b‖∞

.

Details, along with other strategies for dynamically building b, may be found in

[202].

10.5 Approximate Inverse Preconditioners

The Incomplete LU factorization techniques were developed originally forM -matrices

which arise from the discretization of Partial Differential Equations of elliptic type,

usually in one variable. For the common situation whereA is indefinite, standard ILU

factorizations may face several difficulties, and the best known is the fatal breakdown

due to the encounter of a zero pivot. However, there are other problems that are just

as serious. Consider an incomplete factorization of the form

A = LU + E (10.41)

whereE is the error. The preconditioned matrices associated with the different forms

of preconditioning are similar to

L−1AU−1 = I + L−1EU−1. (10.42)

What is sometimes missed is the fact that the error matrix E in (10.41) is not as

important as the “preconditioned” error matrix L−1EU−1 shown in (10.42) above.

When the matrix A is diagonally dominant, then L and U are well conditioned, and

the size of L−1EU−1 remains confined within reasonable limits, typically with a

nice clustering of its eigenvalues around the origin. On the other hand, when the

original matrix is not diagonally dominant, L−1 or U−1 may have very large norms,

causing the error L−1EU−1 to be very large and thus adding large perturbations to

the identity matrix. It can be observed experimentally that ILU preconditioners can

be very poor in these situations which often arise when the matrices are indefinite, or

have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner that does not require solv-

ing a linear system. For example, the original system can be preconditioned by a

matrix M which is a direct approximation to the inverse of A.
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10.5.1 Approximating the Inverse of a Sparse Matrix

A simple technique for finding approximate inverses of arbitrary sparse matrices is

to attempt to find a sparse matrix M which minimizes the Frobenius norm of the

residual matrix I −AM ,

F (M) = ‖I −AM‖2F . (10.43)

A matrix M whose value F (M) is small would be a right-approximate inverse of A.

Similarly, a left-approximate inverse can be defined by using the objective function

‖I −MA‖2F . (10.44)

Finally, a left-right pair L,U can be sought to minimize

‖I − LAU‖2F . (10.45)

In the following, only (10.43) and(10.45) are considered. The case (10.44) is

very similar to the right preconditioner case (10.43). The objective function (10.43)

decouples into the sum of the squares of the 2-norms of the individual columns of

the residual matrix I −AM ,

F (M) = ‖I −AM‖2F =

n∑

j=1

‖ej −Amj‖22 (10.46)

in which ej and mj are the j-th columns of the identity matrix and of the matrix M ,

respectively. There are two different ways to proceed in order to minimize (10.46).

The function (10.43) can be minimized globally as a function of the sparse matrix

M , e.g., by a gradient-type method. Alternatively, the individual functions

fj(m) = ‖ej −Am‖22, j = 1, 2, . . . , n (10.47)

can be minimized. The second approach is appealing for parallel computers, al-

though there is also parallelism to be exploited in the first approach. These two

approaches will be discussed in turn.

10.5.2 Global Iteration

The global iteration approach consists of treating M as an unknown sparse matrix

and using a descent-type method to minimize the objective function (10.43). This

function is a quadratic function on the space of n× n matrices, viewed as objects in

R
n2

. The proper inner product on the space of matrices, to which the squared norm

(10.46) is associated, is

〈X,Y 〉 = tr(Y TX). (10.48)

In the following, an array representation of an n2 vector X means the n× n matrix

whose column vectors are the successive n-vectors of X.

In a descent algorithm, a new iterate Mnew is defined by taking a step along a

selected direction G, i.e.,

Mnew =M + αG
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in which α is selected to minimize the objective function F (Mnew). From results

seen in Chapter 5, minimizing the residual norm is equivalent to imposing the con-

dition that R − αAG be orthogonal to AG with respect to the 〈·, ·〉 inner product.

Thus, the optimal α is given by

α =
〈R,AG〉
〈AG,AG〉 =

tr(RTAG)

tr ((AG)TAG)
. (10.49)

The denominator may be computed as ‖AG‖2F . The resulting matrix M will tend to

become denser after each descent step and it is therefore essential to apply a numer-

ical dropping strategy to the resulting M . However, the descent property of the step

is now lost, i.e., it is no longer guaranteed that F (Mnew) ≤ F (M). An alternative

would be to apply numerical dropping to the direction of search G before taking the

descent step. In this case, the amount of fill-in in the matrix M cannot be controlled.

The simplest choice for the descent direction G is to take it to be equal to the

residual matrix R = I − AM , where M is the new iterate. Except for the nu-

merical dropping step, the corresponding descent algorithm is nothing but the Min-

imal Residual (MR) algorithm, seen in Section 5.3.2, on the n2 × n2 linear system

AM = I . The global Minimal Residual algorithm will have the following form.

ALGORITHM 10.10 Global Minimal Residual Descent Algorithm

1. Select an initial M
2. Until convergence Do:

3. Compute C := AM and G := I − C
4. Compute α = tr(GTAG)/‖AG‖2F
5. Compute M := M + αG
6. Apply numerical dropping to M
7. EndDo

A second choice is to take G to be equal to the direction of steepest descent, i.e.,

the direction opposite to the gradient of the function (10.43) with respect to M . If

all vectors as represented as 2-dimensional n × n arrays, then the gradient can be

viewed as a matrix G, which satisfies the following relation for small perturbations

E,

F (M + E) = F (M) + 〈G,E〉 + o(‖E‖). (10.50)

This provides a way of expressing the gradient as an operator on arrays, rather than

n2 vectors.

Proposition 10.9 The array representation of the gradient of F with respect to M is

the matrix

G = −2ATR

in which R is the residual matrix R = I −AM .
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Proof. For any matrix E we have

F (M + E)− F (M) = tr
[
(I −A(M + E))T (I −A(M + E))

]

−tr
[
(I −AM)T (I −AM)

]

= tr
[
(R−AE)T (R−AE)−RTR

]

= −tr
[
(AE)TR+RTAE − (AE)T (AE)

]

= −2tr(RTAE) + tr
[
(AE)T (AE)

]

= −2
〈
ATR,E

〉
+ 〈AE,AE〉 .

Comparing this with (10.50) yields the desired result.

Thus, the steepest descent algorithm will consist of replacing G in line 3 of

Algorithm 10.10 by G = ATR = AT (I − AM). As is expected with steepest

descent techniques, the algorithm can be slow.

ALGORITHM 10.11 Global Steepest Descent Algorithm

1. Select an initial M
2. Until convergence Do:

3. Compute R = I −AM , and G := ATR ;

4. Compute α = ‖G‖2F /‖AG‖2F
5. Compute M := M + αG
6. Apply numerical dropping to M
7. EndDo

In either steepest descent or minimal residual, the G matrix must be stored ex-

plicitly. The scalars ‖AG‖2F and tr(GTAG) needed to obtain α in these algorithms

can be computed from the successive columns of AG, which can be generated, used,

and discarded. As a result, the matrix AG need not be stored.

10.5.3 Column-Oriented Algorithms

Column-oriented algorithms consist of minimizing the individual objective functions

(10.47) separately. Each minimization can be performed by taking a sparse initial

guess and solving approximately the n parallel linear subproblems

Amj = ej , j = 1, 2, . . . , n (10.51)

with a few steps of a nonsymmetric descent-type method, such as MR or GMRES. If

these linear systems were solved (approximately) without taking advantage of spar-

sity, the cost of constructing the preconditioner would be of order n2. That is because

each of the n columns would require O(n) operations. Such a cost would become

unacceptable for large linear systems. To avoid this, the iterations must be performed

in sparse-sparse mode, a term which was already introduced in Section 10.4.5. The

column mj and the subsequent iterates in the MR algorithm must be stored and op-

erated on as sparse vectors. The Arnoldi basis in the GMRES algorithm are now to
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be kept in sparse format. Inner products and vector updates involve pairs of sparse

vectors.

In the following MR algorithm, ni iterations are used to solve (10.51) approxi-

mately for each column, giving an approximation to the j-th column of the inverse

of A. Each initial mj is taken from the columns of an initial guess, M0.

ALGORITHM 10.12 Approximate Inverse via MR Iteration

1. Start: set M =M0

2. For each column j = 1, . . . , n Do:

3. Define mj =Mej
4. For i = 1, . . . , nj Do:

5. rj := ej −Amj

6. αj :=
(rj ,Arj)
(Arj ,Arj)

7. mj := mj + αjrj
8. Apply numerical dropping to mj

9. EndDo

10. EndDo

The algorithm computes the current residual rj and then minimizes the residual

norm ‖ej −A(mj + αrj)‖2, with respect to α. The resulting column is then pruned

by applying the numerical dropping step in line 8.

In the sparse implementation of MR and GMRES, the matrix-vector product,

SAXPY, and dot product kernels now all involve sparse vectors. The matrix-vector

product is much more efficient if the sparse matrix is stored by columns, since all

the entries do not need to be traversed. Efficient codes for all these kernels may be

constructed which utilize a full n-length work vector.

Columns from an initial guess M0 for the approximate inverse are used as the

initial guesses for the iterative solution of the linear subproblems. There are two ob-

vious choices: M0 = αI and M0 = αAT . The scale factor α is chosen to minimize

the norm of I − AM0. Thus, the initial guess is of the form M0 = αG where G is

either the identity or AT . The optimal α can be computed using the formula (10.49),

in which R is to be replaced by the identity, so α = tr(AG)/tr(AG(AG)T ). The

identity initial guess is less expensive to use but M0 = αAT is sometimes a much

better initial guess. For this choice, the initial preconditioned system AM0 is SPD.

The linear systems needed to solve when generating each column of the approx-

imate inverse may themselves be preconditioned with the most recent version of the

preconditioning matrix M . Thus, each system (10.51) for approximating column j
may be preconditioned with M ′

0 where the first j − 1 columns of M ′
0 are the mk that

already have been computed, 1 ≤ k < j, and the remaining columns are the initial

guesses for the mk, j ≤ k ≤ n. Thus, outer iterations can be defined which sweep

over the matrix, as well as inner iterations which compute each column. At each

outer iteration, the initial guess for each column is taken to be the previous result for

that column.
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10.5.4 Theoretical Considerations

The first theoretical question which arises is whether or not the approximate inverses

obtained by the approximations described earlier can be singular. It cannot be proved

thatM is nonsingular unless the approximation is accurate enough. This requirement

may be in conflict with the requirement of keeping the approximation sparse.

Proposition 10.10 Assume that A is nonsingular and that the residual of the ap-

proximate inverse M satisfies the relation

‖I −AM‖ < 1 (10.52)

where ‖.‖ is any consistent matrix norm. Then M is nonsingular.

Proof. The result follows immediately from the equality

AM = I − (I −AM) ≡ I −N. (10.53)

Since ‖N‖ < 1, Theorem 1.11 seen in Chapter 1 implies that I −N is nonsingular.

The result is true in particular for the Frobenius norm which is consistent (see Chapter

1).

It may sometimes be the case that AM is poorly balanced and as a result R
can be large. Then balancing AM can yield a smaller norm and possibly a less

restrictive condition for the nonsingularity of M . It is easy to extend the previous

result as follows. If A is nonsingular and two nonsingular diagonal matrices D1,D2

exist such that

‖I −D1AMD2‖ < 1 (10.54)

where ‖.‖ is any consistent matrix norm, then M is nonsingular.

Each column is obtained independently by requiring a condition on the residual

norm of the form

‖ej −Amj‖ ≤ τ, (10.55)

for some vector norm ‖.‖. From a practical point of view the 2-norm is preferable

since it is related to the objective function which is used, namely, the Frobenius norm

of the residual I−AM . However, the 1-norm is of particular interest since it leads to

a number of simple theoretical results. In the following, it is assumed that a condition

of the form

‖ej −Amj‖1 ≤ τj (10.56)

is required for each column.

The above proposition does not reveal anything about the degree of sparsity of

the resulting approximate inverse M . It may well be the case that in order to guaran-

tee nonsingularity, M must be dense, or nearly dense. In fact, in the particular case

where the norm in the proposition is the 1-norm, it is known that the approximate
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inverse may be structurally dense, in that it is always possible to find a sparse matrix

A for which M will be dense if ‖I −AM‖1 < 1.

Next, we examine the sparsity of M and prove a simple result for the case where

an assumption of the form (10.56) is made.

Proposition 10.11 Assume that M is an approximate inverse of A computed by en-

forcing the condition (10.56). Let B = A−1 and assume that a given element bij of

B satisfies the inequality

|bij | > τj max
k=1,n

|bik|, (10.57)

then the element mij is nonzero.

Proof. From the equality AM = I −R we have M = A−1 −A−1R, and hence

mij = bij −
n∑

k=1

bikrkj.

Therefore,

|mij | ≥ |bij | −
n∑

k=1

|bikrkj|

≥ |bij | − max
k=1,n

|bik| ‖rj‖1
≥ |bij | − max

k=1,n
|bik|τj .

Now the condition (10.57) implies that |mij| > 0.

The proposition implies that if R is small enough, then the nonzero elements of M
are located in positions corresponding to the larger elements in the inverse of A. The

following negative result is an immediate corollary.

Corollary 10.12 Assume that M is an approximate inverse of A computed by en-

forcing the condition (10.56) and let τ = maxj=1,...,n τj . If the nonzero elements of

B = A−1 are τ -equimodular in that

|bij | > τ max
k=1,n, l=1,n

|blk|,

then the nonzero sparsity pattern of M includes the nonzero sparsity pattern of A−1.

In particular, if A−1 is dense and its elements are τ -equimodular, then M is also

dense.

The smaller the value of τ , the more likely the condition of the corollary will be sat-

isfied. Another way of stating the corollary is that accurate and sparse approximate

inverses may be computed only if the elements of the actual inverse have variations

in size. Unfortunately, this is difficult to verify in advance and it is known to be true

only for certain types of matrices.
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10.5.5 Convergence of Self Preconditioned MR

We now examine the convergence of the MR algorithm in the case where self precon-

ditioning is used, but no numerical dropping is applied. The column-oriented algo-

rithm is considered first. Let M be the current approximate inverse at a given sub-

step. The self preconditioned MR iteration for computing the j-th column of the next

approximate inverse is obtained by the following sequence of operations:

1. rj := ej −Amj = ej −AMej
2. tj :=Mrj

3. αj :=
(rj ,Atj)
(Atj ,Atj)

4. mj := mj + αjtj .

Note that αj can be written as

αj =
(rj, AMrj)

(AMrj , AMrj)
≡ (rj , Crj)

(Crj , Crj)

where

C = AM

is the preconditioned matrix at the given substep. The subscript j is now dropped to

simplify the notation. The new residual associated with the current column is given

by

rnew = r − αAt = r − αAMr ≡ r − αCr.
The orthogonality of the new residual against AMr can be used to obtain

‖rnew‖22 = ‖r‖22 − α2‖Cr‖22.
Replacing α by its value defined above we get

‖rnew‖22 = ‖r‖22

[

1−
(

(Cr, r)

‖Cr‖2‖r‖2

)2
]

.

Thus, at each inner iteration, the residual norm for the j-th column is reduced ac-

cording to the formula

‖rnew‖2 = ‖r‖2 sin∠(r, Cr) (10.58)

in which ∠(u, v) denotes the acute angle between the vectors u and v. Assume that

each column converges. Then, the preconditioned matrix C converges to the identity.

As a result of this, the angle ∠(r, Cr) will tend to ∠(r, r) = 0, and therefore the con-

vergence ratio sin∠(r, Cr) will also tend to zero, showing superlinear convergence.

Now consider equation (10.58) more carefully. Denote by R the residual matrix

R = I −AM and observe that

sin∠(r, Cr) = min
α

‖r − α Cr‖2
‖r‖2

≤ ‖r − Cr‖2
‖r‖2

≡ ‖Rr‖2‖r‖2
≤ ‖R‖2.



344 CHAPTER 10. PRECONDITIONING TECHNIQUES

This results in the following statement.

Proposition 10.13 Assume that the self preconditioned MR algorithm is employed

with one inner step per iteration and no numerical dropping. Then the 2-norm of each

residual ej −Amj of the j-th column is reduced by a factor of at least ‖I −AM‖2,

where M is the approximate inverse before the current step, i.e.,

‖rnewj ‖2 ≤ ‖I −AM‖2 ‖rj‖2. (10.59)

In addition, the residual matrices Rk = I−AMk obtained after each outer iteration

satisfy

‖Rk+1‖F ≤ ‖Rk‖2F . (10.60)

As a result, when the algorithm converges, it does so quadratically.

Proof. Inequality (10.59) was proved above. To prove quadratic convergence, first

use the inequality ‖X‖2 ≤ ‖X‖F and (10.59) to obtain

‖rnewj ‖2 ≤ ‖Rk,j‖F ‖rj‖2.

Here, the k index corresponds to the outer iteration and the j-index to the column.

Note that the Frobenius norm is reduced for each of the inner steps corresponding to

the columns, and therefore,

‖Rk,j‖F ≤ ‖Rk‖F .

This yields

‖rnewj ‖22 ≤ ‖Rk‖2F ‖rj‖22
which, upon summation over j, gives

‖Rk+1‖F ≤ ‖Rk‖2F .

This completes the proof.

Note that the above theorem does not prove convergence. It only states that when

the algorithm converges, it does so quadratically at the limit. In addition, the result

ceases to be valid in the presence of dropping.

Consider now the case of the global iteration. When self preconditioning is in-

corporated into the global MR algorithm (Algorithm 10.10), the search direction

becomes Zk =MkRk, where Rk is the current residual matrix. Then, the main steps

of the algorithm (without dropping) are as follows.

1. Rk := I −AMk

2. Zk :=MkRk

3. αk := 〈Rk,AZk〉
〈AZk,AZk〉

4. Mk+1 := Mk + αkZk
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At each step the new residual matrix Rk+1 satisfies the relation

Rk+1 = I −AMk+1 = I −A(Mk + αkZk) = Rk − αkAZk.

An important observation is that Rk is a polynomial in R0. This is because, from the

above relation,

Rk+1 = Rk−αkAMkRk = Rk−αk(I−Rk)Rk = (1−αk)Rk +αkR
2
k. (10.61)

Therefore, induction shows that Rk+1 = p2k(R0) where pj is a polynomial of degree

j. Now define the preconditioned matrices,

Bk ≡ AMk = I −Rk. (10.62)

Then, the following recurrence follows from (10.61),

Bk+1 = Bk + αkBk(I −Bk) (10.63)

and shows that Bk+1 is also a polynomial of degree 2k in B0. In particular, if the

initial B0 is symmetric, then so are all subsequent Bk’s. This is achieved when the

initial M is a multiple of AT , namely if M0 = α0A
T .

Similar to the column oriented case, when the algorithm converges it does so

quadratically.

Proposition 10.14 Assume that the self preconditioned global MR algorithm is used

without dropping. Then, the residual matrices obtained at each iteration satisfy

‖Rk+1‖F ≤ ‖R2
k‖F . (10.64)

As a result, when the algorithm converges, then it does so quadratically.

Proof. Define for any α,

R(α) = (1− α)Rk + αR2
k

Recall that αk achieves the minimum of ‖R(α)‖F over all α’s. In particular,

‖Rk+1‖F = min
α
‖R(α)‖F

≤ ‖R(1)‖F = ‖R2
k‖F (10.65)

≤ ‖Rk‖2F .

This proves quadratic convergence at the limit.

For further properties see Exercise 16.
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10.5.6 Approximate Inverses via bordering

A notable disadvantage of the right or left preconditioning approach method is that it

is difficult to assess in advance whether or not the resulting approximate inverse M is

nonsingular. An alternative would be to seek a two-sided approximation, i.e., a pair

L, U , with L lower triangular and U upper triangular, which attempts to minimize

the objective function (10.45). The techniques developed in the previous sections

can be exploited for this purpose.

In the factored approach, two matrices L and U which are unit lower and upper

triangular matrices are sought such that

LAU ≈ D

where D is some unknown diagonal matrix. When D is nonsingular and LAU = D,

then L,U are called inverse LU factors of A since in this case A−1 = UD−1L.

Once more, the matrices are built one column or row at a time. Assume as in Section

10.4.5 that we have the sequence of matrices

Ak+1 =

(
Ak vk
wk αk+1

)

in which An ≡ A. If the inverse factors Lk, Uk are available for Ak, i.e.,

LkAkUk = Dk,

then the inverse factors Lk+1, Uk+1 for Ak+1 are easily obtained by writing

(
Lk 0
−yk 1

)(
Ak vk
wk αk+1

)(
Uk −zk
0 1

)

=

(
Dk 0
0 δk+1

)

(10.66)

in which zk, yk, and δk+1 are such that

Akzk = vk (10.67)

ykAk = wk (10.68)

δk+1 = αk+1 − wkzk = αk+1 − ykvk. (10.69)

Note that the formula (10.69) exploits the fact that either the system (10.67) is solved

exactly (middle expression) or the system (10.68) is solved exactly (second expres-

sion) or both systems are solved exactly (either expression). In the realistic situation

where neither of these two systems is solved exactly, then this formula should be

replaced by

δk+1 = αk+1 − wkzk − ykvk + ykAkzk. (10.70)

The last row/column pairs of the approximate factored inverse can be obtained by

solving two sparse systems and computing a few dot products. It is interesting to

note that the only difference with the ILUS factorization seen in Section 10.4.5 is

that the coefficient matrices for these systems are not the triangular factors of Ak,

but the matrix Ak itself.
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To obtain an approximate factorization, simply exploit the fact that the Ak ma-

trices are sparse and then employ iterative solvers in sparse-sparse mode. In this

situation, formula (10.70) should be used for δk+1. The algorithm would be as fol-

lows.

ALGORITHM 10.13 Approximate Inverse Factors Algorithm

1. For k = 1, . . . , n Do:

2. Solve (10.67) approximately;

3. Solve (10.68) approximately;

4. Compute δk+1 = αk+1 − wkzk − ykvk + ykAkzk
5. EndDo

A linear system must be solved with Ak in line 2 and a linear system with AT
k in

line 3. This is a good scenario for the Biconjugate Gradient algorithm or its equiva-

lent two-sided Lanczos algorithm. In addition, the most current approximate inverse

factors can be used to precondition the linear systems to be solved in steps 2 and 3.

This was termed “self preconditioning” earlier. All the linear systems in the above

algorithm can be solved in parallel since they are independent of one another. The

diagonal D can then be obtained at the end of the process.

This approach is particularly suitable in the symmetric case. Since there is only

one factor, the amount of work is halved. In addition, there is no problem with the

existence in the positive definite case as is shown in the following lemma which states

that δk+1 is always > 0 when A is SPD, independently of the accuracy with which

the system (10.67) is solved.

Lemma 10.15 Let A be SPD. Then, the scalar δk+1 as computed by (10.70) is posi-

tive.

Proof. In the symmetric case, wk = vTk . Note that δk+1 as computed by formula

(10.70) is the (k + 1, k + 1) element of the matrix Lk+1Ak+1L
T
k+1. It is positive

because Ak+1 is SPD. This is independent of the accuracy for solving the system to

obtain zk.

In the general nonsymmetric case, there is no guarantee that δk+1 will be nonzero,

unless the systems (10.67) and (10.68) are solved accurately enough. There is no

practical problem here, since δk+1 is computable. The only question remaining is

a theoretical one: Can δk+1 be guaranteed to be nonzero if the systems are solved

with enough accuracy? Intuitively, if the system is solved exactly, then the D matrix

must be nonzero since it is equal to the D matrix of the exact inverse factors in this

case. The minimal assumption to make is that each Ak is nonsingular. Let δ∗k+1 be

the value that would be obtained if at least one of the systems (10.67) or (10.68) is

solved exactly. According to equation (10.69), in this situation this value is given by

δ∗k+1 = αk+1 − wkA
−1
k vk. (10.71)
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If Ak+1 is nonsingular, then δ∗k+1 6= 0. To see this refer to the defining equation

(10.66) and compute the product Lk+1Ak+1Uk+1 in the general case. Let rk and sk
be the residuals obtained for these linear systems, i.e.,

rk = vk −Akzk, sk = wk − ykAk. (10.72)

Then a little calculation yields

Lk+1Ak+1Uk+1 =

(
LkAkUk Lkrk
skUk δk+1

)

. (10.73)

If one of rk or sk is zero, then it is clear that the term δk+1 in the above relation be-

comes δ∗k+1 and it must be nonzero since the matrix on the left-hand side is nonsingu-

lar. Incidentally, this relation shows the structure of the last matrixLnAnUn ≡ LAU .

The components 1 to j − 1 of column j consist of the vector Ljrj , the components

1 to j − 1 of row i make up the vector skUk, and the diagonal elements are the δi’s.

Consider now the expression for δk+1 from (10.70).

δk+1 = αk+1 − wkzk − ykvk + ykAkzk

= αk+1 − wkA
−1
k (vk − rk)− (wk − sk)A−1

k vk + (vk − rk)A−1
k (wk − sk)

= αk+1 − vkA−1
k wk + rkA

−1
k sk

= δ∗k+1 + rkA
−1
k sk.

This perturbation formula is of a second order in the sense that |δk+1 − δ∗k+1| =
O(‖rk‖ ‖sk‖). It guarantees that δk+1 is nonzero whenever |rkA−1

k sk| < |δ∗k+1|.

10.5.7 Factored inverses via orthogonalization: AINV

The approximate inverse technique (AINV) described in [34, 36] computes an ap-

proximate factorization of the form W TAZ = D, where W,Z are unit upper trian-

gular matrices, and D is a diagonal. The matrices W and Z can be directly computed

by performing an approximate bi-orthogonalization of the Gram-Schmidt type. In-

deed, when A = LDU is the exact LDU factorization of A, then W should be equal

to the inverse of L and we should have the equality

W TA = DU

which means that W TA is upper triangular. This translates into the result that any

column i of W is orthogonal to the first i− 1 columns of A. A procedure to compute

W is therefore to make the i-th column of W orthogonal to the columns 1, . . . , i− 1
of A by subtracting multiples of the first i−1 columns of W . Alternatively, columns

i + 1, . . . , n of W can be made orthogonal to the first i columns of A. This will

produce columns that are orthogonal to each of the columns of A. During this pro-

cedure one can drop small entries, or entries outside a certain sparsity pattern. A

similar process can be applied to obtain the columns of Z . The resulting incom-

plete biorthogonalization process, which is sketched next, produces an approximate

factored inverse.
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ALGORITHM 10.14 Right–looking factored AINV

1. Let p = q = (0, . . . , 0) ∈ R
n, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In.

2. For k = 1, . . . , n
3. pk = wT

kAek, qk = eTkAzk
4. For i = k + 1, . . . , n
5. pi =

(
wT
i Aek

)
/pk, qi =

(
eTkAzi

)
/qk

6. Apply a dropping rule to pi, qi
7. wi = wi − wkpi, zi = zi − zkqi
8. Apply a dropping rule to wj,i and zj,i, for j = 1, . . . , i.
9. EndDo

10. EndDo

11. Choose diagonal entries of D as the components of p or q.

The above algorithm constitutes one of two options for computing factored approxi-

mate inverses via approximate orthogonalization. An alternative is based on the fact

that W TAZ should become approximately diagonal. Instead of orthogonalizing W
(resp. Z) with respect to the columns of A, a bi-orthogonalization process can be

applied to force the columns of W and Z to be conjugate with respect to A. For this

we must require that eTkW
TAZej = 0 for all k 6= j, 1 ≤ k, j ≤ i. The result will be

a simple change to Algorithm 10.14. Specifically, the second option, which we label

with a (b), replaces lines (3) and (5) into the following lines:

3a. pk = wT
k Azk, qk = wT

kAzk
5b. pi =

(
wT
i Azk

)
/pk, qi =

(
wT
k Azi

)
/qk

If no entries are dropped and if an LDU factorization ofA exists, thenW = LT , Z =
U−1. A little induction proof would then show that after step i, columns i+1, . . . , n
of W are orthogonal to column 1, . . . , i of A and likewise columns i + 1, . . . , n of

Z are orthogonal to rows 1, . . . , i of A. Remarkably, the computations of Z and W
can be performed independently of each other for the original option represented by

Algorithm 10.14.

In the original version of AINV [34, 36], dropping is performed on the vectors wi

and zi only. Dropping entries from pi, qi seems to not yield as good approximations,

see [34].

10.5.8 Improving a Preconditioner

After a computed ILU factorization results in an unsatisfactory convergence, it is

difficult to improve it by modifying the L and U factors. One solution would be to

discard this factorization and attempt to recompute a fresh one possibly with more

fill-in. Clearly, this may be a wasteful process. A better alternative is to use approx-

imate inverse techniques. Assume a (sparse) matrix M is a preconditioner to the

original matrix A, so the preconditioned matrix is

C =M−1A.
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A sparse matrix S is sought to approximate the inverse of M−1A. This matrix is

then to be used as a preconditioner to M−1A. Unfortunately, the matrix C is usually

dense. However, observe that all that is needed is a matrix S such that

AS ≈M.

Recall that the columns of A and M are sparse. One approach is to compute a

least-squares approximation in the Frobenius norm sense. This approach was used

already in Section 10.5.1 whenM is the identity matrix. Then the columns of S were

obtained by approximately solving the linear systems Asi ≈ ei. The same idea can

be applied here. Now, the systems

Asi = mi

must be solved instead, where mi is the i-th column of M which is sparse. Thus, the

coefficient matrix and the right-hand side are sparse, as before.

10.6 Reordering for ILU

The primary goal of reordering techniques (see Chapter 3) is to reduce fill-in during

Gaussian elimination. A difficulty with such methods, whether in the context of di-

rect or iterative solvers, is that a good ordering for reducing fill-in may lead to factors

of poor numerical quality. For example, very small diagonal entries may be encoun-

tered during the process. Two types of permutations are often used to enhance ILU

factorizations. First, fill-reducing symmetric permutations of the type seen in Chap-

ter 3 have been advocated. The argument here is that since these permutations are

likely to produce fewer fill-ins, it is likely that the ILU factorizations resulting from

dropping small terms will be more accurate. A second category of reorderings con-

sists of only permuting the rows of the matrix (or its columns). These unsymmetric

permutations address the other issue mentioned above, namely avoiding poor pivots

in Gaussian elimination.

10.6.1 Symmetric permutations

The Reverse Cuthill McKee ordering seen in Section 3.3.3 is among the most com-

mon techniques used to enhance the effectiveness of ILU factorizations. Recall that

this reordering is designed to reduce the envelope of a matrix. Other reorderings

that are geared specifically toward reducing fill-in, such as the minimum degree or

multiple minimum degree orderings, have also been advocated, though results re-

ported in the literature are mixed. What is clear is that the results will depend on the

accuracy of the ILU being computed. If ILU(0), or some low-fill, incomplete fac-

torization is being used, then it is often reported that it is generally not a good idea

to reorder the matrix. Among candidate permutations that can be applied, the RCM

is the most likely to yield an improvement. As the accuracy of the preconditioner

increases, i.e. as more fill-ins are allowed, then the beneficial effect of reordering
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becomes compelling. In many test, see for example [35], a preconditioner built on

an RCM or Minimum Degree reordered matrix will work while the same precondi-

tioner built from the original ordering fails. In addition, success is often achieved

with less memory than is required for the original ordering. This general observation

is illustrated in the following tests.

Example 10.6. The following experiments shows the performance of GMRES(20)

preconditioned with ILUT for the five test problems described in Section 3.7 of Chap-

ter 3. The first experiment uses ILUT (5, 0.25). Prior to performing the ILUT fac-

torization the coefficient matrix is reordered by three possible techniques: Reverse

Cuthill Mc Kee ordering (RCM), Minimum degree ordering (QMD), or Nested Dis-

section ordering (ND). The FORTRAN codes for these three techniques are those

available in the book [144]. It is now important to show the amount of memory

used by the factorization, which is measured here by the fill-factor, i.e., the ratio of

the number of nonzero elements required to store the LU factors over the original

number of nonzero elements. This is referred to as Fill in the tables. Along with

this measure, Table 10.6 shows the number of iterations required to reduce the initial

residual by a factor of 10−7 with GMRES(20). Notice that reordering does not help.

The RCM ordering is the best among the three orderings, with a performance that is

close to that of the original ordering, but it fails on the FIDAP matrix. In many other

instances we have tested, RCM does often help or its performance is close to that

achieved by the original ordering. The other reorderings, minimal degree and nested

dissection, rarely help when the factorization is inaccurate as is the case here.

None RCM QMD ND

Martix Iters Fill Iters Fill Iters Fill Iters Fill

F2DA 15 1.471 16 1.448 19 1.588 20 1.592

F3D 12 1.583 13 1.391 16 1.522 15 1.527

ORS 20 0.391 20 0.391 20 0.477 20 0.480

F2DB 21 1.430 21 1.402 41 1.546 55 1.541

FID 66 1.138 300 1.131 300 0.978 300 1.032

Table 10.6: Iteration count and fill-factor for GMRES(20) – ILUT(5,0.25) with three

different reordering techniques.

We now turn to a more accurate preconditioner, namely ILUT(10, 0.01). The

results of Table 10.7 show a different picture from the one above. All reorderings

are now basically helpful. A slight exception is the minimum degree ordering which

fails on the FIDAP matrix. However, notice that this failure can be explained by the

low fill-factor, which is the smallest achieved by all the reorderings. What is more,

good convergence of GMRES is now achieved at a lesser cost of memory.
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None RCM QMD ND

Martix Iters Fill Iters Fill Iters Fill Iters Fill

F2DA 7 3.382 6 3.085 8 2.456 9 2.555

F3D 8 3.438 7 3.641 11 2.383 10 2.669

ORS 9 0.708 9 0.699 9 0.779 9 0.807

F2DB 10 3.203 8 2.962 12 2.389 12 2.463

FID 197 1.798 38 1.747 300 1.388 36 1.485

Table 10.7: Iteration count and fill-factor for GMRES(20) – ILUT(10,0.01) with

three different reordering techniques.

If one ignores the fill-factor it may appear that RCM is best. QMD seems to be

good at reducing fill-in but results in a poor factorization. When memory cost is taken

into account the more sophisticated nested dissection ordering is the overall winner

in all cases except for the ORSIR matrix. This conclusion, namely that reordering is

most beneficial when relatively accurate factorizations are computed, is borne out by

other experiments in the literature, see, for example [35].

10.6.2 Nonsymmetric reorderings

Nonsymmetric permutations can be applied to enhance the performance of precondi-

tioners for matrices with extremely poor structure. Such techniques do not perform

too well in other situations, such as for example, for linear systems arising from the

discretization of elliptic PDEs.

The original idea on which nonsymmetric reorderings are based is to find a per-

mutation matrix Qπ, so that the matrix

B = QπA (10.74)

has large entries in its diagonal. Here π is a permutation array and Qπ the corre-

sponding permutation matrix as defined in Section 3.3. In contrast with standard

fill-reducing techniques, this is a one sided permutation which reorders the rows of

the matrix.

The first algorithm considered in this class attempts to find an ordering of the

form (10.74) which guarantees that the diagonal entries of B are nonzero. In this

case, the permutation matrix Qπ can be viewed from a new angle, that of bipartite

transverals.

A transversal or bipartite matching is a a setM of ordered pairs (i, j) such that

aij 6= 0 and the column indices j and row indices i appear only once. This corre-

sponds to selecting one nonzero diagonal element per row/column. The usual repre-
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Figure 10.17: Example of a maximum transversal. Left side: bipartite representation

of matrix. Right side: maximum transversal. Middle: matrix before and after row

reordering.

sentation uses a graph whose vertices are the rows of A (squares in Figure 10.17) and

columns of A (circle in Figure 10.17). There is an outgoing edge between a row i
and a column j when aij 6= 0. A transversal is simply a subgraph of G that is bipar-

tite. The transversal is maximum when it has maximum cardinality. For example, in

Figure 10.17 the set

M = {(1, 2), (2, 1), (3, 3), (4, 5), (5, 6), (6, 4)}

is a maximum transversal. The corresponding row permutation is π = {2, 1, 3, 6, 4, 5}
and the reordered matrix is shown in the bottom middle part of the figure.

When A is structurally nonsingular, it can be shown that the maximum transver-

sal has cardinality |M| = n. Finding the maximum transversal is a well-known

problem in management sciences and has received much attention by researchers in

graph theory. In particular, graph-traversal algorithms based on depth-first search

and breadth-first searches, have been developed to find maximum transversals.

These maximum transversal algorithms are the simplest among a class of tech-

niques. The criterion of just finding nonzero diagonal elements to put on the diagonal

is not sufficient and can be changed into one of finding a (row) permutation π so at

to

maximize

n∏

i=1

|ai,π(i)| . (10.75)

A heuristic for achieving a large product of the diagonal entries is the so-called bottle-

neck strategy whose goal is to maximize the smallest diagonal entry. The algorithm

removes enough small elements and finds a maximum transversal of the graph. If the
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transversal is not of cardinality n then the algorithm backtracks by removing fewer

of the small entries and repeating the process.

Another class of algorithms solve the optimization problem (10.75) more accu-

rately. This problem can be translated into

min
π

n∑

i=1

ci,π(i) where cij =

{
log [ ‖a:,j‖∞ / |aij | ] if aij 6= 0
+∞ otherwise

.

It is known that solving this problem is equivalent to solving its dual, which can be

formulated as follows:

max
ui,uj







n∑

i=1

ui +
n∑

j=1

uj






subject to: cij − ui − uj ≥ 0 .

The algorithms used to solve the above dual problem are based on graph theory

techniques - in fact they can be viewed as traversal algorithms (such as depth first

search) to which a cost measure is added. Details can be found in [110].

Experiments reported by Duff and Koster [110] and Benzi et al. [32] show that

nonsymmetric reorderings based on the methods discussed in this section can be

quite beneficial for those problems which are irregularly structured and have many

zero diagonal entries. On the other hand, they do not perform as well for PDE matri-

ces for which symmetric orderings are often superior.

10.7 Block Preconditioners

Block preconditioning is a popular technique for block-tridiagonal matrices arising

from the discretization of elliptic problems. It can also be generalized to other sparse

matrices. We begin with a discussion of the block-tridiagonal case.

10.7.1 Block-Tridiagonal Matrices

Consider a block-tridiagonal matrix blocked in the form

A =









D1 E2

F2 D2 E3
. . .

. . .
. . .

Fm−1 Dm−1 Em

Fm Dm









. (10.76)

One of the most popular block preconditioners used in the context of PDEs is based

on this block-tridiagonal form of the coefficient matrix A. Let D be the block-

diagonal matrix consisting of the diagonal blocksDi,L the block strictly-lower trian-

gular matrix consisting of the sub-diagonal blocks Fi, and U the block strictly-upper

triangular matrix consisting of the super-diagonal blocks Ei. Then, the above matrix

has the form

A = L+D + U.
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A block ILU preconditioner is defined by

M = (L+∆)∆−1(∆ + U), (10.77)

where L and U are the same as above, and ∆ is a block-diagonal matrix whose blocks

∆i are defined by the recurrence:

∆i = Di − FiΩi−1Ei, (10.78)

in which Ωj is some sparse approximation to ∆−1
j . Thus, to obtain a block factor-

ization, approximations to the inverses of the blocks ∆i must be found. This clearly

will lead to difficulties if explicit inverses are used.

An important particular case is when the diagonal blocks Di of the original ma-

trix are tridiagonal, while the co-diagonal blocks Ei and Fi are diagonal. Then, a

simple recurrence formula for computing the inverse of a tridiagonal matrix can be

exploited. Only the tridiagonal part of the inverse must be kept in the recurrence

(10.78). Thus,

∆1 = D1, (10.79)

∆i = Di − FiΩ
(3)
i−1Ei, i = 1, . . . ,m, (10.80)

where Ω
(3)
k is the tridiagonal part of ∆−1

k .

(Ω
(3)
k )i,j = (∆−1

k )i,j for |i− j| ≤ 1.

The following theorem can be shown.

Theorem 10.16 Let A be Symmetric Positive Definite and such that

• aii > 0, i = 1, . . . , n, and aij ≤ 0 for all j 6= i.

• The matrices Di are all (strict) diagonally dominant.

Then each block ∆i computed by the recurrence (10.79), (10.80) is a symmetric M -

matrix. In particular, M is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can be obtained. Let a

tridiagonal matrix ∆ of dimension l be given in the form

∆ =









α1 −β2
−β2 α2 −β3

. . .
. . .

. . .

−βl−1 αl−1 −βl
−βl αl









,

and let its Cholesky factorization be

∆ = LDLT ,
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with

D = diag {δi}
and

L =









1
−γ2 1

. . .
. . .

−γl−1 1
−γl 1









.

The inverse of ∆ is L−TD−1L−1. Start by observing that the inverse of LT is a unit

upper triangular matrix whose coefficients uij are given by

uij = γi+1γi+2 . . . γj−1γj for 1 ≤ i < j < l.

As a result, the j-th column cj of L−T is related to the (j− 1)-st column cj−1 by the

very simple recurrence,

cj = ej + γjcj−1, for j ≥ 2

starting with the first column c1 = e1. The inverse of ∆ becomes

∆−1 = L−TD−1L−1 =

l∑

j=1

1

δj
cjc

T
j . (10.81)

See Exercise 12 for a proof of the above equality. As noted, the recurrence formulas

for computing ∆−1 can be unstable and lead to numerical difficulties for large values

of l.

10.7.2 General Matrices

A general sparse matrix can often be put in the form (10.76) where the blocking is

either natural as provided by the physical problem, or artificial when obtained as a

result of RCMK ordering and some block partitioning. In such cases, a recurrence

such as (10.78) can still be used to obtain a block factorization defined by (10.77).

A 2-level preconditioner can be defined by using sparse inverse approximate tech-

niques to approximate Ωi. These are sometimes termed implicit-explicit precondi-

tioners, the implicit part referring to the block-factorization and the explicit part to

the approximate inverses used to explicitly approximate ∆−1
i .

10.8 Preconditioners for the Normal Equations

When the original matrix is strongly indefinite, i.e., when it has eigenvalues spread

on both sides of the imaginary axis, the usual Krylov subspace methods may fail.

The Conjugate Gradient approach applied to the normal equations may then become

a good alternative. Choosing to use this alternative over the standard methods may
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involve inspecting the spectrum of a Hessenberg matrix obtained from a small run of

an unpreconditioned GMRES algorithm.

If the normal equations approach is chosen, the question becomes how to pre-

condition the resulting iteration. An ILU preconditioner can be computed for A and

the preconditioned normal equations,

AT (LU)−T (LU)−1Ax = AT (LU)−T (LU)−1b,

can be solved. However, when A is not diagonally dominant the ILU factorization

process may encounter a zero pivot. Even when this does not happen, the result-

ing preconditioner may be of poor quality. An incomplete factorization routine with

pivoting, such as ILUTP, may constitute a good choice. ILUTP can be used to pre-

condition either the original equations or the normal equations shown above. This

section explores a few other options available for preconditioning the normal equa-

tions.

10.8.1 Jacobi, SOR, and Variants

There are several ways to exploit the relaxation schemes for the Normal Equations

seen in Chapter 8 as preconditioners for the CG method applied to either (8.1) or

(8.3). Consider (8.3), for example, which requires a procedure delivering an approx-

imation to (AAT )−1v for any vector v. One such procedure is to perform one step

of SSOR to solve the system (AAT )w = v. Denote by M−1 the linear operator that

transforms v into the vector resulting from this procedure, then the usual Conjugate

Gradient method applied to (8.3) can be recast in the same form as Algorithm 8.5.

This algorithm is known as CGNE/SSOR. Similarly, it is possible to incorporate the

SSOR preconditioning in Algorithm 8.4, which is associated with the Normal Equa-

tions (8.1), by defining M−1 to be the linear transformation that maps a vector v
into a vector w resulting from the forward sweep of Algorithm 8.2 followed by a

backward sweep. We will refer to this algorithm as CGNR/SSOR.

The CGNE/SSOR and CGNR/SSOR algorithms will not break down ifA is non-

singular, since then the matrices AAT and ATA are Symmetric Positive Definite, as

are the preconditioning matrices M . There are several variations to these algorithms.

The standard alternatives based on the same formulation (8.1) are either to use the

preconditioner on the right, solving the system ATAM−1y = b, or to split the pre-

conditioner into a forward SOR sweep on the left and a backward SOR sweep on

the right of the matrix ATA. Similar options can also be written for the Normal

Equations (8.3) again with three different ways of preconditioning. Thus, at least six

different algorithms can be defined.

