THE PROBLEM

We consider the linear system

\[Ax = b \]

where \(A \) is \(N \times N \) and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex

Focus: \(A \) is large and sparse, possibly with an irregular structure
PROJECTION METHODS

Initial Problem: \[\mathbf{b} - A \mathbf{x} = 0 \]

Given two subspaces \(K \) and \(L \) of \(\mathbb{R}^N \) define the approximate problem:

Find \(\tilde{x} \in K \) such that \(\mathbf{b} - A \tilde{x} \perp L \)

 Leads to a small linear system (‘projected problems’) This is a basic projection step. Typically: sequence of such steps are applied

With a nonzero initial guess \(x_0 \), the approximate problem is

Find \(\tilde{x} \in x_0 + K \) such that \(\mathbf{b} - A \tilde{x} \perp L \)

Write \(\tilde{x} = x_0 + \delta \) and \(\mathbf{r}_0 = \mathbf{b} - A x_0 \). Leads to a system for \(\delta \):

Find \(\delta \in K \) such that \(\mathbf{r}_0 - A \delta \perp L \)

PROTOTYPE PROJECTION METHOD

Until Convergence Do:

1. Select a pair of subspaces \(K \), and \(L \);
2. Choose bases \(V = [v_1, \ldots, v_m] \) for \(K \) and \(W = [w_1, \ldots, w_m] \) for \(L \).
3. Compute

\[\begin{align*}
\mathbf{r} &\leftarrow \mathbf{b} - A \mathbf{x}, \\
\mathbf{y} &\leftarrow (W^TAV)^{-1}W^T \mathbf{r}, \\
\mathbf{x} &\leftarrow \mathbf{x} + V \mathbf{y}.
\end{align*} \]

Matrix representation:

Let

- \(V = [v_1, \ldots, v_m] \) a basis of \(K \) &
- \(W = [w_1, \ldots, w_m] \) a basis of \(L \)

Then letting \(\mathbf{x} \) be the approximate solution \(\tilde{x} = x_0 + \delta \equiv x_0 + V \mathbf{y} \)

where \(\mathbf{y} \) is a vector of \(\mathbb{R}^m \), the Petrov-Galerkin condition yields,

\[W^T(r_0 - AV \mathbf{y}) = 0 \]

and therefore

\[\tilde{x} = x_0 + V (W^TAV)^{-1}W^T \mathbf{r}_0 \]

Remark: In practice \(W^TAV \) is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

OPERATOR FORM REPRESENTATION

Let \(P \) be the orthogonal projector onto \(K \) and \(Q \) the (oblique) projector onto \(K \) and orthogonally to \(L \).

\[\begin{align*}
P \mathbf{x} &\in K, \quad \mathbf{x} - P \mathbf{x} \perp K \\
Q \mathbf{x} &\in K, \quad \mathbf{x} - Q \mathbf{x} \perp L
\end{align*} \]

The \(P \) and \(Q \) projectors
Approximate problem amounts to solving
\[Q(b - Ax) = 0, \quad x \in K \]
or in operator form
\[Q(b - A\mathcal{P}x) = 0 \]

Question: what accuracy can one expect?

Let \(x^* \) be the exact solution. Then

1) we cannot get better accuracy than \(\|(I - \mathcal{P})x^*\|_2 \), i.e.,
\[\|\tilde{x} - x^*\|_2 \geq \|(I - \mathcal{P})x^*\|_2 \]

2) the residual of the exact solution for the approximate problem satisfies:
\[\|b - QA\mathcal{P}x^*\|_2 \leq \|QA(I - \mathcal{P})\|_2 \|(I - \mathcal{P})x^*\|_2 \]

Two Important Particular Cases.

1. \(L = AK \)
 - Then \(\|b - A\tilde{x}\|_2 = \min_{z \in K} \|b - Az\|_2 \)
 - Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

2. \(L = K \)
 - Class of Galerkin or Orthogonal projection methods.
 - When \(A \) is SPD then \(\|x^* - \tilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A \).