10.8.2 IC(0) for the Normal Equations

The Incomplete Cholesky IC(0) factorization can be used to precondition the Normal

Equations (8.1) or (8.3). This approach may seem attractive because of the success

of incomplete factorization preconditioners. However, a major problem is that the
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Incomplete Cholesky factorization is not guaranteed to exist for an arbitrary Sym-

metric Positive Definite matrix B. All the results that guarantee existence rely on

some form of diagonal dominance. One of the first ideas suggested to handle this

difficulty was to use an Incomplete Cholesky factorization on the “shifted” matrix

B + αI . We refer to IC(0) applied to B = ATA as ICNR(0), and likewise IC(0)

applied to B = AAT as ICNE(0). Shifted variants correspond to applying IC(0) to

the shifted B matrix.
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Figure 10.18: Iteration count as a function of the shift α.

One issue often debated is how to find good values for the shift α. There is no

easy and well-founded solution to this problem for irregularly structured symmetric

sparse matrices. One idea is to select the smallest possible α that makes the shifted

matrix diagonally dominant. However, this shift tends to be too large in general

because IC(0) may exist for much smaller values of α. Another approach is to de-

termine the smallest α for which the IC(0) factorization exists. Unfortunately, this

is not a viable alternative. As is often observed, the number of steps required for

convergence starts decreasing as α increases, and then increases again. The illustra-

tion shown in Figure 10.18 is from a real example using a small Laplacean matrix.

This plot suggests that there is an optimal value for α which is far from the smallest

admissible one.

For small α, the diagonal dominance of B + αI is weak and, as a result, the

computed IC factorization is a poor approximation to the matrix B(α) ≡ B + αI .

In other words, B(α) is close to the original matrix B, but the IC(0) factorization

is far from B(α). For large α, the opposite is true. The matrix B(α) has a large

deviation from B(0), but its IC(0) factorization may be quite good. Therefore, the

general shape of the curve shown in the figure is not too surprising.

To implement the algorithm, the matrixB = AAT need not be formed explicitly.

All that is required is to be able to access one row of B at a time. This row can be

computed, used, and then discarded. In the following, the i-th row eTi A of A is

denoted by ai. The algorithm is row-oriented and all vectors denote row vectors. It
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is adapted from the ILU(0) factorization of a sparse matrix, i.e., Algorithm 10.4, but

it actually computes the LDLT factorization instead of an LU or LLT factorization.

The main difference with Algorithm 10.4 is that the loop in line 7 is now restricted

to j ≤ i because of symmetry. If only the lij elements are stored row-wise, then the

rows of U = LT which are needed in this loop are not directly available. Denote

the j-th row of U = LT by uj . These rows are accessible by adding a column data

structure for the L matrix which is updated dynamically. A linked list data structure

can be used for this purpose. With this in mind, the IC(0) algorithm will have the

following structure.

ALGORITHM 10.15 Shifted ICNE(0)

1. Initial step: Set d1 := a11 , l11 = 1
2. For i = 2, 3, . . . , n Do:

3. Obtain all the nonzero inner products

4. lij = (aj , ai), j = 1, 2, . . . , i− 1, and lii := ‖ai‖2 + α
5. Set NZ(i) ≡ {j | lij 6= 0}
6. For k = 1, . . . , i− 1 and if k ∈ NZ(i) Do:

7. Extract row uk = (Lek)
T

8. Compute lik := lik/dk
9. For j = k + 1, . . . , i and if (i, j) ∈ NZ(i) Do:

10. Compute lik := lik − lijukj
11. EndDo

12. EndDo

13. Set di := lii, lii := 1
14. EndDo

Note that initially the row u1 in the algorithm is defined as the first row of A. All

vectors in the algorithm are row vectors.

The step represented by lines 3 and 4, which computes the inner products of row

number i with all previous rows, needs particular attention. If the inner products

aT1 ai, a
T
2 ai, . . . , a

T
i−1ai

are computed separately, the total cost of the incomplete factorization would be of

the order of n2 steps and the algorithm would be of little practical value. However,

most of these inner products are equal to zero because of sparsity. This indicates that

it may be

possible to compute only those nonzero inner products at a much lower cost.

Indeed, if c is the column of the i− 1 inner products cij , then c is the product of the

rectangular (i − 1) × n matrix Ai−1 whose rows are aT1 , . . . , a
T
i−1 by the vector ai,

i.e.,

c = Ai−1ai. (10.82)

This is a sparse matrix-by-sparse vector product which was discussed in Section

10.5. It is best performed as a linear combination of the columns of Ai−1 which are
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sparse. The only difficulty with this implementation is that it requires both the row

data structure of A and of its transpose. A standard way to handle this problem is

by building a linked-list data structure for the transpose. There is a similar problem

for accessing the transpose of L, as mentioned earlier. Therefore, two linked lists

are needed: one for the L matrix and the other for the A matrix. These linked lists

avoid the storage of an additional real array for the matrices involved and simplify

the process of updating the matrix A when new rows are obtained. It is important to

note that these linked lists are used only in the preprocessing phase and are discarded

once the incomplete factorization terminates.

10.8.3 Incomplete Gram-Schmidt and ILQ

Consider a general sparse matrix A and denote its rows by a1, a2, . . . , an . The

(complete) LQ factorization of A is defined by

A = LQ,

where L is a lower triangular matrix and Q is unitary, i.e., QTQ = I . The L factor in

the above factorization is identical with the Cholesky factor of the matrix B = AAT .

Indeed, if A = LQ where L is a lower triangular matrix having positive diagonal

elements, then

B = AAT = LQQTLT = LLT .

The uniqueness of the Cholesky factorization with a factor L having positive diagonal

elements shows that L is equal to the Cholesky factor of B. This relationship can be

exploited to obtain preconditioners for the Normal Equations.

Thus, there are two ways to obtain the matrix L. The first is to form the matrix

B explicitly and use a sparse Cholesky factorization. This requires forming the data

structure of the matrix AAT , which may be much denser than A. However, reorder-

ing techniques can be used to reduce the amount of work required to compute L.

This approach is known as symmetric squaring.

A second approach is to use the Gram-Schmidt process. This idea may seem

undesirable at first because of its poor numerical properties when orthogonalizing

a large number of vectors. However, because the rows remain very sparse in the

incomplete LQ factorization (to be described shortly), any given row of A will be

orthogonal typically to most of the previous rows of Q. As a result, the Gram-

Schmidt process is much less prone to numerical difficulties. From the data structure

point of view, Gram-Schmidt is optimal because it does not require allocating more

space than is necessary, as is the case with approaches based on symmetric squaring.

Another advantage over symmetric squaring is the simplicity of the orthogonalization

process and its strong similarity with the LU factorization. At every step, a given row

is combined with previous rows and then normalized. The incomplete Gram-Schmidt

procedure is modeled after the following algorithm.

ALGORITHM 10.16 LQ Factorization of A
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1. For i = 1, . . . , n Do:

2. Compute lij := (ai, qj) , for j = 1, 2, . . . , i− 1,

3. Compute qi := ai −
∑i−1

j=1 lijqj , and lii = ‖qi‖2
4. If lii := 0 then Stop; else Compute qi := qi/lii.
5. EndDo

If the algorithm completes, then it will result in the factorization A = LQ where

the rows of Q and L are the rows defined in the algorithm. To define an incomplete

factorization, a dropping strategy similar to those defined for Incomplete LU factor-

izations must be incorporated. This can be done in very general terms as follows. Let

PL and PQ be the chosen zero patterns for the matrices L, and Q, respectively. The

only restriction on PL is that

PL ⊂ {(i, j) | i 6= j}.

As for PQ, for each row there must be at least one nonzero element, i.e.,

{j |(i, j) ∈ PQ} 6= {1, 2, . . . , n}, for i = 1, . . . , n.

These two sets can be selected in various ways. For example, similar to ILUT, they

can be determined dynamically by using a drop strategy based on the magnitude of

the elements generated. As before, xi denotes the i-th row of a matrix X and xij its

(i, j)-th entry.

ALGORITHM 10.17 Incomplete Gram-Schmidt

1. For i = 1, . . . , n Do:

2. Compute lij := (ai, qj) , for j = 1, 2, . . . , i− 1,
3. Replace lij by zero if (i, j) ∈ PL

4. Compute qi := ai −
∑i−1

j=1 lijqj ,

5. Replace each qij, j = 1, . . . , n by zero if (i, j) ∈ PQ

6. lii := ‖qi‖2
7. If lii = 0 then Stop; else compute qi := qi/lii.
8. EndDo

We recognize in line 2 the same practical problem encountered in the previous

section for IC(0) for the Normal Equations. It can be handled in the same manner.

Thus, the row structures of A, L, and Q are needed, as well as a linked list for the

column structure of Q.

After the i-th step is performed, the following relation holds:

qi = liiqi + ri = ai −
j−1
∑

j=1

lijqj

or

ai =

j
∑

j=1

lijqj + ri (10.83)
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where ri is the row of elements that have been dropped from the row qi in line 5. The

above equation translates into

A = LQ+R (10.84)

where R is the matrix whose i-th row is ri, and the notation for L and Q is as before.

The case where the elements in Q are not dropped, i.e., the case when PQ is the

empty set, is of particular interest. Indeed, in this situation, R = 0 and we have

the exact relation A = LQ. However, Q is not unitary in general because elements

are dropped from L. If at a given step lii = 0, then (10.83) implies that ai is a

linear combination of the rows q1, . . ., qj−1. Each of these qk is, inductively, a

linear combination of a1, . . . ak. Therefore, ai would be a linear combination of the

previous rows, a1, . . . , ai−1 which cannot be true if A is nonsingular. As a result, the

following proposition can be stated.

Proposition 10.17 If A is nonsingular and PQ = ∅, then the Algorithm 10.17 com-

pletes and computes an incomplete LQ factorization A = LQ, in which Q is nonsin-

gular and L is a lower triangular matrix with positive elements.

A major problem with the decomposition (10.84) is that the matrix Q is not orthogo-

nal in general. In fact, nothing guarantees that it is even nonsingular unless Q is not

dropped or the dropping strategy is made tight enough.

Because the matrix L of the complete LQ factorization of A is identical with the

Cholesky factor of B, one might wonder why the IC(0) factorization of B does not

always exist while the ILQ factorization seems to always exist. In fact, the relation-

ship between ILQ and ICNE, i.e., the Incomplete Cholesky for B = AAT , can lead

to a more rigorous way of choosing a good pattern for ICNE, as is explained next.

We turn our attention to Modified Gram-Schmidt. The only difference is that the

row qj is updated immediately after an inner product is computed. The algorithm is

described without dropping for Q for simplicity.

ALGORITHM 10.18 Incomplete Modified Gram-Schmidt

1. For i = 1, . . . , n Do:

2. qi := ai
3. For j = 1, . . . , i− 1, Do:

4. Compute lij :=

{
0 if (i, j) ∈ PL

(qi, qj) otherwise
5. Compute qi := qi − lijqj .
6. EndDo

7. lii := ‖qi‖2
8. If lii = 0 then Stop; else Compute qi := qi/lii.
9. EndDo

When A is nonsingular, the same result as before is obtained if no dropping

is used on Q, namely, that the factorization will exist and be exact in that A =
LQ. Regarding the implementation, if the zero pattern PL is known in advance,

the computation of the inner products in line 4 does not pose a particular problem.
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Without any dropping in Q, this algorithm may be too costly in terms of storage. It

is interesting to see that this algorithm has a connection with ICNE, the incomplete

Cholesky applied to the matrix AAT . The following result is stated without proof.

Theorem 10.18 Let A be an n × m matrix and let B = AAT . Consider a zero-

pattern set PL which is such that for any 1 ≤ i, j, k ≤ n, with i < j and i < k, the

following holds:

(i, j) ∈ PL and (i, k) /∈ PL → (j, k) ∈ PL.

Then the matrix L obtained from Algorithm 10.18 with the zero-pattern set PL is

identical with the L factor that would be obtained from the Incomplete Cholesky

factorization applied to B with the zero-pattern set PL.

For a proof, see [304]. This result shows how a zero-pattern can be defined which

guarantees the existence of an Incomplete Cholesky factorization on AAT .

PROBLEMS

P-10.1 Assume that A is the Symmetric Positive Definite matrix arising from the 5-point

finite difference discretization of the Laplacean on a given mesh. We reorder the matrix using

the red-black ordering and obtain the reordered matrix

B =

(
D1 E
ET D2

)

.

We then form the Incomplete Cholesky factorization on this matrix.

a. Show the fill-in pattern for the IC(0) factorization for a matrix of size n = 12 associated

with a 4× 3 mesh.

b. Show the nodes associated with these fill-ins on the 5-point stencil in the finite differ-

ence mesh.

c. Give an approximate count of the total number of fill-ins when the original mesh is

square, with the same number of mesh points in each direction. How does this compare

with the natural ordering? Any conclusions?

P-10.2 Consider a 6× 6 tridiagonal nonsingular matrix A.

a. What can be said about its ILU(0) factorization (when it exists)?

b. Suppose that the matrix is permuted (symmetrically, i.e., both rows and columns) using

the permutation

π = [1, 3, 5, 2, 4, 6].

(i) Show the pattern of the permuted matrix.

(ii) Show the locations of the fill-in elements in the ILU(0) factorization.

(iii) Show the pattern of the ILU(1) factorization as well as the fill-ins generated.

(iv) Show the level of fill of each element at the end of the ILU(1) process (in-

cluding the fill-ins).

(v) What can be said of the ILU(2) factorization for this permuted matrix?
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P-10.3 Assume that A is the matrix arising from the 5-point finite difference discretization

of an elliptic operator on a given mesh. We reorder the original linear system using the

red-black ordering and obtain the reordered linear system

(
D1 E
F D2

) (
x1
x2

)

=

(
b1
b2

)

.

a. Show how to obtain a system (called the reduced system) which involves the variable

x2 only.

b. Show that this reduced system is also a sparse matrix. Show the stencil associated

with the reduced system matrix on the original finite difference mesh and give a graph-

theory interpretation of the reduction process. What is the maximum number of nonzero

elements in each row of the reduced system.

P-10.4 It was stated in Section 10.3.2 that for some specific matrices the ILU(0) factoriza-

tion of A can be put in the form

M = (D − E)D−1(D − F )

in which −E and −F are the strict-lower and -upper parts of A, respectively.

a. Characterize these matrices carefully and give an interpretation with respect to their

adjacency graphs.

b. Verify that this is true for standard 5-point matrices associated with any domain Ω.

c. Is it true for 9-point matrices?

d. Is it true for the higher level ILU factorizations?

P-10.5 LetA be a pentadiagonal matrix having diagonals in offset positions−m,−1, 0, 1,m.

The coefficients in these diagonals are all constants: a for the main diagonal and -1 for all

others. It is assumed that a ≥
√
8. Consider the ILU(0) factorization of A as given in the

form (10.20). The elements di of the diagonalD are determined by a recurrence of the form

(10.19).

a. Show that a
2 < di ≤ a for i = 1, . . . , n.

b. Show that di is a decreasing sequence. [Hint: Use induction].

c. Prove that the formal (infinite) sequence defined by the recurrence converges. What is

its limit?

P-10.6 Consider a matrix A which is split in the form A = D0 − E − F , where D0 is a

block diagonal matrix whose block-diagonal entries are the same as those of A, and where

−E is strictly lower triangular and −F is strictly upper triangular. In some cases the block

form of the ILU(0) factorization can be put in the form (Section 10.3.2):

M = (D − E)D−1(D − F ).

The block entries of D can be defined by a simple matrix recurrence. Find this recurrence

relation. The algorithm may be expressed in terms of the block entries the matrix A.

P-10.7 Generalize the formulas developed at the end of Section 10.7.1 for the inverses of

symmetric tridiagonal matrices, to the nonsymmetric case.

P-10.8 Develop recurrence relations for Incomplete Cholesky with no fill-in (IC(0)), for

5-point matrices, similar to those seen in Section 10.3.4 for ILU(0). Same question for IC(1).
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P-10.9 What becomes of the formulas seen in Section 10.3.4 in the case of a 7-point ma-

trix (for three-dimensional problems)? In particular, can the ILU(0) factorization be cast in

the form (10.20) in which −E is the strict-lower diagonal of A and −F is the strict upper

triangular part of A, and D is a certain diagonal?

P-10.10 Consider an arbitrary matrix A which is split in the usual manner as A = D0 −
E − F , in which −E and −F are the strict-lower and -upper parts of A, respectively, and

define, for any diagonal matrix D, the approximate factorization of A given by

M = (D − E)D−1(D − F ).

Show how a diagonal D can be determined such that A and M have the same diagonal

elements. Find a recurrence relation for the elements of D. Consider now the symmetric

case and assume that the matrix D which is positive can be found. Write M in the form

M = (D1/2 − ED−1/2)(D1/2 − ED−1/2)T ≡ L1L
T
1 .

What is the relation between this matrix and the matrix of the SSOR(ω) preconditioning, in

the particular case when D−1/2 = ωI? Conclude that this form of ILU factorization is in

effect an SSOR preconditioning with a different relaxation factor ω for each equation.

P-10.11 Consider a general sparse matrix A (irregularly structured). We seek an approxi-

mate LU factorization of the form

M = (D − E)D−1(D − F )

in which −E and −F are the strict-lower and -upper parts of A, respectively. It is assumed

that A is such that

aii > 0, aijaji ≥ 0 for i, j = 1, . . . , n.

a. By identifying the diagonal elements of A with those of M , derive an algorithm for

generating the elements of the diagonal matrix D recursively.

b. Establish that if dj > 0 for j<i then di ≤ aii. Is it true in general that dj>0 for all j?

c. Assume that for i = 1, . . . , j−1 we have di ≥ α>0. Show a sufficient condition under

which dj ≥ α. Are there cases in which this condition cannot be satisfied for any α?

d. Assume now that all diagonal elements of A are equal to a constant, i.e., ajj = a for

j = 1, . . . , n. Define α ≡ a
2 and let

Sj ≡
j−1
∑

i=1

aijaji, σ ≡ max
j=1,...,n

Sj .

Show a condition on σ under which dj ≥ α, j = 1, 2, . . . , n.

P-10.12 Show the second part of (10.81). [Hint: Exploit the formula ABT =
∑n

j=1 ajb
T
j

where aj, bj are the j-th columns of A and B, respectively].

P-10.13 Let a preconditioning matrixM be related to the original matrixA byM = A+E,

in which E is a matrix of rank k.

a. Assume that both A and M are Symmetric Positive Definite. How many steps at most

are required for the preconditioned Conjugate Gradient method to converge when M
is used as a preconditioner?
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b. Answer the same question for the case when A and M are nonsymmetric and the full

GMRES is used on the preconditioned system.

P-10.14 Formulate the problem for finding an approximate inverse M to a matrix A as a

large n2×n2 linear system. What is the Frobenius norm in the space in which you formulate

this problem?

P-10.15 The concept of mask is useful in the global iteration technique. For a sparsity

pattern S, i.e., a set of pairs (i, j) and a matrixB, we define the productC = B⊙S to be the

matrix whose elements cij are zero if (i, j) does not belong to S, and bij otherwise. This is

called a mask operation since its effect is to ignore every value not in the pattern S. Consider

a global minimization of the function FS(M) ≡ ‖S ⊙ (I −AM)‖F .

a. What does the result of Proposition 10.9 become for this new objective function?

b. Formulate an algorithm based on a global masked iteration, in which the mask is fixed

and equal to the pattern of A.

c. Formulate an algorithm in which the mask is adapted at each outer step. What criteria

would you use to select the mask?

P-10.16 Consider the global self preconditioned MR iteration algorithm seen in Section 10.5.5.

Define the acute angle between two matrices as

cos∠(X,Y ) ≡ 〈X,Y 〉
‖X‖F‖Y ‖F

.

a. Following what was done for the (standard) Minimal Residual algorithm seen in Chap-

ter 5, establish that the matrices Bk = AMk and Rk = I − Bk produced by global

MR without dropping are such that

‖Rk+1‖F ≤ ‖Rk‖F sin∠(Rk, BkRk).

b. Let now M0 = αAT so that Bk is symmetric for all k (see Section 10.5.5). Assume

that, at a given step k the matrix Bk is positive definite. Show that

cos∠(Rk, BkRk) ≥
λmin(Bk)

λmax(Bk)

in which λmin(Bk) and λmax(Bk) are, respectively, the smallest and largest eigenval-

ues of Bk.

P-10.17 In the two-sided version of approximate inverse preconditioners, the option of min-

imizing

f(L,U) = ‖I − LAU‖2F
was mentioned, where L is unit lower triangular and U is upper triangular.

a. What is the gradient of f(L,U)?

b. Formulate an algorithm based on minimizing this function globally.

P-10.18 Consider the two-sided version of approximate inverse preconditioners, in which a

unit lower triangularL and an upper triangularU are sought so that LAU ≈ I . One idea is to

use an alternating procedure in which the first half-step computes a right approximate inverse

U to LA, which is restricted to be upper triangular, and the second half-step computes a left

approximate inverse L to AU , which is restricted to be lower triangular.



10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 367

a. Consider the first half-step. Since the candidate matrix U is restricted to be upper

triangular, special care must be exercised when writing a column-oriented approximate

inverse algorithm. What are the differences with the standard MR approach described

by Algorithm 10.12?

b. Now consider seeking an upper triangular matrix U such that the matrix (LA)U is

close to the identity only in its upper triangular part. A similar approach is to be taken

for the second half-step. Formulate an algorithm based on this approach.

P-10.19 Write all six variants of the preconditioned Conjugate Gradient algorithm applied

to the Normal Equations, mentioned at the end of Section 10.8.1.

P-10.20 With the standard splitting A = D − E − F , in which D is the diagonal of A
and −E,−F its lower- and upper triangular parts, respectively, we associate the factored

approximate inverse factorization,

(I + ED−1)A(I +D−1F ) = D +R. (10.85)

a. Determine R and show that it consists of second order terms, i.e., terms involving

products of at least two matrices from the pair E,F .

b. Now use the previous approximation for D +R ≡ D1 − E1 − F1,

(I + E1D
−1
1 )(D +R)(I +D−1

1 F1) = D1 +R1.

Show how the approximate inverse factorization (10.85) can be improved using this

new approximation. What is the order of the resulting approximation?

NOTES AND REFERENCES. The idea of transforming a linear system into one that is easier to solve by

iterations was known quite early on. In a 1937 paper, Cesari [71], proposed what is now known as poly-

nomial preconditioning (see also [43, p.156] where this is discussed). Other forms of preconditioning

were also exploited in some earlier papers. For example, in [11] Axelsson discusses SSOR iteration,

“accelerated” by either the Conjugate Gradient or Chebyshev acceleration. Incomplete factorizations

were also discussed quite early, for example, by Varga [292] and Buleev [68]. The breakthrough article

by Meijerink and van der Vorst [208] established existence of the incomplete factorization for M -

matrices and showed that preconditioning the Conjugate Gradient by using an incomplete factorization

can result in an extremely efficient combination. This article played an essential role in directing the

attention of researchers and practitioners to a rather important topic and marked a turning point. Many

of the early techniques were developed for regularly structured matrices. The generalization, using the

definition of level of fill for high-order Incomplete LU factorizations for unstructured matrices, was

introduced by Watts [306] for petroleum engineering problems.

Recent research on iterative techniques has focussed on preconditioning methods while the impor-

tance of accelerators has diminished. Preconditioners are essential to the success of iterative methods

in real-life applications. A general preconditioning approach based on modifying a given direct solver

by including dropping was one of the first “general-purpose” that was proposed [212, 221, 325, 137].

More economical alternatives, akin to ILU(p), were developed later [249, 97, 96, 314, 323, 245].

ILUT and ILUTP are relatively robust and efficient but they can nonetheless fail. Instances can also

encountered when a more accurate ILUT factorization leads to a larger number of steps to converge.

One source of failure is the instability of the preconditioning operation. These phenomena of instability

have been studied by Elman [116] who proposed a detailed analysis of ILU and MILU precondition-

ers for model problems. The theoretical analysis on ILUT stated as Theorem 10.8 is modeled after

Theorem 1.14 in Axelsson and Barker [15] for ILU(0).

Some theory for block preconditioners is discussed in the book by O. Axelsson [14]. Different

forms of block preconditioners were developed independently by Axelsson, Brinkkemper, and Il’in

[16] and by Concus, Golub, and Meurant [89], initially for block matrices arising from PDEs in two di-

mensions. Later, some generalizations were proposed by Kolotina and Yeremin [191]. Thus, the 2-level
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implicit-explicit preconditioning introduced in [191] consists of using sparse inverse approximations to

∆−1
i for obtaining Ωi.

The rebirth of approximate inverse preconditioners [158, 91, 191, 159, 34, 157, 33, 80, 78] has

been spurred both by considerations related to parallel processing and the relative ineffectiveness of

standard ILU preconditioners in dealing with highly indefinite matrices. Other preconditioners which

are not covered here are those based on domain decomposition techniques. Some of these techniques

will be reviewed in Chapter 14.

The primary motivation for the Crout version of ILU is the overhead in ILUT due to the search

for the leftmost pivot. The idea of exploiting condition number estimators in this context has been

motivated by compelling results in Bollhöefer’s work [44].

The effect of reordering on incomplete factorizations has been a subject of debate among re-

searchers but the problem is still not well understood. What experience shows is that some of the better

reordering techniques used for sparse direct solutions methods do not necessarily perform well for ILU

[35, 64, 111, 112, 96, 97, 265]. As could be expected when fill-in is increased to high levels, then the

effect of reordering starts resembling that of direct solvers. A rule of thumb is that the reversed Cuthill-

McKee ordering does quite well on average. It appears that orderings that take into account the values

of the matrix can perform better, but these may be expensive [87, 96, 97]. The use of nonsymmetric

orderings as a means of enhancing robustness of ILU has been proposed in recent articles by Duff and

Koster [109, 110]. The algorithms developed in this context are rather complex but lead to remarkable

improvements, especially for matrices with very irregular patterns.

The saddle-point point problem is a classic example of what can be achieved by a preconditioner

developed by exploiting the physics versus a general purpose preconditioner. An ILUT factorization

for the saddle point problem may work if a high level of fill is used. However, this usually results in

poor performance. A better performance can be obtained by exploiting information about the original

problem, see for example, [152, 305, 264, 118, 119].

On another front, there is also some interest in methods that utilize normal equations in one way

or another. Earlier, ideas revolved around shifting the matrix B = ATA before applying the IC(0) fac-

torization as was suggested by Kershaw [187] in 1978. Manteuffel [206] also made some suggestions

on how to select a good α in the context of the CGW algorithm. Currently, new ways of exploiting the

relationship with the QR (or LQ) factorization to define IC(0) more rigorously are being explored; see

the work in [304]. Preconditioning normal equations remains a difficult problem.



Chapter 11

PARALLEL IMPLEMENTATIONS

Parallel computing has recently gained widespread acceptance as a means of handling very large

computational tasks. Since iterative methods are appealing for large linear systems of equations,

it is no surprise that they are the prime candidates for implementations on parallel architectures.

There have been two traditional approaches for developing parallel iterative techniques thus far.

The first extracts parallelism whenever possible from standard algorithms. The advantage of

this viewpoint is that it is easier to understand in general since the underlying method has not

changed from its sequential equivalent. The second approach is to develop alternative algorithms

which have enhanced parallelism. This chapter will give an overview of implementations and will

emphasize methods in the first category. The later chapters will consider alternative algorithms

that have been developed specifically for parallel computing environments.

11.1 Introduction

Because of the increased importance of three-dimensional models and the high cost

associated with sparse direct methods for solving these problems, iterative techniques

play a major role in application areas. The main appeal of iterative methods is their

low storage requirement. Another advantage is that they are far easier to implement

on parallel computers than sparse direct methods because they only require a rather

small set of computational kernels. Increasingly, direct solvers are being used in

conjunction with iterative solvers to develop robust preconditioners.

The first considerations for high-performance implementations of iterative meth-

ods involved implementations on vector computers. These efforts started in the mid

1970s when the first vector computers appeared. Currently, there is a larger effort

to develop new practical iterative methods that are not only efficient in a parallel en-

vironment, but also robust. Often, however, these two requirements seem to be in

conflict.

This chapter begins with a short overview of the various ways in which paral-

lelism has been exploited in the past and a description of the current architectural

models for existing commercial parallel computers. Then, the basic computations

required in Krylov subspace methods will be discussed along with their implemen-

369
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tations.

11.2 Forms of Parallelism

Parallelism has been exploited in a number of different forms since the first com-

puters were built. The six major forms of parallelism are: (1) multiple functional

units; (2) pipelining; (3) vector processing; (4) multiple vector pipelines; (5) mul-

tiprocessing; and (6) distributed computing. Next is a brief description of each of

these approaches.

11.2.1 Multiple Functional Units

This is one of the earliest forms of parallelism. It consists of multiplying the number

of functional units such as adders and multipliers. Thus, the control units and the

registers are shared by the functional units. The detection of parallelism is done

at compilation time with a “Dependence Analysis Graph,” an example of which is

shown in Figure 11.1.

+

+ +

a b * *

c d e f

Figure 11.1: Dependence analysis for arithmetic expression: (a+b)+(c∗d+d∗e).

In the example of Figure 11.1, the two multiplications can be performed simulta-

neously, then the two additions in the middle are performed simultaneously. Finally,

the addition at the root is performed.

11.2.2 Pipelining

The pipelining concept is essentially the same as that of an assembly line used in

car manufacturing. Assume that an operation takes s stages to complete. Then the

operands can be passed through the s stages instead of waiting for all stages to be

completed for the first two operands.

✲

✲
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yi−3

✲

stage 1

xi−2
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✲
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If each stage takes a time τ to complete, then an operation with n numbers will

take the time sτ + (n− 1)τ = (n+ s− 1)τ . The speed-up would be the ratio of the

time to complete the s stages in a non-pipelined unit versus, i.e., s× n× τ , over the

above obtained time,

S =
ns

n+ s− 1
.

For large n, this would be close to s.

11.2.3 Vector Processors

Vector computers appeared in the beginning of the 1970s with the CDC Star 100

and then the CRAY-1 and Cyber 205. These are computers which are equipped with

vector pipelines, i.e., pipelined functional units, such as a pipelined floating-point

adder, or a pipelined floating-point multiplier. In addition, they incorporate vector

instructions explicitly as part of their instruction sets. Typical vector instructions are,

for example:

VLOAD To load a vector from memory to a vector register

VADD To add the content of two vector registers

VMUL To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalar machines, vector pipelines

can be duplicated to take advantage of any fine grain parallelism available in loops.

For example, the Fujitsu and NEC computers tend to obtain a substantial portion of

their performance in this fashion. There are many vector operations that can take

advantage of multiple vector pipelines.

11.2.4 Multiprocessing and Distributed Computing

A multiprocessor system is a computer, or a set of several computers, consisting

of several processing elements (PEs), each consisting of a CPU, a memory, an I/O

subsystem, etc. These PEs are connected to one another with some communication

medium, either a bus or some multistage network. There are numerous possible

configurations, some of which will be covered in the next section.

Distributed computing is a more general form of multiprocessing, in which the

processors are actually computers linked by some Local Area Network. Currently,

there are a number of libraries that offer communication mechanisms for exchanging

messages between Unix-based systems. The best known of these are the Parallel

Virtual Machine (PVM) and the Message Passing Interface (MPI). In heterogeneous

networks of computers, the processors are separated by relatively large distances and

that has a negative impact on the performance of distributed applications. In fact,

this approach is cost-effective only for large applications, in which a high volume of

computation can be performed before more data is to be exchanged.

11.3 Types of Parallel Architectures

There are currently three leading architecture models. These are:
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• The shared memory model.

• SIMD or data parallel models.

• The distributed memory message passing model.

A brief overview of the characteristics of each of the three groups follows. Empha-

sis is on the possible effects these characteristics have on the implementations of

iterative methods.

11.3.1 Shared Memory Computers

A shared memory computer has the processors connected to a large global memory

with the same global view, meaning the address space is the same for all processors.

One of the main benefits of shared memory models is that access to data depends

very little on its location in memory. In a shared memory environment, transparent

data access facilitates programming to a great extent. From the user’s point of view,

data are stored in a large global memory that is readily accessible to any processor.

However, memory conflicts as well as the necessity to maintain data coherence can

lead to degraded performance. In addition, shared memory computers cannot easily

take advantage of data locality in problems which have an intrinsically local nature,

as is the case with most discretized PDEs. Some current machines have a physically

distributed memory but they are logically shared, i.e., each processor has the same

view of the global address space.

P P P P P

SHARED MEMORY

HIGH SPEED BUS
❄ ❄ ❄ ❄ ❄✻ ✻ ✻ ✻ ✻

✻ ✻ ✻ ✻ ✻❄ ❄ ❄ ❄ ❄

Figure 11.2: A bus-based shared memory computer.

P P P P P P P P

SWITCHING NETWORK

M M M M M M M M

Figure 11.3: A switch-based shared memory computer.

There are two possible implementations of shared memory machines: (1) bus-

based architectures, and (2) switch-based architecture. These two model architec-
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tures are illustrated in Figure 11.2 and Figure 11.3, respectively. So far, shared mem-

ory computers have been implemented more often with buses than with switching

networks.

Buses are the backbone for communication between the different units of most

computers. Physically, a bus is nothing but a bundle of wires, made of either fiber

or copper. These wires carry information consisting of data, control signals, and

error correction bits. The speed of a bus, often measured in Megabytes per second

and called the bandwidth of the bus, is determined by the number of lines in the bus

and the clock rate. Often, the limiting factor for parallel computers based on bus

architectures is the bus bandwidth rather than the CPU speed.

The primary reason why bus-based multiprocessors are more common than switch-

based ones is that the hardware involved in such implementations is simple. On the

other hand, the difficulty with bus-based machines is that the number of processors

which can be connected to the memory will be small in general. Typically, the bus is

timeshared, meaning slices of time are allocated to the different clients (processors,

IO processors, etc.) that request its use.

In a multiprocessor environment, the bus can easily be saturated. Several reme-

dies are possible. The first, and most common, remedy is to attempt to reduce traffic

by adding local memories or caches attached to each processor. Since a data item

used by a given processor is likely to be reused by the same processor in the next

instructions, storing the data item in local memory will help reduce traffic in general.

However, this strategy causes some difficulties due to the requirement to maintain

data coherence. If Processor (A) reads some data from the shared memory, and Pro-

cessor (B) modifies the same data in shared memory, immediately after, the result is

two copies of the same data that have different values. A mechanism should be put in

place to ensure that the most recent update of the data is always used. The additional

overhead incurred by such memory coherence operations may well offset the savings

involving memory traffic.

The main features here are the switching network and the fact that a global mem-

ory is shared by all processors through the switch. There can be p processors on one

side connected to p memory units or banks on the other side. Alternative designs

based on switches connect p processors to each other instead of p memory banks.

The switching network can be a crossbar switch when the number of processors is

small. A crossbar switch is analogous to a telephone switch board and allows p
inputs to be connected to m outputs without conflict. Since crossbar switches for

large numbers of processors are typically expensive they are replaced by multistage

networks. Signals travel across a small number of stages consisting of an array of

elementary switches, e.g., 2× 2 or 4× 4 switches.

There have been two ways of exploiting multistage networks. In circuit switch-

ing networks, the elementary switches are set up by sending electronic signals across

all of the switches. The circuit is set up once in much the same way that telephone

circuits are switched in a switchboard. Once the switch has been set up, communi-
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cation between processors P1, . . . , Pn is open to the memories

Mπ1 ,Mπ2 , . . . ,Mπn ,

in which π represents the desired permutation. This communication will remain

functional for as long as it is not reset. Setting up the switch can be costly, but once it

is done, communication can be quite fast. In packet switching networks, a packet of

data will be given an address token and the switching within the different stages will

be determined based on this address token. The elementary switches have to provide

for buffering capabilities, since messages may have to be queued at different stages.

11.3.2 Distributed Memory Architectures

The distributed memory model refers to the distributed memory message passing ar-

chitectures as well as to distributed memory SIMD computers. A typical distributed

memory system consists of a large number of identical processors which have their

own memories and which are interconnected in a regular topology. Examples are de-

picted in Figures 11.4 and 11.5. In these diagrams, each processor unit can be viewed

actually as a complete processor with its own memory, CPU, I/O subsystem, control

unit, etc. These processors are linked to a number of “neighboring” processors which

in turn are linked to other neighboring processors, etc. In “Message Passing” mod-

els there is no global synchronization of the parallel tasks. Instead, computations

are data driven because a processor performs a given task only when the operands

it requires become available. The programmer must program all the data exchanges

explicitly between processors.

P1

P2

P3

P4

P5

P6

P7

P8

Figure 11.4: An eight-processor ring (left) and a 4× 4 multiprocessor mesh (right).

In SIMD designs, a different approach is used. A host processor stores the pro-

gram and each slave processor holds different data. The host then broadcasts in-

structions to processors which execute them simultaneously. One advantage of this

approach is that there is no need for large memories in each node to store large pro-

grams since the instructions are broadcast one by one to all processors.

Distributed memory computers can exploit locality of data in order to keep com-

munication costs to a minimum. Thus, a two-dimensional processor grid such as
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the one depicted in Figure 11.4 is perfectly suitable for solving discretized elliptic

Partial Differential Equations (e.g., by assigning each grid point to a corresponding

processor) because some iterative methods for solving the resulting linear systems

will require only interchange of data between adjacent grid points. A good general

purpose multiprocessor must have powerful mapping capabilities because it should

be capable of easily emulating many of the common topologies such as 2-D and 3-D

grids or linear arrays, FFT-butterflies, finite element meshes, etc.

Three-dimensional configurations have also been popular.

10 11

010010
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111
110

100

010 011

001000

Figure 11.5: The n-cubes of dimensions n = 1, 2, 3.

Hypercubes are highly concurrent multiprocessors based on the binary n-cube topol-

ogy which is well known for its rich interconnection capabilities. A parallel processor

based on the n-cube topology, called a hypercube hereafter, consists of 2n identical

processors, interconnected with n neighbors. A 3-cube can be represented as an ordi-

nary cube in three dimensions where the vertices are the 8 = 23 nodes of the 3-cube;

see Figure 11.5. More generally, one can construct an n-cube as follows: First, the

2n nodes are labeled by the 2n binary numbers from 0 to 2n−1. Then a link between

two nodes is drawn if and only if their binary numbers differ by one (and only one)

bit.

An n-cube graph can be constructed recursively from lower dimensional cubes.

More precisely, consider two identical (n−1)-cubes whose vertices are labeled like-

wise from 0 to 2n−1. By joining every vertex of the first (n − 1)-cube to the vertex

of the second having the same number, one obtains an n-cube. Indeed, it suffices to

renumber the nodes of the first cube as 0 ∧ ai and those of the second as 1 ∧ ai
where ai is a binary number representing the two similar nodes of the (n− 1)-cubes

and where ∧ denotes the concatenation of binary numbers.

Distributed memory computers come in two different designs, namely, SIMD

and MIMD. Many of the early projects have adopted the SIMD organization. For

example, the historical ILLIAC IV Project of the University of Illinois was a machine

based on a mesh topology where all processors execute the same instructions.

SIMD distributed processors are sometimes called array processors because of

the regular arrays that they constitute. In this category, systolic arrays can be clas-

sified as an example of distributed computing. Systolic arrays, which popular in the



376 CHAPTER 11. PARALLEL IMPLEMENTATIONS

1980s, are organized in connected cells, which are programmed (possibly micro-

coded) to perform only one of a few operations. All the cells are synchronized and

perform the same task. Systolic arrays are designed in VLSI technology and are

meant to be used for special purpose applications, primarily in signal processing.

In the last few years, parallel computing technologies have seen a healthy matu-

ration. Currently, the architecture of choice is the distributed memory machine using

message passing. There is no doubt that this is due to the availability of excellent

communication software, such the Message Passing Interface (MPI), see [156]. In

addition, the topology

is often hidden from the user, so there is no need to code communication on

specific configurations such as hypercubes. Since this mode of computing has pen-

etrated the applications areas, and industrial applications it is likely to remain for

some time.

11.4 Types of Operations

Now consider two prototype Krylov subspace techniques, namely, the precondi-

tioned Conjugate Gradient method for the symmetric case and the preconditioned

GMRES algorithm for the nonsymmetric case. It should be emphasized that all

Krylov subspace techniques require the same basic operations.

Consider Algorithm 9.1. The first step when implementing this algorithm on a

high-performance computer is identifying the main operations that it requires. We

distinguish five types of operations, which are: (1) Preconditioner setup; (2) Matrix

vector multiplications; (3) Vector updates; (4) Dot products; and (5) Preconditioning

operations. In this list the potential bottlenecks are (1), setting up the preconditioner

and (5), solving linear systems with M , i.e., the preconditioning operation. Section

11.6 discusses the implementation of traditional preconditioners, and the last two

chapters are devoted to preconditioners that are specialized to parallel environments.

Next come the matrix-by-vector products which deserve particular attention. The

rest of the algorithm consists essentially of dot products and vector updates which

do not cause significant difficulties in parallel machines, although inner products can

lead to some loss of efficiency on certain types of computers with large numbers of

processors.

If we now consider the GMRES algorithm, the only new operation here with

respect to the Conjugate Gradient method is the orthogonalization of the vector Avi
against the previous v’s. The usual way to accomplish this is via the modified Gram-

Schmidt process, which is basically a sequence of subprocesses of the form:

• Compute α = (y, v).

• Compute ŷ := y − αv.

This orthogonalizes a vector y against another vector v of norm one. Thus, the outer

loop of the modified Gram-Schmidt is sequential, but the inner loop, i.e., each sub-

process, can be parallelized by dividing the inner product and SAXPY operations
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among processors. Although this constitutes a perfectly acceptable approach for a

small number of processors, the elementary subtasks may be too small to be efficient

on a large number of processors. An alternative for this case is to use a standard

Gram-Schmidt process with reorthogonalization. This replaces the previous sequen-

tial orthogonalization process by a matrix operation of the form ŷ = y−V V T y, i.e.,

BLAS-1 kernels are replaced by BLAS-2 kernels.

Recall that the next level of BLAS, i.e., level 3 BLAS, exploits blocking in

dense matrix operations in order to obtain performance on machines with hierarchi-

cal memories. Unfortunately, level 3 BLAS kernels cannot be exploited here because

at every step, there is only one vector to orthogonalize against all previous ones. This

may be remedied by using block Krylov methods.

Vector operations, such as linear combinations of vectors and dot-products are

usually the simplest to implement on any computer. In shared memory computers,

compilers are capable of recognizing these operations and invoking the appropriate

machine instructions, possibly vector instructions. We consider now these operations

in turn.

Vector Updates Operations of the form

y(1:n) = y(1:n) + a * x(1:n),

where a is a scalar and y and x two vectors, are known as vector updates or SAXPY

operations. They are typically straightforward to implement in all three machine

models discussed earlier. For example, the above FORTRAN-90 code segment can

be used on most shared memory (’symmetric multiprocessing’) and the compiler will

translate it into the proper parallel version.

On distributed memory computers, some assumptions must be made about the

way in which the vectors are distributed. The main assumption is that the vectors x
and y are distributed in the same manner among the processors, meaning the indices

of the components of any vector that are mapped to a given processor are the same.

In this case, the vector-update operation will be translated into p independent vector

updates, requiring no communication. Specifically, if nloc is the number of variables

local to a given processor, this processor will simply execute a vector loop of the form

y(1:nloc) = y(1:nloc) + a * x(1:nloc)

and all processors will execute a similar operation simultaneously.

Dot products A number of operations use all the components of a given vector to

compute a single floating-point result which is then needed by all processors. These

are termed Reduction Operations and the dot product is the prototype example. A

distributed version of the dot-product is needed to compute the inner product of two

vectors x and y that are distributed the same way across the processors. In fact,

to be more specific, this distributed dot-product operation should compute the inner

product t = xT y of these two vectors and then make the result t available in each
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processor. Typically, this result is needed to perform vector updates or other opera-

tions in each node. For a large number of processors, this sort of operation can be

demanding in terms of communication costs. On the other hand, parallel computer

designers have become aware of their importance and are starting to provide hard-

ware and software support for performing global reduction operations efficiently.

Reduction operations that can be useful include global sums, global max/min cal-

culations, etc. A commonly adopted convention provides a single subroutine for all

these operations, and passes the type of operation to be performed (add, max, min,

multiply,. . . ) as one of the arguments. With this in mind, a distributed dot-product

function can be programmed roughly as follows (using C syntax).

tloc = DDOT(nrow, x, incx, y, incy);

MPI\_Allreduce(\&t, \&tsum, 1, MPI\_DOUBLE, MPI\_SUM, comm);

The function DDOT performs the usual BLAS-1 dot product of x and y with strides

incx and incy, respectively. The MPI Allreduce operation, which is called with

“MPI SUM” as the operation-type parameter, sums all the variables “tloc” from each

processor and put the resulting global sum in the variable tsum in each processor.

11.5 Matrix-by-Vector Products

Matrix-by-vector multiplications (sometimes called “Matvecs” for short) are rela-

tively easy to implement efficiently on high performance computers. For a descrip-

tion of storage formats for sparse matrices, see Chapter 3. We will first discuss

matrix-by-vector algorithms without consideration of sparsity. Then we will cover

sparse Matvec operations for a few different storage formats.

The computational kernels for performing sparse matrix operations such as matrix-

by-vector products are intimately associated with the data structures used. How-

ever, there are a few general approaches that are common to different algorithms for

matrix-by-vector products which can be described for dense matrices. Two popu-

lar ways of performing these operations are the inner product form and the SAXPY

form. In the inner product form for computing y = Ax, the component yi is obtained

as a dot-product of the i-th row of i and the vector x. The SAXPY form computes

y as a linear combination of the columns of A, specifically as the sum of xiA:,i for

i = 1, . . . , n. A third option consists of performing the product by diagonals. This

option bears no interest in the dense case, but it is at the basis of many important

matrix-by-vector algorithms in the sparse case as will be seen shortly.

11.5.1 The CSR and CSC Formats

Recall that the CSR data-structure seen in Chapter 3 consists of three arrays: a real

array A(1:nnz) to store the nonzero elements of the matrix row-wise, an integer array

JA(1:nnz) to store the column positions of the elements in the real array A, and,

finally, a pointer array IA(1:n+1), the i-th entry of which points to the beginning of

the i-th row in the arrays A and JA. To perform the matrix-by-vector product y = Ax
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in parallel using this format, note that each component of the resulting vector y can

be computed independently as the dot product of the i-th row of the matrix with the

vector x.

ALGORITHM 11.1 CSR Format – Dot Product Form

1. Do i = 1, n

2. k1 = ia(i)

3. k2 = ia(i+1)-1

4. y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))

5. EndDo

Line 4 computes the dot product of the vector with components a(k1), a(k1+1), · · ·,
a(k2) with the vector with components x(ja(k1)), x(ja(k1+1)), · · ·, x(ja(k2)).

The fact that the outer loop can be performed in parallel can be exploited on

any parallel platform. On some shared-memory machines, the synchronization of

this outer loop is inexpensive and the performance of the above program can be

excellent. On distributed memory machines, the outer loop can be split in a number

of steps to be executed on each processor. Thus, each processor will handle a few

rows that are assigned to it. It is common to assign a certain number of rows (often

contiguous) to each processor and to also assign the component of each of the vectors

similarly. The part of the matrix that is needed is loaded in each processor initially.

When performing a matrix-by-vector product, interprocessor communication will be

necessary to get the needed components of the vector x that do not reside in a given

processor. This important case will return in Section 11.5.5.

+

+

+

+

DotProduct

Gather 

*

x(*)   a(i,*) 

x(1:n) 

y(i) 

Figure 11.6: Illustration of the row-oriented matrix-by-vector multiplication.

The indirect addressing involved in the second vector in the dot product is called

a gather operation. The vector x(ja(k1:k2)) is first “gathered” from memory into

a vector of contiguous elements. The dot product is then carried out as a standard

dot-product operation between two dense vectors. This is illustrated in Figure 11.6.

Now assume that the matrix is stored by columns (CSC format). The matrix-by-

vector product can be performed by the following algorithm.

ALGORITHM 11.2 CSC Format – SAXPY Form
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1. y(1:n) = 0.0

2. Do i = 1, n

3. k1 = ia(i)

4. k2 = ia(i + 1)-1

5. y(ja(k1:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)

6. EndDo

The above code initializes y to zero and then adds the vectors x(j) × a(1 : n, j)
for j = 1, . . . , n to it. It can also be used to compute the product of the transpose

of a matrix by a vector, when the matrix is stored (row-wise) in the CSR format.

Normally, the vector y(ja(k1:k2)) is gathered and the SAXPY operation is performed

in vector mode. Then the resulting vector is “scattered” back into the positions ja(*),

by what is called a Scatter operation. This is illustrated in Figure 11.7.

A major difficulty with the above FORTRAN program is that it is intrinsically

sequential. First, the outer loop is not parallelizable as it is, but this may be remedied

as will be seen shortly. Second, the inner loop involves writing back results of the

right-hand side into memory positions that are determined by the indirect address

function ja. To be correct, y(ja(1)) must be copied first, followed by y(ja(2)), etc.

However, if it is known that the mapping ja(i) is one-to-one, then the order of the

assignments no longer matters. Since compilers are not capable of deciding whether

this is the case, a compiler directive from the user is necessary for the Scatter to be

invoked.

Going back to the outer loop, p subsums can be computed (independently) into

p separate temporary vectors. Once all the p separate subsums are completed, these

these p temporary vectors can be added to obtain the final result. Note that the final

sum incurs some additional work but it is highly vectorizable and parallelizable.
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Figure 11.7: Illustration of the column-oriented matrix-by-vector multiplication.

11.5.2 Matvecs in the Diagonal Format

The diagonal storage format was one of the first data structures used in the context

of high performance computing to take advantage of special sparse structures. Often,

sparse matrices consist of a small number of diagonals in which case the matrix-by-
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vector product can be performed by diagonals. There are again different variants of

Matvec algorithms for the diagonal format, related to different orderings of the loops

in the basic FORTRAN program. Recall that the matrix is stored in a rectangular

array diag(1:n,1:ndiag) and the offsets of these diagonals from the main diagonal

may be stored in a small integer array offset(1:ndiag). Consider a “dot-product”

variant first.

ALGORITHM 11.3 DIA Format – Dot Product Form

1. Do i = 1, n

2. tmp = 0.0d0

3. Do j = 1, ndiag

4. tmp = tmp + diag(i,j)*x(i+offset(j))

5. EndDo

6. y(i) = tmp

7. EndDo

In a second variant, the vector y is initialized to zero, and then x is multiplied by

each of the diagonals and the separate results are added to y. The innermost loop in

this computation is sometimes called a Triad operation.

ALGORITHM 11.4 Matvec in Triad Form

1. y = 0.0d0

2. Do j = 1, ndiag

3. joff = offset(j)

4. i1 = max(1, 1-offset(j))

5. i2 = min(n, n-offset(j))

6. y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)

7. EndDo

Good speeds can be reached on vector machines for large enough matrices. A

drawback with diagonal schemes is that it are not general. For general sparse ma-

trices, we can either generalize the diagonal storage scheme or reorder the matrix in

order to obtain a diagonal structure. The simplest generalization is the Ellpack-Itpack

Format.

11.5.3 The Ellpack-Itpack Format

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maxi-

mum number of nonzeros per row, jmax, is small. The nonzero entries are stored in

a real array ae(1:n,1:jmax). Along with this is integer array jae(1:n,1:jmax) which

stores the column indices of each corresponding entry in ae. Similar to the diagonal

scheme, there are also two basic ways of implementing a matrix-by-vector product

when using the Ellpack format. We begin with an analogue of Algorithm 11.3.
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ALGORITHM 11.5 Ellpack Format – Dot-Product Form

1. Do i = 1, n

2. yi = 0

3. Do j = 1, ncol

4. yi = yi + ae(i,j) * x(jae(i,j))

5. EndDo

6. y(i) = yi

7. EndDo

If the number of nonzero elements per row varies substantially, many zero ele-

ments must be stored unnecessarily. Then the scheme becomes inefficient. As an

extreme example, if all rows are very sparse except for one of them which is full,

then the arrays ae, jae must be full n × n arrays, containing mostly zeros. This is

remedied by a variant of the format which is called the jagged diagonal format.

11.5.4 The Jagged Diagonal Format

The Jagged Diagonal (JAD) format can be viewed as a generalization of the Ellpack-

Itpack format which removes the assumption on the fixed length rows. To build the

jagged diagonal structure, start from the CSR data structure and sort the rows of the

matrix by decreasing number of nonzero elements. To build the first “j-diagonal”

extract the first element from each row of the CSR data structure. The second jagged

diagonal consists of the second elements of each row in the CSR data structure.

The third, fourth, . . ., jagged diagonals can then be extracted in the same fashion.

The lengths of the successive j-diagonals decreases. The number of j-diagonals that

can be extracted is equal to the number of nonzero elements of the first row of the

permuted matrix, i.e., to the largest number of nonzero elements per row. To store

this data structure, three arrays are needed: a real array DJ to store the values of

the jagged diagonals, the associated array JDIAG which stores the column positions

of these values, and a pointer array IDIAG which points to the beginning of each

j-diagonal in the DJ, JDIAG arrays.

Example 11.1. Consider the following matrix and its sorted version PA:

A =









1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









→ PA =









3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
1. 0. 2. 0. 0.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









The rows of PA have been obtained from those of A by sorting them by number

of nonzero elements, from the largest to the smallest number. Then the JAD data

structure for A is as follows:
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DJ 3. 6. 1. 9. 11. 4. 7. 2. 10. 12. 5. 8.

JDIAG 1 2 1 3 4 2 3 3 4 5 4 5

IDIAG 1 6 11 13

Thus, there are two j-diagonals of full length (five) and one of length two.

A matrix-by-vector product with this storage scheme can be performed by the

following code segment.

1. Do j=1, ndiag

2. k1 = idiag(j)

3. k2 = idiag(j+1) – 1

4. len = idiag(j+1) – k1

5. y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))

6. EndDo

Since the rows of the matrix A have been permuted, the above code will compute

PAx, a permutation of the vector Ax, rather than the desired Ax. It is possible

to permute the result back to the original ordering after the execution of the above

program. This operation can also be performed until the final solution has been

computed, so that only two permutations on the solution vector are needed, one at the

beginning and one at the end. For preconditioning operations, it may be necessary to

perform a permutation before or within each call to the preconditioning subroutines.

There are many possible variants of the jagged diagonal format. One variant which

does not require permuting the rows is described in Exercise 8.

11.5.5 The Case of Distributed Sparse Matrices

Given a sparse linear system to be solved on a distributed memory environment, it is

natural to map pairs of equations-unknowns to the same processor in a certain prede-

termined way. This mapping can be determined automatically by a graph partitioner

or it can be assigned ad hoc from knowledge of the problem. Without any loss of

generality, the matrix under consideration can be viewed as originating from the dis-

cretization of a Partial Differential Equation on a certain domain. This is illustrated

in Figure 11.8. Assume that each subgraph (or subdomain, in the PDE literature)

is assigned to a different processor, although this restriction can be relaxed, i.e., a

processor can hold several subgraphs to increase parallelism.

A local data structure must be set up in each processor (or subdomain, or sub-

graph) which will allow the basic operations such as (global) matrix-by-vector prod-

ucts and preconditioning operations to be performed efficiently. The only assumption

to make regarding the mapping is that if row number i is mapped into processor p,

then so is the unknown i, i.e., the matrix is distributed row-wise across the processors

according to the distribution of the variables. The graph is assumed to be undirected,

i.e., the matrix has a symmetric pattern.
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Figure 11.8: Decomposition of physical domain or adjacency graph and the local

data structure.

It is important to “preprocess the data” in order to facilitate the implementation

of the communication tasks and to gain efficiency during the iterative process. The

preprocessing requires setting up the following: information in each processor.

1. List of processors with which communication will take place. These are called

“neighboring processors” although they may not be physically nearest neigh-

bors.

2. List of local nodes that are coupled with external nodes. These are the local

interface nodes.

3. Local representation of the distributed matrix in each processor.

To perform a matrix-by-vector product with the global matrix A, the matrix con-

sisting of rows that are local to a given processor must be multiplied by some global

vector v. Some components of this vector will be local, and some components must

be brought from external processors. These external variables correspond to inter-

face points belonging to adjacent subdomains. When performing a matrix-by-vector

product, neighboring processors must exchange values of their adjacent interface

nodes.

LetAloc be the local part of the matrix, i.e., the (rectangular) matrix consisting of

all the rows that are mapped to myproc. Call Aloc the “diagonal block” of A located

in Aloc, i.e., the submatrix of Aloc whose nonzero elements aij are such that j is

a local variable. Similarly, call Bext the “offdiagonal” block, i.e., the submatrix of
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Aloc whose nonzero elements aij are such that j is not a local variable. To perform

a matrix-by-vector product, start multiplying the diagonal block Aloc by the local

variables. Then, multiply the external variables by the sparse matrix Bext. Notice

that since the external interface points are not coupled with local internal points, only

the rows nint + 1 to nnloc in the matrix Bext will have nonzero elements.

Thus, the matrix-by-vector product can be separated into two such operations,

one involving only the local variables and the other involving external variables. It is

necessary to construct these two matrices and define a local numbering of the local

variables in order to perform the two matrix-by-vector products efficiently each time.

To perform a global matrix-by-vector product, with the distributed data structure

described above, each processor must perform the following operations. First, multi-

ply the local variables by the matrix Aloc. Second, obtain the external variables from

the neighboring processors in a certain order. Third, multiply these by the matrix

Bext and add the resulting vector to the one obtained from the first multiplication by

Aloc. Note that the first and second steps can be done in parallel.

B
ext

Internal

points

Local

interface

points 

+

A
loc

Figure 11.9: The local matrices and data structure associated with each subdomain.

With this decomposition, the global matrix-by-vector product can be imple-

mented as indicated in Algorithm 11.6 below. In what follows, xloc is a vector of

variables that are local to a given processor. The components corresponding to the

local interface points (ordered to be the last components in xloc for convenience) are

called xbnd. The external interface points, listed in a certain order, constitute a vector

which is called xext. The matrix Aloc is a sparse nloc×nloc matrix representing the

restriction of A to the local variables xloc. The matrix Bext operates on the external

variables xext to give the correction which must be added to the vector Alocxloc in

order to obtain the desired result (Ax)loc.

ALGORITHM 11.6 Distributed Sparse Matrix Product Kernel

1. Exchange interface data, i.e.,

2. Scatter xbnd to neighbors and

3. Gather xext from neighbors

4. Do Local Matvec: y = Alocxloc
5. Do External Matvec: y = y +Bextxext
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An important observation is that the matrix-by-vector products in lines 4 and 5 can

use any convenient data structure that will improve efficiency by exploiting knowl-

edge on the local architecture. An example of the implementation of this operation

is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,iout)

y(1:nloc) = 0.0

call amux1 (nloc,x,y,aloc,jaloc,ialoc)

nrow = nloc – nbnd + 1

call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

The only routine requiring communication is bdxchg whose purpose is to ex-

change interface values between nearest neighbor processors. The first call to amux1

performs the operation y := y + Alocxloc, where y has been initialized to zero prior

to the call. The second call to amux1 performs y := y + Bextxext. Notice that the

data for the matrix Bext is simply appended to that of Aloc, a standard technique

used for storing a succession of sparse matrices. The Bext matrix acts only on the

subvector of x which starts at location nbnd of x. The size of the Bext matrix is

nrow = nloc− nbnd+ 1.

11.6 Standard Preconditioning Operations

Each preconditioned step requires the solution of a linear system of equations o the

form Mz = y. This section only considers those traditional preconditioners, such

as ILU or SOR or SSOR, in which the solution with M is the result of solving tri-

angular systems. Since these are commonly used, it is important to explore ways to

implement them efficiently in a parallel environment. It is also important to stress

that the techniques to be described in this section are mostly useful on shared mem-

ory computers. Distributed memory computers utilize different strategies. We only

consider lower triangular systems of the form

Lx = b. (11.1)

Without loss of generality, it is assumed that L is unit lower triangular.

11.6.1 Parallelism in Forward Sweeps

Typically in solving a lower triangular system, the solution is overwritten onto the

right-hand side on return. In other words, there is one array x for both the solution

and the right-hand side. Therefore, the forward sweep for solving a lower triangular

system with coefficients al(i, j) and right-hand-side x is as follows.

ALGORITHM 11.7 Sparse Forward Elimination

1. Do i=2, n

2. For (all j such that al(i,j) is nonzero) Do:
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3. x(i) := x(i) – al(i,j) * x(j)

4. EndDo

5. EndDo

Assume that the matrix is stored row wise in the general Compressed Sparse Row

(CSR) format, except that the diagonal elements (ones) are not stored. Then the

above algorithm translates into the following code segment:

1. Do i=2, n

2. Do j=ial(i), ial(i+1) – 1

3. x(i)=x(i) – al(j) * x(jal(j))

4. EndDo

5. EndDo

The outer loop corresponding to the variable i is sequential. The j loop is a sparse

dot product of the ith row of L and the (dense) vector x. This dot product may be split

among the processors and the partial results may be added at the end. However, the

length of the vector involved in the dot product is typically short. So, this approach

is quite inefficient in general. We examine next a few alternative approaches. The

regularly structured and the irregularly structured cases are treated separately.

11.6.2 Level Scheduling: the Case of 5-Point Matrices

First, consider an example which consists of a 5-point matrix associated with a 4× 3
mesh as represented in Figure 11.10. The lower triangular matrix associated with

this mesh is represented in the left side of Figure 11.10. The stencil represented in

the right side of Figure 11.10 establishes the data dependence between the unknowns

in the lower triangular system solution when considered from the point of view of a

grid of unknowns. It tells us that in order to compute the unknown in position (i, j),
only the two unknowns in positions (i−1, j) and (i, j−1) are needed . The unknown

x11 does not depend on any other variable and can be computed first. Then the value

of x11 can be used to get x1,2 and x2,1 simultaneously. Then these two values will

in turn enable x3,1, x2,2 and x1,3 to be obtained simultaneously, and so on. Thus, the

computation can proceed in wavefronts.

The steps for this wavefront algorithm are shown with dashed lines in Figure

11.10. Observe that the maximum degree of parallelism (or vector length, in the case

of vector processing) that can be reached is the minimum of nx, ny, the number of

mesh points in the x and y directions, respectively, for 2-D problems.

For 3-D problems, the parallelism is of the order of the maximum size of the sets

of domain points xi,j,k, where i+ j+k = lev, a constant level lev. It is important to

note that there is little parallelism or vectorization at the beginning and at the end of

the sweep. The degree of parallelism is equal to one initially, and then increases by

one for each wave reaching its maximum, and then decreasing back down to one at

the end of the sweep. For example, for a 4× 3 grid, the levels (sets of equations that

can be solved in parallel) are {1}, {2, 5}, {3, 6, 9}, {4, 7, 10}, {8, 11}, and finally

{12}. The first and last few steps may take a heavy toll on achievable speed-ups.
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Figure 11.10: Level scheduling for a 4× 3 grid problem.

The idea of proceeding by levels or wavefronts is a natural one for finite differ-

ence matrices on rectangles. Discussed next is the more general case of irregular

matrices, a textbook example of scheduling, or topological sorting, it is well known

in different forms to computer scientists.

11.6.3 Level Scheduling for Irregular Graphs

The simple scheme described above can be generalized for irregular grids. The ob-

jective of the technique, called level scheduling, is to group the unknowns in subsets

so that they can be determined simultaneously. To explain the idea, consider again

Algorithm 11.7 for solving a unit lower triangular system. The i-th unknown can be

determined once all the other ones that participate in equation i become available.

In the i-th step, all unknowns j that al(i, j) 6= 0 must be known. To use graph

terminology, these unknowns are adjacent to unknown number i. Since L is lower

triangular, the adjacency graph is a directed acyclic graph. The edge j → i in the

graph simply indicates that xj must be known before xi can be determined. It is

possible and quite easy to find a labeling of the nodes that satisfy the property that

if label(j) < label(i), then task j must be executed before task i. This is called a

topological sorting of the unknowns.

The first step computes x1 and any other unknowns for which there are no prede-

cessors in the graph, i.e., all those unknowns xi for which the offdiagonal elements

of row i are zero. These unknowns will constitute the elements of the first level. The

next step computes in parallel all those unknowns that will have the nodes of the first

level as their (only) predecessors in the graph. The following steps can be defined

similarly: The unknowns that can be determined at step l are all those that have as

predecessors equations that have been determined in steps 1, 2, . . . , l− 1. This leads

naturally to the definition of a depth for each unknown. The depth of a vertex is de-

fined by performing the following loop for = 1, 2, . . . , n, after initializing depth(j)
to zero for all j.

depth(i) = 1 + max
j
{depth(j), for all j such that al(i, j) 6= 0}.
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By definition, a level of the graph is the set of nodes with the same depth. A data

structure for the levels can be defined: A permutation q(1 : n) defines the new

ordering and level(i), i = 1, · · · , nlev+1 points to the beginning of the i-th level in

that array.

Natural ordering Wavefront ordering

Figure 11.11: Lower triangular matrix associated with mesh of Figure 11.10.

Once these level sets are found, there are two different ways to proceed. The

permutation vector q can be used to permute the matrix according to the new order.

In the 4× 3 example mentioned in the previous subsection, this means renumbering

the variables {1}, {2, 5}, {3, 6, 9}, . . ., consecutively, i.e., as {1, 2, 3, . . .}. The re-

sulting matrix after the permutation is shown in the right side of Figure 11.11. An

alternative is simply to keep the permutation array and use it to identify unknowns

that correspond to a given level in the solution. Then the algorithm for solving the

triangular systems can be written as follows, assuming that the matrix is stored in the

usual row sparse matrix format.

ALGORITHM 11.8 Forward Elimination with Level Scheduling

1. Do lev=1, nlev

2. j1 = level(lev)

3. j2 = level(lev+1) – 1

4. Do k = j1, j2

5. i = q(k)

6. Do j= ial(i), ial(i+1) – 1

7. x(i) = x(i) – al(j) * x(jal(j))

8. EndDo

9. EndDo

10. EndDo

An important observation here is that the outer loop, which corresponds to a

level, performs an operation of the form

x := x−Bx
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where B is a submatrix consisting only of the rows of level lev, and excluding the

diagonal elements. This operation can in turn be optimized by using a proper data

structure for these submatrices.

For example, the JAD data structure can be used. The resulting performance can

be quite good. On the other hand, implementation can be quite involved since two

embedded data structures are required.

Example 11.2. Consider a finite element matrix obtained from the example shown

in Figure 3.1. After an additional level of refinement, done in the same way as was

described in Chapter 3, the resulting matrix, shown in the left part of Figure 11.12,

is of size n = 145. In this case, 8 levels are obtained. If the matrix is reordered by

levels, the matrix shown in the right side of the figure results. The last level consists

of only one element.

Natural ordering Level-Scheduling ordering

Figure 11.12: Lower-triangular matrix associated with a finite element matrix and its

level-ordered version.

PROBLEMS

P-11.1 Give a short answer to each of the following questions:

a. What is the main disadvantage of shared memory computers based on a bus architec-

ture?

b. What is the main factor in yielding the speed-up in pipelined processors?

c. Related to the previous question: What is the main limitation of pipelined processors

in regards to their potential for providing high speed-ups?

P-11.2 Show that the number of edges in a binary n-cube is n2n−1.

P-11.3 Show that a binary 4-cube is identical with a torus which is a 4 × 4 mesh with

wrap-around connections. Are there hypercubes of any other dimensions that are equivalent

topologically to toruses?
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P-11.4 A Gray code of length k = 2n is a sequence a0, . . . , ak−1 of n-bit binary numbers

such that (a) any two successive numbers in the sequence differ by one and only one bit; (b)

all n-bit binary numbers are represented in the sequence; and (c) a0 and ak−1 differ by one

bit.

a. Find a Gray code sequence of length k = 8 and show the (closed) path defined by

the sequence of nodes of a 3-cube, whose labels are the elements of the Gray code

sequence. What type of paths does a Gray code define in a hypercube?

b. To build a “binary reflected” Gray code, start with the trivial Gray code sequence con-

sisting of the two one-bit numbers 0 and 1. To build a two-bit Gray code, take the same

sequence and insert a zero in front of each number, then take the sequence in reverse

order and insert a one in front of each number. This gives G2 = {00, 01, 11, 10}.
The process is repeated until an n-bit sequence is generated. Show the binary reflected

Gray code sequences of length 2, 4, 8, and 16. Prove (by induction) that this process

does indeed produce a valid Gray code sequence.

c. Let an n-bit Gray code be given and consider the sub-sequence of all elements whose

first bit is constant (e.g., zero). Is this an n − 1 bit Gray code sequence? Generalize

this to any of the n-bit positions. Generalize further to any set of k < n bit positions.

d. Use the previous question to find a strategy to map a 2n1 × 2n2 mesh into an (n1+n2)-
cube.

P-11.5 Consider a ring of k processors which are characterized by the following communi-

cation performance characteristics. Each processor can communicate with its two neighbors

simultaneously, i.e., it can send or receive a message while sending or receiving another mes-

sage. The time for a message of lengthm to be transmitted between two nearest neighbors is

of the form

β +mτ.

a. A message of lengthm is “broadcast” to all processors by sending it from P1 to P2 and

then from P2 to P3, etc., until it reaches all destinations, i.e., until it reaches Pk. How

much time does it take for the message to complete this process?

b. Now split the message into packets of equal size and pipeline the data transfer. Typi-

cally, each processor will receive packet number i from the previous processor, while

sending packet i − 1 it has already received to the next processor. The packets will

travel in chain from P1 to P2, . . ., to Pk . In other words, each processor executes a

program that is described roughly as follows:

Do i=1, Num\_packets

Receive Packet number i from Previous Processor

Send Packet number i to Next Processor

EndDo

There are a few additional conditionals. Assume that the number of packets is equal to

k− 1. How much time does it take for all packets to reach all k processors? How does

this compare with the simple method in (a)?

P-11.6 (a) Write a short FORTRAN routine (or C function) which sets up the level number

of each unknown of an upper triangular matrix. The input matrix is in CSR format and the

output should be an array of length n containing the level number of each node. (b) What

data structure should be used to represent levels? Without writing the code, show how to

determine this data structure from the output of your routine. (c) Assuming the data structure



392 CHAPTER 11. PARALLEL IMPLEMENTATIONS

of the levels has been determined, write a short FORTRAN routine (or C function) to solve

an upper triangular system using the data structure resulting in the previous question. Show

clearly which loop should be executed in parallel.

P-11.7 In the jagged diagonal format described in Section 11.5.4, it is necessary to pre-

process the matrix by sorting its rows by decreasing number of rows. What type of sorting

should be used for this purpose?

P-11.8 In the jagged diagonal format described in Section 11.5.4, the matrix had to be

preprocessed by sorting it by rows of decreasing number of elements.

a. What is the main reason it is necessary to reorder the rows?

b. Assume that the same process of extracting one element per row is used. At some point

the extraction process will come to a stop and the remainder of the matrix can be put

into a CSR data structure. Write down a good data structure to store the two pieces of

data and a corresponding algorithm for matrix-by-vector products.

c. This scheme is efficient in many situations but can lead to problems if the first row is

very short. Suggest how to remedy the situation by padding with zero elements, as is

done for the Ellpack format.

P-11.9 Many matrices that arise in PDE applications have a structure that consists of a few

diagonals and a small number of nonzero elements scattered irregularly in the matrix. In

such cases, it is advantageous to extract the diagonal part and put the rest in a general sparse

(e.g., CSR) format. Write a pseudo-code to extract the main diagonals and the sparse part.

As input parameter, the number of diagonals desired must be specified.

NOTES AND REFERENCES. General recommended reading on parallel computing are the books

by Kumar et al. [194]. Foster [131], and Wilkinson and Allen [316]. Trends in high-performance

architectures seem to come and go rapidly. In the 80s, it seemed that the paradigm of shared memory

computers with massive parallelism and coarse grain parallelism was sure to win in the long run. Then,

a decade ago massive parallelism of the SIMD type dominated the scene for while, with hypercube

topologies at the forefront. Thereafter, computer vendors started mixing message-passing paradigms

with “global address space”. Currently, it appears that distributed heteregenous computing will be

dominating the high-performance computing scene for some time to come. Another recent development

is the advent of network computing or grid-computing.

Until the advent of supercomputing in the mid 1970s, storage schemes for sparse matrices were

chosen mostly for convenience as performance was not an issue, in general. The first paper showing the

advantage of diagonal storage schemes in sparse matrix computations is probably [184]. The discovery

by supercomputer manufacturers of the specificity of sparse matrix computations was the painful real-

ization that without hardware support, vector computers could be inefficient. Indeed, the early vector

machines (CRAY) did not have hardware instructions for gather and scatter operations but this was

soon remedied in the second-generation machines. For a detailed account of the beneficial impact of

hardware for “scatter” and “gather” on vector machines, see [201].

Level scheduling is a textbook example of topological sorting in graph theory and was discussed

from this viewpoint in, e.g., [8, 258, 318]. For the special case of finite difference matrices on rectan-

gular domains, the idea was suggested by several authors independently, [288, 289, 155, 252, 10]. In

fact, the level scheduling approach described in this chapter is a “greedy” approach and is unlikely to

be optimal. It may be preferable to use a backward scheduling [7] which define the levels from bottom

up in the graph. Thus, the last level consists of the leaves of the graph, the previous level consists of

their predecessors, etc. Instead of static scheduling, it is also possible to perform a dynamic scheduling

whereby the order of the computation is determined at run-time. The advantage over pre-scheduled

triangular solutions is that it allows processors to always execute a task as soon as its predecessors have

been completed, which reduces idle time. Some of the earlier references on implementations and tests

wih level-scheduling are [30, 257, 165, 30, 37, 7, 8, 294, 296].



Chapter 12

PARALLEL PRECONDITIONERS

This chapter covers a few alternative methods for preconditioning a linear system. These

methods are suitable when the desired goal is to maximize parallelism. The simplest approach is

the diagonal (or Jacobi) preconditioning. Often, this preconditioner is not very useful, since the

number of iterations of the resulting iteration tends to be much larger than the more standard

variants, such as ILU or SSOR. When developing parallel preconditioners, one should beware that

the benefits of increased parallelism are not outweighed by the increased amount of computations.

The main question to ask is whether or not it is possible to find preconditioning techniques that

have a high degree of parallelism, as well as good intrinsic qualities.

12.1 Introduction

As seen in the previous chapter, a limited amount of parallelism can be extracted

from the standard preconditioners such as ILU and SSOR. Fortunately, a number

of alternative techniques can be developed that are specifically targeted at parallel

environments. These are preconditioning techniques that would normally not be used

on a standard machine, but only for parallel computers. There are at least three such

types of techniques discussed in this chapter. The simplest approach is to use a Jacobi

or, even better, a block Jacobi approach. In the simplest case, a Jacobi preconditioner

may consist of the diagonal or a block-diagonal ofA. To enhance performance, these

preconditioners can themselves be accelerated by polynomial iterations, i.e., a second

level of preconditioning called polynomial preconditioning.

A different strategy altogether is to enhance parallelism by using graph theory

algorithms, such as graph-coloring techniques. These consist of coloring nodes such

that two adjacent nodes have different colors. The gist of this approach is that all

unknowns associated with the same color can be determined simultaneously in the

forward and backward sweeps of the ILU preconditioning operation.

Finally, a third strategy uses generalizations of “partitioning” techniques, which

can be put in the general framework of “domain decomposition” approaches. These

will be covered in detail in the next chapter.

Algorithms are emphasized rather than implementations. There are essentially

two types of algorithms, namely, those which can be termed coarse-grain and those

which can be termed fine-grain. In coarse-grain algorithms, the parallel tasks are

relatively big and may, for example, involve the solution of small linear systems.

393
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In fine-grain parallelism, the subtasks can be elementary floating-point operations

or consist of a few such operations. As always, the dividing line between the two

classes of algorithms is somewhat blurred.

12.2 Block-Jacobi Preconditioners

Overlapping block-Jacobi preconditioning consists of a general block-Jacobi ap-

proach as described in Chapter 4, in which the sets Si overlap. Thus, we define

the index sets

Si = {j | li ≤ j ≤ ri}
with

l1 = 1

rp = n

ri > li+1, 1 ≤ i ≤ p− 1

where p is the number of blocks. Now use the block-Jacobi method with this partic-

ular partitioning, or employ the general framework of additive projection processes

of Chapter 5, and use an additive projection method onto the sequence of subspaces

Ki = span{Vi}, Vi = [eli , eli+1, . . . , eri ].

Each of the blocks will give rise to a correction of the form

ξ
(k+1)
i = ξ

(k)
i +A−1

i V T
i (b−Ax(k)). (12.1)

One problem with the above formula is related to the overlapping portions of the x
variables. The overlapping sections will receive two different corrections in general.

According to the definition of “additive projection processes” seen in Chapter 5, the

next iterate can be defined as

xk+1 = xk +

p
∑

i=1

ViA
−1
i V T

i rk

where rk = b − Axk is the residual vector at the previous iteration. Thus, the

corrections for the overlapping regions simply are added together. It is also possible

to weigh these contributions before adding them up. This is equivalent to redefining

(12.1) into

ξ
(k+1)
i = ξ

(k)
i +DiA

−1
i V T

i (b−Axk)
in which Di is a nonnegative diagonal matrix of weights. It is typical to weigh a

nonoverlapping contribution by one and an overlapping contribution by 1/k where k
is the number of times the unknown is represented in the partitioning.
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Figure 12.1: The block-Jacobi matrix with overlapping blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation

parameter ω. The iteration can be defined in the form

xk+1 = xk +

p
∑

i=1

ωiViA
−1
i V T

i rk.

Recall that the residual at step k + 1 is then related to that at step k by

rk+1 =

[

I −
p
∑

i=1

ωiAVi
(
V T
i AVi

)−1
V T
i

]

rk.

The solution of a sparse linear system is required at each projection step. These sys-

tems can be solved by direct methods if the subblocks are small enough. Otherwise,

iterative methods may be used. The outer loop accelerator should then be a flexible

variant, such as FGMRES, which can accommodate variations in the preconditioners.

12.3 Polynomial Preconditioners

In polynomial preconditioning the matrix M is defined by

M−1 = s(A)

where s is a polynomial, typically of low degree. Thus, the original system is re-

placed by the preconditioned system

s(A)Ax = s(A)b (12.2)
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which is then solved by a conjugate gradient-type technique. Note that s(A) and

A commute and, as a result, the preconditioned matrix is the same for right or left

preconditioning. In addition, the matrix s(A) or As(A) does not need to be formed

explicitly sinceAs(A)v can be computed for any vector v from a sequence of matrix-

by-vector products.

Initially, this approach was motivated by the good performance of matrix-vector

operations on vector computers for long vectors, e.g., the Cyber 205. However, the

idea itself is an old one and has been suggested by Stiefel [276] for eigenvalue cal-

culations in the mid 1950s. Next, some of the popular choices for the polynomial s
are described.

12.3.1 Neumann Polynomials

The simplest polynomial s which has been used is the polynomial of the Neumann

series expansion

I +N +N2 + · · · +N s

in which

N = I − ωA
and ω is a scaling parameter. The above series comes from expanding the inverse of

ωA using the splitting

ωA = I − (I − ωA).
This approach can also be generalized by using a splitting of the form

ωA = D − (D − ωA)
where D can be the diagonal of A or, more appropriately, a block diagonal of A.

Then,

(ωA)−1 =
[
D(I − (I − ωD−1A))

]−1

=
[
I − (I − ωD−1A)

]−1
D−1.

Thus, setting

N = I − ωD−1A

results in the approximate s-term expansion

(ωA)−1 ≈M−1 ≡ [I +N + · · · +N s]D−1. (12.3)

Since D−1A = ω−1 [I −N ] , note that

M−1A = [I +N + · · · +N s]D−1A

=
1

ω
[I +N + · · · +N s] (I −N)

=
1

ω
(I −N s+1).

The matrix operation with the preconditioned matrix can be difficult numerically for

large s. If the original matrix is Symmetric Positive Definite, then M−1A is not

symmetric, but it is self-adjoint with respect to the D-inner product; see Exercise 1.
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12.3.2 Chebyshev Polynomials

The polynomial s can be selected to be optimal in some sense, and this leads to the

use of Chebyshev polynomials. The criterion that is used makes the preconditioned

matrix s(A)A as close as possible to the identity matrix in some sense. For exam-

ple, the spectrum of the preconditioned matrix can be made as close as possible to

that of the identity. Denoting by σ(A) the spectrum of A, and by Pk the space of

polynomials of degree not exceeding k, the following may be solved.

Find s ∈ Pk which minimizes:

max
λ∈σ(A)

|1− λs(λ)|. (12.4)

Unfortunately, this problem involves all the eigenvalues of A and is harder to solve

than the original problem. Usually, problem (12.4) is replaced by the problem

Find s ∈ Pk which minimizes:

max
λ∈E
|1− λs(λ)|, (12.5)

which is obtained from replacing the set σ(A) by some continuous setE that encloses

it. Thus, a rough idea of the spectrum of the matrix A is needed. Consider first the

particular case where A is Symmetric Positive Definite, in which case E can be taken

to be an interval [α, β] containing the eigenvalues of A.

A variation of Theorem 6.25 is that for any real scalar γ such with γ ≤ α, the

minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached for the shifted and scaled Chebyshev polynomial of the first kind,

Ĉk(t) ≡
Ck

(

1 + 2 α−t
β−α

)

Ck

(

1 + 2α−γ
β−α

) .

Of interest is the case where γ = 0 which gives the polynomial

Tk(t) ≡
1

σk
Ck

(
β + α− 2t

β − α

)

with σk ≡ Ck

(
β + α

β − α

)

.

Denote the center and mid-width of the interval [α, β], respectively, by

θ ≡ β + α

2
, δ ≡ β − α

2
.

Using these parameters instead of α, β, the above expressions then become

Tk(t) ≡
1

σk
Ck

(
θ − t
δ

)

with σk ≡ Ck

(
θ

δ

)

.



398 CHAPTER 12. PARALLEL PRECONDITIONERS

The three-term recurrence for the Chebyshev polynomials results in the following

three-term recurrences:

σk+1 = 2
θ

δ
σk − σk−1, k = 1, 2 . . . ,

with

σ1 =
θ

δ
, σ0 = 1,

and

Tk+1(t) ≡
1

σk+1

[

2
θ − t
δ

σkTk(t)− σk−1Tk−1(t)

]

=
σk
σk+1

[

2
θ − t
δ

Tk(t)−
σk−1

σk
Tk−1(t)

]

, k ≥ 1,

with

T1(t) = 1− t

θ
, T0(t) = 1.

Define

ρk ≡ σk
σk+1

, k = 1, 2, . . . . (12.6)

Note that the above recurrences can be put together as

ρk =
1

2σ1 − ρk−1
(12.7)

Tk+1(t) = ρk

[

2

(

σ1 −
t

δ

)

Tk(t)− ρk−1Tk−1(t)

]

, k ≥ 1. (12.8)

Observe that formulas (12.7–12.8) can be started at k = 0 provided we set T−1 ≡ 0
and ρ−1 ≡ 0, so that ρ0 = 1/(2σ1).

The goal is to obtain an iteration that produces a residual vector of the form

rk+1 = Tk+1(A)r0 where Tk is the polynomial defined by the above recurrence.

The difference between two successive residual vectors is given by

rk+1 − rk = (Tk+1(A)− Tk(A))r0.

The identity 1 = (2σ1 − ρk−1)ρk and the relations (12.8) yield

Tk+1(t)− Tk(t) = Tk+1(t)− (2σ1 − ρk−1)ρkTk(t)

= ρk

[

−2t

δ
Tk(t) + ρk−1(Tk(t)− Tk−1(t))

]

.

As a result,

Tk+1(t)− Tk(t)
t

= ρk

[

ρk−1
Tk(t)− Tk−1(t)

t
− 2

δ
Tk(t)

]

. (12.9)
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Define

dk ≡ xk+1 − xk,
and note that rk+1 − rk = −Adk. As a result, the relation (12.9) translates into the

recurrence,

dk = ρk

[

ρk−1dk−1 +
2

δ
rk

]

.

Finally, the following algorithm is obtained.

ALGORITHM 12.1 Chebyshev Acceleration

1. r0 = b−Ax0; σ1 = θ/δ;
2. ρ0 = 1/σ1; d0 =

1
θr0;

3. For k = 0, . . . , until convergence Do:

4. xk+1 = xk + dk
5. rk+1 = rk −Adk
6. ρk+1 = (2σ1 − ρk)−1;

7. dk+1 = ρk+1ρkdk +
2ρk+1

δ rk+1

8. EndDo

Note that the algorithm requires no inner products, and this constitutes one of its

attractions in a parallel computing environment. Lines 7 and 4 can also be recast into

one single update of the form

xk+1 = xk + ρk

[

ρk−1(xk − xk−1) +
2

δ
(b−Axk)

]

.

It can be shown that when α = λ1 and β = λN , the resulting preconditioned

matrix minimizes the condition number of the preconditioned matrices of the form

As(A) over all polynomials s of degree ≤ k − 1. However, when used in conjunc-

tion with the Conjugate Gradient method, it is observed that the polynomial which

minimizes the total number of Conjugate Gradient iterations is far from being the

one which minimizes the condition number. If instead of taking α = λ1 and β = λN ,

the interval [α, β] is chosen to be slightly inside the interval [λ1, λN ], a much faster

convergence might be achieved. The true optimal parameters, i.e., those that mini-

mize the number of iterations of the polynomial preconditioned Conjugate Gradient

method, are difficult to determine in practice.

There is a slight disadvantage to the approaches described above. The parameters

α and β, which approximate the smallest and largest eigenvalues of A, are usually

not available beforehand and must be obtained in some dynamic way. This may be

a problem mainly because a software code based on Chebyshev acceleration could

become quite complex.

To remedy this, one may ask whether the values provided by an application of

Gershgorin’s theorem can be used for α and β. Thus, in the symmetric case, the

parameter α, which estimates the smallest eigenvalue of A, may be nonpositive even

whenA is a positive definite matrix. However, when α ≤ 0, the problem of minimiz-

ing (12.5) is not well defined, since it does not have a unique solution due to the non
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strict-convexity of the uniform norm. An alternative uses the L2-norm on [α, β] with

respect to some weight function w(λ). This “least-squares” polynomials approach is

considered next.

12.3.3 Least-Squares Polynomials

Consider the inner product on the space Pk:

〈p, q〉 =
∫ β

α
p(λ)q(λ)w(λ)dλ (12.10)

where w(λ) is some non-negative weight function on (α, β). Denote by ‖p‖w and

call w-norm, the 2-norm induced by this inner product.

We seek the polynomial sk−1 which minimizes

‖1− λs(λ)‖w (12.11)

over all polynomials s of degree ≤ k− 1. Call sk−1 the least-squares iteration poly-

nomial, or simply the least-squares polynomial, and refer to Rk(λ) ≡ 1− λsk−1(λ)
as the least-squares residual polynomial. A crucial observation is that the least

squares polynomial is well defined for arbitrary values of α and β. Computing the

polynomial sk−1(λ) is not a difficult task when the weight function w is suitably

chosen.

Computation of the least-squares polynomials There are three ways to com-

pute the least-squares polynomial sk defined in the previous section. The first ap-

proach is to use an explicit formula for Rk, known as the kernel polynomials for-

mula,

Rk(λ) =

∑k
i=0 qi(0)qi(λ)
∑k

i=0 qi(0)
2

(12.12)

in which the qi’s represent a sequence of polynomials orthogonal with respect to the

weight function w(λ). The second approach generates a three-term recurrence sat-

isfied by the residual polynomials Rk(λ). These polynomials are orthogonal with

respect to the weight function λw(λ). From this three-term recurrence, we can pro-

ceed exactly as for the Chebyshev iteration to obtain a recurrence formula for the

sequence of approximate solutions xk. Finally, a third approach solves the Normal

Equations associated with the minimization of (12.11), namely,

〈1− λsk−1(λ), λQj(λ)〉 = 0, j = 0, 1, 2, . . . , k − 1

where Qj, j = 1, . . . , k − 1 is any basis of the space Pk−1 of polynomials of degree

≤ k − 1.

These three approaches can all be useful in different situations. For example, the

first approach can be useful for computing least-squares polynomials of low degree

explicitly. For high-degree polynomials, the last two approaches are preferable for
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their better numerical behavior. The second approach is restricted to the case where

α ≥ 0, while the third is more general.

Since the degrees of the polynomial preconditioners are often low, e.g., not ex-

ceeding 5 or 10, we will give some details on the first formulation. Let qi(λ), i =
0, 1, . . . , n, . . ., be the orthonormal polynomials with respect to w(λ). It is known

that the least-squares residual polynomial Rk(λ) of degree k is determined by the

kernel polynomials formula (12.12). To obtain sk−1(λ), simply notice that

sk−1(λ) =
1−Rk(λ)

λ

=

∑k
i=0 qi(0)ti(λ)
∑k

i=0 qi(0)
2

, with (12.13)

ti(λ) =
qi(0)− qi(λ)

λ
. (12.14)

This allows sk−1 to be computed as a linear combination of the polynomials ti(λ).
Thus, we can obtain the desired least-squares polynomials from the sequence of or-

thogonal polynomials qi which satisfy a three-term recurrence of the form:

βi+1qi+1(λ) = (λ− αi)qi(λ)− βiqi−1(λ), i = 1, 2, . . . .

From this, the following recurrence for the ti’s can be derived:

βi+1ti+1(λ) = (λ− αi)ti(λ)− βiti−1(λ) + qi(0), i = 1, 2, . . . .

The weight function w is chosen so that the three-term recurrence of the orthog-

onal polynomials qi is known explicitly and/or is easy to generate. An interesting

class of weight functions that satisfy this requirement is considered next.

Choice of the weight functions This section assumes that α = 0 and β = 1.

Consider the Jacobi weights

w(λ) = λµ−1(1− λ)ν ,where µ > 0 and ν ≥ −1

2
. (12.15)

For these weight functions, the recurrence relations are known explicitly for the poly-

nomials that are orthogonal with respect to w(λ), λw(λ), or λ2w(λ). This allows the

use of any of the three methods described in the previous section for computing

sk−1(λ). Moreover, it has been shown [180] that the preconditioned matrix Ask(A)
is Symmetric Positive Definite when A is Symmetric Positive Definite, provided that

µ− 1 ≥ ν ≥ −1
2 .

The following explicit formula for Rk(λ) can be derived easily from the explicit

expression of the Jacobi polynomials and the fact that {Rk} is orthogonal with re-

spect to the weight λw(λ):

Rk(λ) =
k∑

j=0

κ
(k)
j (1− λ)k−j(−λ)j (12.16)
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κ
(k)
j =

(
k
j

) j−1
∏

i=0

k − i+ ν

i+ 1 + µ
.

Using (12.13), the polynomial sk−1(λ) = (1 − Rk(λ))/λ can be derived easily “by

hand” for small degrees; see Exercise 4.

Example 12.1. As an illustration, we list the least-squares polynomials sk for k =
1, . . ., 8, obtained for the Jacobi weights with µ = 1

2 and ν = −1
2 . The polynomials

listed are for the interval [0, 4] as this leads to integer coefficients. For a general

interval [0, β], the best polynomial of degree k is sk(4λ/β). Also, each polynomial

sk is rescaled by (3+2k)/4 to simplify the expressions. However, this scaling factor

is unimportant if these polynomials are used for preconditioning.

1 λ λ2 λ3 λ4 λ5 λ6 λ7 λ8

s1 5 − 1

s2 14 −7 1

s3 30 − 27 9 − 1

s4 55 − 77 44 − 11 1

s5 91 − 182 156 − 65 13 − 1

s6 140 − 378 450 − 275 90 − 15 1

s7 204 − 714 1122 − 935 442 − 119 17 − 1

s8 285 − 1254 2508 − 2717 1729 − 665 152 − 19 1

We selected µ = 1
2 and ν = −1

2 only because these choices lead to a very simple

recurrence for the polynomials qi, which are the Chebyshev polynomials of the first

kind.

Theoretical considerations An interesting theoretical question is whether the

least-squares residual polynomial becomes small in some sense as its degree in-

creases. Consider first the case 0 < α < β. Since the residual polynomial Rk

minimizes the norm ‖R‖w associated with the weight w, over all polynomials R of

degree ≤ k such that R(0) = 1, the polynomial (1 − (λ/θ))k with θ = (α + β)/2
satisfies

‖Rk‖w ≤
∥
∥
∥
∥
∥

(

1− λ

c

)k
∥
∥
∥
∥
∥
w

≤
∥
∥
∥
∥
∥

[
b− a
b+ a

]k
∥
∥
∥
∥
∥
w

= κ

[
β − α
β + α

]k

where κ is the w-norm of the function unity on the interval [α, β]. The norm of Rk

will tend to zero geometrically as k tends to infinity, provided α > 0.

Consider now the case α = 0, β = 1 and the Jacobi weight (12.15). For this

choice of the weight function, the least-squares residual polynomial is known to be

pk(λ)/pk(0) where pk is the kth degree Jacobi polynomial associated with the weight

function w′(λ) = λµ(1 − λ)ν . It can be shown that the 2-norm of such a residual
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polynomial with respect to this weight is given by

‖pk/pk(0)‖2w′ =
Γ2(µ+ 1)Γ(k + ν + 1)

(2k + µ+ ν + 1)(Γ(k + µ+ ν + 1)

Γ(k + 1)

Γ(k + µ+ 1)

in which Γ is the Gamma function. For the case µ = 1
2 and ν = −1

2 , this becomes

‖pk/pk(0)‖2w′ =
[Γ(32 )]

2

(2k + 1)(k + 1
2)

=
π

2(2k + 1)2
.

Therefore, the w′-norm of the least-squares residual polynomial converges to zero

like 1/k as the degree k increases (a much slower rate than when α > 0). However,

note that the condition p(0) = 1 implies that the polynomial must be large in some

interval around the origin.

12.3.4 The Nonsymmetric Case

Given a set of approximate eigenvalues of a nonsymmetric matrix A, a simple region

E can be constructed in the complex plane, e.g., a disk, an ellipse, or a polygon,

which encloses the spectrum of the matrix A. There are several choices for E. The

first idea uses an ellipse E that encloses an approximate convex hull of the spectrum.

Consider an ellipse centered at θ, and with focal distance δ. Then as seen in Chapter

6, the shifted and scaled Chebyshev polynomials defined by

Tk(λ) =
Ck

(
θ−λ
δ

)

Ck

(
θ
δ

)

are nearly optimal. The use of these polynomials leads again to an attractive three-

term recurrence and to an algorithm similar to Algorithm 12.1. In fact, the recurrence

is identical, except that the scalars involved can now be complex to accommodate

cases where the ellipse has foci not necessarily located on the real axis. However,

when A is real, then the symmetry of the foci with respect to the real axis can be

exploited. The algorithm can still be written in real arithmetic.

An alternative to Chebyshev polynomials over ellipses employs a polygon H
that contains σ(A). Polygonal regions may better represent the shape of an arbitrary

spectrum. The best polynomial for the infinity norm is not known explicitly but it

may be computed by an algorithm known in approximation theory as the Remez

algorithm. It may be simpler to use an L2-norm instead of the infinity norm, i.e.,

to solve (12.11) where w is some weight function defined on the boundary of the

polygon H .

Now here is a sketch of an algorithm based on this approach. An L2-norm asso-

ciated with Chebyshev weights on the edges of the polygon is used. If the contour of

H consists of k edges each with center θi and half-length δi, then the weight on each

edge is defined by

wi(λ) =
2

π
|δi − (λ− θi)2|−1/2, i = 1, . . . , k. (12.17)
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Using the power basis to express the best polynomial is not viable. It is preferable

to use the Chebyshev polynomials associated with the ellipse of smallest area con-

taining H . With the above weights or any other Jacobi weights on the edges, there is

a finite procedure which does not require numerical integration to compute the best

polynomial. To do this, each of the polynomials of the basis (i.e., the Chebyshev

polynomials associated with the ellipse of smallest area containing H) must be ex-

pressed as a linear combination of the Chebyshev polynomials associated with the

different intervals [θi− δi, θi+ δi]. This redundancy allows exact expressions for the

integrals involved in computing the least-squares solution to (12.11).

Next, the main lines of a preconditioned GMRES algorithm are described based

on least-squares polynomials. Eigenvalue estimates are obtained from a GMRES step

at the beginning of the outer loop. This GMRES adaptive corrects the current solution

and the eigenvalue estimates are used to update the current polygon H . Correcting

the solution at this stage is particularly important since it often results in a few orders

of magnitude improvement. This is because the polygon H may be inaccurate and

the residual vector is dominated by components in one or two eigenvectors. The

GMRES step will immediately annihilate those dominating components. In addition,

the eigenvalues associated with these components will now be accurately represented

by eigenvalues of the Hessenberg matrix.

ALGORITHM 12.2 Polynomial Preconditioned GMRES

1. Start or Restart:

2. Compute current residual vector r := b−Ax.

3. Adaptive GMRES step:

4. Run m1 steps of GMRES for solving Ad = r.

5. Update x by x := x+ d.

6. Get eigenvalue estimates from the eigenvalues of the

7. Hessenberg matrix.

8. Compute new polynomial:

9. Refine H from previous hull H and new eigenvalue estimates.

10. Get new best polynomial sk.

11. Polynomial Iteration:

12. Compute the current residual vector r = b−Ax.

13. Run m2 steps of GMRES applied to sk(A)Ad = sk(A)r.

14. Update x by x := x+ d.

15. Test for convergence.

16. If solution converged then Stop; else GoTo 1.

Example 12.2. Table 12.1 shows the results of applying GMRES(20) with poly-

nomial preconditioning to the first four test problems described in Section 3.7. See

Example 6.1 for the meaning of the column headers in the table. In fact, the system is

preconditioned by ILU(0) before polynomial preconditioning is applied to it. Degree

10 polynomials (maximum) are used. The tolerance for stopping is 10−7. Recall
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Matrix Iters Kflops Residual Error

F2DA 56 2774 0.22E-05 0.51E-06

F3D 22 7203 0.18E-05 0.22E-05

ORS 78 4454 0.16E-05 0.32E-08

F2DB 100 4432 0.47E-05 0.19E-05

Table 12.1: A test run of ILU(0)-GMRES accelerated with polynomial precondition-

ing.

that Iters is the number of matrix-by-vector products rather than the number of GM-

RES iterations. Notice that, for most cases, the method does not compare well with

the simpler ILU(0) example seen in Chapter 10. The notable exception is example

F2DB for which the method converges fairly fast in contrast with the simple ILU(0)-

GMRES; see Example 10.2. An attempt to use the method for the fifth matrix in the

test set, namely, the FIDAP matrix FID, failed because the matrix has eigenvalues on

both sides of the imaginary axis and the code tested does not handle this situation.

It is interesting to follow the progress of the algorithm in the above examples.

For the first example, the coordinates of the vertices of the upper part of the first

polygon H are

ℜe(ci) ℑm(ci)

0.06492 0.00000

0.17641 0.02035

0.29340 0.03545

0.62858 0.04977

1.18052 0.00000

This hull is computed from the 20 eigenvalues of the 20 × 20 Hessenberg matrix

resulting from the first run of GMRES(20). In the ensuing GMRES loop, the outer

iteration converges in three steps, each using a polynomial of degree 10, i.e., there is

no further adaptation required. For the second problem, the method converges in the

20 first steps of GMRES, so polynomial acceleration was never invoked. For the third

example, the initial convex hull found is the interval [0.06319, 1.67243] of the real

line. The polynomial preconditioned GMRES then convergences in five iterations.

Finally, the initial convex hull found for the last example is

ℜe(ci) ℑm(ci)

0.17131 0.00000

0.39337 0.10758

1.43826 0.00000
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and the outer loop converges again without another adaptation step, this time in seven

steps.

12.4 Multicoloring

The general idea of multicoloring, or graph coloring, has been used for a long time

by numerical analysts. It was exploited, in particular, in the context of relaxation

techniques both for understanding their theory and for deriving efficient algorithms.

More recently, these techniques were found to be useful in improving parallelism

in iterative solution techniques. This discussion begins with the 2-color case, called

red-black ordering.

12.4.1 Red-Black Ordering

The problem addressed by multicoloring is to determine a coloring of the nodes of the

adjacency graph of a matrix such that any two adjacent nodes have different colors.

For a 2-dimensional finite difference grid (5-point operator), this can be achieved

with two colors, typically referred to as “red” and “black.” This red-black coloring

is illustrated in Figure 12.2 for a 6 × 4 mesh where the black nodes are represented

by filled circles.

1 3 5

8 10 12

13 15 17

20 22 24

2 4 6

7 9 11

14 16 18

19 21 23

Figure 12.2: Red-black coloring of a 6× 4 grid. Natural labeling of the nodes.

Assume that the unknowns are labeled by listing the red unknowns first together,

followed by the black ones. The new labeling of the unknowns is shown in Figure

12.3. Since the red nodes are not coupled with other red nodes and, similarly, the

black nodes are not coupled with other black nodes, the system that results from this

reordering will have the structure

(
D1 F
E D2

)(
x1
x2

)

=

(
b1
b2

)

, (12.18)

in which D1 and D2 are diagonal matrices. The reordered matrix associated with

this new labeling is shown in Figure 12.4.
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

Figure 12.3: Red-black coloring of a 6× 4 grid. Red-black labeling of the nodes.

Figure 12.4: Matrix associated with the red-black reordering of Figure 12.3.

Two issues will be explored regarding red-black ordering. The first is how to

exploit this structure for solving linear systems. The second is how to generalize this

approach for systems whose graphs are not necessarily 2-colorable.

12.4.2 Solution of Red-Black Systems

The easiest way to exploit the red-black ordering is to use the standard SSOR or

ILU(0) preconditioners for solving the block system (12.18) which is derived from

the original system. The resulting preconditioning operations are highly parallel. For

example, the linear system that arises from the forward solve in SSOR will have the

form (
D1 O
E D2

)(
x1
x2

)

=

(
b1
b2

)

.

This system can be solved by performing the following sequence of operations:

1. Solve D1x1 = b1.

2. Compute b̂2 := b2 − Ex1.

3. Solve D2x2 = b̂2.
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This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-

by-vector product. Therefore, the degree of parallelism, is at least n/2 if an atomic

task is considered to be any arithmetic operation. The situation is identical with

the ILU(0) preconditioning. However, since the matrix has been reordered before

ILU(0) is applied to it, the resulting LU factors are not related in any simple way

to those associated with the original matrix. In fact, a simple look at the structure

of the ILU factors reveals that many more elements are dropped with the red-black

ordering than with the natural ordering. The result is that the number of iterations

to achieve convergence can be much higher with red-black ordering than with the

natural ordering.

A second method that has been used in connection with the red-black ordering

solves the reduced system which involves only the black unknowns. Eliminating the

red unknowns from (12.18) results in the reduced system:

(D2 − ED−1
1 F )x2 = b2 − ED−1

1 b1.

Note that this new system is again a sparse linear system with about half as many

unknowns. In addition, it has been observed that for “easy problems,” the reduced

system can often be solved efficiently with only diagonal preconditioning. The com-

putation of the reduced system is a highly parallel and inexpensive process. Note

that it is not necessary to form the reduced system. This strategy is more often em-

ployed when D1 is not diagonal, such as in domain decomposition methods, but it

can also have some uses in other situations. For example, applying the matrix to a

given vector x can be performed using nearest-neighbor communication, and this can

be more efficient than the standard approach of multiplying the vector by the Schur

complement matrix D2 −ED−1
1 F . In addition, this can save storage, which may be

more critical in some cases.

12.4.3 Multicoloring for General Sparse Matrices

Chapter 3 discussed a general greedy approach for multicoloring a graph. Given a

general sparse matrix A, this inexpensive technique allows us to reorder it into a

block form where the diagonal blocks are diagonal matrices. The number of blocks

is the number of colors. For example, for six colors, a matrix would result with the

structure shown in Figure 12.5 where the Di’s are diagonal and E, F are general

sparse. This structure is obviously a generalization of the red-black ordering.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can

be used on this reordered system. The parallelism of SOR/SSOR is now of order n/p
where p is the number of colors. A loss in efficiency may occur since the number of

iterations is likely to increase.

A Gauss-Seidel sweep will essentially consist of p scalings and p− 1 matrix-by-

vector products, where p is the number of colors. Specifically, assume that the matrix

is stored in the well known Ellpack-Itpack format and that the block structure of the

permuted matrix is defined by a pointer array iptr. The index iptr(j) is the index of

the first row in the j-th block.
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D1

D2

D3

D4

D5

D6

F

E

Figure 12.5: A six-color ordering of a general sparse matrix.

Thus, the pair A(n1 : n2, ∗), JA(n1 : n2, ∗) represents the sparse matrix con-

sisting of the rows n1 to n2 in the Ellpack-Itpack format. The main diagonal of A
is assumed to be stored separately in inverted form in a one-dimensional array diag.

One single step of the multicolor SOR iteration will then take the following form.

ALGORITHM 12.3 Multicolor SOR Sweep in the Ellpack Format

1. Do col = 1, ncol

2. n1 = iptr(col)

3. n2 = iptr(col+1) – 1

4. y(n1:n2) = rhs(n1:n2)

5. Do j = 1, ndiag

6. Do i = n1, n2

7. y(i) = y(i) – a(i,j)*y(ja(i,j))

8. EndDo

9. EndDo

10. y(n1:n2) = diag(n1:n2) * y(n1:n2)

11. EndDo

In the above algorithm, ncol is the number of colors. The integers n1 and n2 set in

lines 2 and 3 represent the beginning and the end of block col. In line 10, y(n1 : n2)
is multiplied by the diagonal D−1 which is kept in inverted form in the array diag.

The outer loop, i.e., the loop starting in line 1, is sequential. The loop starting in

line 6 is vectorizable/parallelizable. There is additional parallelism which can be

extracted in the combination of the two loops starting in lines 5 and 6.

12.5 Multi-Elimination ILU

The discussion in this section begins with the Gaussian elimination algorithm for a

general sparse linear system. Parallelism in sparse Gaussian elimination can be ob-

tained by finding unknowns that are independent at a given stage of the elimination,
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i.e., unknowns that do not depend on each other according to the binary relation de-

fined by the graph of the matrix. A set of unknowns of a linear system which are

independent is called an independent set. Thus, independent set orderings can be

viewed as permutations to put the original matrix in the form

(
D E
F C

)

(12.19)

in which D is diagonal, but C can be arbitrary. This amounts to a less restrictive

form of multicoloring, in which a set of vertices in the adjacency graph is found so

that no equation in the set involves unknowns from the same set. A few algorithms

for finding independent set orderings of a general sparse graph were discussed in

Chapter 3.

The rows associated with an independent set can be used as pivots simultane-

ously. When such rows are eliminated, a smaller linear system results, which is again

sparse. Then we can find an independent set for this reduced system and repeat the

process of reduction. The resulting second reduced system is called the second-level

reduced system.

The process can be repeated recursively a few times. As the level of the reduc-

tion increases, the reduced systems gradually lose their sparsity. A direct solution

method would continue the reduction until the reduced system is small enough or

dense enough to switch to a dense Gaussian elimination to solve it. This process is

illustrated in Figure 12.6. There exists a number of sparse direct solution techniques

based on this approach.

Figure 12.6: Illustration of two levels of multi-elimination for sparse linear systems.

After a brief review of the direct solution method based on independent set or-

derings, we will explain how to exploit this approach for deriving incomplete LU

factorizations by incorporating drop tolerance strategies.

12.5.1 Multi-Elimination

We start by a discussion of an exact reduction step. Let Aj be the matrix obtained

at the j-th step of the reduction, j = 0, . . . , nlev with A0 = A. Assume that an

independent set ordering is applied toAj and that the matrix is permuted accordingly
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as follows:

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

(12.20)

where Dj is a diagonal matrix. Now eliminate the unknowns of the independent set

to get the next reduced matrix,

Aj+1 = Cj − EjD
−1
j Fj . (12.21)

This results, implicitly, in a block LU factorization

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

=

(
I O

EjD
−1
j I

)

×
(
Dj Fj

O Aj+1

)

with Aj+1 defined above. Thus, in order to solve a system with the matrix Aj , both

a forward and a backward substitution need to be performed with the block matrices

on the right-hand side of the above system. The backward solution involves solving

a system with the matrix Aj+1.

This block factorization approach can be used recursively until a system results

that is small enough to be solved with a standard method. The transformations used

in the elimination process, i.e., the matrices EjD
−1
j and the matrices Fj must be

saved. The permutation matrices Pj can also be saved. Alternatively, the matrices

involved in the factorization at each new reordering step can be permuted explicitly.

Figure 12.7: Illustration of the processed matrices obtained from three steps of inde-

pendent set ordering and reductions.
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12.5.2 ILUM

The successive reduction steps described above will give rise to matrices that be-

come more and more dense due to the fill-ins introduced by the elimination process.

In iterative methods, a common cure for this is to neglect some of the fill-ins intro-

duced by using a simple dropping strategy as the reduced systems are formed. For

example, any fill-in element introduced is dropped, whenever its size is less than a

given tolerance times the 2-norm of the original row. Thus, an “approximate” ver-

sion of the successive reduction steps can be used to provide an approximate solution

M−1v to A−1v for any given v. This can be used to precondition the original lin-

ear system. Conceptually, the modification leading to an “incomplete” factorization

replaces (12.21) by

Aj+1 = (Cj − EjD
−1
j Fj)−Rj (12.22)

in which Rj is the matrix of the elements that are dropped in this reduction step.

Globally, the algorithm can be viewed as a form of incomplete block LU with per-

mutations.

Thus, there is a succession of block ILU factorizations of the form

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

=

(
I O

EjD
−1
j I

)

×
(
Dj Fj

O Aj+1

)

+

(
O O
O Rj

)

with Aj+1 defined by (12.22). An independent set ordering for the new matrix Aj+1

will then be found and this matrix is reduced again in the same manner. It is not

necessary to save the successive Aj matrices, but only the last one that is generated.

We need also to save the sequence of sparse matrices

Bj+1 =

(
Dj Fj

EjD
−1
j O

)

(12.23)

which contain the transformation needed at level j of the reduction. The succes-

sive permutation matrices Pj can be discarded if they are applied to the previous

Bi matrices as soon as these permutation matrices are known. Then only the global

permutation is needed, which is the product of all these successive permutations.

An illustration of the matrices obtained after three reduction steps is shown in

Figure 12.7. The original matrix is a 5-point matrix associated with a 15×15 grid and

is therefore of size N = 225. Here, the successive matrices Bi (with permutations

applied) are shown together with the last Aj matrix which occupies the location of

the O block in (12.23).

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination).

The preprocessing phase consists of a succession of nlev applications of the follow-

ing three steps: (1) finding the independent set ordering, (2) permuting the matrix,

and (3) reducing it.

ALGORITHM 12.4 ILUM: Preprocessing Phase
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1. Set A0 = A.

2. For j = 0, 1, . . . , nlev − 1 Do:

3. Find an independent set ordering permutation Pj for Aj ;

4. Apply Pj to Aj to permute it into the form (12.20);

5. Apply Pj to B1, . . . , Bj ;

6. Apply Pj to P0, . . . , Pj−1;

7. Compute the matrices Aj+1 and Bj+1 defined by (12.22) and (12.23).

8. EndDo

In the backward and forward solution phases, the last reduced system must be solved

but not necessarily with high accuracy. For example, we can solve it according to the

level of tolerance allowed in the dropping strategy during the preprocessing phase.

Observe that if the linear system is solved inaccurately, only an accelerator that

allows variations in the preconditioning should be used. Such algorithms have been

discussed in Chapter 9. Alternatively, we can use a fixed number of multicolor SOR

or SSOR steps or a fixed polynomial iteration. The implementation of the ILUM pre-

conditioner corresponding to this strategy is rather complicated and involves several

parameters.

In order to describe the forward and backward solution, we introduce some no-

tation. We start by applying the “global permutation,” i.e., the product

Pnlev−1, Pnlev−2 . . . , P0

to the right-hand side. We overwrite the result on the current solution vector, an

N -vector called x0. Now partition this vector into

x0 =

(
y0
x1

)

according to the partitioning (12.20). The forward step consists of transforming the

second component of the right-hand side as

x1 := x1 − E0D
−1
0 y0.

Now x1 is partitioned in the same manner as x0 and the forward elimination is con-

tinued the same way. Thus, at each step, each xj is partitioned as

xj =

(
yj
xj+1

)

.

A forward elimination step defines the new xj+1 using the old xj+1 and yj for j =
0, . . . , nlev − 1 while a backward step defines yj using the old yj and xj+1, for

j = nlev − 1, . . . , 0. Algorithm 12.5 describes the general structure of the forward

and backward solution sweeps. Because the global permutation was applied at the

beginning, the successive permutations need not be applied. However, the final result

obtained must be permuted back into the original ordering.
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ALGORITHM 12.5 ILUM: Forward and Backward Solutions

1. Apply global permutation to right-hand-side b and copy into x0.

2. For j = 0, 1, . . . , nlev − 1 Do: [Forward sweep]

3. xj+1 := xj+1 − EjD
−1
j yj

4. EndDo

5. Solve with a relative tolerance ǫ:
6. Anlevxnlev := xnlev.

7. For j = nlev − 1, . . . , 1, 0 Do: [Backward sweep]

8. yj := D−1
j (yj − Fjxj+1).

9. EndDo

10. Permute the resulting solution vector back to the original

11. ordering to obtain the solution x.

Computer implementations of ILUM can be rather tedious. The implementa-

tion issues are similar to those of parallel direct-solution methods for sparse linear

systems.

12.6 Distributed ILU and SSOR

This section describes parallel variants of the block Successive Over-Relaxation

(BSOR) and ILU(0) preconditioners which are suitable for distributed memory en-

vironments. Chapter 11 briefly discussed distributed sparse matrices. A distributed

matrix is a matrix whose entries are located in the memories of different processors

in a multiprocessor system. These types of data structures are very convenient for

distributed memory computers and it is useful to discuss implementations of precon-

ditioners that are specifically developed for them. Refer to Section 11.5.5 for the

terminology used here. In particular, the term subdomain is used in the very general

sense of subgraph. For both ILU and SOR, multicoloring or level scheduling can be

used at the macro level, to extract parallelism. Here, macro level means the level of

parallelism corresponding to the processors, or blocks, or subdomains.

In the ILU(0) factorization, the LU factors have the same nonzero patterns as

the original matrix A, so that the references of the entries belonging to the external

subdomains in the ILU(0) factorization are identical with those of the matrix-by-

vector product operation with the matrix A. This is not the case for the more accurate

ILU(p) factorization, with p > 0. If an attempt is made to implement a wavefront

ILU preconditioner on a distributed memory computer, a difficulty arises because the

natural ordering for the original sparse problem may put an unnecessary limit on the

amount of parallelism available. Instead, a two-level ordering is used. First, define a

“global” ordering which is a wavefront ordering for the subdomains. This is based on

the graph which describes the coupling between the subdomains: Two subdomains

are coupled if and only if they contain at least a pair of coupled unknowns, one from

each subdomain. Then, within each subdomain, define a local ordering.
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Figure 12.8: A local view of the distributed ILU(0).

To describe the possible parallel implementations of these ILU(0) precondition-

ers, it is sufficient to consider a local view of the distributed sparse matrix, illustrated

in Figure 12.8. The problem is partitioned into p subdomains or subgraphs using

some graph partitioning technique. This results in a mapping of the matrix into pro-

cessors where it is assumed that the i-th equation (row) and the i-th unknown are

mapped to the same processor. We distinguish between interior points and interface

points. The interior points are those nodes that are not coupled with nodes belonging

to other processors. Interface nodes are those local nodes that are coupled with at

least one node which belongs to another processor. Thus, processor number 10 in

the figure holds a certain number of rows that are local rows.

Consider the rows associated with the interior nodes. The unknowns associated

with these nodes are not coupled with variables from other processors. As a result,

the rows associated with these nodes can be eliminated independently in the ILU(0)

process. The rows associated with the nodes on the interface of the subdomain will

require more attention. Recall that an ILU(0) factorization is determined entirely by

the order in which the rows are processed.

The interior nodes can be eliminated first. Once this is done, the interface rows

can be eliminated in a certain order. There are two natural choices for this order.

The first would be to impose a global order based on the labels of the processors.

Thus, in the illustration, the interface rows belonging to Processors 2, 4, and 6 are

processed before those in Processor 10. The interface rows in Processor 10 must in

turn be processed before those of Processors 13 and 14.

The local order, i.e., the order in which we process the interface rows in the same

processor (e.g. Processor 10), may not be as important. This global order based on

PE-number defines a natural priority graph and parallelism can be exploited easily in

a data-driven implementation.

It is somewhat unnatural to base the ordering just on the processor labeling.
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Observe that a proper order can also be defined for performing the elimination by

replacing the PE-numbers with any labels, provided that any two neighboring pro-

cessors have a different label. The most natural way to do this is by performing a

multicoloring of the subdomains, and using the colors in exactly the same way as

before to define an order of the tasks. The algorithms will be written in this general

form, i.e., with a label associated with each processor. Thus, the simplest valid labels

are the PE numbers, which lead to the PE-label-based order. In the following, we

define Labj as the label of Processor number j.

ALGORITHM 12.6 Distributed ILU(0) factorization

1. In each processor Pi, i = 1, . . . , p Do:

2. Perform the ILU(0) factorization for interior local rows.

3. Receive the factored rows from the adjacent processors j with

4. Labj < Labi.
5. Perform the ILU(0) factorization for the interface rows with

6. pivots received from the external processors in step 3.

7. Perform the ILU(0) factorization for the boundary nodes, with

8. pivots from the interior rows completed in step 2.

9. Send the completed interface rows to adjacent processors j with

10. Labj > Labi.
11. EndDo

Step 2 of the above algorithm can be performed in parallel because it does not de-

pend on data from other subdomains. Once this distributed ILU(0) factorization is

completed, the preconditioned Krylov subspace algorithm will require a forward and

backward sweep at each step. The distributed forward/backward solution based on

this factorization can be implemented as follows.

ALGORITHM 12.7 Distributed Forward and Backward Sweep

1. In each processor Pi, i = 1, . . . , p Do:

2. Forward solve:

3. Perform the forward solve for the interior nodes.

4. Receive the updated values from the adjacent processors j
5. with Labj < Labi.
6. Perform the forward solve for the interface nodes.

7. Send the updated values of boundary nodes to the adjacent

8. processors j with Labj > Labi.
9. Backward solve:

10. Receive the updated values from the adjacent processors j
11. with Labj > Labi.
12. Perform the backward solve for the boundary nodes.

13. Send the updated values of boundary nodes to the adjacent

14. processors, j with Labj < Labi.
15. Perform the backward solve for the interior nodes.

16. EndDo
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As in the ILU(0) factorization, the interior nodes do not depend on the nodes from

the external processors and can be computed in parallel in lines 3 and 15. In the

forward solve, the solution of the interior nodes is followed by an exchange of data

and the solution on the interface. The backward solve works in reverse in that the

boundary nodes are first computed, then they are sent to adjacent processors. Finally,

interior nodes are updated.

12.7 Other Techniques

This section gives a brief account of other parallel preconditioning techniques which

are sometimes used. The next chapter also examines another important class of meth-

ods, which were briefly mentioned before, namely, the class of Domain Decomposi-

tion methods.

12.7.1 Approximate Inverses

Another class of preconditioners that require only matrix-by-vector products, is the

class of approximate inverse preconditioners. Discussed in Chapter 10, these can be

used in many different ways. Besides being simple to implement, both their prepro-

cessing phase and iteration phase allow a large degree of parallelism. Their disadvan-

tage is similar to polynomial preconditioners, namely, the number of steps required

for convergence may be large, possibly substantially larger than with the standard

techniques. On the positive side, they are fairly robust techniques which can work

well where standard methods may fail.

12.7.2 Element-by-Element Techniques

A somewhat specialized set of techniques is the class of Element-By-Element (EBE)

preconditioners which are geared toward finite element problems and are motivated

by the desire to avoid assembling finite element matrices. Many finite element codes

keep the data related to the linear system in unassembled form. The element matrices

associated with each element are stored and never added together. This is convenient

when using direct methods since there are techniques, known as frontal methods, that

allow Gaussian elimination to be performed by using a few elements at a time.

It was seen in Chapter 2 that the global stiffness matrix A is the sum of matrices

A[e] associated with each element, i.e.,

A =

Nel∑

e=1

A[e].

Here, the matrix A[e] is an n× n matrix defined as

A[e] = PeAKeP
T
e

in which AKe is the element matrix and Pe is a Boolean connectivity matrix which

maps the coordinates of the smallAKe matrix into those of the full matrixA. Chapter
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2 showed how matrix-by-vector products can be performed in unassembled form. To

perform this product in parallel, note that the only potential obstacle to performing

the matrix-by-vector product in parallel, i.e., across all elements, is in the last phase,

i.e., when the contributions are summed to the resulting vector y. In order to add the

contributions A[e]x in parallel, group elements that do not have nodes in common.

Referring to Equation (2.46), the contributions

ye = AKe(P
T
e x)

can all be computed in parallel and do not depend on one another. The operations

y := y + Peye

can be processed in parallel for any group of elements that do not share any vertices.

This grouping can be found by performing a multicoloring of the elements. Any two

elements which have a node in common receive a different color. Using this idea,

good performance can be achieved on vector computers.

EBE preconditioners are based on similar principles and many different variants

have been developed. They are defined by first normalizing each of the element

matrices. In the sequel, assume that A is a Symmetric Positive Definite matrix.

Typically, a diagonal, or block diagonal, scaling is first applied to A to obtain a

scaled matrix Ã,

Ã = D−1/2AD−1/2. (12.24)

This results in each matrix A[e] and element matrixAKe being transformed similarly:

Ã[e] = D−1/2A[e]D−1/2

= D−1/2PeAKeD
−1/2

= Pe(P
T
e D

−1/2Pe)A
[e](PeD

−1/2P T
e )

≡ PeÃKeP
T
e .

The second step in defining an EBE preconditioner is to regularize each of these

transformed matrices. Indeed, each of the matrices A[e] is of rank pe at most, where

pe is the size of the element matrix AKe , i.e., the number of nodes which constitute

the e-th element. In the so-called Winget regularization, the diagonal of each A[e] is

forced to be the identity matrix. In other words, the regularized matrix is defined as

Ā[e] = I + Ã[e] − diag(Ã[e]). (12.25)

These matrices are positive definite; see Exercise 8.

The third and final step in defining an EBE preconditioner is to choose the fac-

torization itself. In the EBE Cholesky factorization, the Cholesky (or Crout) factor-

ization of each regularized matrix Ā[e] is performed,

Ā[e] = LeDeL
T
e . (12.26)
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The preconditioner from it is defined as

M =

nel∏

e=1

Le ×
nel∏

e=1

De ×
1∏

e=nel

LT
e . (12.27)

Note that to ensure symmetry, the last product is in reverse order of the first one.

The factorization (12.26) consists of a factorization of the small pe× pe matrix ĀKe .

Performing the preconditioning operations will therefore consist of a sequence of

small pe×pe backward or forward solves. The gather and scatter matrices Pe defined

in Chapter 2 must also be applied for each element. These solves are applied to

the right-hand side in sequence. In addition, the same multicoloring idea as for the

matrix-by-vector product can be exploited to perform these sweeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioner is that an additional

set of element matrices must be stored. That is because the factorizations (12.26)

must be stored for each element. In EBE/SSOR, this is avoided. Instead of factor-

ing each Ā[e], the usual splitting of each Ā[e] is exploited. Assuming the Winget

regularization, we have

Ā[e] = I − Ee − ET
e (12.28)

in which −Ee is the strict-lower part of Ā[e]. By analogy with the SSOR precondi-

tioner, the EBE-SSOR preconditioner is defined by

M =
nel∏

e=1

(I − ωEe)×
nel∏

e=1

De ×
1∏

e=nel

(I − ωET
e ). (12.29)

12.7.3 Parallel Row Projection Preconditioners

One of the attractions of row-projection methods seen in Chapter 8 is their high de-

gree of parallelism. In Cimmino’s method, the scalars δi as well as the new residual

vector can be computed in parallel. In the Gauss-Seidel-NE (respectively Gauss-

Seidel-NR), it is also possible to group the unknowns in such a way that any pair

of rows (respectively columns) have disjointed nonzero patterns. Updates of com-

ponents in the same group can then be performed in parallel. This approach essen-

tially requires finding a multicolor ordering for the matrix B = AAT (respectively

B = ATA ).

It is necessary to first identify a partition of the set {1, 2, . . . , N} into subsets

S1, . . ., Sk such that the rows (respectively columns) whose indices belong to the

same set Si are structurally orthogonal to each other, i.e., have no nonzero elements

in the same column locations. When implementing a block SOR scheme where the

blocking is identical with that defined by the partition, all of the unknowns belonging

to the same set Sj can be updated in parallel. To be more specific, the rows are

reordered by scanning those in S1 followed by those in S2, etc.. Denote by Ai the

matrix consisting of the rows belonging to the i-th block. We assume that all rows

of the same set are orthogonal to each other and that they have been normalized
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so that their 2-norm is unity. Then a block Gauss-Seidel sweep, which generalizes

Algorithm 8.1, follows.

ALGORITHM 12.8 Forward Block NE-Gauss-Seidel Sweep

1. Select an initial x0.

2. For i = 1, 2, . . . , k Do:

3. di = bi −Aix
4. x := x+AT

i di
5. EndDo

Here, xi and bi are subvectors corresponding to the blocking and di is a vector of

length the size of the block, which replaces the scalar δi of Algorithm 8.1. There is

parallelism in each of the steps 3 and 4.

The question that arises is how to find good partitions Si. In simple cases, such

as block-tridiagonal matrices, this can easily be done; see Exercise 7. For general

sparse matrices, a multicoloring algorithm on the graph of AAT (respectively ATA)

can be employed. However, these matrices are never stored explicitly. Their rows

can be generated, used, and then discarded.

PROBLEMS

P-12.1 Let A be a Symmetric Positive Definite matrix and considerN = I −D−1A where

D is a block diagonal of A.

a. Show that D is a Symmetric Positive Definite matrix. Denote by (., .)D the associated

inner product.

b. Show that N is self-adjoint with respect to to (., .)D.

c. Show that Nk is self-adjoint with respect to to (., .)D for any integer k.

d. Show that the Neumann series expansion preconditioner defined by the right-hand side

of (12.3) leads to a preconditioned matrix that is self-adjoint with respect to theD-inner

product.

e. Describe an implementation of the preconditioned CG algorithm using this precondi-

tioner.

P-12.2 The development of the Chebyshev iteration algorithm seen in Section 12.3.2 can

be exploited to derive yet another formulation of the conjugate algorithm from the Lanczos

algorithm. Observe that the recurrence relation (12.8) is not restricted to scaled Chebyshev

polynomials.

a. The scaled Lanczos polynomials, i.e., the polynomials pk(t)/pk(0), in which pk(t) is

the polynomial such that vk+1 = pk(A)v1 in the Lanczos algorithm, satisfy a relation

of the form (12.8). What are the coefficients ρk and δ in this case?

b. Proceed in the same manner as in Section 12.3.2 to derive a version of the Conjugate

Gradient algorithm.
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P-12.3 Show that ρk as defined by (12.7) has a limit ρ. What is this limit? Assume that

Algorithm 12.1 is to be executed with the ρk’s all replaced by this limit ρ. Will the method

converge? What is the asymptotic rate of convergence of this modified method?

P-12.4 Derive the least-squares polynomials for α = − 1
2 , β = 1

2 for the interval [0, 1] for

k = 1, 2, 3, 4. Check that these results agree with those of the table shown at the end of

Section 12.3.3.

P-12.5 Consider the mesh shown below. Assume that the objective is to solve the Poisson

equation with Dirichlet boundary conditions.

a. Consider the resulting matrix obtained (before boundary conditions are applied) from

ordering the nodes from bottom up, and left to right (thus, the bottom left vertex is

labeled 1 and the top right vertex is labeled 13). What is the bandwidth of the linear

system? How many memory locations would be needed to store the matrix in Skyline

format? (Assume that the matrix is nonsymmetric so both upper and lower triangular

parts must be stored).

b. Is it possible to find a 2-color ordering of the mesh points? If so, show the ordering, or

otherwise prove that it is not possible.

c. Find an independent set of size 5. Show the pattern of the matrix associated with this

independent set ordering.

d. Find a multicolor ordering of the mesh by using the greedy multicolor algorithm. Can

you find a better coloring (i.e., a coloring with fewer colors)? If so, show the coloring

[use letters to represent each color].

P-12.6 A linear system Ax = b where A is a 5-point matrix, is reordered using red-black

ordering as (
D1 F
E D2

)(
x
y

)

=

(
f
g

)

.

a. Write the block Gauss-Seidel iteration associated with the above partitioned system

(where the blocking in block Gauss-Seidel is the same as the above blocking).

b. Express the y iterates, independently of the x iterates, i.e., find an iteration which

involves only y-iterates. What type of iteration is the resulting scheme?

P-12.7 Consider a tridiagonal matrix T = tridiag (ai, bi, ci). Find a grouping of the rows

such that rows in each group are structurally orthogonal, i.e., orthogonal regardless of the

values of the entry. Find a set of three groups at most. How can this be generalized to block

tridiagonal matrices such as those arising from 2-D and 3-D centered difference matrices?

P-12.8 Why are the Winget regularized matrices Ā[e] defined by (12.25) positive definite

when the matrix Ã is obtained from A by a diagonal scaling from A?
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NOTES AND REFERENCES. When vector processing appeared in the middle to late 1970s, a number

of efforts were made to change algorithms, or implementations of standard methods, to exploit the

new architectures. One of the first ideas in this context was to perform matrix-by-vector products by

diagonals [184]. Matrix-by-vector products using this format can yield excellent performance. Hence,

came the idea of using polynomial preconditioning.

Polynomial preconditioning was exploited independently of supercomputing, as early as 1937 in

a paper by Cesari [71], and then in a 1952 paper by Lanczos [196]. The same idea was later applied

for eigenvalue problems by Stiefel who employed least-squares polynomials [276], and Rutishauser

[237] who combined the QD algorithm with Chebyshev acceleration. Dubois et al. [105] suggested

using polynomial preconditioning, specifically, the Neumann series expansion, for solving Symmetric

Positive Definite linear systems on vector computers. Johnson et al. [180] later extended the idea by

exploiting Chebyshev polynomials, and other orthogonal polynomials. It was observed in [180] that

least-squares polynomials tend to perform better than those based on the uniform norm, in that they lead

to a better overall clustering of the spectrum. Moreover, as was already observed by Rutishauser [237],

in the symmetric case there is no need for accurate eigenvalue estimates: It suffices to use the simple

bounds that are provided by Gershgorin’s theorem. In [241] it was also observed that in some cases the

least-squares polynomial approach which requires less information than the Chebyshev approach tends

to perform better.

The use of least-squares polynomials over polygons was first advocated by Smolarski and Saylor

[271] and later by Saad [242]. The application to the indefinite case was examined in detail in [240].

Still in the context of using polygons instead of ellipses, yet another attractive possibility proposed

by Fischer and Reichel [129] avoids the problem of best approximation altogether. The polygon can

be conformally transformed into a circle and the theory of Faber polynomials yields a simple way of

deriving good polynomials from exploiting specific points on the circle.

Although only approaches based on the formulation (12.5) and (12.11) have been discussed in

this book, there are other lesser known possibilities based on minimizing ‖1/λ − s(λ)‖∞. There

has been very little work on polynomial preconditioning or Krylov subspace methods for highly non-

normal matrices; see, however, the recent analysis in [285]. Another important point is that polynomial

preconditioning can be combined with a subsidiary relaxation-type preconditioning such as SSOR [2,

217]. Finally, polynomial preconditionings can be useful in some special situations such as that of

complex linear systems arising from the Helmholtz equation [132].

Multicoloring has been known for a long time in the numerical analysis literature and was used

in particular for understanding the theory of relaxation techniques [322, 293] as well as for deriving

efficient alternative formulations of some relaxation algorithms [293, 151]. With the advent of parallel

processing, it became an essential ingredient in parallelizing iterative algorithms, see for example [4,

2, 117, 219, 218, 228]. In [98] and [248] it was observed that k-step SOR preconditioning was very

competitive relative to the standard ILU preconditioners. Combined with multicolor ordering, multiple-

step SOR can perform quite well on vector computers. Multicoloring is also useful in finite element

methods, where elements instead of nodes are colored [31, 297]. In Element-By-Element techniques,

multicoloring is used when forming the residual, i.e., when multiplying an unassembled matrix by a

vector [174, 126, 262]. The contributions of the elements of the same color can all be evaluated and

applied simultaneously to the resulting vector.

Independent set orderings have been used in the context of parallel direct solution techniques for

sparse matrices [95, 199, 200] and multifrontal techniques [107] can be viewed as a particular case. The

gist of all these techniques is that it is possible to reorder the system in groups of equations which can be

solved simultaneously. A parallel direct solution sparse solver based on performing several successive

levels of independent set orderings and reduction was suggested in [199] and in a more general form in

[94].



Chapter 13

MULTIGRID METHODS

The convergence of preconditioned Krylov subspace methods for solving linear systems arising

from discretized Partial Differential Equations tends to slow down considerably as these systems

become larger. This deterioration in the convergence rate, compounded with the increased

operation count per step due to the sheer problem size, results in a severe loss of efficiency. In

contrast, the class of methods to be described in this chapter are capable of achieving convergence

rates which are, in theory, independent of the mesh size. One significant difference with the

preconditioned Krylov subspace approach is that Multigrid methods have been initially designed

specifically for the solution of discretized elliptic Partial Differential Equations. The method

was later extended in different ways to handle other PDE problems, including nonlinear ones,

as well as problems not modeled by PDEs. Because these methods exploit more information on

the problem than do standard preconditioned Krylov subspace methods, their performance can

be vastly superior. On the other hand, they may require implementations that are specific to

the physical problem at hand, in contrast with preconditioned Krylov subspace methods which

attempt to be ‘general-purpose’.

13.1 Introduction

Multigrid techniques exploit discretizations with different mesh sizes of a given prob-

lem to obtain optimal convergence from relaxation techniques. At the foundation of

these techniques is the basic and powerful principle of divide and conquer. Though

most relaxation-type iterative processes, such as Gauss-Seidel, may converge slowly

for typical problems, it can be noticed that the components of the errors (or resid-

uals) in the directions of the eigenvectors of the iteration matrix corresponding to

the large eigenvalues are damped very rapidly. These eigenvectors are known as the

oscillatory modes or high-frequency modes. The other components, associated with

low-frequency or smooth modes, are difficult to damp with standard relaxation. This

causes the observed slow down of all basic iterative methods. However, many of

these modes (say half) are mapped naturally into high-frequency modes on a coarser

mesh. Hence the idea of moving to a coarser mesh to eliminate the corresponding

error components. The process can obviously be repeated with the help of recursion,

using a hierarchy of meshes.

423
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The methods described in this chapter will differ in one essential way from those

seen so far. They will require to take a special look at the original physical problem

and in particular at the modes associated with different meshes. The availability of

a hierarchy of meshes and the corresponding linear problems opens up possibilities

which were not available with the methods seen so far which have only access to

the coefficient matrix and the right-hand side. There are, however, generalizations of

multigrid methods, termed Algebraic Multigrid (AMG), which attempt to reproduce

the outstanding performance enjoyed by multigrid in the regularly structured ellip-

tic case. This is done by extending in a purely algebraic manner the fundamental

principles just described to general sparse linear systems.

This chapter will begin with a description of the model problems and the spectra

of the associated matrices. This is required for understanding the motivation and

theory behind multigrid.

13.2 Matrices and spectra of model problems

Consider first the one-dimensional model problem seen in Chapter 2:

−u′′(x) = f(x) for x ∈ (0, 1) (13.1)

u(0) = u(1) = 0 . (13.2)

The interval [0,1] is discretized with centered difference approximations, using the

equally spaced n+ 2 points

xi = i× h, i = 0, . . . , n+ 1 ,

where h = 1/(n+1). A common notation is to call the original (continuous) domain

Ω and its discrete version Ωh. So Ω = (0, 1) and Ωh = {xi}i=0,...,n+1. The

discretization results in the system

Ax = b (13.3)

where

A =









2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2









; b = h2









f(x0)
f(x1)

...

f(xn−2)
f(xn−1)









. (13.4)

The above system is of size n× n.

Next, the eigenvalues and eigenvectors of the matrix A will be determined. The

following trigonometric relation will be useful:

sin((j + 1)θ) + sin((j − 1)θ) = 2 sin(jθ) cos θ . (13.5)
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Consider the vector u whose components are sin θ, sin 2θ, · · · , sin nθ. Using the

relation (13.5) we find that

(A− 2(1 − cos θ)I)u = sin ((n+ 1)θ) en

where en is the n-th column of the identity. The right-hand side in the above relation

is equal to zero for the following values of θ:

θk =
kπ

n+ 1
, (13.6)

For any integer value k. Therefore, the eigenvalues of A are

λk = 2(1 − cos θk) = 4 sin2
θk
2

k = 1, . . . , n, (13.7)

and the associated eigenvectors are given by:

wk =







sin θk
sin(2θk)

...

sin(nθk)






. (13.8)

The i-th component of wk can be rewritten in the form

sin
ikπ

n+ 1
= sin(kπxi)

and represents the value of the function sin(kπx) at the discretization point xi. This

component of the eigenvector may therefore be written

wk(xi) = sin(kπxi) . (13.9)

Note that these eigenfunctions satisfy the boundary conditions wk(x0) = wk(xn+1) =
0. These eigenfunctions are illustrated in Figure 13.1 for the case n = 7.

Now consider the 2-D Poisson equation

−
(
∂2u

∂x2
+
∂2u

∂y2

)

= f in Ω (13.10)

u = 0 on Γ (13.11)

where Ω is the rectangle (0, l1) × (0, l2) and Γ its boundary. Both intervals can be

discretized uniformly by taking n + 2 points in the x direction and m + 2 points in

the y directions:

xi = i× h1, i = 0, . . . , n+ 1 ; yj = j × h2, j = 0, . . . ,m+ 1

where

h1 =
l1

n+ 1
; h2 =

l2
m+ 1

.

For simplicity we now assume that h1 = h2.
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0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Figure 13.1: The seven eigenfunctions of the discretized one-dimensional Laplacean

when n = 7.
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In this case the linear system has the form (13.3) where A has the form

A =









B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B









with B =









4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4









.

The right-hand side is again the discrete version of the function f scaled by h2.

The above matrix can be represented in a succinct way using tensor product notation.

Given an m× p matrix X and an n× q matrix Y , the matrix

X ⊗ Y

can be viewed as a block matrix which has in (block) location (i, j) the matrix xijY .

In other words, X⊗Y is of size (nm)×(pq) and is obtained by expanding each entry

xij of X into the block xijY . This definition is also valid for vectors by considering

them as matrices (p = q = 1).

With this notation, the matrix A given above, can be written as

A = I ⊗ Tx + Ty ⊗ I, (13.12)

in which Tx abd Ty are tridiagonal matrices of the same form as the matrix A in

(13.4) and of dimension n and m respectively. Often, the right-hand side of (13.12)

is called the tensor sum of Tx and Ty and is denoted by Tx ⊕ Ty. A few simple

properties are easy to show (see Exercise 1) for tensor products and tensor sums.

One that is important for determining the spectrum of A is

(Tx ⊕ Ty)(v ⊗ w) = v ⊗ (Txw) + (Tyv)⊗ w . (13.13)

In particular if wk is an eigenvector of Tx associated with σk and vl is an eigenvector

of Tl associated with µl, it is clear that

(Tx ⊕ Ty)(vl ⊗ wk) = vl ⊗ (Txwk) + (Tyvk)⊗wk = (σk + µl) vl ⊗ wk .

So, λkl = σk + µl is an eigenvalue of A for each pair of eigenvalues σk ∈ Λ(Tx)
and µk ∈ Λ(Ty). The associated eigenvector is vl ⊗ wk. These eigenvalues and

associated eigenvectors are best labeled with two indices:

λkl = 2

(

1− cos
kπ

n+ 1

)

+ 2

(

1− cos
lπ

m+ 1

)

= 4

(

sin2
kπ

2(n + 1)
+ sin2

lπ

2(m+ 1)

)

. (13.14)

Their associated eigenvectors zk,l are

zk,l = vl ⊗ wk
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and they are best expressed by their values at the points (xi, yj) on the grid:

zk,l(xi, yj) = sin(kπxi) sin(lπyj) .

When all the sums σk + µl are distinct this gives all the eigenvalues and eigenvec-

tors of A. Otherwise, we must show that the multiple eigenvalues correspond to

independent eigenvectors. In fact it can be shown that the system

{vl ⊗ wk}k=1,...,n; l=1...,m

is an orthonormal system if both the system of the vl’s and the wk’s are orthonormal.

13.2.1 Richardson’s iteration

Multigrid can be easily motivated by taking an in-depth look at simple iterative

schemes such as the Richardson iteration and Jacobi’s method. Note that these two

methods are essentially identical for the model problems under consideration, be-

cause the diagonal of the matrix is a multiple of the identity matrix. Richardson’s

iteration is considered here for the one-dimensional case, using a fixed parameter ω.

In the next section, the weighted Jacobi iteration is fully analyzed with an emphasis

on studying the effect of varying the parameter ω.

Richardson’s iteration takes the form:

uj+1 = uj + ω(b−Auj) = (I − ωA)uj + ωb .

Thus, the iteration matrix is

Mω = I − ωA . (13.15)

Recall from Example 4.1 from Chapter 4, that convergence takes place for 0 < ω <
2/ρ(A). In realistic situations, the optimal ω given by (4.33) is difficult to use.

Instead, an upper bound ρ(A) ≤ γ is often available from, e.g., Gershgorin’s the-

orem, and we can simply take ω = 1/γ. This yields a converging iteration since

1/γ ≤ 1/ρ(A) < 2/ρ(A).
By the relation (13.15), the eigenvalues of the iteration matrix are 1−ωλk, where

λk is given by (13.7). The eigenvectors are the same as those of A. If u∗ is the exact

solution, it was seen in Chapter 4 that the error vector dj ≡ u∗ − uj , obeys the

relation,

dj =M j
ωd0 . (13.16)

It is useful to expand the error vector d0 in the eigenbasis of Mω , as

d0 =
n∑

k=1

ξkwk .

From (13.16) and (13.15) this implies that at step j,

dj =
n∑

k=1

(

1− λk
γ

)j

ξkwk .
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Each component is reduced by (1 − λk/γ)
j . The slowest converging component

corresponds to the smallest eigenvalue λ1, which could yield a very slow convergence

rate when |λ1/γ| ≪ 1.

For the model problem seen above, in the one-dimensional case, Gershgorin’s

theorem yields γ = 4 and the corresponding reduction coefficient is

1− sin2
π

2(n+ 1)
≈ 1− (πh/2)2 = 1−O(h2) .

As a result, convergence can be quite slow for fine meshes, i.e., when h is small.

However, the basic observation on which multigrid methods are founded is that con-

vergence is not similar for all components. Half of the error components see actually

a very good decrease. This is the case for the high frequency components, that is,

all those components corresponding to k > n/2. This part of the error is often re-

ferred to as the oscillatory part, for obvious reasons. The reduction factors for these

components are

ηk = 1− sin2
kπ

2(n+ 1)
= cos2

kπ

2(n + 1)
≤ 1

2
.

η

η

n

1

n

1/2

1

1 n/2+1
θθθ

Figure 13.2: Reduction coefficients for Richardson’s method applied to the 1-D

model problem

These coefficients are illustrated in Figure 13.2. Two important observations can

be made. The first is that the oscillatory components, i.e., those corresponding to

θn/2+1, . . . , θn, undergo excellent reduction, better than 1/2, at each step of the

iteration. It is also important to note that this factor is independent of the step-size

h. The next observation will give a hint as to what might be done to reduce the other

components. In order to see this we now introduce, for the first time, a coarse grid

problem. Assume that n is odd and consider the problem issued from discretizing

the original PDE (13.1) on a mesh Ω2h with the mesh-size 2h. The superscripts h
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and 2h will now be used to distinguish between quantities related to each grid. The

grid points on the coarser mesh are x2hi = i ∗ (2h). The second observation is based

on the simple fact that x2hi = xh2i from which it follows that, for k ≤ n/2,

wh
k (x

h
2i) = sin(kπxh2i) = sin(kπx2hi ) = w2h

k (x2hi ) .

In other words, taking a smooth mode on the fine grid (wh
k with k ≤ n/2) and

canonically injecting it into the coarse grid, i.e., defining its values on the coarse

points to be the same as those on the fine points, yields the k-th mode on the coarse

grid. This is illustrated in Figure 13.3 for k = 2 and grids of 9 points (n = 7) and 5
points (n = 3).

Some of the modes which were smooth on the fine grid, become oscillatory. For

example, when n is odd, the mode wh
(n+1)/2 becomes precisely the highest mode on

Ω2h. At the same time the oscillatory modes on the fine mesh are no longer rep-

resented on the coarse mesh. The iteration fails to make progress on the fine grid

when the only components left are those associated with the smooth modes. Multi-

grid strategies do not attempt to eliminate these components on the fine grid. Instead,

they first move down to a coarser grid where smooth modes are translated into oscil-

latory ones. Practically, this requires going back and forth between different grids.

The necessary grid-transfer operations will be discussed in detail later.

0 1 2 3 4 5 6 7 8

Fine mesh

0 1 2 3 4

Coarse mesh

Figure 13.3: The mode w2 on a fine grid (n = 7) and a coarse grid (n = 3).
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13.2.2 Weighted Jacobi iteration

In this section a weighted Jacobi iteration is considered and analyzed for both 1-D

and 2-D model problems. The standard Jacobi iteration is of the form

uj+1 = D−1(E + F )uj +D−1f .

The weighted version of this iteration uses a parameter ω and combines the above

iterate with the current uj :

uj+1 = ω
(
D−1(E + F )uj +D−1f

)
+ (1− ω)uj

=
[
(1− ω)I + ωD−1(E + F )

]
uj + ωD−1f (13.17)

≡ Jωuj + fω . (13.18)

Using the relation E + F = D −A it follows that

Jω = I − ωD−1A . (13.19)

In particular note that whenA is SPD, the weighted Jacobi iteration will converge

when 0 < ω < 2/ρ(D−1A). In the case of our 1-D model problem the diagonal is

D = 2I , so the following expression for Jω is obtained,

Jω = (1− ω)I + ω

2
(2I −A) = I − ω

2
A. (13.20)

For the 2-D case, a similar result can be obtained in which the denominator 2 is

replaced by 4. The eigenvalues of the iteration matrix follow immediately from the

expression (13.7),

µk(ω) = 1− ω
(

1− cos
kπ

n+ 1

)

= 1− 2ω

(

sin2
kπ

2(n + 1)

)

. (13.21)

In the 2-D case, these become,

µk,l(ω) = 1− ω
(

sin2
kπ

2(n + 1)
+ sin2

lπ

2(m+ 1)

)

.

Consider the 1-D case first. The sine terms sin2(kπ/2(n + 1)) lie in between

1−s2 and s2, in which s = sin(π/2(n+1)). Therefore, the eigenvalues are bounded

as follows:

(1− 2ω) + 2ωs2 ≤ µk(ω) ≤ 1− 2ωs2 . (13.22)

The spectral radius of Jω is

ρ(Jω) = max{|(1 − 2ω) + 2ωs2|, |1− 2ωs2|} .

When ω is < 0 or > 1, it can be shown that ρ(Jω) > 1 for h small enough (See

Problem 1). When ω is between 0 and 1, then the spectral radius is simply 1−2ωs2 ≈
1− ωπ2h2/2.
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It is interesting to note that the best ω in the interval [0, 1] is ω = 1, so no

acceleration of the original Jacobi iteration can be achieved. On the other hand, if

the weighted Jacobi iteration is regarded as a smoother, the situation is different. For

those modes associated with k > n/2, the term sin2 θk is ≥ 1/2 so

1− 2ω < (1− 2ω) + 2ωs2 ≤ µk(ω) ≤ 1− 1

2
ω . (13.23)

For example when ω = 1/2, then all reduction coefficients for the oscillatory modes

will be in between 0 and 3/4, thus guaranteeing again a reduction of h. For ω = 2/3
the eigenvalues are between -1/3 and 1/3, leading to a smoothing factor of 1/3. This

is the best that can achieved independently of h.

For 2-D problems, the situation is qualitatively the same. The bound (13.22)

becomes,

(1− 2ω) + ω(s2x + s2y) ≤ µk,l(ω) ≤ 1− ω(s2x + s2y) (13.24)

in which sx is the same as s and sy = sin(π/(2(m + 1))). The conclusion for the

spectral radius and rate of convergence of the iteration is similar, in that ρ(Jω) ≈
1−O(h2) and the best ω is one. In addition, the high-frequency modes are damped

with coefficients which satisfy:

1− 2ω < (1− 2ω) + ω(s2x + s2y) ≤ µk,l(ω) ≤ 1− 1

2
ω . (13.25)

As before, ω = 1/2 yields a smoothing factor of 3/4, and ω = 3/5 yields, a smooth-

ing factor of 4/5. Here the best that can be done, is to take ω = 4/5.

13.2.3 Gauss-Seidel iteration

In pratice, Gauss-Seidel and red-black Gauss-Seidel relaxation are more common

smoothers than Jacobi or Richardson’s iterations. Also, SOR (with ω 6= 1) is rarely

used as it is known that overrelaxation adds no benefit in general. Gauss-Seidel and

SOR schemes are somewhat more difficult to analyze.

Consider the iteration matrix

G = (D − E)−1F (13.26)

in the one-dimensional case. The eigenvalues and eigenvectors of G satisfy the rela-

tion

[F − λ(D − E)]u = 0

the j-th row of which is

ξj+1 − 2λξj + λξj−1 = 0, (13.27)

where ξj is the j-component of the vector u. The boundary conditions ξ0 = ξn+1 =
0, should be added to the above equations. Note that because ξn+1 = 0, equation

(13.27) is valid when j = n (despite the fact that entry (n, n+1) of F is not defined).
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This is a difference equation, similar to Equation (2.21) encountered in Chapter 2

and and it can be solved similarly by seeking a general solution in the form ξj = rj .
Substituting in (13.27), r must satisfy the quadratic equation

r2 − 2λr + λ = 0,

whose roots are

r1 = λ+
√

λ2 − λ, r2 = λ−
√

λ2 − λ .

This leads to the general solution ξj = αrj1 + βrj2. The first boundary condition

ξ0 = 0, implies that β = −α. The boundary condition ξn+1 = 0 yields the equation

in λ

(

λ+
√

λ2 − λ
)n+1

−
(

λ−
√

λ2 − λ
)n+1

= 0 →
(

(λ+
√
λ2 − λ)2
λ

)n+1

= 1 ,

in which it is assumed that λ 6= 0. With the change of variables λ ≡ cos2 θ, this

becomes (cos θ ± i sin θ)2(n+1) = 1, where the sign ± is positive when cos θ and

sin θ are of the same sign and negative otherwise. Hence,

±2(n+ 1)θ = ±2k π → θ = θk ≡
kπ

n+ 1
, k = 1, . . . , n (13.28)

Therefore the eigenvalues are of the form λk = cos2 θk, where θk was defined above,

i.e.,

λk = cos2
kπ

n+ 1
.

In fact this result could have been obtained in a simpler way. According to Theorem

4.16 seen in Chapter 4, when ω = 1, the eigenvalues of SOR iteration matrix are the

squares of those of the corresponding Jacobi iteration matrix with the same ω, which

according to (13.21) (left side) are µk = cos[kπ/(n + 1)].
Some care must be exercised when computing the eigenvectors. The j-th com-

ponent of the eigenvector is given by ξj = rj1 − rj2. Proceeding as before, we have

rj1 =
(

cos2 θk +
√

cos4 θk − cos2 θk

)j
= (cos θk)

j (cos θk ± i sin θk)j ,

where the ± sign was defined before. Similarly, rj2 = (cos θk)
j (cos θk ∓ i sin θk)j

where ∓ is the opposite sign from ±. Therefore,

ξj = (cos θk)
j
[

(cos θk ∓ i sin θk)j − (cos θk ± i sin θk)j
]

= 2i (cos θk)
j [± sin(jθk)] .
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Figure 13.4: The eigenfunctions of 13-point one-dimensional mesh (n = 11). The

case k = 6 is omitted.
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Since θk is defined by (13.28), sin θk is nonnegative, and therefore the ± sign

is simply the sign of cos θk. In addition the constant factor 2i can be deleted since

eigenvectors are defined up to a scalar constant. Therefore, we can set

uk =
[
| cos θk|j sin(jθk)

]

j=1,...,n
. (13.29)

The above formula would yield an incorrect answer (a zero vector) for the situation

when λk = 0. This special case can be handled by going back to (13.27) which

yields the vector e1 as an eigenvector. In addition, it is left to show that indeed the

above set of vectors constitutes a basis. This is the subject of Exercise 2.

0 1 2 3 4 5 6 7 8 9 10 11 12

✲

✻

k

λk(G)

Figure 13.5: Eigenvalues of the Gauss-Seidel iteration for a 13-point one-

dimensional mesh (n = 11).

The smallest eigenvalues are those for which k is close to n/2, as is illustrated

in Figure 13.5. Components in the directions of the corresponding eigenvectors, i.e.,

those associated with the eigenvalues ofG in the middle of the spectrum, are damped

rapidly by the process. The others are harder to eliminate. This is in contrast with

the situation for the Jacobi iteration where the modes corresponding to the largest

eigenvalues are damped first.

Interestingly, the eigenvectors corresponding to the middle eigenvalues are not

the most oscillatory in the proper sense of the word. Specifically, a look at the eigen-

functions of G illustrated in Figure 13.4, reveals that the modes with high

oscillations are those corresponding to eigenvalues with the larger values of k,

and these are not damped rapidly. The figure shows the eigenfunctions ofG, for a 13-

point discretization of the 1-D Laplacean. It omits the case k = 6, which corresponds

to the special case of a zero eigenvalue mentioned above.

The eigenvectors of the Gauss-Seidel iteration matrix are not related in a simple

way to those of the original matrix A. As it turns out, the low frequency eigenfunc-

tions of the original matrix A are damped slowly while the high frequency modes are

damped rapidly, just as is the case for the Jacobi and Richardson iteration. This can

be readily verified experimentally, see Exercise 3
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13.3 Inter-grid operations

Multigrid algorithms require going back and forth between several grid problems

related to the solution of the same original equations. It is sufficient to present these

grid transfer operations for the simple case of two meshes, Ωh (fine) and ΩH (coarse),

and to only consider the situation when H = 2h. In particular, the problem size of

the fine mesh problem will be about 2d times as large as that of the coarse mesh

problem, where d is the space dimension. In the previous section, the 1-D case was

already considered and the subscript h corresponding to the mesh problem under

consideration was introduced.

13.3.1 Prolongation

A prolongation operation takes a vector from ΩH and defines the analogue vector in

Ωh. A common notation in use is:

IhH : ΩH −→ Ωh .

The simplest way to define a prolongation operator is through linear interpolation,

which is now presented for the 1-D case first. The generic situation is that of n + 2
points, x0, x1, . . . , xn+1 where x0 and xn+1 are boundary points. The number of

internal points n is assumed to be odd, so that halving the size of each subinterval

amounts to introducing the middle points. Given a vector (v2hi )i=0,...,(n+1)/2, the

vector vh = Ih2hv
2h of Ωh is defined as follows

{

vh2j = v2hj
vh2j+1 = (v2hj + v2hj+1)/2

for j = 0, . . . ,
n+ 1

2
.

In matrix form, the above defined prolongation can be written as

vh =
1

2




















1
2
1 1

2
1 1

...

...

1 1
2
1




















v2h . (13.30)

In 2-D, the linear interpolation can be defined in a straightforward manner from

the 1-D case. Thinking in terms of a matrix vij representing the coordinate of a

function v at the points xi, yj , it is possible to define the interpolation in 2-D in

two stages. In the following Ihx,2h denotes the interpolation in the x direction only
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and Ihy,2h the interpolation for y variables only. First, interpolate all values in the

x-direction only:

vh,x = Ihx,2hv where

{

vh,x2i,: = v2hi,:
vh,x2i+1,: = (v2hi,: + v2hi+1,:)/2

for i = 0, . . . ,
m+ 1

2
.

Then interpolate this semi-interpolated result, with respect to the y variable:

vh = Ihy,2hv
h,x where

{

vh:,2j = vx,2h:,j

vh:,2j+1 = (vx,2h:,j + vx,2h:,j+1)/2
for j = 0, . . . ,

n+ 1

2
.

This gives the following formulas for the 2-D interpolation of an element vH in ΩH ,

into the corresponding element vh = IhH in Ωh,






vh2i,2j = v2hij
vh2i+1,2j = (v2hij + v2hi+1,j)/2

vh2i,2j+1 = (v2hij + v2hi,j+1)/2

vh2i+1,2j+1 = (v2hij + v2hi+1,j + v2hi,j+1 + v2hi+1,j+1)/4

for

{
i = 0, . . . , n+1

2 ;

j = 0, . . . , m+1
2

.

From the above derivation, it is useful to observe that the 2-D interpolation can be

expressed as the tensor product of the two one-dimensional interpolations, i.e.,

Ih2h = Ihy,2h ⊗ Ihx,2h. (13.31)

This is the subject of Exercise 4.

It is common to represent the prolongation operators using a variation of the

stencil notation employed in Chapter 4 and Chapter 10. The stencil now operates on

a grid to give values on a different grid. The one-dimensional stencil is denoted by

p =

]
1

2
1

1

2

[

.

The open brackets notation only means that the stencil must be interpreted as a fan-

out rather than fan-in operation as in the cases we have seen in earlier chapters. In

other words it is a column instead of a row operation, as can also be understood by a

look at the matrix in (13.30). Each stencil is associated with a coarse grid point. The

result of the stencil operation are the values vHi /2, v
H
i , v

H
i /2, contributed to the three

fine mesh-points xh2i−1, x
h
2i, and xh2i+1 by the value vHi . Another, possibly clearer,

interpretation is that the function with value one at the coarse grid point x2hi , and zero

elsewhere, will be interpolated to a function in the fine mesh which has the values

0.5, 1, 0.5 at the points xh2i−1, x
h
2i, x

h
2i+1, respectively, and zero elsewhere. Under

this interpretation, the stencil for the 2-D linear interpolation is

1

4





1 2 1
2 4 2
1 2 1



 .

It is also interesting to note that the 2-D stencil can be viewed as a tensor product of

the one dimensional stencil p and its transpose pT . The stencil pT acts on the vertical

coordinates in exactly the same way that p acts on the horizontal coordinates.
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Example 13.1. This example illustrates the use of the tensor product notation to

determine the 2-D stencil. The stencil can also be understood in terms of the action

of the interpolation operation on a unit vector. Using the stencil notation, this unit

vector is of the form ei ⊗ ej and we have (see Exercise 1)

Ih2h(ei ⊗ ej) = (Ihy,2h ⊗ Ihx,2h)(ei ⊗ ej) = (Ihy,2hei)⊗ (Ihx,2hej) .

When written in coordinate (or matrix) form this is a vector which corresponds to

the outer product ppT with pT ≡ [12 1 1
2 ], centered at the point with coordinate

xi, yj .

13.3.2 Restriction

The restriction operation is the reverse of prolongation. Given a function vh on the

fine mesh, a corresponding function in ΩH must be defined from vh. In the earlier

analysis one such operation was encountered. It was simply based on defining the

function v2h from the function vh as follows

v2hi = vh2i. (13.32)

Because this is simply a canonical injection from Ωh to Ω2h, it is termed the injection

operator. This injection has an obvious 2-D analogue: v2hi,j = vh2i,2j .

A more common restriction operator, called full weighting (FW), defines v2h as

follows in the 1-D case:

v2hj =
1

4

(

vh2j−1 + 2vh2j + vh2j+1

)

. (13.33)

This averages the neighboring values using the weights 0.25, 0.5, 0.25. An important

property can be seen by considering the matrix associated with this definition of I2hh :

I2hh =
1

4









1 2 1
1 2 1

1 2 1
· · · · · · · · ·

1 2 1









. (13.34)

Apart from a scaling factor, this matrix is the transpose of the interpolation operator

seen earlier. Specifically,

Ih2h = 2 (I2hh )T . (13.35)

The stencil for the above operator is

1

4
[1 2 1]

where the closed brackets are now used to indicate the standard fan-in (row) opera-

tion.
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In the 2-D case, the stencil for the full-weighting averaging is given by

1

16





1 2 1
2 4 2
1 2 1



 .

This takes for uh2i,2j the result of a weighted average of the 9 points uHi+q,j+p with

|p|, |q| ≤ 1 with the associated weights 2−|p|−|q|−2. Note that because the Full

Weighting stencil is a scaled row (fan-in) version of the linear interpolation sten-

cil, the matrix associated with the operator I2hh is essentially a transpose of the

prolongation (interpolation) operator:

Ih2h = 4(I2hh )T . (13.36)

The statements (13.35) and (13.36), can be summarized by

IhH = 2d(IHh )T (13.37)

where d is the space dimension.

The following relation can be shown

I2hh = I2hy,h ⊗ I2hx,h (13.38)

which is analogous to (13.31) (see Exercise 5).

13.4 Standard multigrid techniques

One of the most natural ways to exploit a hierarchy of grids when solving PDEs, is to

obtain an initial guess from interpolating a solution computed on a coarser grid. The

process can be recursively repeated until a given grid is reached. This interpolation

from a coarser grid can be followed by a few steps of a smoothing iteration. This

is known as nested iteration. General multigrid cycles are intrinsically recursive

processes which use essentially two main ingredients. The first is a hierarchy of

grid problems along with restrictions and prolongations to move between grids. The

second is a smoother, i.e., any scheme which has the smoothing property of damping

quickly the high frequency components of the error. A few such schemes, such as

the Richardson and weighted Jacobi iterations, have been seen in earlier sections.

Other smoothers which are often used in practice are the Gauss-Seidel and Red-

Black Gauss-Seidel iterations seen in Chapter 4.

13.4.1 Coarse problems and smoothers

At the highest level (finest grid) a mesh-size of h is used and the resulting problem

to solve is of the form:

Ahu
h = fh .

One of the requirements of multigrid techniques is that a system similar to the one

above must be solved at the coarser levels. It is natural to define this problem at the
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next level where a mesh of size, say, H , is used, as simply the system arising from

discretizing the same problem on the coarser mesh ΩH . In other cases, it may be

more useful to define the linear system by Galerkin projection, where the coarse

grid problem is defined by

AH = IHh AhI
h
H , fH = IHh f

h . (13.39)

This formulation is more common in finite element methods. It also has some ad-

vantages from a theoretical point of view.

Example 13.2. Consider the model problem in 1-D, and the situation when AH

is defined from the Galerkin projection, i.e., via, formula (13.39), where the pro-

longation and restriction operators are related by (13.35) (1-D) or (13.36) (2-D). In

1-D, AH can be easily defined for the model problem when full-weighting is used.

Indeed,

AHe
H
j = IHh AhI

h
He

H
j

= IHh Ah

[
1

2
eh2j−1 + eh2j +

1

2
eh2j+1

]

= IHh

[

−1

2
eh2j−2 + eh2j −

1

2
eh2j+2

]

= −eHj−1 + 2eHj − eHj+1 .

This defines the j-th column of AH , which has a 2 in the diagonal, -1 in the super

and sub-diagonal and zero elsewhere. This means that the operator AH defined by

the Galerkin property is identical with the operator that would be defined from a

coarse discretization. This property is not true in 2-D when full weighting is used.

see Exercise 6.

The notation

uhν = smoothν(Ah, u
h
0 , fh)

means that uhν is the result of ν smoothing steps for solving the above system, starting

with the initial guess uh0 . Smoothing iterations are of the form

uhj+1 = Shu
h
j + gh (13.40)

where Sh is the iteration matrix associated with one smoothing step. As was seen in

earlier chapters, the above iteration can always be rewritten in the ‘preconditioning’

form:

uhj+1 = uhj +Bh(f
h −Ahu

h
j ) (13.41)

where

Sh ≡ I −BhAh, Bh ≡ (I − Sh)A−1
h gh ≡ Bhf

h . (13.42)
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The error dhν and residual rhν resulting from ν smoothing steps satisfy

dhν = (Sh)
νdh0 = (I −BhAh)

νdh0 ; rνh = (I −AhBh)
νrh0 .

It will be useful later to make use of the following observation. When fh = 0 then

gh is also zero and as a result, one step of the iteration (13.40) will provide the result

of one product with the operator Sh.

Example 13.3. For example, setting f ≡ 0 in (13.17), yields the Jacobi iteration

matrix,

B = (I −D−1(E + F ))A−1 = D−1(D − E − F )A−1 = D−1 .

In a similar way one finds that for the Gauss-Seidel iteration, B = (D−E)−1F and

for Richardson iteration B = ωI .

Nested iteration was mentioned earlier as a means of obtaining good initial

guesses from coarser meshes in a recursive way. The algorithm, presented here to il-

lustrate the notation just introduced is described below. The assumption is that there

are p+ 1 grids, with mesh sizes h, 2h, . . . , 2pn ≡ h0.

ALGORITHM 13.1 Nested Iteration

1. Set h := h0. Given an initial guess uh0 , set uh = smoothνp(Ah, u
h
0 , f

h)
2. For l = p− 1, . . . , 0 Do

3. uh/2 = I
h/2
h uh

4. h := h/2;
5. uh := smoothνl(Ah, u

h, fh)
6. End

In practice, nested iteration is not much used in this form. However, it provides

the foundation for one of the most effective multigrid algorithms, namely the Full

Multi-Grid (FMG) which will be described in a later section.

13.4.2 Two-grid cycles

When a smoother is applied to a linear system at a fine level, the residual

rh = fh −Auh

obtained at the end of the smoothing step will typically still be large. However, it

will have small components in the space associated with the high-frequency modes.

If these components are removed by solving the above system (exactly) at the lower

level, then a better approximation should result. Two-grid methods are rarely prac-

tical because the coarse-mesh problem may still be too large to be solved exactly.

However, they are useful from a theoretical point of view. In the following algorithm

H = 2h.
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ALGORITHM 13.2 Two-Grid cycle

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IHh r
h

4. Solve: AHδ
H = rH

5. Correct: uh := uh + IhHδ
H

6. Post-smooth: uh := smoothν2(Ah, u
h, fh)

It is clear that the result of one iteration of the above algorithm corresponds to

some iteration process of the form

uhnew =Mhu
h
0 + gMh

.

In order to determine the operator Mh we exploit the observation made above that

taking fh = 0 provides the product Mhu
h
0 . When fh = 0, then in line 1 of the

algorithm, uh becomes Sν1
h u

h
0 . In line 3, we have rH = IHh (fh − AhS

ν1
h ) =

IHh (−AhS
ν1
h ). Following this process, the vector uh resulting from one cycle of

the algorithm becomes

uhnew = Sν2
h [Sν1

h u
h
0 + IhHA

−1
H IHh (−AhS

ν1
h u

h
0)].

Therefore, the 2-grid iteration operator is given by

Mh
H = Sν2

h [I − IhHA−1
H IHh Ah]S

ν1
h .

The matrix inside the brackets,

TH
h = I − IhHA−1

H IHh Ah , (13.43)

acts as another iteration by itself known as the coarse grid correction, which can be

viewed as a particular case of the two-grid operator with no smoothing, i.e., with

ν1 = ν2 = 0. Note that the B preconditioning matrix associated with this iteration

is, according to (13.42), Bh = IhHA
−1
H IHh .

An important property of the coarse grid correction operator is discussed in the

following lemma. It is assumed that Ah is symmetric positive definite.

Lemma 13.1 When the coarse grid matrix is defined via (13.39), then the coarse

grid correction operator (13.43) is a projector which is orthogonal with respect to

the Ah-inner product. In addition, the range of TH
h is Ah-orthogonal to the range of

IHh .

Proof. It suffices to show that I − TH
h = IhHA

−1
H IHh Ah is a projector:

(IhHA
−1
H IHh Ah)×(IhHA−1

H IHh Ah) = IhHA
−1
H (IHh AhI

h
H)

︸ ︷︷ ︸

AH

A−1
H IHh Ah = IhHA

−1
H IHh Ah.
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That IhHA
−1
H IHh Ah is an A-orthogonal projector follows from its self-adjointness

with respect to the Ah-inner product (see Chapter 1):

(TH
h x, y)Ah

= (AhI
h
HA

−1
H IHh Ahx, y) = (x,AhI

h
HA

−1
H IHh Ahy) = (x, TH

h y)Ah
.

Finally, the statement that Ran(TH
h ) is orthogonal to Ran(IHh ) is equivalent to stat-

ing that for all x of the form x = TH
h y, we have IHh Ahx = 0 which is readily

verified.

13.4.3 V-cycles and W-cycles

Anyone familiar with recursivity will immediately think of the following practical

version of the 2-grid iteration: apply the 2-grid cycle recursively until a coarse

enough level is reached and then solve exactly (typically using a direct solver). This

gives the algorithm described below, called the V-cycle multigrid. In the algorithm,

H stands for 2h and h0 for the coarsest mesh-size.

ALGORITHM 13.3 uh = V-cycle(Ah, u
h
0 , f

h)

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IHh r
h

4. If (H == h0)

5. Solve: AHδ
H = rH

6. Else

7. Recursion: δH = V-cycle(AH , 0, r
H)

8. EndIf

9. Correct: uh := uh + IhHδ
H

10. Post-smooth: uh := smoothν2(Ah, u
h, fh)

11. Return uh

Consider the cost of one cycle, i.e., one iteration of the above algorithm. A few

simple assumptions are needed along with new notation. The number of nonzero

elements of Ah is denoted by nnzh. It is assumed that nnzh ≤ αnh, where α does

not depend on h. The cost of each smoothing step is equal to nnzh while the cost of

the transfer operations (interpolation and restriction) is of the form βnh where again

β does not depend on h. The cost at the level where the grid size is h, is given by

C(nh) = (α(ν1 + ν2) + 2β)nh +C(n2h) .

Noting that n2h = nh/2 in the one-dimensional case, This gives the recurrence

relation

C(n) = ηn+ C(n/2) (13.44)

in which η = (α(ν1 + ν2) + 2β). The solution of this recurrence relations yields

C(n) ≤ 2ηn. For 2-dimensional problems, nh = 4n2h and in this case the cost

becomes ≤ 7/3ηn.
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We now introduce the general multigrid cycle which generalizes the V-cycle seen

above. Once more, the implementation of the multigrid cycle is of a recursive nature.

ALGORITHM 13.4 uh = MG (Ah, u
h
0 , f

h, ν1, ν2, γ)

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IHh r
h

4. If (H == h0)

5. Solve: AHδ
H = rH

6. Else

7. Recursion: δH = MGγ(AH , 0, r
H , ν1, ν2, γ)

8. EndIf

9. Correct: uh := uh + IhHδ
H

10. Post-smooth: uh := smoothν2(Ah, u
h, fh)

11. Return uh

Notice now that there is a new parameter, γ, which determines how many times MG

is iterated in Line 7. Each of the MG iterations in Line 7 takes the form

δHnew =MG(AH , δ
H , rH , ν1, ν2, γ) (13.45)

and this is iterated γ times. The initial guess for the iteration is δH = 0 the second

argument to the MG call in line 7 shows. The case γ = 1 yields the V-cycle multigrid.

The case γ = 2 is known as the W-cycle multigrid. The resulting inter-grid up and

down moves can be complex as is illustrated by the diagrams in Figure 13.6. The

case γ = 3 is rarely used.

Now consider the cost of the general multigrid cycle. The only significant dif-

ference with the V-cycle algorithm is that the recursive call to MG is iterated γ times

instead of only once for the V-cycle. Therefore, the cost formula (13.44) becomes

C(n) = ηn+ γC(n/2), (1-D case) C(n) = ηn+ γC(n/4), (2-D case) .
(13.46)

It can easily be shown that the cost of each loop is still linear when γ < 2 in 1-D and

γ < 4 in the 2-D case, see Exercise 12. In other cases, the cost per cycle increases to

O(n log2 n).

Example 13.4. This example illustrates the convergence behavior of the V-cycle

multigrid for solving a model Poisson problem with Dirichlet boundary conditions

in two-dimensional space. The problem considered is of the form :

−∆u = 13 sin(2πx) × sin(3πy) (13.47)

and has the exact solution u(x, y) = sin(2πx) × sin(3πy). The Poisson equation is

set on a square grid and discretized using nx = ny = 33 points, including the two
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lev=1,γ=1 lev=2,γ=1 lev=3,γ=1 lev=4,γ=1

lev=1,γ=2 lev=2,γ=2 lev=3,γ=2

lev=3,γ=3

Figure 13.6: Representations of Various V-cycles and W-cycles

boundary points in each direction. This leads to a linear system of dimension N =
312 = 961. The V-cycle multigrid was tested with three smoothers: (1) The weighted

Jacobi relaxation with ω = 2/3; (2) Gauss-Seidel relaxation, and (3) the red-black

Gauss-Seidel relaxation. Various values of ν1 and ν2, the number of pre- and post-

smoothing steps, respectively, were used. Table 13.1 shows the convergence factors

ρ as estimated from the expression,

ρ = exp

(
1

k
log
‖rk‖2
‖r0‖2

)

,

for each of the smoothers. Here k is the total number of smoothing steps taken.

The convergence was stopped as soon as the 2-norm of the residual was reduced by

a factor of tol = 10−8. The overall winner is clearly the Red-Black Gauss Seidel

smoother. It is remarkable that even with a number of total smoothing steps ν1 + ν2
as small as two, a reduction factor of less than 0.1 is achieved with RB-GS. Also,

it is worth pointing out that when ν1 + ν2 is constant, the red-black Gauss-Seidel

smoother tends to perform better when ν1 and ν2 are more or less balanced (compare

the case (ν1, ν2) = (0, 2) versus (ν1, ν2) = (1, 1) for example). In the asymptotic

regime (or very large k), the two ratios should be identical in theory.
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(ν1, ν2 ) smoother ρ (ν1, ν2 ) smoother ρ

(0,1) w-Jac 0.570674 (1,1) w-Jac 0.387701

(0,1) GS 0.308054 (1,1) GS 0.148234

(0,1) RB-GS 0.170635 (1,1) RB-GS 0.087510

(0,2) w-Jac 0.358478 (1,2) w-Jac 0.240107

(0,2) GS 0.138477 (1,2) GS 0.107802

(0,2) RB-GS 0.122895 (1,2) RB-GS 0.069331

(0,3) w-Jac 0.213354 (1,3) w-Jac 0.155938

(0,3) GS 0.105081 (1,3) GS 0.083473

(0,3) RB-GS 0.095490 (1,3) RB-GS 0.055480

Table 13.1: Tests with V-cycle multigrid for a model Poisson equation using three

smoothers and various number of pre-smoothing steps (ν1), and post-smoothing steps

(ν2).

It is important to determine the iteration operator corresponding to the applica-

tion of one Multigrid loop. We start with the 2-grid operator seen earlier, which

is

Mh
H = Sν2

h [I − IhHA−1
H IHh Ah]S

ν1
h .

The only difference between this operator and the sought MG operator is that the

inverse of AH is replaced by an application of γ steps of MG on the grid ΩH . Each

of these steps is of the form (13.45). However, the above formula uses the inverse of

AH , so it is necessary to replace AH by the corresponding B-form (preconditioned

form) of the MG operator, which, according to (13.42) is given by

(I −MH)A−1
H .

Therefore,

Mh = Sν2
h [I − IhH(I −MH)A−1

H IHh Ah]S
ν1
h

= Sν2
h [I − IhHA−1

H IHh Ah + IhHMHA
−1
H IHh Ah]S

ν1
h

= Mh
H + Sν2

h I
h
HMHA

−1
H IHh AhS

ν1
h

showing that the MG operator Mh can be viewed as a perturbation of the 2-grid

operator MH
h .
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lev=2,γ=1 lev=3,γ=1

lev=3,γ=2

Figure 13.7: Representation of various FMG cycles (with µ = 1). The doubled lines

correspond to the FMG interpolation.

13.4.4 Full Multigrid

The Full Multigrid (FMG), sometimes also referred to as nested iteration, takes a

slightly different approach from the MG algorithms seen in the previous section.

FMG can be viewed as an improvement of nested iteration seen earlier whereby the

smoothing step in Line 5 is replaced by an MG cycle. The difference in viewpoint is

that it seeks to find an approximation to the solution with only one sweep through the

levels, going from bottom to top. The error of the resulting approximation is guaran-

teed, under certain conditions, to be of the order of the discretization. In practice, no

more accuracy than this should ever be required. The algorithm is described below.

ALGORITHM 13.5 Full Multigrid

1. Set h := h0. Solve Ahu
h = fh

2. For l = 1, . . . , p, Do

3. uh/2 = Î
h/2
h uh

4. h := h/2;
5. uh :=MGµ(Ah, u

h, fh, ν1, ν2, γ)
6. End

Notice that the interpolation operator in Line 2 is denoted with a hat. This is in order

to distinguish it from the interpolation operator used in the MG loop, which is some-

times different, typically of a lower order. The tasks and transfer operations of FMG

are illustrated in Figure 13.7. The MG iteration requires the standard parameters

nu1, ν2, gamma, in addition to the other choices of smoothers and interpolation op-

erators.

In the following uh represents the exact (discrete) solution of the problem on grid

Ωh and ũh will be the approximation resulting from the FMG cycle on the grid Ωh.
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Thus, ũh is the result of Line 5 in Algorithm 13.5. One of the main assumptions made

in analyzing FMG is that the exact solution of the discrete linear system Ahu
h = fh

is close, within the discretization accuracy, to the exact solution of the PDE problem:

‖u− uh‖ ≤ chκ. (13.48)

The left-hand side represents the norm of the difference between the exact solution

uh of the discrete problem and the solution of the continuous problem sampled at the

grid points of Ωh. Any norm on Ωh can be used, and the choice of the norm will

reexamined shortly. Using an argument based on the triangle inequality, a particular

consequence of the above assumption is that uh and ÎhHu
H should also be close since

they are close to the same (continuous) function u. Specifically, the assumption

(13.48) is replaced by:

‖uh − ÎhHuH‖ ≤ c1hκ . (13.49)

A bound of this type can be shown by making a more direct assumption on the

interpolation operator, see Exercise 13. The next important assumption to make is

that the MG iteration operator is uniformly bounded,

‖Mh‖ ≤ ξ<1 . (13.50)

Finally, the interpolation ÎhH must also be bounded, a condition which is convenient

to state as follows,

‖ÎhH‖ ≤ c22−κ . (13.51)

Theorem 13.2 Assume that (13.49), (13.50), and (13.51) are satisfied, and that µ is

sufficiently large that

c2ξ
µ < 1 . (13.52)

Then the FMG iteration produces approximations ũh, which at each level satisfy,

‖uh − ũh‖ ≤ c3c1hκ (13.53)

with

c3 = ξµ/(1 − c2ξµ) . (13.54)

Proof. The proof is by induction. At the lowest level, equation (13.53) is clearly

satisfied because the solution ũh is exact at the coarsest level and so the error is

zero. Consider now the problem associated with the mesh size h and assume that the

theorem is valid for the mesh size H . The error vector is given by

uh − ũh = (Mh)
µ(uh − uh0). (13.55)

The initial guess is defined by uh0 = ÎhH ũ
H . Therefore,

‖uh − uh0‖ = ‖uh − ÎhHuH + ÎhH(uH − ũH)‖
≤ ‖uh − ÎhHuH‖+ ‖ÎhH(uH − ũH)‖
≤ c1h

κ + ‖ÎhH‖c1c3Hκ (by (13.49) and induction hypothesis

≤ hκ(c1 + 2−κc2H
κc1c3) (by (13.51))

≤ hκc1(1 + c2c3) .
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Combining the above with (13.55) and (13.50) yields

‖uh − ũh‖ ≤ ξµhκc1(1 + c2c3) .

From the relation (13.54), we get ξµ = c3/(1+c2c3) and this shows the result (13.53)

for the next level and completes the induction proof.

In practice it is accepted that taking µ = 1 is generally sufficient to satisfy the as-

sumptions of the theorem. For example, if ‖ÎhH‖ ≤ 1, and κ = 1, then c2 = 4. In this

case, with µ = 1, the result of the theorem will be valid provided ξ < 0.25, which is

easily achieved by a simple V-cycle using Gauss-Seidel smoothers.

Example 13.5. This example illustrates the behavior of the full multigrid cycle

when solving the same model Poisson problem as in Example 13.4. As before, the

Poisson equation is set on a square grid and discretized with centered differences.

The problem is solved using the mesh sizes nx = ny = 9, 17, 33, 65, and 129 points

(including the two boundary points) in each direction. Thus, for example, the last

problem leads to a linear system of dimension N = 1272 = 16, 129.

Figure 13.8 shows in log scale the 2-norm of the actual error achieved for three

FMG schemes as a function of log(nx − 1). It also shows the 2-norm of the dis-

cretization error. Note that when nx = 9, all methods show the same error as the

discretization error because the system is solved exactly at the coarsest level, i.e.,

when nx = 9. The first FMG scheme uses a weighted Jacobi iteration with the

weight ω = 2/3, and (ν1, ν2) = (1, 0). As can be seen the error achieved becomes

too large relative to the discretization error when the number of levels increases. On

the other hand, the other two schemes, RB-GS with (ν1, ν2) = (4, 0) and GS with

(ν1, ν2) = (2, 0) perform well. It is remarkable that the error achieved by RB-GS is

actually slightly smaller than the discretization error itself.

The result of the above theorem is valid in any norm. However, it is important to

note that the type of bound obtained will depend on the norm used.

Example 13.6. It is useful to illustrate the basic discretization error bound (13.48)

for the 1-D model problem. As before, we abuse the notation slightly by denoting by

u the vector in Ωh whose values at the grid points are the values of the (continuous)

solution u of the differential equation (13.1–13.2). Now the discrete L2-norm on

Ωh, denoted by ‖v‖h will be used. In this particular case, this norm is also equal to

h1/2‖v‖2, the Euclidean norm scaled by
√
h. Then we note that,

‖uh − u‖h = ‖(Ah)
−1Ah(u

h − u)‖h = ‖(Ah)
−1[fh −Ahu]‖h

≤ ‖(Ah)
−1‖h ‖fh −Ahu‖h . (13.56)

Assuming that the continuous u is in C4, (four times differentiable with continuous

fourth derivative), Equation (2.12) from Chapter 2 gives

(f −Ahu)i = fi + u′′(xi) +
h2

12
u(4)(ξi) =

h2

12
u(4)(ξi)
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Figure 13.8: FMG error norms with various smoothers versus the discretization

error as a function of the mesh size.

where ξi is in the interval (xi−h, xi+h). Since u ∈ C4(Ω), we have |u(4)(ξi)| ≤ K
where K is the maximum of u(4) over Ω, and therefore,

‖
(

u(4)(ξi)
)

i=1,...,n
‖h ≤ h1/2‖ (K)i=1,...,n ‖2 ≤ K .

This provides the bound ‖fh −Ahu‖h ≤ Kh2/12 for the second term in (13.56).

The norm ‖(Ah)
−1‖h in (13.56) can be computed by noting that

‖(Ah)
−1‖h = ‖(Ah)

−1‖2 = 1/λmin(Ah) .

According to (13.7),

λmin(Ah) =
4

h2
sin2(πh/2) = π2

sin2(πh/2)

(πh/2)2
.

It can be shown that when, for example, x < 1, then 1 ≥ sin(x)/x ≥ 1 − x2/6.

Therefore, when πh < 2, we have

1

π2
≤ ‖(Ah)

−1‖h ≤
1

π2
(

1− 1
6

(
πh
2

)2
) .
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Putting these results together yields the inequality:

‖uh − u‖h ≤
K

12π2
(

1− 1
6

(
πh
2

)2
) h2 .

Exercise 16 considers an extension of this argument to 2-D problems. Exercise 17

explores what happens if other norms are used.

13.5 Analysis for the two-grid cycle

The two-grid correction cycle is at the basis of most of the more complex multigrid

cycles. For example, it was seen that the general MG cycle can be viewed as a

perturbation of a 2-Grid correction cycle. Similarly, practical FMG schemes use a

V-cycle iteration for their inner loop. This section will take a in-depth look at the

convergence of the 2-grid cycle, for the case when the coarse grid problem is defined

by the Galerkin approximation (13.39). This case is important in particular because

it is at the basis of all the algebraic multigrid techniques which will be covered in the

next section.

13.5.1 Two important subspaces

Consider the two-grid correction operator TH
h defined by (13.43). As was seen in

Section 13.4.2, see Lemma 13.1, this is anAh-orthogonal projector onto the subspace

Ωh. It is of the form I −Qh where

Qh = IhHA
−1
H IHh Ah .

Clearly, Qh is also an Ah-orthogonal projector (since I −Qh is, see Chapter 1), and

we have

Ωh = Ran(Qh)⊕Null(Qh) ≡ Ran(Qh)⊕ Ran(I −Qh) . (13.57)

The definition of Qh implies that

Ran(Qh) ⊂ Ran(IhH) .

As it turns out, the inclusion also holds in the other direction, which means that the

two subspaces are the same. To show this, take a vector z in the range of IhH , so

z = IhHy for a certain y ∈ Ωh. Remembering that AH = IHh AhI
h
H , we obtain

Qhz = IhHA
−1
H IHh Ah I

h
Hy = IhHy = z ,

which shows that z belongs to Ran(Qh). Hence,

Ran(Qh) = Ran(IhH) .
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This says that Qh is the Ah- orthogonal projector onto the space Ran(IhH), while

TH
h is the Ah- orthogonal projector onto the orthogonal complement. This orthog-

onal complement, which is the range of I − Qh, is also the null space of Qh ac-

cording to the fundamental relation (1.58) of Chapter 1. Finally, the null space of

Qh is identical with the null space of the restriction operator IHh . It is clear that

Null(IHh ) ⊂ Null(Qh). The reverse inclusion is not as clear and may be derived

from the fundamental relation (1.18) seen in Chapter 1. This relation implies that

Ωh = Ran(IhH)⊕Null
(

(IhH)T
)

= Ran(Qh)⊕Null
(

(IhH)T
)

.

However, by (13.37), Null
(
(IhH)T

)
= Null(IHh ). Comparing this with the decom-

position (13.57), it follows that

Null(Qh) = Null(IHh ) .

In summary, if we set

Sh ≡ Ran(Qh) , Th ≡ Ran(TH
h ) (13.58)

then the following relations can be stated:

Ωh = Sh ⊕ Th (13.59)

Sh = Ran(Qh) = Null(Th) = Ran(IhH) (13.60)

Th = Null(Qh) = Ran(Th) = Null(IHh ) . (13.61)

These two subspaces are fundamental when analyzing MG methods. Intuitively,

it can be guessed that the null space of TH
h is somewhat close to the space of smooth

modes. This is because it is constructed so that its desired action on a smooth com-

ponent is to annihilate it. On the other hand it should leave an oscillatory component

more or less unchanged. If s is a smooth mode and t an oscillatory one, then this

translates into the rough statements,

TH
h s ≈ 0, TH

h t ≈ t .

Clearly, opposite relations are true with Qh, namely Qht ≈ 0 and Qhs ≈ s.

Example 13.7. Consider the case when the prolongation operator IHh corresponds

to the case of full weighting in the one-dimensional case. Consider the effect of this

operator on any eigenmode wh
k , which has components sin(jθk) for j = 1, . . . , n.

where θk = kπ/(n + 1). Then, according to (13.33)

(IHh w
h
k)j =

1

4
[sin((2j − 1)θk) + 2 sin(2jθk) + sin((2j + 1)θk)]

=
1

4
[2 sin(2jθk) cos θk + 2 sin(2jθk)]

=
1

2
(1 + cos θk) sin(2jθk)

= cos2
(
θk
2

)

sin(2jθk) .
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Consider a mode wk where k is large, i.e., close to n. Then, θk ≈ π. In this case, the

restriction operator will transform this mode into a constant times the same mode on

the coarser grid. The multiplicative constant, which is cos2(θk/2), is close to zero

in this situation, indicating that IHh wk ≈ 0, i.e., that wk is near the null space of

IHh . Oscillatory modes are close to being in the null space of IHh , or equivalently the

range of TH
h .

When k is small, i.e., for smooth modes, the constant cos2(θk/2) is close to

one. In this situation the interpolation produces the equivalent smooth mode in ΩH

without damping it.

13.5.2 Convergence analysis

When analyzing convergence for the Galerkin case, the Ah norm is often used. In

addition, 2-norms weighted by D1/2, or D−1/2, where D is the diagonal of A, are

convenient. For example, we will use the notation,

‖x‖D = (Dx, x)1/2 ≡ ‖D1/2x‖2 .

The following norm also plays a significant role,

‖e‖AhD−1Ah
= (D−1Ahe,Ahe)

1/2 ≡ ‖Ahe‖D−1 .

To avoid burdening the notation unnecessarily we simply use ‖Ahe‖D−1 to denote

this particular norm of e. It can be shown that standard 2-grid cycles satisfy an

inequality of the form,

‖Sheh‖2Ah
≤ ‖eh‖2Ah

− α‖Aeh‖2D−1 ∀ eh ∈ Ωh (13.62)

independently of h. This is referred to as the smoothing property.

In addition to the above requirement which characterizes the smoother, another

assumption will be made which characterizes the discretization. This assumption is

referred to as the approximation property, and can be stated as follows:

min
uH∈ΩH

‖eh − IhHeH‖2D ≤ β‖eh‖2Ah
, (13.63)

where β does not depent on h. In the following theorem, it is assumed that A is SPD,

and that the restriction and prolongation operators are linked by a relation of the form

(13.37), with IhH being of full rank.

Theorem 13.3 Assume that inequalities (13.62) and (13.63) are satisfied for a cer-

tain smoother, where α > 0 and β > 0. Then α ≤ β, the two-level iteration

converges, and the norm of its operator is bounded as follows:

‖ShTH
h ‖Ah

≤
√

1− α

β
. (13.64)
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Proof. It was seen in the previous section that Ran(TH
h ) = Th is Ah-orthogonal to

Ran(IhH) = Sh. As a result, (eh, IhHe
H)Ah

= 0 for any eh ∈ Ran(TH
h ), and so,

‖eh‖2Ah
= (Ahe

h, eh − IhHeH) ∀ eh ∈ Ran(TH
h ).

For any eh ∈ Ran(TH
h ), the cauchy-schwarz inequality gives

‖eh‖2Ah
= (D−1/2Ahe

h,D1/2(eh − IhHeH))

≤ ‖D−1/2Ahe
h‖2 ‖D1/2(eh − IhHeH)‖2

= ‖Ahe
h‖D−1 ‖eh − IhHeH‖D .

By (13.63), this implies that ‖eh‖Ah
≤ √β‖Ahe

h‖D−1 for any eh ∈ Ran(T h
H), or

equivalently, ‖TH
h e

h‖2Ah
≤ β‖AhT

h
He

h‖2D−1 for any eh in Ωh. The proof is com-

pleted by exploiting the smoothing property, i.e., inequality (13.62),

0 ≤ ‖ShTH
h e

h‖2Ah
≤ ‖TH

h e
h‖2Ah

− α‖AhT
H
h e

h‖2D−1

≤ ‖TH
h e

h‖2Ah
− α

β
‖TH

h e
h‖2Ah

=

(

1− α

β

)

‖TH
h e

h‖2Ah

≤
(

1− α

β

)

‖eh‖2Ah
.

The fact that TH
h is an Ah-orthogonal projector was used to show the last step.

Example 13.8. As an example, we will explore the smoothing property (13.62) in

the case of the weighted Jacobi iteration. The index h is now dropped for clarity.

From (13.19) the smoothing operator in this case is

S(ω) ≡ I − ωD−1A .

When A is SPD, then the weighted Jacobi iteration will converge for 0 < ω <
2/ρ(D−1A). For any vector e we have

‖S(ω)e‖2A = (A(I − ωD−1A)e, (I − ωD−1Ae))

= (Ae, e) − 2ω(AD−1Ae, e) + ω2(AD−1Ae,D−1Ae)

= (Ae, e) − 2ω(D− 1
2Ae,D− 1

2Ae) + ω2
(

(D− 1
2AD− 1

2 )D− 1
2Ae,D− 1

2Ae
)

= (Ae, e) −
([

ω(2I − ωD− 1
2AD− 1

2 )
]

D− 1
2Ae,D− 1

2Ae
)

≤ ‖e‖2A − λmin

[

ω(2I − ωD− 1
2AD− 1

2 )
]

‖Ae‖2D−1 . (13.65)

Let γ = ρ(D− 1
2AD− 1

2 ) = ρ(D−1A). Then the above restriction on ω implies

that 2 − ωγ > 0, and the matrix in the brackets in (13.65) is positive definite with

minimum eigenvalue ω(2− ωγ). Then, it suffices to take

α = ω(2− ωγ)
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to satisfy the requirement (13.62). Note that (13.62) is also valid with α replaced

by any positive number that does not exceed the above value, but inequality which

would result would be less sharp. Exercise 15 explores the same question when

Richardson’s iteration is used instead of weighted Jacobi.

13.6 Algebraic Multigrid

Throughout the previous sections of this chapter, it was seen that multigrid methods

depend in a fundamental way on the availability of an underlying mesh. In addi-

tion to this, the performance of multigrid deteriorates for problems with anisotropic

coefficients or discontinuous coefficients. It is also difficult to define multigrid on

domains that are not rectangular, especially in three dimensions. Given the success

of these techniques, it is clear that it is important to consider alternatives which use

similar principles which do not face the same disadvantages. Algebraic multigrid

methods have been defined to fill this gap. The main strategy used in AMG is to

exploit the Galerkin approach, see Equation (13.39), in which the interpolation and

prolongation operators are defined in an algebraic way, i.e., only from the knowledge

of the matrix.

In this section the matrix A is assumed to be positive definite. Since meshes

are no longer available, the notation must be changed, or interpreted differently, to

reflect levels rather than grid sizes. Here h is no longer a mesh-size but an index to

a certain level, and H is used to index a coarser level. The mesh Ωh is now replaced

by a subspace Xh of Rn at a certain level and XH denotes the subspace of the coarse

problem. Since there are no meshes, one might wonder how the coarse problems can

be defined.

In AMG, the coarse problem is typically defined using the Galerkin approach,

which we restate here:

AH = IHh AhI
h
H , fH = IHh f

h (13.66)

where IHh the restriction operator, and IhH the prolongation operator, both defined

algebraically. The prolongation and restriction operators are now related by transpo-

sition:

IHh = (IhH)T . (13.67)

A minimum assumption made on the prolongation operator is that it is of full rank.

It can therefore be said that only two ingredients are required to generalize the

multigrid framework:

1. A way to define the ‘coarse’ subspace XH from a fine subspace Xh;

2. A way to define the interpolation operator IHh from Xh to XH .

In other words, all that is required is a scheme for coarsening a fine space along with

an interpolation operator which would map a coarse node into a fine one.
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In order to understand the motivations for the choices made in AMG when defin-

ing the above two components, it is necessary to extend the notion of smooth and

oscillatory modes. This is examined in the next section.

Note that Lemma 13.1 is valid and it implies that TH
h is a projector, which is

orthogonal when the Ah inner product is used. The corresponding relations (13.59

– 13.61) also hold. Therefore, Theorem 13.3 is also valid and this is a fundamental

tool used in the analysis of AMG.

13.6.1 Smoothness in AMG

By analogy with multigrid, an error is decomposed into smooth and oscillatory com-

ponents. However, these concepts are now defined with respect to the ability or in-

ability of the smoother to reduce these modes. Specifically, an error is smooth when

its convergence with respect to the smoother is slow. The common way to state this

is to say that, for a smooth error s,

‖Shs‖A ≈ ‖s‖A .

Note the use of the energy norm which simplifies the analysis. If the smoother sat-

isfies the smoothing property (13.62), then this means that for a smooth error s, we

would have

‖As‖D−1 ≪ ‖s‖Ah
.

Expanding the norms and using the Cauchy-Schwarz inequality gives

‖s‖2Ah
= (D−1/2Ahs,D

1/2s)

≤ ‖D−1/2Ahs‖2 ‖D1/2s‖2
= ‖Ahs‖D−1 ‖s‖D .

Since ‖As‖D−1 ≪ ‖s‖Ah
this means that ‖s‖Ah

≪ ‖s‖D , or

(As, s)≪ (Ds, s) . (13.68)

It simplifies the analysis to set v = D1/2s. Then,

(D− 1
2AD− 1

2 v, v)≪ (v, v) .

The matrix Â ≡ D− 1
2AD− 1

2 is a scaled version of A in which the diagonal entries

are transformed into ones. The above requirement states that the Rayleigh quotient

of D1/2s is small. This is in good agreement with standard multigrid since, a small

Rayleigh quotient implies that the vector v is a linear combination of the eigenvectors

of A with smallest eigenvalues. In particular, (As, s) ≈ 0 also implies that As ≈ 0,

i.e.,

aiisi ≈ −
∑

j 6=i

aijsj . (13.69)
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It is also interesting to see how to interpret smoothness in terms of the matrix coeffi-

cients. A common argument held in AMG methods exploits the following expansion

of (As, s):

(As, s) =
∑

i,j

aijsisj

=
1

2

∑

i,j

−aij
(
(sj − si)2 − s2i − s2j

)

=
1

2

∑

i,j

−aij(sj − si)2 +
∑

i




∑

j

aij



 s2i .

The condition (13.68) can be rewritten as (As, s) = ǫ(Ds, s), in which 0 < ǫ ≪ 1.

For the special case when the row-sums of the matrix are zero, and the off-diagonal

elements are negative, then this gives,

1

2

∑

i,j

|aij |(sj−si)2 = ǫ
∑

i

aiis
2
i →

∑

i

aiis
2
i




∑

j 6=i

|aij |
aii

(
si − sj
si

)2

− 2ǫ



 = 0 .

A weighted sum, with nonnegative weights, of the bracketed terms must vanish. It

cannot be rigorously argued that the bracketed term must be of the order 2ǫ, but one

can say that on average this will be true, i.e.,

∑

j 6=i

|aij|
aii

(
si − sj
si

)2

≪ 1 . (13.70)

For the above relation to hold, |si− sj|/|si| must be small when |aji/aii| is large. In

other words, the components of s vary slowly in the direction of the strong connec-

tions. This observation is used in AMG when defining interpolation operators and

for coarsening.

13.6.2 Interpolation in AMG

The argument given at the end of the previous section is at the basis of many AMG

techniques. Consider a coarse node i and its adjacent nodes j, i.e., those indices

such that aij 6= 0. The argument following (13.70) makes it possible to distinguish

between weak couplings, |aij/aii| is smaller than a certain threshold σ, and strong

couplings, when it is larger. Therefore, there are three types of nodes among the

nearest neighbors of a fine node i. First there is a set of coarse nodes, denoted by Ci.

Then among the fine nodes we have a set F s
i of nodes that are strongly connected

with i, and a set Fw
i of nodes that are weakly connected with i. An illustration is

shown in Figure 13.9. The smaller filled circles represent the fine nodes, and the thin

dashed lines represent the weak connections. The thick dash-dot lines represent the

strong connections.
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According to the argument given above, a good criterion for finding an interpola-

tion formula is to use the relation (13.69) which heuristically characterizes a smooth

error. This is because interpolation should average out, i.e., eliminate, highly oscil-

latory elements in Xh, and produce a function that is smooth in the coarser space.

Then we rewrite (13.69) as

aiisi ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aijsj −
∑

j ∈ Fw
i

aijsj . (13.71)

Consider eliminating the weak connections first. Instead of just removing them from

the picture, it is natural to lump their action and add the result into the diagonal term,

in a manner similar to the compensation strategy used in ILU. This gives,



aii +
∑

j ∈ Fw
i

aij



 si ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aijsj . (13.72)

F

C

C

F

F

F

C

C

Figure 13.9: Example of nodes adjacent to a fine node i (center). Fine mesh nodes

are labeled with F, coarse nodes with C.

The end result should be a formula in which the right-hand side depends only on

coarse points. Therefore, there remains to express each of the terms of the second

sum in the right-hand side of the above equation, in terms of values at coarse points.

Consider the term sj for j ∈ F s
i . At node j, the following expression can be written

that is similar to (13.69)

ajjsj ≈ −
∑

l ∈ Cj

ajlsl −
∑

l ∈ F s
j

ajlsl −
∑

l ∈ Fw
j

ajlsl .

If the aim is to invoke only those nodes in Ci, then a rough approximation is to

remove all other nodes from the formula, so the first sum is replaced by a sum over
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all k ∈ Ci (in effect l will belong to Ci ∩ Cj), and write

ajjsj ≈ −
∑

l ∈ Ci

ajlsl .

However, this would not be a consistent formula in the sense that it would lead to in-

correct approximations for constant functions. To remedy this, ajj should be changed

to the opposite of the sum of the coefficients ajl. This gives,



−
∑

l ∈ Ci

ajl



 sj ≈ −
∑

l ∈ Ci

ajlsl → sj ≈
∑

l ∈ Ci

ajl
δj
sl; with δj ≡

∑

l ∈ Ci

ajl .

Substituting this into (13.72) yields,



aii +
∑

j ∈ Fw
i

aij



 si ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aij
∑

l ∈ Ci

ajl
δj
sl . (13.73)

This is the desired formula since it expresses the new fine value si in terms of coarse

values sj and sl, for j, l in Ci. A little manipulation will help put it in a ‘matrix-form’

in which si is expressed as a combination of the sj’s for j ∈ Ci:

si =
∑

j ∈ Ci

wijsj with wij ≡ −
aij +

∑

k ∈ F s
i

aikakj
δk

aii +
∑

k ∈ Fw
i
aik

. (13.74)

Once the weights are determined, the resulting interpolation formula generalizes

the formulas seen for standard multigrid:

(IhHx)i =

{
xi if i ∈ XH
∑

j ∈ Ci
wijxj otherwise

.

Example 13.9. Consider the situation depicted in Figure 13.10 which can corre-

spond to a 9-point discretization of some convection-diffusion equation on a regular

grid. The coarse and fine nodes can be obtained by a red-black coloring of the cor-

responding 5-point graph. For example black nodes can be the coarse nodes and red

nodes the fine nodes.
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Figure 13.10: Darker filled circles represent the fine nodes. Thick dash-dot lines

represent the strong connections. Values on edges are the aij’s. The value 20 at the

center (fine) point is aii.

In this case, Equation (13.73) yields,

si =
1

18

[

4sS + 4sN + 3sW + 3sE + 2
3sN + 4sW

7
+ 2

3sN + 4sE
7

]

=
1

18

[

4sS +

(

4 +
12

7

)

sN +

(

3 +
8

7

)

sW +

(

3 +
8

7

)

sE

]

.

Notice that, as is expected from an interpolation formula, the weights are all nonneg-

ative and they add up to one.

13.6.3 Defining coarse spaces in AMG

Coarsening, i.e., the mechanism by which the coarse subspace XH is defined from

Xh can be achieved in several heuristic ways. One of the simplest methods, men-

tioned in the above example, uses the ideas of multicoloring, or independent set or-

derings seen in Chapter 3. These techniques do not utilize information about strong

and weak connections seen in the previous section. A detailed description of these

techniques is beyond the scope of this book. However some of the guiding principles

used to defined coarsening heuristics are formulated below.

• When defining the coarse problem, it is important to ensure that it will provide

a good representation of smooth functions. In addition, interpolation of smooth

functions should be accurate.

• The number of points is much smaller than on the finer problem.

• Ensure that strong couplings are not lost in coarsening. For example, if i is

strongly coupled with j then j must be either a C node or an F node that is

strongly coupled with a C-node.
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• The process should reach a balance between the size of XH and the accuracy

of the interpolation/ restriction functions.

13.6.4 AMG via Multilevel ILU

It was stated in the introduction of this section that the main ingredients needed for

defining an Algebraic Multigrid method are a coarsening scheme and an interpola-

tion operator. A number of techniques have been recently developed which attempt

to use the framework of incomplete factorizations to define AMG preconditioners.

Let us consider coarsening first. Coarsening can be achieved by using variations of

independent set orderings which were covered in Chapter 3. Often the independent

set is called the fine set and the complement is the coarse set, though this naming is

now somewhat arbitrary.

Recall that independent set orderings transform the original linear system into a

system of the form (
B F
E C

)(
x

y

)

=

(
f

g

)

(13.75)

in which the B block is a diagonal matrix. A block LU factorization will help estab-

lish the link with AMG-type methods.
(
B F
E C

)

=

(
I 0

EB−1 I

)(
B F
0 S

)

where S is the Schur complement,

S = C − EB−1F .

The above factorization, using independent sets, was at the basis of the ILU factoriza-

tion with Multi-elimination (ILUM) seen in Chapter 12. Since the Schur complement

matrix S is sparse and the above procedure can be repeated recursively for a few lev-

els. Clearly, dropping is applied each time to prune the Schur complement S which

becomes denser as the number of levels increases. In this section we consider this

factorization again from the angle of AMG and will define block generalizations.

No Coupling

Figure 13.11: Group- (or Block-) -Independent sets.
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Figure 13.12: Group-independent set reorderings of a 9-point matrix: Left: Small

groups (fine-grain), Right: large groups (coarse-grain).

Factorizations that generalize the one shown above are now considered in which

B is not necessarily diagonal. Such generalizations use the concept of block or group

independent sets which generalize standard independent sets. A group-independent

set is a collection of subsets of unknowns such that there is no coupling between

unknowns of any two different groups. Unknowns within the same group may be

coupled. An illustration is shown in Figure 13.11.

If the unknowns are permuted such that those associated with the group-independent

set are listed first, followed by the other unknowns, the original coefficient system

will take the form (13.75) where now the matrix B is no longer diagonal but block

diagonal. An illustration of two such matrices is given in Figure 13.12. Consider

now an LU factorization (exact or incomplete) of B,

B = LU +R .

Then the matrix A can be factored as follows,
(
B F
E C

)

≈
(

L 0
EU−1 I

)(
I 0
0 S

)(
U L−1F
0 I

)

. (13.76)

The above factorization, which is of the form A = LDU , gives rise to an analogue of

a 2-grid cycle. Solving with the L matrix, would take a vector with components u, y
in the fine and coarse space, respectively to produce the vector yH = y − EU−1u
in the coarse space. The Schur complement system can now be solved in some

unspecified manner. Once this is done, we need to back-solve with the U matrix.

This takes a vector from the coarse space and produces the u-variable from the fine

space, u := u− L−1Fy.

ALGORITHM 13.6 Two-level Block-Solve
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1. f := L−1f
2. g := g −EU−1f1
3. Solve Sy = g
4. f := f − L−1Fy
5. x = U−1f

The above solution steps are reminiscent of the two-grid cycle algorithm (Algo-

rithm 13.2). The interpolation and restriction operations are replaced by those in

lines 2 and 4, respectively.

A few strategies have recently been developed based on this parallel between a

recursive ILU factorization and AMG. One such technique is the Algebraic Recur-

sive Multilevel Solver [253]. In ARMS, the block factorization (13.76) is repeated

recursively on the Schur complement S which is kept sparse by dropping small ele-

ments. At the l-th level, we would write

(
Bl Fl

El Cl

)

≈
(

Ll 0

ElU
−1
l I

)

×
(
I 0
0 Al+1

)

×
(
Ul L−1

l Fl

0 I

)

, (13.77)

where LlUl ≈ Bl, and Al+1 ≈ Cl − (ElU
−1
l )(L−1

l Fl).
In a nutshell the ARMS procedure consists of essentially three steps: first, obtain

a group-independent set and reorder the matrix in the form (13.75); second, obtain

an ILU factorization Bl ≈ LlUl for Bl; third, obtain approximations to the matrices

L−1
l Fl, ElU

−1
l , and Al+1, and use these to compute an approximation to the Schur

complement Al+1. The process is repeated recursively on the matrix Al+1 until a

selected number of levels is reached. At the last level, a simple ILUT factorization,

possibly with pivoting, or an approximate inverse method can be applied.

Each of the Ai’s is sparse but will become denser as the number of levels in-

creases, so small elements are dropped in the block factorization to maintain sparsity.

The matrices Gl ≡ ElU
−1
l , and Wl ≡ L−1

l Fl are only computed in order to obtain

the Schur complement

Al+1 ≈ Cl −GlWl. (13.78)

Once Al+1 is available, Wl and Gl are discarded to save storage. Subsequent opera-

tions with L−1
l Fl and ElU

−1
l are performed using Ul, Ll and the blocks El and Fl. It

is important to distinguish between possible variants. To conform with the Galerkin

approach, we may elect not to drop terms once Al+1 is obtained from (13.78). In this

case (13.78) is not an approximation but an exact equality.

There are also many possible variations in the solution phase which can be

viewed as a recursive version of Algorithm 13.6. Step 3 of the algorithm now reads

3. Solve Al+1yl = gl

which essentially means solve in some unspecified way. At the l-th level, this re-

cursive solution step, which we call RSolve for reference, would be replaced by a

sequence of statements like
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3.0 If lev = last
3.1 Solve Al+1yl = gl
3.2 Else

3.3 RSolve (Al+1, gl)
3.4 End

Iterative processes can be used in step 3.3. The preconditioner for this iterative pro-

cess can, for example, be defined using the next, (l+2)-th level (without iterating at

each level). This is the simplest approach. It is also possible to use an iterative proce-

dure at each level preconditioned (recursively) with the ARMS preconditioner below

that level. This variation leads to a procedure similar the MG-cycle, if the number

of steps γ is specificed. Finally, the local Bl block can be used to precondition the

system of the l-th level.

13.7 Multigrid vs Krylov methods

The main differences between preconditioned Krylov subspace methods and the

multigrid approach may now have become clearer to the reader. In broef, Krylov

methods take a matrix A and a right-hand side b and try to produce a solution, using

no other information. The term black box is often used for those methods which re-

quire minimal input from the user, a good example being that of sparse direct solvers.

Preconditioned Krylov subspace methods attempt to duplicate this attribute of direct

solvers, but they are not ‘black-box’ solvers since they require parameters and do not

always succeed in solving the problem.

The approach taken by Multigrid methods is to tackle the original problem, e.g.

the PDE, directly instead. By doing so, it is possible to exploit properties which are

not always readily available from the data A, b. For example, what makes multigrid

work in the Poisson equation case, is the strong relation between eigenfunctions of

the iteration matrix M and the mesh. It is this strong relation that makes it possible

to take advantage of coarser meshes and to exploit a divide-and-conquer principle

based on the spectral decomposition of M . AMG methods try to recover similar

relationships directly from A, but this is not always easy.

The answer to the question “which method to use?”, cannot be a simple one be-

cause it is related to two other important and subjective considerations. The first is

the cost of the coding effort. Whether or not one is willing to spend a substantial

amount of time coding and testing, is now a factor. The second is how important it is

to develop an “optimal” code for the problem at hand. If the goal is to solve a single

linear system then a direct solver (assuming enough memory is available) or a pre-

conditioned Krylov solver (in case memory is an issue) may be best. Here, optimality

is a secondary consideration. On the other extreme, the best possible performance

may be required from the solver if it is meant to be part of a large simulation code

which may take, say, days on a high-performance computer to complete one run. In

this case, it may be worth the time and cost to build the best solver possible, because

this cost will be amortized over the lifetime of the simulation code. Here, multi-

level techniques can constitute a significant part of the solution scheme. A wide grey



13.7. MULTIGRID VS KRYLOV METHODS 465

zone lies in between these two extremes wherein Krylov subspace methods are often

invoked.

It may be important to comment on another practical consideration, which is that

most industrial solvers are not monolithic schemes based on one single approach.

Rather, they are comprised of building blocks which include tools extracted from

various methodologies: direct sparse techniques, multilevel methods, ILU type pre-

conditioners, as well as strategies that exploit the specificity of the problem. For

example, a solver could utilize the knowledge of the problem to reduce the system

by eliminating part of the unknowns, then invoke an AMG or multigrid scheme to

solve the resulting reduced system in cases when it is known to be Poisson-like and an

ILU-Krylov approach combined with some reordering schemes (from sparse direct

solvers) in other cases. Good iterative solvers must rely on a battery of techniques

if they are to be robust and efficient at the same time. To ensure robustness, indus-

trial codes may include an option to resort to direct solvers for those, hopefully rare,

instances when the main iterative scheme fails.

PROBLEMS

P-13.1 The following notation will be used. Given a vector z of size n.m denote by

Z = [z]n,m

the matrix of dimension n ×m with entries Zij = z(j−1)∗n+i. When there is no ambiguity

the subscripts n,m are omitted. In other words n consecutive entries of z will form the

columns of Z . The opposite operation, which consists of stacking the consecutive columns

of a matrix Z into a vector z, is denoted by

z = Z| .

a. Let u ∈ Rm, v ∈ Rn. What is the matrix Z = [z]n,m when z = u⊗ v?

b. Show that

(I ⊗A)z = (A.[z])| and (A⊗ I)z =
(
[z].AT

)

|

c. Show, more generally, that

(A⊗B)z =
(
B.[z].AT

)

|

d. What becomes of the above relation when z = u ⊗ v? Find an eigenvector of A ⊗ B
based on this.

e. Show that (A⊗B)T = (AT ⊗BT ).

P-13.2 Establish that the eigenvectors of the Gauss-Seidel operator given by (13.29) are

indeed a set of n linearly independent vectors. (Hint: notice that the eigenvalues other than

for k = (n + 1)/2 are all double, it suffices to show that the two eigenvectors defined by

the formula are independent.) What happens if the absolute values are removed from the

expression (13.29)?
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P-13.3 Consider the Gauss-Seidel iteration as a smoother for the 1-D model problem, when

n = 11 (spectrum illustrated in Figure 13.4.) For each eigenvector ui of the original matrix

A, compute the norm reduction ‖Gui‖/‖ui‖, where G is the Gauss-Seidel iteration matrix.

Plot these ratios against i, in a way that is similar to Figure 13.4. What can you conclude?

Repeat for the powersG2, and G4, and G8. What can you conclude (see the statement made

at end of Section 13.2.3)?

P-13.4 Show relation (13.31). Consider as an example, a 7 × 5 grid and illustrate for this

case the semi-interpolation operators Ihx,2h and Ihy,2h. Then derive the relation by seeing how

the 2-D interpolation operator was defined in Section 13.3.1.

P-13.5 Show the relation (13.38). Consider first as an example, a 7 × 5 grid and illustrate

for this case the semi-restriction operators I2hx,h and I2hy,h. Then use (13.31) (see previous

exercise) and part (e) of Exercise 1.

P-13.6 What is the matrix IHh AhI
h
H for the 2-D model problem when Full Weighting is

used? [Hint: Use the tensor product notation and the results of Exercises 5 and 4.]

P-13.7 Consider the matrix Jω given by (13.20). Show that it is possible to find ω > 1 such

that ρ(Jω) > 1. Similar question for ω < 0.

P-13.8 Derive the full weighting formula by applying the trapezoidal rule to approximate

the numerator and denominator in the following approximation:

u(x) ≈
∫ x+h

x−h
u(t)dt

∫ x+h

x−h 1.dt
.

P-13.9 Derive the B-form (or preconditioning form, see (13.41)) of the weighted Jacobi

iteration.

P-13.10 Do the following experiment using an interactive package such as Matlab - (or

code in FORTRAN or C). Consider the linear system Ax = 0 where A arises from the

discretization of −u′′ on [0, 1] using 64 internal points. Take u0 to be the average of the two

modes un/4 = u16 and u3n/4 = u48. Plot the initial error (Hint: the error is just u0), then the

error after 2 steps of the Richardson process, then the error after 5 steps of the Richardson

process. Plot also the components of the final error after the 5 Richardson steps, with respect

to the eigenbasis. Now obtain the residual on the grid Ω2h, and plot the residual obtained

after 2 and 5 Richardson steps on the coarse-grid problem. Show also the components of the

error in the eigenbasis of the original problem (on the fine mesh). Finally, interpolate to the

fine grid and repeat the process again, doing 2 and then 5 steps of the Richardson process.

P-13.11 Repeat Exercise 10 using the Gauss-Seidel iteration instead of the Richardson iter-

ation.

P-13.12 Consider the cost of the general MG algorithm as given by the recurrence formula

(13.46). Solve the recurrence equation (in terms of η and γ) for the 1-D case. You may

assume that n = 2k + 1 and that the maximum number of levels are used so that the cost of

the last system to solve is zero. For the 2-D case, you may assume that n = m = 2k + 1.

Under which condition is the cost O(n log n) where n is the size of the finest grid under

consideration? What would be the situation for 3-D problems?

P-13.13 It was stated in Section 13.4.4 that condition (13.48) implies the condition (13.49)

provided an assumption is made on the interpolation ÎhH . Prove a rigorous bound of the type

(13.49) (i.e., find c1) by assuming the conditions (13.48) (13.51) and

‖u− ÎhHu‖ ≤ c4hκ
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in which as before u represents the discretization of the the solution of the continuous prob-

lem (i.e., the continuous solution sampled at the grid points of Ωh or ΩH ).

P-13.14 Justify the definition of the norm ‖v‖h in Example 13.6 by considering that the

integral
∫ 1

0

v(t)2 dt

is approximated by the Trapezoidal rule. It is assumed that v(x0) = v(xn+1) = 0 and the

composite trapezoidal rule uses all points x0, . . . , xn+1.

P-13.15 Find the constant α in the smoothing property (13.62), for the case of Richardon’s

iteration when A is SPD. [Hint: Richardson’s iteration is like a Jacobi iteration where the

diagonal is replaced by the identity.]

P-13.16 Extend the argument of Example 13.6 to the 2-D case. Start with the case of

the square (0, 1)2 which uses the same discretization in each direction. Then consider the

more general situation. Define the norm ‖v‖h from the discrete L2 norm (see also previous

exercise).

P-13.17 Establish a bound of the type shown in Example 13.6 using the 2-norm instead of

the discrete L2 norm. What if the Ah norm is used?

P-13.18 The energy norm can be used to establish a result similar to that of Theorem 13.2

leading to a slightly simpler argument. It is now assumed that (13.49) is satisfied with respect

to the Ah-norm, i.e., that

‖uh − ÎhHuH‖Ah
≤ c1hκ .

a. Show that for any vector v in ΩH we have

‖IhHv‖Ah
= ‖v‖AH

.

b. Let uh0 the initial guess at grid Ωh in FMG and assume that the error achieved by the

system at level H = 2h satisfies ‖uH − ũH‖AH
≤ c1c3H

κ, in which c3 is to be

determined. Follow the argument of the proof of Theorem (13.2) and use the relation

established in (a) to show that

‖uh − uh0‖Ah
≤ ‖uh − ÎhHuH‖Ah

+ ‖uH − ũH‖AH
≤ c1hκ + c1c3H

κ .

c. Show a result analogous to that of Theorem 13.2 which uses the Ah-norm, i.e., find c3
such that ‖uh − ũh‖Ah

≤ c1c3hκ, on each grid.

P-13.19 Starting from the relation (13.73), establish (13.74).

NOTES AND REFERENCES. The material presented in this chapter is based on several sources. Fore-

most among these are the references [65, 207, 163, 286, 301]. A highly recommended reference is the

“Multigrid tutorial, second edition” by Briggs, Van Hansen, and Mc Cormick [65], for its excellent

introduction to the subject. This tutorial includes enough theory to understand how multigrid meth-

ods work. More detailed volumes include the books by Mc Cormick et al. [207], Hackbusch [162],

Hackbusch [163], Wesseling [311], and the more recent book by Trottenberg and al. [286].

Early work on multigrid methods dates back to the 1960s and includes the papers by Brakhage [46],

Fedorenko [124, 125], Bakhvalov [23], and Kronsjö and Dahlquist [193]. However, Multigrid meth-

ods have seen much of their modern development in the 1970s and early 1980s, essentially under the

pioneering work of Brandt [54, 55, 56]. Brandt played a key role in promoting the use of MG by estab-

lishing their overwhelming superiority over existing techniques for elliptic PDEs and by introducing
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many new concepts which are now widely use in MG literature. Algebraic multigrid methods were

later developed to attempt to obtain similar performance. These methods were introduced in [58] and

analyzed in a number of papers, see e.g., [57, 235].

Closely related to the multigrid approach is the Aggregation-Disaggregation technique which is

popular in Markov chain modeling. A recommended book for these methods and others used in the

context of Markov chain modeling is [275].

Today MG methods are still among the most efficient techniques available for solving Elliptic

PDEs on regularly structured problems. Their Algebraic variants do not seem to have proven as ef-

fective and the search for the elusive “black-box” iterative solver is still under way, with research on

multilevel methods in general and AMG in particular still quite active. With computer power con-

stantly improving, problems are becoming larger and more complex, and this makes mesh-independent

convergence look ever more attractive.

The paper [253] describes a scalar version of the Algebraic Recursive Multilevel Solver and the

report [203] describes a parallel implementation. The related method named MLILU described in [28]

also exploits the connection between ILU and AMG. The parallel version of ARMS (called pARMS)

is available from the author’s web site: www.cs.umn.edu/∼saad.

Resources for Multigrid are available in www.mgnet.org which provides bibliographical refer-

ences, software, and a newsletter. In particular, Examples 13.4 and 13.5 have been run with the

MGLAB matlab codes (contributed by James Bordner and Faisal Saied) available from this site. A

parallel code named HYPRE which is available from the Lawrence Livermore National Lab, includes

implementations of AMG.



Chapter 14

DOMAIN DECOMPOSITION METHODS

As multiprocessing technology is steadily gaining ground, new classes of numerical methods

that can take better advantage of parallelism are emerging. Among these techniques, domain

decomposition methods are undoubtedly the best known and perhaps the most promising for

certain types of problems. These methods combine ideas from Partial Differential Equations,

linear algebra, mathematical analysis, and techniques from graph theory. This chapter is devoted

to “decomposition” methods, which are based on the general concepts of graph partitionings.

14.1 Introduction

Domain decomposition methods refer to a collection of techniques which revolve

around the principle of divide-and-conquer. Such methods have been primarily de-

veloped for solving Partial Differential Equations over regions in two or three dimen-

sions. However, similar principles have been exploited in other contexts of science

and engineering. In fact, one of the earliest practical uses for domain decomposition

approaches was in structural engineering, a discipline which is not dominated by Par-

tial Differential Equations. Although this chapter considers these techniques from a

purely linear algebra view-point, the basic concepts, as well as the terminology, are

introduced from a model Partial Differential Equation.

Consider the problem of solving the Laplace Equation on an L-shaped domain

Ω partitioned as shown in Figure 14.1. Domain decomposition or substructuring

methods attempt to solve the problem on the entire domain

Ω =

s⋃

i=1

Ωi,

from problem solutions on the subdomains Ωi. There are several reasons why such

techniques can be advantageous. In the case of the above picture, one obvious rea-

son is that the subproblems are much simpler because of their rectangular geometry.

For example, fast Poisson solvers can be used on each subdomain in this case. A

second reason is that the physical problem can sometimes be split naturally into a

small number of subregions where the modeling equations are different (e.g., Euler’s

equations on one region and Navier-Stokes in another).

Substructuring can also be used to develop “out-of-core” solution techniques.

As already mentioned, such techniques were often used in the past to analyze very

469
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Ω1 Ω2

Ω3

Γ12

Γ13

Figure 14.1: An L-shaped domain subdivided into three subdomains.

large mechanical structures. The original structure is partitioned into s pieces, each

of which is small enough to fit into memory. Then a form of block-Gaussian elim-

ination is used to solve the global linear system from a sequence of solutions using

s subsystems. More recent interest in domain decomposition techniques has been

motivated by parallel processing.

14.1.1 Notation

In order to review the issues and techniques in use and to introduce some notation,

assume that the following problem is to be solved:

∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain decomposition methods are all implicitly or explicitly based on different

ways of handling the unknown at the interfaces. From the PDE point of view, if the

value of the solution is known at the interfaces between the different regions, these

values could be used in Dirichlet-type boundary conditions and we will obtain s
uncoupled Poisson equations. We can then solve these equations to obtain the value

of the solution at the interior points. If the whole domain is discretized by either

finite elements or finite difference techniques, then this is easily translated into the

resulting linear system.

Now some terminology and notation will be introduced for use throughout this

chapter. Assume that the problem associated with domain shown in Figure 14.1 is

discretized with centered differences. We can label the nodes by subdomain as shown
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in Figure 14.3. Note that the interface nodes are labeled last. As a result, the matrix

associated with this problem will have the structure shown in Figure 14.4.

For a general partitioning into s subdomains, the linear system associated with

the problem has the following structure:









B1 E1

B2 E2
. . .

...

Bs Es

F1 F2 · · · Fs C

















x1
x2
...

xs
y









=









f1
f2
...

fs
g









(14.1)

where each xi represents the subvector of unknowns that are interior to subdomain

Ωi and y represents the vector of all interface unknowns. It is useful to express the

above system in the simpler form,

A

(
x
y

)

=

(
f
g

)

with A =

(
B E
F C

)

. (14.2)

Thus, E represents the subdomain to interface coupling seen from the subdomains,

while F represents the interface to subdomain coupling seen from the interface

nodes.

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(b)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(c)

Figure 14.2: (a) Vertex-based, (b) edge-based, and (c) element-based partitioning of

a 4× 3 mesh into two subregions.
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14.1.2 Types of Partitionings

When partitioning a problem, it is common to use graph representations. Since the

subproblems obtained from a given partitioning will eventually be mapped into dis-

tinct processors, there are some restrictions regarding the type of partitioning needed.

For example, in Element-By-Element finite element techniques, it may be desirable

to map elements into processors instead of vertices. In this case, the restriction means

no element should be split between two subdomains, i.e., all information related to

a given element is mapped to the same processor. These partitionings are termed

element-based. A somewhat less restrictive class of partitionings are the edge-based

partitionings, which do not allow edges to be split between two subdomains. These

may be useful for finite volume techniques where computations are expressed in

terms of fluxes across edges in two dimensions. Finally, vertex-based partitionings

work by dividing the origin vertex set into subsets of vertices and have no restrictions

on the edges, i.e., they allow edges or elements to straddle between subdomains. See

Figure 14.2, (a), (b), and (c).

14.1.3 Types of Techniques

The interface values can be obtained by employing a form of block-Gaussian elimi-

nation which may be too expensive for large problems. In some simple cases, using

FFT’s, it is possible to explicitly obtain the solution of the problem on the interfaces

inexpensively.

Other methods alternate between the subdomains, solving a new problem each

time, with boundary conditions updated from the most recent subdomain solutions.

These methods are called Schwarz Alternating Procedures, after the Swiss math-

ematician who used the idea to prove the existence for a solution of the Dirichlet

problem on irregular regions.

The subdomains may be allowed to overlap. This means that the Ωi’s are such

that

Ω =
⋃

i=1,s

Ωi, Ωi ∩Ωj 6= φ.

For a discretized problem, it is typical to quantify the extent of overlapping by the

number of mesh-lines that are common to the two subdomains. In the particular case

of Figure 14.3, the overlap is of order one.

The various domain decomposition techniques are distinguished by four features:

1. Type of Partitioning. For example, should partitioning occur along edges, or

along vertices, or by elements? Is the union of the subdomains equal to the

original domain or a superset of it (fictitious domain methods)?

2. Overlap. Should sub-domains overlap or not, and by how much?

3. Processing of interface values. For example, is the Schur complement ap-

proach used? Should there be successive updates to the interface values?
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4. Subdomain solution. Should the subdomain problems be solved exactly or

approximately by an iterative method?

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

Figure 14.3: Discretization of problem shown in Figure 14.1.

Figure 14.4: Matrix associated with the finite difference mesh of Figure 14.3.
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The methods to be discussed in this chapter will be classified in four distinct

groups. First, direct methods and the substructuring approach are useful for intro-

ducing some definitions and for providing practical insight. Second, among the sim-

plest and oldest techniques are the Schwarz Alternating Procedures. Then, there are

methods based on preconditioning the Schur complement system. The last category

groups all the methods based on solving the linear system with the matrixA, by using

a preconditioning derived from Domain Decomposition concepts.

14.2 Direct Solution and the Schur Complement

One of the first divide-and-conquer ideas used in structural analysis exploited the

partitioning (14.1) in a direct solution framework. This approach, which is covered

in this section, introduces the Schur complement and explains some of its properties.

14.2.1 Block Gaussian Elimination

Consider the linear system written in the form (14.2), in which B is assumed to be

nonsingular. From the first equation the unknown x can be expressed as

x = B−1(f −Ey). (14.3)

Upon substituting this into the second equation, the following reduced system is ob-

tained:

(C − FB−1E)y = g − FB−1f. (14.4)

The matrix

S = C − FB−1E (14.5)

is called the Schur complement matrix associated with the y variable. If this matrix

can be formed and the linear system (14.4) can be solved, all the interface variables

y will become available. Once these variables are known, the remaining unknowns

can be computed, via (14.3). Because of the particular structure of B, observe that

any linear system solution with it decouples in s separate systems. The parallelism

in this situation arises from this natural decoupling.

A solution method based on this approach involves four steps:

1. Obtain the right-hand side of the reduced system (14.4).

2. Form the Schur complement matrix (14.5).

3. Solve the reduced system (14.4).

4. Back-substitute using (14.3) to obtain the other unknowns.

One linear system solution with the matrix B can be saved by reformulating the

algorithm in a more elegant form. Define

E′ = B−1E and f ′ = B−1f.
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The matrix E′ and the vector f ′ are needed in steps (1) and (2). Then rewrite step (4)

as

x = B−1f −B−1Ey = f ′ − E′y,

which gives the following algorithm.

ALGORITHM 14.1 Block-Gaussian Elimination

1. Solve BE′ = E, and Bf ′ = f for E′ and f ′, respectively

2. Compute g′ = g − Ff ′
3. Compute S = C − FE′

4. Solve Sy = g′

5. Compute x = f ′ − E′y.

In a practical implementation, all the Bi matrices are factored and then the sys-

tems BiE
′
i = Ei and Bif

′
i = fi are solved. In general, many columns in Ei will

be zero. These zero columns correspond to interfaces that are not adjacent to subdo-

main i. Therefore, any efficient code based on the above algorithm should start by

identifying the nonzero columns.

14.2.2 Properties of the Schur Complement

Now the connections between the Schur complement and standard Gaussian elimi-

nation will be explored and a few simple properties will be established. Start with

the block-LU factorization of A,
(
B E
F C

)

=

(
I O

FB−1 I

)(
B E
O S

)

(14.6)

which is readily verified. The Schur complement can therefore be regarded as the

(2,2) block in the U part of the block-LU factorization of A. From the above relation,

note that if A is nonsingular, then so is S. Taking the inverse of A with the help of

the above equality yields

(
B E
F C

)−1

=

(
B−1 −B−1ES−1

O S−1

)(
I O

−FB−1 I

)

=

(
B−1 +B−1ES−1FB−1 −B−1ES−1

−S−1FB−1 S−1

)

. (14.7)

Observe that S−1 is the (2,2) block in the block-inverse of A. In particular, if the

original matrix A is Symmetric Positive Definite, then so is A−1. As a result, S is

also Symmetric Positive Definite in this case.

Although simple to prove, the above properties are nonetheless important. They

are summarized in the following proposition.
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Proposition 14.1 Let A be a nonsingular matrix partitioned as in (14.2) and such

that the submatrix B is nonsingular and let Ry be the restriction operator onto the

interface variables, i.e, the linear operator defined by

Ry

(
x
y

)

= y.

Then the following properties are true.

1. The Schur complement matrix S is nonsingular.

2. If A is SPD, then so is S.

3. For any y, S−1y = RyA
−1
(
0
y

)

.

The first property indicates that a method that uses the above block Gaussian

elimination algorithm is feasible since S is nonsingular. A consequence of the sec-

ond property is that when A is positive definite, an algorithm such as the Conjugate

Gradient algorithm can be used to solve the reduced system (14.4). Finally, the third

property establishes a relation which may allow preconditioners for S to be defined

based on solution techniques with the matrix A.

14.2.3 Schur Complement for Vertex-Based Partitionings

The partitioning used in Figure 14.3 is edge-based, meaning that a given edge in the

graph does not straddle two subdomains, or that if two vertices are coupled, then they

cannot belong to the two distinct subdomains. From the graph theory point of view,

this is perhaps less common than vertex-based partitionings in which a vertex is not

shared by two partitions (except when domains overlap). A vertex-based partitioning

is illustrated in Figure 14.5.

We will call interface edges all edges that link vertices that do not belong to the

same subdomain. In the case of overlapping, this needs clarification. An overlapping

edge or vertex belongs to the same subdomain. Interface edges are only those that

link a vertex to another vertex which is not in the same subdomain already, whether in

the overlapping portion or elsewhere. Interface vertices are those vertices in a given

subdomain that are adjacent to an interface edge. For the example of the figure, the

interface vertices for subdomain one (bottom, left subsquare) are the vertices labeled

10 to 16. The matrix shown at the bottom of Figure 14.5 differs from the one of

Figure 14.4, because here the interface nodes are not relabeled the last in the global

labeling as was done in Figure 14.3. Instead, the interface nodes are labeled as the

last nodes in each subdomain. The number of interface nodes is about twice that of

the edge-based partitioning.

Consider the Schur complement system obtained with this new labeling. It can

be written similar to the edge-based case using a reordering in which all interface

variables are listed last. The matrix associated with the domain partitioning of the

variables will have a natural s-block structure where s is the number of subdomains.
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1 2 3

4 5 6

7 8 9

10

11

12

13141516

17 18 19

20 21 22

23 24 25

26 27 28

29

30

31

32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

Figure 14.5: Discretization of problem shown in Figure 14.1 and associated matrix.
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For example, when s = 3 (as is the case in the above illustration), the matrix has the

block structure defined by the solid lines in the figure, i.e.,

A =





A1 A12 A13

A21 A2 A23

A31 A32 A3



 . (14.8)

In each subdomain, the variables are of the form

zi =

(
xi
yi

)

,

where xi denotes interior nodes while yi denotes the interface nodes associated with

subdomain i. Each matrix Ai will be called the local matrix.

The structure of Ai is as follows:

Ai =

(
Bi Ei

Fi Ci

)

(14.9)

in which, as before, Bi represents the matrix associated with the internal nodes of

subdomain i andEi and Fi represent the couplings to/from local interface nodes. The

matrix Ci is the local part of the interface matrix C defined before, and represents the

coupling between local interface points. A careful look at the matrix in Figure 14.5

reveals an additional structure for the blocks Aij j 6= i. Partitioning Aij according

to the variables xi, yi on the one hand (rows) and xj, yj on the other, reveals that it is

comprised of only one nonzero block. Indeed, there is no coupling between xi and

xj , between xi and yj , or between yi and xj . Therefore, the submatrix Aij has the

following structure,

Aij =

(
0 0
0 Eij

)

. (14.10)

In addition, most of the Eij matrices are zero since only those indices j of the sub-

domains that have couplings with subdomain i will yield a nonzero Eij .

Now write the part of the linear system that is local to subdomain i, as

Bixi + Eiyi = fi
Fixi + Ciyi +

∑

j∈Ni
Eijyj = gi

. (14.11)

The term Eijyj is the contribution to the equation from the neighboring subdomain

number j, and Ni is the set of subdomains that are adjacent to subdomain i. As-

suming that Bi is nonsingular, the variable xi can be eliminated from this system by

extracting from the first equation xi = B−1
i (fi − Eiyi) which yields, upon substitu-

tion in the second equation,

Siyi +
∑

j∈Ni

Eijyj = gi − FiB
−1
i fi, i = 1, . . . , s (14.12)

in which Si is the “local” Schur complement

Si = Ci − FiB
−1
i Ei. (14.13)
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When written for all subdomains i, the equations (14.12) yield a system of equations

which involves only the interface points yj , j = 1, 2, . . . , s and which has a natural

block structure associated with these vector variables

S =









S1 E12 E13 · · · E1s

E21 S2 E23 · · · E2s
...

. . .
...

...
. . .

...

Es1 Es2 Es3 · · · Ss









. (14.14)

The diagonal blocks in this system, namely, the matrices Si, are dense in general,

but the offdiagonal blocks Eij are sparse and most of them are zero. Specifically,

Eij 6= 0 only if subdomains i and j have at least one equation that couples them.

A structure of the global Schur complement S has been unraveled which has the

following important implication: For vertex-based partitionings, the Schur comple-

ment matrix can be assembled from local Schur complement matrices (the Si’s) and

interface-to-interface information (the Eij’s). The term “assembled” was used on

purpose because a similar idea will be exploited for finite element partitionings.

14.2.4 Schur Complement for Finite-Element Partitionings

In finite-element partitionings, the original discrete set Ω is subdivided into s subsets

Ωi, each consisting of a distinct set of elements. Given a finite element discretiza-

tion of the domain Ω, a finite dimensional space Vh of functions over Ω is defined,

e.g., functions that are piecewise linear and continuous on Ω, and that vanish on the

boundary Γ of Ω. Consider now the Dirichlet problem on Ω and recall that its weak

formulation on the finite element discretization can be stated as follows (see Section

2.3):

Find u ∈ Vh such that a(u, v) = (f, v), ∀ v ∈ Vh,
where the bilinear form a(., .) is defined by

a(u, v) =

∫

Ω
∇u.∇v dx =

∫

Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂u

∂x2

)

dx.

It is interesting to observe that since the set of the elements of the different Ωi’s are

disjoint, a(., .) can be decomposed as

a(u, v) =

s∑

i=1

ai(u, v),

where

ai(u, v) =

∫

Ωi

∇u.∇v dx.

In fact, this is a generalization of the technique used to assemble the stiffness ma-

trix from element matrices, which corresponds to the extreme case where each Ωi

consists of exactly one element.
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If the unknowns are ordered again by subdomains and the interface nodes are

placed last as was done in Section 14.1, immediately the system shows the same

structure, 







B1 E1

B2 E2
. . .

...

Bs Es

F1 F2 · · · Fs C

















x1
x2
...

xs
y









=









f1
f2
...

fs
g









(14.15)

where each Bi represents the coupling between interior nodes and Ei and Fi repre-

sent the coupling between the interface nodes and the nodes interior to Ωi. Note that

each of these matrices has been assembled from element matrices and can therefore

be obtained from contributions over all subdomain Ωj that contain any node of Ωi.

In particular, assume that the assembly is considered only with respect to Ωi.

Then the assembled matrix will have the structure

Ai =

(
Bi Ei

Fi Ci

)

,

where Ci contains only contributions from local elements, i.e., elements that are in

Ωi. Clearly, C is the sum of the Ci’s,

C =

s∑

i=1

Ci.

The Schur complement associated with the interface variables is such that

S = C − FB−1E

= C −
s∑

i=1

FiB
−1
i Ei

=

s∑

i=1

Ci −
s∑

i=1

FiB
−1
i Ei

=

s∑

i=1

[
Ci − FiB

−1
i Ei

]
.

Therefore, if Si denotes the local Schur complement

Si = Ci − FiB
−1
i Ei,

then the above proves that,

S =

s∑

i=1

Si, (14.16)

showing again that the Schur complement can be obtained easily from smaller Schur

complement matrices.
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Another important observation is that the stiffness matrix Ak, defined above by

restricting the assembly to Ωk, solves a Neumann-Dirichlet problem on Ωk. Indeed,

consider the problem

(
Bk Ek

Fk Ck

) (
xk
yk

)

=

(
fk
gk

)

. (14.17)

The elements of the submatrix Ck are the terms ak(φi, φj) where φi, φj are the basis

functions associated with nodes belonging to the interface Γk. As was stated above,

the matrix C is the sum of these submatrices. Consider the problem of solving the

Poisson equation on Ωk with boundary conditions defined as follows: On Γk0, the

part of the boundary which belongs to Γk, use the original boundary conditions;

on the interfaces Γkj with other subdomains, use a Neumann boundary condition.

According to Equation (2.47) seen in Section 2.3, the j-th equation will be of the

form, ∫

Ωk

∇u.∇φj dx =

∫

Ωk

fφjdx+

∫

Γk

φj
∂u

∂~n
ds. (14.18)

This gives rise to a system of the form (14.17) in which the gk part of the right-hand

side incorporates the Neumann data related to the second integral on the right-hand

side of (14.18).

It is interesting to note that if a problem were to be solved with all-Dirichlet con-

ditions, i.e., if the Neumann conditions at the interfaces were replaced by Dirichlet

conditions, the resulting matrix problem would be of the form,

(
Bk Ek

0 I

) (
xk
yk

)

=

(
fk
gk

)

(14.19)

where gk represents precisely the Dirichlet data. Indeed, according to what was

seen in Section 2.3, Dirichlet conditions are handled simply by replacing equations

associated with boundary points by identity equations.

14.2.5 Schur Complement for the model problem

An explicit expression for the Schur complement can be found in the simple case of

a rectangular region partitioned into two sub-domains as illustrated in Figure 14.6.

The figure shows a vertex based partitioning but what follows is also valid for edge-

based partitionings since we will only compute the local Schur complements S1, S2
from which the the global Schur complement is constituted. For an edge-based parti-

tioning, the Schur complement S is the sum of the local Schur complements S1 and

S2. For a vertex-based partitioning, S is of the form (14.14), with s = 2.
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Figure 14.6: A two-domain partitioning of the model problem on a rectangular

domain.

To determine S1, start by writing the discretized matrix for the model problem

in the subdomain Ω1:

A =









B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B









with B =









4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4









.

Assume that the size of each block (i.e., the number of points in the vertical direction

in Ω1) is m with the number of blocks (i.e., the number of points in the horizontal

direction in Ω1) is n. Also the points are ordered naturally, with the last vertical line

forming the interface. Then A is factored in the following block LU decomposition:

A =










I
−T−1

1 I
. . .

. . .

−T−1
j−1 I

−T−1
n−1 I


















T1 −I
T2 −I

. . .
. . .

Tn−1 −I
Tn









.

The matrices Ti satisfy the recurrence:

T1 = B; Tk+1 = B − T−1
k , k = 1, . . . , n− 1. (14.20)

It can easily be shown that the above recurrence does not break down, i.e., that each

inverse does indeed exist. Also, the matrix Tn is the desired local Schur complement

S1.

Each Tk is a rational function of B, i.e., Tk = fk(B) where fk is a rational

function defined by

fk+1(µ) = µ− 1

fk(µ)
.
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To each eigenvalue µ of B, is associated an eigenvalue λk. This sequence of eigen-

values satisfies the recurrence

λk+1 = µ− 1

λk
.

To calculate fn it is sufficient to calculate λk in terms of µ. The above difference

equation, differs from the ones we have encountered in other chapters, in that it is

nonlinear. It can be solved by defining the auxiliarly unknown

ηk =

k∏

j=0

λj .

By definition λ0 = 1, λ1 = µ so that η0 = 1, η1 = µ. The sequence ηk satisfies the

recurrence:

ηk+1 = µηk − ηk−1

which is now a linear difference equation. The characteristic roots of the equation

are (µ ±
√

µ2 − 4)/2. Let ρ denote the largest root and note that the other root is

equal to 1/ρ. The general solution of the difference equation is therefore,

ηk = αρk + βρ−k = α

[

µ+
√

µ2 − 4

2

]k

+ β

[

µ−
√

µ2 − 4

2

]k

.

The condition at k = 0 yields α+β = 1. Then, writing the condition η1 = µ, yields,

α =

√

µ2 − 4 + µ

2
√

µ2 − 4
; β =

√

µ2 − 4− µ
2
√

µ2 − 4
.

Therefore,

ηk =
1

√

µ2 − 4

[

ρk+1 − ρ−k−1
]

.

The sequence λk is ηk/ηk−1, which yields,

λk = ρ
1− ρ−2(k+1)

1− ρ−2k
.

This gives the desired expression for fn, and Tn. Specifically, if we define

Ŝ =
B +

√
B2 − 4I

2
,

then,

S1 = Tn = ŜX where X =
(

I − B̂−2(k+1)
)(

I − B̂−2k
)−1

.

Despite the apparent nonsymmetry of the above expression, it is worth noting that the

operator thus defined is symmetric positive definite. In addition, the factor X is usu-

ally very close to the identity matrix because the powers B−2j decay exponentially

to zero (the eigenvalues of B are all larger then 2).
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The result can be stated in terms of the one dimensional finite difference operator

T instead of B because B = T + 2I . Either way, the final expression is a rather

complex one, since it involves a square root, even when Ŝ, the approximation to S1
is used. It is possible, however, to use FFTs or sine transforms to perform a solve

with the matrix Ŝ. This is because if the spectral decomposition of B is written

as B = QΛQT , then S1 = Qfn(Λ)Q
T , and the products with Q and QT can be

performed with FFT, see Section 2.2.6.

14.3 Schwarz Alternating Procedures

The original alternating procedure described by Schwarz in 1870 consisted of three

parts: alternating between two overlapping domains, solving the Dirichlet problem

on one domain at each iteration, and taking boundary conditions based on the most

recent solution obtained from the other domain. This procedure is called the Multi-

plicative Schwarz procedure. In matrix terms, this is very reminiscent of the block

Gauss-Seidel iteration with overlap defined with the help of projectors, as seen in

Chapter 5. The analogue of the block-Jacobi procedure is known as the Additive

Schwarz procedure.

14.3.1 Multiplicative Schwarz Procedure

In the following, assume that each subdomain Ωi extends into its neighboring sub-

domains by one level, which will be used as a boundary for Ωi. The boundary of

subdomain Ωi that is included in subdomain j is denoted by Γij .

Ω1

Ω3

Ω2

Γ1,3

Γ3,1

Γ2,1 Γ1,2Γ1,0 Γ2,0

Γ3,0

Figure 14.7: An L-shaped domain subdivided into three overlapping subdomains.

This is illustrated in Figure 14.7 for the L-shaped domain example. A more spe-
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cific illustration is in Figure (14.5), where, for example, Γ12 = {29, 30, 31, 32} and

Γ31 = {13, 14, 15, 16}. Call Γi the boundary of Ωi consisting of its original bound-

ary (which consists of the Γi0 pieces in the figure) and the Γij’s, and denote by uji
the restriction of the solution u to the boundary Γji. Then the Schwarz Alternating

Procedure can be described as follows.

ALGORITHM 14.2 SAP

1. Choose an initial guess u to the solution

2. Until convergence Do:

3. For i = 1, · · · , s Do:

4. Solve ∆u = f in Ωi with u = uij in Γij

5. Update u values on Γji, ∀j
6. EndDo

7. EndDo

The algorithm sweeps through the s subdomains and solves the original equation in

each of them by using boundary conditions that are updated from the most recent

values of u. Since each of the subproblems is likely to be solved by some iterative

method, we can take advantage of a good initial guess. It is natural to take as initial

guess for a given subproblem the most recent approximation. Going back to the

expression (14.11) of the local problems, observe that each of the solutions in line 4

of the algorithm will be translated into an update of the form

ui := ui + δi,

where the correction δi solves the system

Aiδi = ri.

Here, ri is the local part of the most recent global residual vector b − Ax, and the

above system represents the system associated with the problem in line 4 of the

algorithm when a nonzero initial guess is used in some iterative procedure. The

matrix Ai has the block structure (14.9). Writing

ui =

(
xi
yi

)

, δi =

(
δx,i
δy,i

)

, ri =

(
rx,i
ry,i

)

,

the correction to the current solution step in the algorithm leads to

(
xi
yi

)

:=

(
xi
yi

)

+

(
Bi Ei

Fi Ci

)−1(
rx,i
ry,i

)

. (14.21)

After this step is taken, normally a residual vector r would have to be computed

again to get the components associated with domain i + 1 and to proceed with a

similar step for the next subdomain. However, only those residual components that

have been affected by the change of the solution need to be updated. Specifically,
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employing the same notation used in equation (14.11), we can simply update the

residual ry,j for each subdomain j for which i ∈ Nj as

ry,j := ry,j − Ejiδy,i.

This amounts implicitly to performing Step 5 of the above algorithm. Note that since

the matrix pattern is assumed to be symmetric, then the set of all indices j such that

i ∈ Nj , i.e., N∗
i = {j |i ∈ Ni}, is identical to Ni. Now the loop starting in line 3

of Algorithm 14.2 and called domain sweep can be restated as follows.

ALGORITHM 14.3 Multiplicative Schwarz Sweep – Matrix Form

1. For i = 1, · · · , s Do:

2. Solve Aiδi = ri
3. Compute xi := xi + δx,i, yi := yi + δy,i, and set ri := 0
4. For each j ∈ Ni Compute ry,j := ry,j − Ejiδy,i
5. EndDo

Considering only the y iterates, the above iteration would resemble a form of Gauss-

Seidel procedure on the Schur complement matrix (14.14). In fact, it is mathemati-

cally equivalent, provided a consistent initial guess is taken. This is stated in the next

result established by Chan and Goovaerts [73]:

Theorem 14.2 Let the guess

(
x
(0)
i

y
(0)
i

)

for the Schwarz procedure in each subdomain

be chosen such that

x
(0)
i = B−1

i [fi − Eiy
(0)
i ]. (14.22)

Then the y iterates produced by the Algorithm 14.3 are identical to those of a Gauss-

Seidel sweep applied to the Schur complement system (14.12).

Proof. We start by showing that with the choice (14.22), the y components of the

initial residuals produced by the algorithm are identical to those of the Schur com-

plement system (14.12). Refer to Section 14.2.3 and the relation (14.10) which de-

fines the Eij’s from the block structure (14.8) of the global matrix. Observe that

Aijuj =
(

0
Eijyj

)

and note from (14.11) that for the global system the y components

of the initial residual vectors are

r
(0)
y,i = gi − Fix

(0)
i −Ciy

(0)
i −

∑

j∈Ni

Eijy
(0)
j

= gi − FiB
−1[fi − Eiy

(0)
i ]− Ciy

(0)
i −

∑

j∈Ni

Eijy
(0)
j

= gi − FiB
−1fi − Siy(0)i −

∑

j∈Ni

Eijy
(0)
j .

This is precisely the expression of the residual vector associated with the Schur com-

plement system (14.12) with the initial guess y
(0)
i .
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Now observe that the initial guess has been selected so that r
(0)
x,i = 0 for all i.

Because only the y components of the residual vector are modified, according to line

4 of Algorithm 14.3, this property remains valid throughout the iterative process. By

the updating equation (14.21) and the relation (14.7), we have

yi := yi + S−1
i ry,i,

which is precisely a Gauss-Seidel step associated with the system (14.14). Note that

the update of the residual vector in the algorithm results in the same update for the y
components as in the Gauss-Seidel iteration for (14.14).

It is interesting to interpret Algorithm 14.2, or rather its discrete version, in terms

of projectors. For this we follow the model of the overlapping block-Jacobi technique

seen in the previous chapter. Let Si be an index set

Si = {j1, j2, . . . , jni
},

where the indices jk are those associated with the ni mesh points of the interior of

the discrete subdomain Ωi. Note that as before, the Si’s form a collection of index

sets such that ⋃

i=1,...,s

Si = {1, . . . , n},

and the Si’s are not necessarily disjoint. Let Ri be a restriction operator from Ω
to Ωi. By definition, Rix belongs to Ωi and keeps only those components of an

arbitrary vector x that are in Ωi. It is represented by an ni × n matrix of zeros and

ones. The matrices Ri associated with the partitioning of Figure 14.4 are represented

in the three diagrams of Figure 14.8, where each square represents a nonzero element

(equal to one) and every other element is a zero. These matrices depend on the

ordering chosen for the local problem. Here, boundary nodes are labeled last, for

simplicity. Observe that each row of each Ri has exactly one nonzero element (equal

to one). Boundary points such as the nodes 36 and 37 are represented several times

in the matrices R1, R2, and R3 because of the overlapping of the boundary points.

Thus, node 36 is represented in matrices R1 and R2, while 37 is represented in all

three matrices.

From the linear algebra point of view, the restriction operator Ri is an ni × n
matrix formed by the transposes of columns ej of the n × n identity matrix, where

j belongs to the index set Si. The transpose RT
i of this matrix is a prolongation

operator which takes a variable from Ωi and extends it to the equivalent variable in

Ω. The matrix

Ai = RiAR
T
i

of dimension ni×ni defines a restriction of A to Ωi. Now a problem associated with

Ai can be solved which would update the unknowns in the domain Ωi. With this

notation, the multiplicative Schwarz procedure can be described as follows:
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1. For i = 1, . . . , s Do

2. x := x+RT
i A

−1
i Ri(b−Ax)

3. EndDo

R1 =

R2 =

R3 =

Figure 14.8: Patterns of the three matrices Ri associated with the partitioning of

Figure 14.4.

We change notation and rewrite step 2 as

xnew = x+RT
i A

−1
i Ri(b−Ax). (14.23)

If the errors d = x∗ − x are considered where x∗ is the exact solution, then notice

that b − Ax = A(x∗ − x) and, at each iteration the following equation relates the

new error dnew and the previous error d,

dnew = d−RT
i A

−1
i RiAd.

Starting from a given x0 whose error vector is d0 = x∗ − x, each sub-iteration

produces an error vector which satisfies the relation

di = di−1 −RT
i A

−1
i RiAdi−1,

for i = 1, . . . , s. As a result,

di = (I − Pi)di−1
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in which

Pi = RT
i A

−1
i RiA. (14.24)

Observe that the operator Pi ≡ RT
i A

−1
i RiA is a projector since

(RT
i A

−1
i RiA)

2 = RT
i A

−1
i (RiAR

T
i )A

−1
i RiA = RT

i A
−1
i RiA.

Thus, one sweep produces an error which satisfies the relation

ds = (I − Ps)(I − Ps−1) . . . (I − P1)d0. (14.25)

In the following, we use the notation

Qs ≡ (I − Ps)(I − Ps−1) . . . (I − P1). (14.26)

14.3.2 Multiplicative Schwarz Preconditioning

Because of the equivalence of the multiplicative Schwarz procedure and a block

Gauss-Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in

the form of a global fixed-point iteration of the form xnew = Gx + f . Recall that

this is a fixed-point iteration for solving the preconditioned systemM−1Ax =M−1b
where the preconditioning matrixM and the matrixG are related byG = I−M−1A.

To interpret the operation associated with M−1, it is helpful to identify the re-

sult of the error vector produced by this iteration with that of (14.25), which is

xnew − x∗ = Qs(x− x∗). This comparison yields,

xnew = Qsx+ (I −Qs)x∗,

and therefore,

G = Qs f = (I −Qs)x∗.

Hence, the preconditioned matrix is M−1A = I − Qs. This result is restated as

follows.

Proposition 14.3 The multiplicative Schwarz procedure is equivalent to a fixed-

point iteration for the “preconditioned” problem

M−1Ax =M−1b,

in which

M−1A = I −Qs (14.27)

M−1b = (I −Qs)x∗ = (I −Qs)A
−1b. (14.28)

The transformed right-hand side in the proposition is not known explicitly since it

is expressed in terms of the exact solution. However, a procedure can be found to

compute it. In other words, it is possible to operate with M−1 without invoking

A−1. Note that M−1 = (I − Qs)A
−1. As the next lemma indicates, M−1, as well

as M−1A, can be computed recursively.
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Lemma 14.4 Define the matrices

Zi = I −Qi (14.29)

Mi = ZiA
−1 (14.30)

Ti = PiA
−1 = RT

i A
−1
i Ri (14.31)

for i = 1, . . . , s. Then M−1 = Ms, M−1A = Zs, and the matrices Zi and Mi

satisfy the recurrence relations

Z1 = P1,

Zi = Zi−1 + Pi(I − Zi−1), i = 2, . . . , s (14.32)

and

M1 = T1,

Mi = Mi−1 + Ti(I −AMi−1), i = 2, . . . , s. (14.33)

Proof. It is clear by the definitions (14.29) and (14.30) that Ms = M−1 and that

M1 = T1, Z1 = P1. For the cases i > 1, by definition of Qi and Qi−1

Zi = I − (I − Pi)(I − Zi−1) = Pi + Zi−1 − PiZi−1, (14.34)

which gives the relation (14.32). Multiplying (14.34) to the right by A−1 yields,

Mi = Ti +Mi−1 − PiMi−1.

Rewriting the term Pi as TiA above yields the desired formula (14.33).

Note that (14.32) yields immediately the important relation

Zi =
i∑

j=1

PjQj−1. (14.35)

If the relation (14.33) is multiplied to the right by a vector v and if the vector Miv is

denoted by zi, then the following recurrence results.

zi = zi−1 + Ti(v −Azi−1).

Since zs = (I − Qs)A
−1v = M−1v, the end result is that M−1v can be computed

for an arbitrary vector v, by the following procedure.

ALGORITHM 14.4 Multiplicative Schwarz Preconditioner

1. Input: v; Output: z =M−1v.

2. z := T1v
3. For i = 2, . . . , s Do:

4. z := z + Ti(v −Az)
5. EndDo
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By a similar argument, a procedure can be found to compute vectors of the form

z =M−1Av. In this case, the following algorithm results:

ALGORITHM 14.5 Multiplicative Schwarz Preconditioned Operator

1. Input: v, Output: z =M−1Av.

2. z := P1v
3. For i = 2, . . . , s Do

4. z := z + Pi(v − z)
5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the

“preconditioned system”

(I −Qs)x = g (14.36)

where the operation z = (I −Qs)v can be computed from Algorithm 14.5 and g =
M−1b can be computed from Algorithm 14.4. Now the above procedures can be used

within an accelerator such as GMRES. First, to obtain the right-hand side g of the

preconditioned system (14.36), Algorithm 14.4 must be applied to the original right-

hand side b. Then GMRES can be applied to (14.36) in which the preconditioned

operations I −Qs are performed by Algorithm 14.5.

Another important aspect of the Multiplicative Schwarz procedure is that multi-

coloring can be exploited in the same way as it is done traditionally for block SOR.

Finally, note that symmetry is lost in the preconditioned system but it can be recov-

ered by following the sweep 1, 2, . . . , s by a sweep in the other direction, namely,

s− 1, s− 2, . . . , 1. This yields a form of the block SSOR algorithm.

14.3.3 Additive Schwarz Procedure

The additive Schwarz procedure is similar to a block-Jacobi iteration and consists

of updating all the new (block) components from the same residual. Thus, it differs

from the multiplicative procedure only because the components in each subdomain

are not updated until a whole cycle of updates through all domains are completed.

The basic Additive Schwarz iteration would therefore be as follows:

1. For i = 1, . . . , s Do

2. Compute δi = RT
i A

−1
i Ri(b−Ax)

3. EndDo

4. xnew = x+
∑s

i=1 δi

The new approximation (obtained after a cycle of the s substeps in the above

algorithm are applied) is

xnew = x+

s∑

i=1

RT
i A

−1
i Ri(b−Ax).
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Each instance of the loop redefines different components of the new approximation

and there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz

procedure. Using the matrix notation defined in the previous section, notice that the

new iterate satisfies the relation

xnew = x+

s∑

i=1

Ti(b−Ax) =
(

I −
s∑

i=1

Pi

)

x+

s∑

i=1

Tib.

Thus, using the same analogy as in the previous section, this iteration corresponds to

a fixed-point iteration xnew = Gx+ f with

G = I −
s∑

i=1

Pi, f =
s∑

i=1

Tib.

With the relation G = I −M−1A, between G and the preconditioning matrix M ,

the result is that

M−1A =

s∑

i=1

Pi,

and

M−1 =
s∑

i=1

PiA
−1 =

s∑

i=1

Ti.

Now the procedure for applying the preconditioned operator M−1 becomes clear.

ALGORITHM 14.6 Additive Schwarz Preconditioner

1. Input: v; Output: z =M−1v.

2. For i = 1, . . . , s Do:

3. Compute zi := Tiv
4. EndDo

5. Compute z := z1 + z2 . . .+ zs.

Note that the do loop can be performed in parallel. Step 5 sums up the vectors zi
in each domain to obtain a global vector z. In the nonoverlapping case, this step is

parallel and consists of just forming these different components since the addition is

trivial. In the presence of overlap, the situation is similar except that the overlapping

components are added up from the different results obtained in each subdomain.

The procedure for computing M−1Av is identical to the one above except that

Ti in line 3 is replaced by Pi.

14.3.4 Convergence

Throughout this section, it is assumed that A is Symmetric Positive Definite. The

projectors Pi defined by (14.24) play an important role in the convergence theory of

both additive and multiplicative Schwarz. A crucial observation here is that these
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projectors are orthogonal with respect to the A-inner product. Indeed, it is sufficient

to show that Pi is self-adjoint with respect to the A-inner product,

(Pix, y)A = (ART
i A

−1
i RiAx, y) = (Ax,RT

i A
−1
i RiAy) = (x, Piy)A.

Consider the operator,

AJ =

s∑

i=1

Pi. (14.37)

Since each Pj is self-adjoint with respect to the A-inner product, i.e., A-self-adjoint,

their sum AJ is also A-self-adjoint. Therefore, it will have real eigenvalues. An im-

mediate consequence of the fact that the Pi’s are projectors is stated in the following

theorem.

Theorem 14.5 The largest eigenvalue of AJ is such that

λmax(AJ) ≤ s,

where s is the number of subdomains.

Proof. For any matrix norm, λmax(AJ ) ≤ ‖AJ‖. In particular, if the A-norm is

used, we have

λmax(AJ) ≤
s∑

i=1

‖Pi‖A.

Each of the A-norms of Pi is equal to one since Pi is an A-orthogonal projector. This

proves the desired result.

This result can be improved substantially by observing that the projectors can be

grouped in sets that have disjoint ranges. Graph coloring techniques seen in Chap-

ter 3 can be used to obtain such colorings of the subdomains. Assume that c sets

of indices Θi, i = 1, . . . , c are such that all the subdomains Ωj for j ∈ Θi have no

intersection with one another. Then,

PΘi
=
∑

j ∈ Θi

Pj (14.38)

is again an orthogonal projector.

This shows that the result of the previous theorem can be improved trivially into

the following.

Theorem 14.6 Suppose that the subdomains can be colored in such a way that two

subdomains with the same color have no common nodes. Then, the largest eigenvalue

of AJ is such that

λmax(AJ) ≤ c,
where c is the number of colors.

In order to estimate the lowest eigenvalue of the preconditioned matrix, an assump-

tion must be made regarding the decomposition of an arbitrary vector x into compo-

nents of Ωi.
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Assumption 1. There exists a constant K0 such that the inequality

s∑

i=1

(Aui, ui) ≤ K0(Au, u),

is satisfied by the representation of u ∈ Ω as the sum

u =
s∑

i=1

ui, ui ∈ Ωi.

The following theorem has been proved by several authors in slightly different forms

and contexts.

Theorem 14.7 If Assumption 1 holds, then

λmin(AJ) ≥
1

K0
.

Proof. Unless otherwise stated, all summations in this proof are from 1 to s. Start

with an arbitrary u decomposed as u =
∑
ui and write

(u, u)A =
∑

(ui, u)A =
∑

(Piui, u)A =
∑

(ui, Piu)A.

The last equality is due to the fact that Pi is an A-orthogonal projector onto Ωi and

it is therefore self-adjoint. Now, using Cauchy-Schwarz inequality, we get

(u, u)A =
∑

(ui, Piu)A ≤
(∑

(ui, ui)A

)1/2 (∑

(Piu, Piu)A

)1/2
.

By Assumption 1, this leads to

‖u‖2A ≤ K
1/2
0 ‖u‖A

(∑

(Piu, Piu)A

)1/2
,

which, after squaring, yields

‖u‖2A ≤ K0

∑

(Piu, Piu)A.

Finally, observe that since each Pi is an A-orthogonal projector, we have

∑

(Piu, Piu)A =
∑

(Piu, u)A =
(∑

Piu, u
)

A
.

Therefore, for any u, the inequality

(AJu, u)A ≥
1

K0
(u, u)A

holds, which yields the desired upper bound by the min-max theorem.
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Note that the proof uses the following form of the Cauchy-Schwarz inequality:

p
∑

i=1

(xi, yi) ≤
(

p
∑

i=1

(xi, xi)

)1/2( p
∑

i=1

(yi, yi)

)1/2

.

See Exercise 1 for a proof of this variation.

We now turn to the analysis of the Multiplicative Schwarz procedure. We start

by recalling that the error after each outer iteration (sweep) is given by

d = Qsd0.

We wish to find an upper bound for ‖Qs‖A. First note that (14.32) in Lemma 14.4

results in

Qi = Qi−1 − PiQi−1,

from which we get, using the A-orthogonality of Pi,

‖Qiv‖2A = ‖Qi−1v‖2A − ‖PiQi−1v‖2A.

The above equality is valid for i = 1, provided Q0 ≡ I . Summing these equalities

from i = 1 to s gives the result,

‖Qsv‖2A = ‖v‖2A −
s∑

i=1

‖PiQi−1v‖2A. (14.39)

This indicates that the A-norm of the error will not increase at each substep of the

sweep.

Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subset S of {1, 2, . . . , s}2 and ui, vj ∈ Ω, the following

inequality holds:

∑

(i,j) ∈ S

(Piui, Pjvj)A ≤ K1

(
s∑

i=1

‖Piui‖2A

)1/2




s∑

j=1

‖Pjvj‖2A





1/2

. (14.40)

Lemma 14.8 If Assumptions 1 and 2 are satisfied, then the following is true,

s∑

i=1

‖Piv‖2A ≤ (1 +K1)
2

s∑

i=1

‖PiQi−1v‖2A. (14.41)

Proof. Begin with the relation which follows from the fact that Pi is an A-orthogonal

projector,

(Piv, Piv)A = (Piv, PiQi−1v)A + (Piv, (I −Qi−1)v)A,
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which yields, with the help of (14.35),

s∑

i=1

‖Piv‖2A =

s∑

i=1

(Piv, PiQi−1v)A +

s∑

i=1

i−1∑

j=1

(Piv, PjQj−1v)A. (14.42)

For the first term of the right-hand side, use the Cauchy-Schwarz inequality to obtain

s∑

i=1

(Piv, PiQi−1v)A ≤
(

s∑

i=1

‖Piv‖2A

)1/2( s∑

i=1

‖PiQi−1v‖2A

)1/2

.

For the second term of the right-hand side of (14.42), use the assumption (14.40) to

get

s∑

i=1

i−1∑

j=1

(Piv, PjQj−1v)A ≤ K1

(
s∑

i=1

‖Piv‖2A)
)1/2





s∑

j=1

‖PjQj−1v‖2A)





1/2

.

Adding these two inequalities, squaring the result, and using (14.42) leads to the

inequality (14.41).

From (14.39), it can be deduced that if Assumption 2 holds, then,

‖Qsv‖2A ≤ ‖v‖2A −
1

(1 +K1)2

s∑

i=1

‖Piv‖2A. (14.43)

Assumption 1 can now be exploited to derive a lower bound on
∑s

i=1 ‖Piv‖2A. This

will yield the following theorem.

Theorem 14.9 Assume that Assumptions 1 and 2 hold. Then,

‖Qs‖A ≤
[

1− 1

K0(1 +K1)2

]1/2

. (14.44)

Proof. Using the notation of Section 14.3.3, the relation ‖Piv‖2A = (Piv, v)A yields

s∑

i=1

‖Piv‖2A =

(
s∑

i=1

Piv, v

)

A

= (AJv, v)A.

According to Theorem 14.7, λmin(AJ ) ≥ 1
K0

, which implies (AJv, v)A ≥ (v, v)A/K0.

Thus,
s∑

i=1

‖Piv‖2A ≥
(v, v)A
K0

,

which upon substitution into (14.43) gives the inequality

‖Qsv‖2A
‖v‖2A

≤ 1− 1

K0(1 +K1)2
.

The result follows by taking the maximum over all vectors v.
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This result provides information on the speed of convergence of the multiplica-

tive Schwarz procedure by making two key assumptions. These assumptions are not

verifiable from linear algebra arguments alone. In other words, given a linear sys-

tem, it is unlikely that one can establish that these assumptions are satisfied. How-

ever, they are satisfied for equations originating from finite element discretization

of elliptic Partial Differential Equations. For details, refer to Dryja and Widlund

[102, 103, 104] and Xu [320].

14.4 Schur Complement Approaches

Schur complement methods are based on solving the reduced system (14.4) by some

preconditioned Krylov subspace method. Procedures of this type involve three steps.

1. Get the right-hand side g′ = g − FB−1f .

2. Solve the reduced system Sy = g′ via an iterative method.

3. Back-substitute, i.e., compute x via (14.3).

The different methods relate to the way in which step 2 is performed. First

observe that the matrix S need not be formed explicitly in order to solve the reduced

system by an iterative method. For example, if a Krylov subspace method without

preconditioning is used, then the only operations that are required with the matrix

S are matrix-by-vector operations w = Sv. Such operations can be performed as

follows.

1. Compute v′ = Ev,

2. Solve Bz = v′

3. Compute w = Cv − Fz.

The above procedure involves only matrix-by-vector multiplications and one lin-

ear system solution with B. Recall that a linear system involving B translates into

s-independent linear systems. Also note that the linear systems with B must be

solved exactly, either by a direct solution technique or by an iterative technique with

a high level of accuracy.

While matrix-by-vector multiplications with S cause little difficulty, it is much

harder to precondition the matrix S, since this full matrix is often not available ex-

plicitly. There have been a number of methods, derived mostly using arguments

from Partial Differential Equations to precondition the Schur complement. Here, we

consider only those preconditioners that are derived from a linear algebra viewpoint.

14.4.1 Induced Preconditioners

One of the easiest ways to derive an approximation to S is to exploit Proposition 14.1

and the intimate relation between the Schur complement and Gaussian elimination.
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This proposition tells us that a preconditioning operator M to S can be defined from

the (approximate) solution obtained with A. To precondition a given vector v, i.e.,

to compute w = M−1v, where M is the desired preconditioner to S, first solve the

system

A

(
x
y

)

=

(
0
v

)

, (14.45)

then take w = y. Use any approximate solution technique to solve the above system.

Let MA be any preconditioner for A. Using the notation defined earlier, let Ry

represent the restriction operator on the interface variables, as defined in Proposition

14.1. Then the preconditioning operation for S which is induced from MA is defined

by

M−1
S v = RyM

−1
A

(
0
v

)

= RyM
−1
A RT

y v.

Observe that when MA is an exact preconditioner, i.e., when MA = A, then accord-

ing to Proposition 14.1, MS is also an exact preconditioner, i.e., MS = S. This

induced preconditioner can be expressed as

MS =
(
RyM

−1
A RT

y

)−1
. (14.46)

It may be argued that this uses a preconditioner related to the original problem to

be solved in the first place. However, even though the preconditioning on S may be

defined from a preconditioning of A, the linear system is being solved for the inter-

face variables. That is typically much smaller than the original linear system. For

example, GMRES can be used with a much larger dimension of the Krylov subspace

since the Arnoldi vectors to keep in memory are much smaller. Also note that from

a Partial Differential Equations viewpoint, systems of the form (14.45) correspond

to the Laplace equation, the solutions of which are “Harmonic” functions. There are

fast techniques which provide the solution of such equations inexpensively.

In the case where MA is an ILU factorization of A, MS can be expressed in an

explicit form in terms of the entries of the factors of MA. This defines a precondi-

tioner to S that is induced canonically from an incomplete LU factorization of A.

Assume that the preconditioner MA is in a factored form MA = LAUA, where

LA =

(
LB 0
FU−1

B LS

)

UA =

(
UB L−1

B E
0 US

)

.

Then, the inverse of MA will have the following structure:

M−1
A = U−1

A L−1
A

=

(
⋆ ⋆
0 U−1

S

)(
⋆ 0
⋆ L−1

S

)

=

(
⋆ ⋆
⋆ U−1

S L−1
S

)

where a star denotes a matrix whose actual expression is unimportant. Recall that by

definition,

Ry = ( 0 I ) ,
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where this partitioning conforms to the above ones. This means that

RyM
−1
A RT

y = U−1
S L−1

S

and, therefore, according to (14.46), MS = LSUS . This result is stated in the fol-

lowing proposition.

Proposition 14.10 Let MA = LAUA be an ILU preconditioner for A. Then the

preconditioner MS for S induced by MA, as defined by (14.46), is given by

MS = LSUS , with LS = RyLAR
T
y , US = RyUAR

T
y .

In words, the proposition states that the L and U factors for MS are the (2, 2) blocks

of the L and U factors of the ILU factorization of A. An important consequence of

the above idea is that the parallel Gaussian elimination can be exploited for deriving

an ILU preconditioner for S by using a general purpose ILU factorization. In fact,

the L and U factors of MA have the following structure:

A = LAUA −R with,

LA =









L1

L2
. . .

Ls

F1U
−1
1 F2U

−1
2 · · · FsU

−1
s L









UA =









U1 L−1
1 E1

U2 L−1
2 E2

. . .
...

Us L−1
s Es

U









.

Each Li, Ui pair is an incomplete LU factorization of the local Bi matrix. These ILU

factorizations can be computed independently. Similarly, the matrices L−1
i Ei and

FiU
−1
i can also be computed independently once the LU factors are obtained. Then

each of the matrices

S̃i = Ci − FiU
−1
i L−1

i Ei,

which are the approximate local Schur complements, is obtained. Note that since an

incomplete LU factorization is being performed, some drop strategy is applied to the

elements in S̃i. Let Ti be the matrix obtained after this is done,

Ti = S̃i −Ri.

Then a final stage would be to compute the ILU factorization of the matrix (14.14)

where each Si is replaced by Ti.
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14.4.2 Probing

To derive preconditioners for the Schur complement, another general purpose tech-

nique exploits ideas used in approximating sparse Jacobians when solving nonlinear

equations. In general, S is a dense matrix. However, it can be observed, and there

are physical justifications for model problems,

that its entries decay away from the main diagonal. Assume that S is nearly

tridiagonal, i.e., neglect all diagonals apart from the main diagonal and the two codi-

agonals, and write the corresponding tridiagonal approximation to S as

T =









a1 b2
c2 a2 b3

. . .
. . .

. . .

cm−1 am−1 bm
cm am









.

Then, it is easy to recover T by applying it to three well-chosen vectors. Consider

the three vectors

w1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . . , )T ,

w2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, . . . , )T ,

w3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, . . . , )T .

Then we have

Tw1 = (a1, c2, b4, a4, c5, . . . , b3i+1, a3i+1, c3i+2, . . .)
T ,

Tw2 = (b2, a2, c3, b5, a5, c6, . . . , b3i+2, a3i+2, c3i+3, . . .)
T ,

Tw3 = (b3, a3, c4, b6, a6, c7, . . . , b3i, a3i, c3i+1, . . .)
T .

This shows that all the coefficients of the matrix T are indeed all represented in the

above three vectors. The first vector contains the nonzero elements of the columns

1, 4, 7, . . ., 3i + 1, . . ., in succession written as a long vector. Similarly, Tw2

contains the columns 2, 5, 8, . . ., and Tw3 contains the columns 3, 6, 9, . . .. We can

easily compute Swi, i = 1, 3 and obtain a resulting approximation T which can be

used as a preconditioner to S. The idea can be extended to compute any banded

approximation to S. For details and analysis see [74].

14.4.3 Preconditioning Vertex-Based Schur Complements

We now discuss some issues related to the preconditioning of a linear system with

the matrix coefficient of (14.14) associated with a vertex-based partitioning. As was

mentioned before, this structure is helpful in the direct solution context because it

allows the Schur complement to be formed by local pieces. Since incomplete LU

factorizations will utilize the same structure, this can be exploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph color-

ing can be used to color the interface values yi in such a way that no two adjacent
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interface variables will have the same color. In fact, this can be achieved by coloring

the domains. In the course of a multicolor block-SOR iteration, a linear system must

be solved with the diagonal blocks Si. For this purpose, it is helpful to interpret the

Schur complement. Call P the canonical injection matrix from the local interface

points to the local nodes. If ni points are local and if mi is the number of the local

interface points, then P is an ni×mi matrix whose columns are the last mi columns

of the ni × ni identity matrix. Then it is easy to see that

Si = (P TA−1
loc,iP )

−1. (14.47)

If Aloc,i = LU is the LU factorization of Aloc,i then it can be verified that

S−1
i = P TU−1L−1P = P TU−1PP TL−1P, (14.48)

which indicates that in order to operate with P TL−1P , the last mi × mi principal

submatrix of L must be used. The same is true for P TU−1P which requires only a

back-solve with the last mi ×mi principal submatrix of U . Therefore, only the LU

factorization of Aloc,i is needed to solve a system with the matrix Si. Interestingly,

approximate solution methods associated with incomplete factorizations ofAloc,i can

be exploited.

14.5 Full Matrix Methods

We call any technique that iterates on the original system (14.2) a full matrix method.

In the same way that preconditioners were derived from the LU factorization of A
for the Schur complement, preconditioners for A can be derived from approximating

interface values.

Before starting with preconditioning techniques, we establish a few simple rela-

tions between iterations involving A and S.

Proposition 14.11 Let

LA =

(
I O

FB−1 I

)

, UA =

(
B E
O I

)

(14.49)

and assume that a Krylov subspace method is applied to the original system (14.1)

with left preconditioning LA and right preconditioning UA, and with an initial guess

of the form (
x0
y0

)

=

(
B−1(f − Ey0)

y0

)

. (14.50)

Then this preconditioned Krylov iteration will produce iterates of the form
(
xm
ym

)

=

(
B−1(f − Eym)

ym

)

(14.51)

in which the sequence ym is the result of the same Krylov subspace method applied

without preconditioning to the reduced linear system Sy = g′ with g′ = g−FB−1f
starting with the vector y0.
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Proof. The proof is a consequence of the factorization

(
B E
F C

)

=

(
I O

FB−1 I

)(
I O
O S

)(
B E
O I

)

. (14.52)

Applying an iterative method (e.g., GMRES) on the original system, preconditioned

from the left by LA and from the right by UA, is equivalent to applying this iterative

method to

L−1
A AU−1

A =

(
I O
O S

)

≡ A′. (14.53)

The initial residual for the preconditioned system is

L−1
A

(
f

g

)

− (L−1
A AU−1

A )UA

(
x0
y0

)

=

(
I O

−FB−1 I

)((
f

g

)

−
(

f
FB−1(f − Ey0) +Cy0

))

=

(
0

g′ − Sy0

)

≡
(

0
r0

)

.

As a result, the Krylov vectors obtained from the preconditioned linear system asso-

ciated with the matrix A′ have the form
(

0

r0

)

,

(
0

Sr0

)

· · · ,
(

0

Sm−1r0

)

(14.54)

and the associated approximate solution will be of the form

(
xm
ym

)

=

(
x0
y0

)

+

(
B−1 −B−1E
O I

)(
0

∑m−1
i=0 αiS

ir0

)

=

(
B−1(f − Ey0)−B−1E(ym − y0)

ym

)

=

(
B−1(f − Eym)

ym

)

.

Finally, the scalars αi that express the approximate solution in the Krylov basis are

obtained implicitly via inner products of vectors among the vector sequence (14.54).

These inner products are identical to those of the sequence r0, Sr0, · · · , Sm−1r0.

Therefore, these coefficients will achieve the same result as the same Krylov method

applied to the reduced system Sy = g′, if the initial guess gives the residual guess

r0.

A version of this proposition should allow S to be preconditioned. The following

result is an immediate extension that achieves this goal.

Proposition 14.12 Let S = LSUS − R be an approximate factorization of S and

define

LA =

(
I O

FB−1 LS

)

, UA =

(
B E
O US

)

. (14.55)
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Assume that a Krylov subspace method is applied to the original system (14.1) with

left preconditioning LA and right preconditioning UA, and with an initial guess of

the form (
x0
y0

)

=

(
B−1(f − Ey0)

y0

)

. (14.56)

Then this preconditioned Krylov iteration will produce iterates of the form

(
xm
ym

)

=

(
B−1(f − Eym)

ym

)

. (14.57)

Moreover, the sequence ym is the result of the same Krylov subspace method applied

to the reduced linear system Sy = g − FB−1f , left preconditioned with LS , right

preconditioned with US , and starting with the vector y0.

Proof. The proof starts with the equality

(
B E
F C

)

=

(
I O

FB−1 LS

)(
I O
O L−1

S SU−1
S

)(
B E
O US

)

. (14.58)

The rest of the proof is similar to that of the previous result and is omitted.

Also there are two other versions in which S is allowed to be preconditioned

from the left or from the right. Thus, if MS is a certain preconditioner for S, use the

following factorizations

(
B E
F C

)

=

(
I O

FB−1 MS

)(
I O
O M−1

S S

)(
B E
O I

)

(14.59)

=

(
I O

FB−1 I

)(
I O
O SM−1

S

)(
B E
O MS

)

, (14.60)

to derive the appropriate left or right preconditioners. Observe that when the precon-

ditioner MS to S is exact, i.e., when M = S, then the block preconditioner LA, UA

to A induced from MS is also exact.

Although the previous results indicate that a Preconditioned Schur Complement

iteration is mathematically equivalent to a certain preconditioned full matrix method,

there are some practical benefits in iterating with the nonreduced system. The main

benefit involves the requirement in the Schur Complement techniques to compute Sx
exactly at each Krylov subspace iteration. Indeed, the matrix S represents the coeffi-

cient matrix of the linear system, and inaccuracies in the matrix-by-vector operation

may result in loss of convergence. In the full matrix techniques, the operation Sx is

never needed explicitly. In addition, this opens up the possibility of preconditioning

the original matrix with approximate solves with the matrix B in the preconditioning

operation LA and UA.
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14.6 Graph Partitioning

The very first task that a programmer faces when solving a problem on a parallel

computer, be it a dense or a sparse linear system, is to decide how to subdivide and

map the data into the processors. Distributed memory computers allow mapping the

data in an arbitrary fashion but this added flexibility puts the burden on the user to

find good mappings. When implementing Domain Decomposition - type ideas on a

parallel computer, efficient techniques must be available for partitioning an arbitrary

graph. This section gives an overview of the issues and covers a few techniques.

14.6.1 Basic Definitions

Consider a general sparse linear system whose adjacency graph is G = (V,E).
Graph partitioning algorithms aim at subdividing the original linear system into

smaller sets of equations which will be assigned to different processors for their

parallel solution.

This translates into partitioning the graph intp p subgraphs, with the underlying

goal to achieve a good load balance of the work among the processors as well as

ensure that the ratio of communication over computation is small for the given task.

We begin with a general definition.

Definition 14.13 We call a map of V , any set V1, V2, . . . , Vs, of subsets of the vertex

set V , whose union is equal to V :

Vi ⊆ V,
⋃

i=1,s

Vi = V.

When all the Vi subsets are disjoint, the map is called a proper partition; otherwise

we refer to it as an overlapping partition.

The most general way to describe a node-to-processor mapping is by setting up

a list for each processor, containing all the nodes that are mapped to that processor.

Three distinct classes of algorithms have been developed for partitioning graphs. An

overview of each of these three approaches is given next.

1 2 3 4

5 6 7 8

9 10 11 12

P1
P2

P3

P4

Figure 14.9: Mapping of a simple 4× 3 mesh to 4 processors.
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14.6.2 Geometric Approach

The geometric approach works on the physical mesh and requires the coordinates of

the mesh points. In the simplest case, for a 2-dimensional rectangular grid, stripes in

the horizontal and vertical direction can be defined to get square subregions which

have roughly the same number of points. Other techniques utilize notions of moment

of inertia to divide the region recursively into two roughly equal-sized subregions.

Next is a brief description of a technique based on work by Miller, Teng, Thur-

ston, and Vavasis [211]. This technique finds good separators for a mesh using pro-

jections into a higher space. Given a mesh in R
d, the method projects the mesh points

into a unit sphere centered at the origin in R
d+1. Stereographic projection is used: A

line is drawn from a given point p in the plane to the North Pole (0, . . . , 0, 1) and the

stereographic projection of p is the point where this line intersects the sphere. In the

next step, a centerpoint of the projected points is found. A centerpoint c of a discrete

set S is defined as a point where every hyperplane passing through c will divide S
approximately evenly.

Once the centerpoint is found, the points of the sphere are rotated so that the

centerpoint is aligned with the North Pole, i.e., so that coordinates of c are trans-

formed into (0, . . . , 0, r). The points are further transformed by dilating them so that

the centerpoint becomes the origin. Through all these transformations, the point c
remains a centerpoint. Therefore, if any hyperplane is taken that passes through the

centerpoint which is now the origin, it should cut the sphere into two roughly equal-

sized subsets. Any hyperplane passing through the origin will intersect the sphere

along a large circle C . Transforming this circle back into the original space will give

a desired separator. Notice that there is an infinity of circles to choose from.

One of the main ingredients in the above algorithm is a heuristic for finding

centerpoints in R
d space (actually, Rd+1 in the algorithm). The heuristic that is used

repeatedly replaces randomly chosen sets of d+2 points by their centerpoint, which

are easy to find in this case. There are a number of interesting results that analyze

the quality of geometric graph partitionings based on separators. With some minimal

assumptions on the meshes, it is possible to show that there exist “good” separators.

In addition, the algorithm discussed above constructs such separators. We start with

two definitions.

Definition 14.14 A k-ply neighborhood system in R
d is a set of n closed disks Di,

i = 1, . . . , n in R
d such that no point in R

d is (strictly) interior to more than k disks.

Definition 14.15 Let α ≥ 1 and let D1, . . . ,Dn be a k-ply neighborhood system in

R
d. The (α, k)-overlap graph for the neighborhood system is the graph with vertex

set V = {1, 2, . . . , n} and edge set, the subset of V × V defined by

{(i, j) : (Di ∩ (α.Dj) 6= φ) and (Dj ∩ (α.Di) 6= φ)}.

A mesh in R
d is associated with an overlap graph by assigning the coordinate of the

center ci of disk i to each node i of the graph. Overlap graphs model computational

meshes in d dimensions. Indeed, every mesh with bounded aspect ratio elements
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(ratio of largest to smallest edge length of each element) is contained in an overlap

graph. In addition, any planar graph is an overlap graph. The main result regarding

separators of overlap graphs is the following theorem [211].

Theorem 14.16 Let G be an n-vertex (α, k) overlap graph in d dimensions. Then

the vertices of G can be partitioned into three sets A,B, and C such that:

1. No edge joins A and B.

2. A and B each have at most n(d+ 1)/(d + 2) vertices.

3. C has only O(α k1/dn(d−1)/d) vertices.

Thus, for d = 2, the theorem states that it is possible to partition the graph into two

subgraphs A and B, with a separator C , such that the number of nodes for each of A
and B does not exceed 3

4n vertices in the worst case and such that the separator has

a number of nodes of the order O(α k1/2n1/2).

14.6.3 Spectral Techniques

Spectral bisection refers to a technique which exploits some known properties of the

eigenvectors of the Laplacean of a graph. Given an adjacency graph G = (V,E),
we associate to it a Laplacian matrix L which is a sparse matrix having the same

adjacency graph G and defined as follows:

lij =







−1 if(vi, vj) ∈ E and i 6= j
deg(i) if i = j
0 otherwise.

These matrices have some interesting fundamental properties. When the graph is

undirected L is symmetric. It can be shown to be also negative semi definite (see

Exercise 11). Zero is an eigenvalue and it is the smallest one. An eigenvector as-

sociated with this eigenvalue is any constant vector, and this eigenvector bears little

interest. The second smallest eigenvector, called the Fiedler vector, has the useful

property that the signs of its components divide the domain into roughly two equal

subdomains.

The Recursive Spectral Bisection (RSB) algorithm consists of sorting the com-

ponents of the Fiedler vector and assigning the first half of the sorted vertices to

the first subdomain and the second half to the second subdomain. The two subdo-

mains are then partitioned in two recursively, until a desirable number of domains is

reached.

ALGORITHM 14.7 RSB (Recursive Spectral Bisection)

1. Compute the Fiedler vector f of the graph G.

2. Sort the components of f , e.g., increasingly.

3. Assign first ⌊n/2⌋ nodes to V1, and the rest to V2 .

4. Apply RSB recursively to V1, V2, until the desired number of partitions

5. is reached.
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The main theoretical property that is exploited here is that the differences be-

tween the components of the Fiedler vector represent some sort of distance between

the corresponding nodes. Thus, if these components are sorted they would be effec-

tively grouping the associated node by preserving nearness. Another interesting fact

is that the algorithm will also tend to minimize the number nc of edge-cuts, i.e., the

number of edges (vi, vj) such that vi ∈ V1 and vj ∈ V2. Assume that V1 and V2
are of equal size and define a partition vector define p whose i-th component is +1
if vi ∈ V1, and −1 if vi ∈ V2. By the assumptions the sum of all pi’s is zero. Then

notice that

(Lp, p) = 4nc, (p, e) = 0.

Ideally, the objective function (Lp, p) should be minimized subject to the constraint

(p, e) = 0. Here p is a vector of signs. If, instead, the objective function (Lx, x)/(x, x)
were minimized for x real, subject to (x, e) = 0, the solution would be the Fiedler

vector, since e is the eigenvector associated with the eigenvalue zero. The Fiedler

vector can be computed by the Lanczos algorithm or any other method efficient for

large sparse matrices. Recursive Specrtal Bisection gives excellent partitionings. On

the other hand, it is rather unattractive because it requires computing an eigenvector.

14.6.4 Graph Theory Techniques

A number of other techniques exist which, like spectral techniques, are also based

on the adjacency graph only. The simplest idea is one that is borrowed from the

technique of nested dissection in the context of direct sparse solution methods, see

Sections 3.6.2 and 3.3.3. An initial node is given which constitutes the level zero.

Then, the method recursively traverses the k-th level (k ≥ 1), which consists of the

neighbors of all the elements that constitute level k−1. A simple idea for partitioning

the graph in two traverses enough levels to visit about half of all the nodes. The

visited nodes will be assigned to one subdomain and the others will constitute the

second subdomain. The process can then be repeated recursively on each of the

subdomains.

A key ingredient for this technique to be successful is to determine a good initial

node from which to start the traversal. Often, a heuristic is used for this purpose.

Recall that d(x, y) is the distance between vertices x and y in the graph, i.e., the

length of the shortest path between x and y.

If the diameter of a graph is defined as

δ(G) = max{d(x, y) | x ∈ V, y ∈ V }

then, ideally, one of two nodes in a pair (x, y) that achieves the diameter can be used

as a starting node. These peripheral nodes, are expensive to determine. Instead, a

pseudo-peripheral node, as defined through the following procedure, is often em-

ployed [144]
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Figure 14.10: The RGB algorithm (top) and the double-striping algorithm (bottom)

for partitioning a graph into 16 subgraphs.
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ALGORITHM 14.8 Pseudo-Peripheral Node

1. Select an initial node x. Set δ = 0.

2. Do a level set traversal from x
3. Select a node y in the last level set, with minimum degree

4. If d(x, y) > δ then

5. Set x := y and δ := d(x, y)
6. GoTo 2

7. Else Stop: x is a pseudo-peripheral node.

8. EndIf

The distance d(x, y) in line 5 is the number of levels in the level set traversal needed

in Step 2. The algorithm traverses the graph from a node of the last level in the

previous traversal, until the number of levels stabilizes. It is easy to see that the

algorithm does indeed stop after a finite number of steps, typically small.

A first heuristic approach based on level set traversals is the recursive dissection

procedure mentioned above and described next.

ALGORITHM 14.9 Recursive Graph Bisection

1. Set G∗ := G, S := {G}, ndom := 1
2. While ndom < s Do:

3. Select in S the subgraph G∗ with largest size.

4. Find a pseudo-peripheral node p in G∗ and

5. Do a level set traversal from p. Let lev := number of levels.

6. Let G1 the subgraph of G∗ consisting of the first lev/2
7. levels, and G2 the subgraph containing the rest of G∗.

8. Remove G∗ from S and add G1 and G2 to it

9. ndom := ndom + 1
10. EndWhile

The cost of this algorithm is rather small. Each traversal of a graph G = (V,E) costs

around |E|, where |E| is the number of edges (assuming that |V | = O(|E|)). Since

there are s traversals of graphs whose size decreases by 2 at each step, it is clear that

the cost is O(|E|), the order of edges in the original graph. As can be expected, the

results of such an algorithm are not always good. Typically, two qualities that are

measured are the sizes of the domains as well as the number of edge-cuts.

Ideally, the domains should be equal. In addition, since the values at the interface

points should be exchanged with those of neighboring processors, their total number,

as determined by the number of edge-cuts, should be as small as possible. The first

measure can be easily controlled in a recursive Graph Bisection Algorithm — for

example, by using variants in which the number of nodes is forced to be exactly half

that of the original subdomain. The second measure is more difficult to control.

As an example, the top part of Figure 14.10 shows the result of the RGB algo-

rithm on a sample finite-element mesh. Thus, the top part of Figure 14.10 shows the

result of the RGB algorithm on a sample finite-element mesh. This is a vertex-based

partitioning. The dashed lines represent the edge-cuts.
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An approach that is competitive with the one described above is that of dou-

ble striping. This method uses two parameters p1, p2 such that p1p2 = s. The

original graph is first partitioned into p1 large partitions, using one-way partition-

ing, then each of these partitions is subdivided into p2 partitions similarly. One-

way partitioning into p subgraphs consists of performing a level set traversal from a

pseudo-peripheral node and assigning each set of roughly n/p consecutive nodes in

the traversal to a different subgraph. The result of this approach with p1 = p2 = 4 is

shown in Figure 14.10 on the same graph as before.

As can be observed, the subregions obtained by both methods have elongated

and twisted shapes. This has the effect of giving a larger number of edge-cuts. There

are a number of heuristic ways to remedy this. One strategy is based on the fact that

a level set traversal from k nodes can be defined instead of only one node. These k
nodes are called the centers or sites. Each subdomain will expand from one of these

k centers and the expansion will stop when it is no longer possible to acquire another

point that is not already assigned. The boundaries of each domain that are formed this

way will tend to be more “circular.” To smooth the boundaries of an initial partition,

find some center point of each domain and perform a level set expansion from the set

of points. The process can be repeated a few times.

ALGORITHM 14.10 Multinode Level-Set Expansion Algorithm

1. Find a partition S = {G1, G2, . . . , Gs}.
2. For iter = 1, . . . , nouter Do:

3. For k = 1, . . . , s Do:

4. Find a center ck of Gk. Set label(ck) = k.

5. EndDo

6. Do a level set traversal from {c1, c2, . . . , cs}. Label each child

7. in the traversal with the same label as its parent.

8. For k = 1, . . . , s set Gk:= subgraph of all nodes having label k
9. EndDo

For this method, a total number of edge-cuts equal to 548 and a rather small

standard deviation of 0.5 are obtained for the example seen earlier. Still to be decided

is how to select the center nodes mentioned in line 4 of the algorithm. Once more,

the pseudo-peripheral algorithm will be helpful. Find a pseudo-peripheral node, then

do a traversal from it until about one-half of the nodes have been traversed. Then,

traverse the latest level set (typically a line or a very narrow graph), and take the

middle point as the center.

A typical number of outer steps, nouter, to be used in line 2, is less than five.

This heuristic works well in spite of its simplicity. For example, if this is applied to

the graph obtained from the RGB algorithm, with nouter = 3, the partition shown

in Figure 14.11 is obtained. With this technique, the resulting total number of edge-

cuts is equal to 441 and the standard deviation is 7.04. As is somewhat expected, the

number of edge-cuts has decreased dramatically, while the standard deviation of the

various sizes has increased.
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Figure 14.11: Multinode expansion starting with the partition obtained in Figure

14.10.

PROBLEMS

P-14.1 In the proof of Theorem 14.7, the following form of the Cauchy-Schwarz inequality

was used:
p
∑

i=1

(xi, yi) ≤
(

p
∑

i=1

(xi, xi)

)1/2( p
∑

i=1

(yi, yi)

)1/2

.

(a) Prove that this result is a consequence of the standard Cauchy-Schwarz inequality. (b)

Extend the result to the A-inner product. (c) Assume that the xi’s and yi’s are the columns

of two n× p matrix X and Y . Rewrite the result in terms of these matrices.

P-14.2 Using Lemma 14.4, write explicitly the vectorM−1b for the Multiplicative Schwarz

procedure, in terms of the matrix A and the Ri’s, when s = 2, and then when s = 3.

P-14.3 Justify Algorithm (14.5), i.e., show that it does indeed compute the vector M−1Av
for an input vector v, where M is the multiplicative Schwarz preconditioner. Then find a

similar algorithm which computes AM−1v (right preconditioning).

P-14.4

P-14.5 (a) Show that in the multiplicative Schwarz procedure, the residual vectors ri =
b−Axi obtained at each step satisfy the recurrence,

ri = ri−1 −ART
i A

−1
i Riri−1
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for i = 1, . . . , s. (b) Consider the operator Qi ≡ ART
i A

−1
i Ri. Show that Qi is a projector.

(c) Is Qi an orthogonal projector with respect to the A-inner product? With respect to which

inner product is it orthogonal?

P-14.6 The analysis of the Additive Schwarz procedure assumes that A−1
i is “exact,” i.e.,

that linear systems Aix = b are solved exactly, each time A−1
i is applied. Assume that A−1

i

is replaced by some approximation Θ−1
i . (a) Is Pi still a projector? (b) Show that if Θi is

Symmetric Positive Definite, then so is Pi. (c) Now make the assumption that λmax(Pi) ≤
ω∗. What becomes of the result of Theorem 14.5?

P-14.7 In Element-By-Element (EBE) methods, the extreme cases of the Additive or the

Multiplicative Schwarz procedures are considered in which the subdomain partition corre-

sponds to taking Ωi to be an element. The advantage here is that the matrices do not have to

be assembled. Instead, they are kept in unassembled form (see Chapter 2). Assume that Pois-

son’s equation is being solved. (a) What are the matrices Ai? (b) Are they SPD? (c) Write

down the EBE preconditioning corresponding to the multiplicative Schwarz procedure, its

multicolor version, and the additive Schwarz procedure.

P-14.8 Theorem 14.2 was stated only for the multiplicative version of the Schwarz proce-

dure. There is a similar result for the additive Schwarz procedure. State this result and prove

it.

P-14.9 Show that the matrix defined by (14.38) is indeed a projector. Is it possible to for-

mulate Schwarz procedures in terms of projection processes as seen in Chapter 5?

P-14.10 It was stated at the end of the proof of Theorem 14.7 that if

(AJu, u)A ≥
1

C
(u, u)A

for any nonzero u, then λmin(AJ) ≥ 1
C . (a) Prove this result without invoking the min-max

theory. (b) Prove a version of the min-max theorem with the A-inner product, i.e., prove that

the min-max theorem is valid for any inner product for which A is self-adjoint.

P-14.11 Consider the Laplacean of a graph as defined in Section 14.6. Show that

(Lx, x) =
∑

(i,j) ∈ E

(xi − xj)2.

P-14.12 Consider a rectangular finite difference mesh, with mesh size ∆x = h in the x-

direction and ∆y = h closest to the y-direction.

a. To each mesh point p = (xi, yj), associate the closed disk Dij of radius h centered at

pi. What is the smallest k such that the family {Dij} is a k-ply system?

b. Answer the same question for the case where the radius is reduced to h/2. What is the

overlap graph (and associated mesh) for any α such that

1

2
< α <

√
2

2
?

What about when α = 2?

P-14.13 Determine the cost of a level set expansion algorithm starting from p distinct cen-

ters.

P-14.14 Write recursive versions of the Recursive Graph Partitioning algorithm and Recur-

sive Spectral Bisection algorithm. [Hint: Recall that a recursive program unit is a subpro-

gram or function, say foo, which calls itself, so foo is allowed to make a subroutine call to
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foo within its body.] (a) Give a pseudo-code for the RGB algorithm which processes the

subgraphs in any order. (b) Give a pseudo-code for the RGB algorithm case when the larger

subgraph is to be processed before the smaller one in any dissection. Is this second version

equivalent to Algorithm 14.9?

P-14.15 Write a FORTRAN-90 subroutine or (C function) which implements the Recursive

Graph Partitioning algorithm.

NOTES AND REFERENCES. To start with, the original paper by Schwarz is the reference [261], but an

earlier note appeared in 1870. In recent years, research on Domain Decomposition techniques has been

very active and productive. This rebirth of an old technique has been in large part motivated by parallel

processing. However, the first practical use of Domain Decomposition ideas has been in applications

to very large structures; see [230, 41], and elasticity problems; see, e.g., [234, 283, 269, 76, 40] for

references.

The book by Smith, Bjørstad, and Gropp, [268] gives a thorough survey of domain decomposition

methods. Two other monographs, one by P. Le Tallec [198], and the other by C. Farhat and J. X.

Roux [123], describe the use of Domain Decomposition approaches specifically for solving problems in

structural mechanics. Survey papers include those by Keyes and Gropp [189] and by Chan and Matthew

[75]. The volume [190] discusses the various uses of “domain-based” parallelism in computational

sciences and engineering.

The bulk of recent work on Domain Decomposition methods has been geared toward a Partial

Differential Equations viewpoint. Often, there appears to be a dichotomy between this viewpoint and

that of “applied Domain Decomposition,” in that the good methods from a theoretical point of view are

hard to implement in practice. The additive Schwarz procedure, with overlapping, represents a com-

promise between good intrinsic properties and ease of implementation. For example, Venkatakrishnan

concludes in [295] that although the use of global coarse meshes may accelerate convergence of local,

domain-based, ILU preconditioners, it does not necessarily reduce the overall time to solve a practical

aerodynamics problem.

Much is known about the convergence of the Schwarz procedure; refer in particular to the work by

Widlund and co-authors [42, 102, 103, 104, 70]. The convergence results of Section 14.3.4 have been

adapted from Xu [320] as well as Hackbusch [163]. The result on the equivalence between Schwarz

and Schur complement iterations stated in Theorem 14.2 seems to have been originally proved by Chan

and Goovaerts [73], see also the more recent article by Wilders and Brakkee [315]. The results on

the equivalence between the full matrix techniques and the Schur matrix techniques seen in Section

14.5 have been adapted from results by S. E. Eisenstat, reported in [189]. These connections are rather

interesting and useful in practice since they provide some flexibility on ways to implement a method.

A number of preconditioners have also been derived using similar connections in the PDE framework

[48, 47, 49, 50, 51].

Research on graph partitioning has slowed in recent years, no doubt due to the appearance of

Metis, a well-designed and efficient graph partitioning code [185]. Variations of the Recursive Spectral

Bisection algorithm [229] seem to give the best results in terms of overall quality of the subgraphs.

However, the algorithm is rather expensive, and the less costly multilevel techniques such as the ones

in the codes Metis [185] and Chaco [166], are usually preferred. The description of the geometric

partitioning techniques in Section 14.6.2 is based on the papers [145] and [211]. Earlier approaches

have been developed in [81, 82, 83].
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[33] M. BENZI, J. MARÍN, AND M. TŮMA, A two-level parallel preconditioner based on

sparse approximate inverses, in Iterative Methods in Scientific Computation, II, D. R.

Kincaid and A. C. Elster, eds., IMACS, 1999, pp. xx–xx+10.
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look-ahead version, 232

Lanczos algorithm, 193, 194

algorithm, 194, 229

biorthogonalization, 229

breakdown, 231

incurable, 232

lucky, 232

for linear systems, 233

look-ahead version, 232

loss of orthogonality, 195

modified Gram-Schmidt version, 194

nonsymmetric, 229

and orthogonal polynomials, 195

partial reorthogonalization, 195

practical implementations, 232

selective reorthogonalization, 195

symmetric case, 193

Lanczos, C., 226, 234, 256, 422

Laplacean, see Laplacean operator

Laplacean operator, 49, 62

of a graph, 506

Le Tallec, P., 513

least-squares polynomials, 400

least-squares problem, 259

left eigenvector, 4

left versus right preconditioning, 286

Leisersen, C. E., 332

Leland, R., 513

Leuze, R., 422

level of fill-in, 311

level scheduling, 387–390

for 5-point matrices, 387

for general matrices, 388

level set orderings, 83, 507

Lewis, J. G., 392, 422

line relaxation, 109

linear mappings, 2

linear span, 10

linear system, 39, 105

existence of a solution, 40

right-hand side of a, 39

singular, 40

unknown of a, 39

linked lists, 96

Liou, K. P., 513

Liu, J. W-H., 97, 313, 507

Liu, Z. S., 233

local Schur complement, 480

Look-ahead Lanczos algorithm, 232

low frequency modes, 423

lower triangular matrices, 5

LQ factorization, 359

algorithm, 360

lucky breakdowns, 162

Lusk, E., 376

M

M-matrix, 27

Manteuffel, T., 207, 208, 227, 256, 367

Marı́n, J., 367

mask, 365

matching, 352

Mathew, T. P., 513

matrix, 1

addition, 2

adjoint of a, 7

banded, 5

bidiagonal, 5

canonical forms, 15

characteristic polynomial, 3

diagonal, 5

diagonal dominant, 119

diagonal form, 16

diagonalizable, 16

Hermitian, 4, 21, 24

Hessenberg, 5

irreducible, 90

Jordan canonical form, 16

M-, 27

multiplication, 2

nonnegative, 4, 27

nonsingular, 3

norm of a, 8



542 INDEX

normal, 4, 21

orthogonal, 5

outer product, 5

positive definite, 32–34

powers of a, 19

reduction, 15

Schur form, 17

self-adjoint, 7, 493

singular, 3

skew-Hermitian, 4

skew-symmetric, 4

spectral radius, 4

spectrum, 3

square, 3

symmetric, 4

Symmetric Positive Definite, 32, 122

trace, 4

transpose, 2

transpose conjugate, 2

triangular, 5

tridiagonal, 5

unitary, 5

matrix norm, 9

matrix-by-vector product, 378

dense matrices, 378

for distributed matrices, 385

in DIA format, 380

in Ellpack format, 381

in triad form, 381

maximum transversal, 352

Mc Cormick, S. F., 467

Meijerink, J. A., 295, 367

mesh generation, 69

mesh refinement, 69

mesh size, 65

message passing, 374

Meurant, G. A., 367

Meyer, C. D., 45

Micchelli, C. A., 401

Miller, G. L., 505, 506

MILU, 319–321

Minimal Residual iteration, 145

algorithm, 145

convergence, 146

Minimal Residual Smoothing, 190–193

minimum degree ordering, 96, 350

min-max theorem, 25

mixed boundary conditions, 48, 49

M -matrix, 27, 302, 355

modified Gram-Schmidt, 162

Modified ILU, see MILU

Modified Sparse Row storage, see MSR

molecule, 51

moment matrix, 233

in Lanczos procedure, 233

moment of intertia, 505

MR iteration, see Minimal Residual iteration

MRS, 190, 240

MSR storage format, 93

multi-elimination, 409, 410

multicolor orderings, 90

multicoloring, 406–409

for general sparse matrices, 408

multifrontal methods, 422

multigrid methods, 423–465

algebraic multigrid, 455

AMG, 455

FMG, 447

full multigrid, 447

Galerkin projection, 440

nested iteration, 441, 447

V-cyle, 444

W-cyle, 444

multinode expansion algorithm, 510

multiple eigenvalue, 15

multiple vector pipelines, 371

multiplicative projection process, 150

multiplicative Schwarz preconditioning, 489

multiprocessing, 371

Munksgaard, N., 367

N

Nachtigal, N. M., 184, 227, 256

natural ordering, 57

near singularity, 41

Nested dissection, 350

nested iteration, 441, 447

nested-dissection ordering, 96

Neumann boundary conditions, 48, 49

Neumann polynomials, 396

nonnegative matrix, 4, 27

nonsingular matrix, 3

norm

A-norm,energy norm, 34

energy norm, A-norm, 137

Euclidean, 7
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sparse matrix-by-vector product, 95

sparse skyline storage format, see SSK

sparse triangular system solution, 96

sparse-sparse mode computations, 339

sparse-sparse mode computations, 339

sparsity, 75

SPARSKIT, 98–100

SPD, see Symmetric Positive Definite

spectral bisection, 506

spectral radius, 4

spectrum of a matrix, 3

split preconditioning, 276

splitting, 107

square matrices, 3

SSK storage format, 330

SSOR, 108
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