One-dimensional projection processes

\[K = \text{span}\{d\} \]
\[L = \text{span}\{e\} \]

Then \(\tilde{x} \leftarrow x + \alpha d \) and Petrov-Galerkin condition \(r - A\delta \perp e \) yields
\[\alpha = \frac{(r,e)}{(Ad,e)} \]

Three popular choices:

(I) **Steepest descent.** \(A \) is SPD. Take at each step \(d = r \) and \(e = r \).

Iteration:
\[r \leftarrow b - Ax, \quad \alpha \leftarrow (r,r)/(Ar,r) \]
\[x \leftarrow x + \alpha r \]

- Each step minimizes \(f(x) = \|x - x^*\|_A^2 = (A(x - x^*), (x - x^*)) \) in direction \(-\nabla f\). Convergence guaranteed if \(A \) is SPD.

(II) **Residual norm steepest descent.** \(A \) is arbitrary (nonsingular). Take at each step \(d = A^Tr \) and \(e = Ad \).

Iteration:
\[r \leftarrow b - Ax, \quad \alpha \leftarrow \|d\|^2_2/\|Ad\|^2_2 \]
\[x \leftarrow x + \alpha d \]

- Each step minimizes \(f(x) = \|b - Ax\|_2^2 \) in direction \(-\nabla f\).
- Important Note: equivalent to usual steepest descent applied to normal equations \(A^TAx = A^Tb \).
- Converges under the condition that \(A \) is nonsingular.
(III) **Minimal residual iteration.** A positive definite ($A + A^T$ is SPD).

Take at each step $d = r$ and $e = Ar$.

Iteration:

\[
\begin{align*}
r &\leftarrow b - Ax, \\
\alpha &\leftarrow (Ar, r)/(Ar, Ar) \\
x &\leftarrow x + \alpha r
\end{align*}
\]

- Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction r.
- Converges under the condition that $A + A^T$ is SPD.

KRYLOV SUBSPACE METHODS

Principle:

Projection methods on Krylov subspaces, i.e., on

\[
K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\}
\]

- probably the most important class of iterative methods.
- many variants exist depending on the subspace L.

Simple properties of K_m Let $\mu = \deg.$ of minimal polynomial of v

- $K_m = \{p(A)v | p = \text{polynomial of degree } \leq m - 1\}$
- $K_m = K_\mu$ for all $m \geq \mu$. Moreover, K_μ is invariant under A.
- $\dim(K_m) = m$ iff $\mu \geq m$.

A little review: Gram-Schmidt process

→ **Goal:** given $X = [x_1, \ldots, x_m]$ compute an orthonormal set $Q = [q_1, \ldots, q_m]$ which spans the same subspace.

ALGORITHM : 1 • Classical Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, \ldots, j - 1$
3. Compute $\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij} q_i$
4. $r_{jj} = \|\hat{q}_j\|_2$ If $r_{jj} == 0$ exit
5. $q_j = \hat{q}_j / r_{jj}$
6. EndDo

ALGORITHM : 2 • Modified Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. $\hat{q}_j := x_j$
3. For $i = 1, \ldots, j - 1$ Do
4. $r_{ij} = (\hat{q}_j, q_i)$
5. $\hat{q}_j := \hat{q}_j - r_{ij} q_i$
6. EndDo
7. $r_{jj} = \|\hat{q}_j\|_2$. If $r_{jj} == 0$ exit
8. $q_j := \hat{q}_j / r_{jj}$
9. EndDo
Let:
\[X = [x_1, \ldots, x_m] \text{ (} n \times m \text{ matrix)} \]
\[Q = [q_1, \ldots, q_m] \text{ (} n \times m \text{ matrix)} \]
\[R = \{ r_{ij} \} \text{ (} m \times m \text{ upper triangular matrix)} \]

At each step,
\[x_j = \sum_{i=1}^{j} r_{ij} q_i \]

Result:
\[X = QR \]

ARNOLDI’S ALGORITHM

Goal: to compute an orthogonal basis of \(K_m \).

Input: Initial vector \(v_1 \), with \(\|v_1\|_2 = 1 \) and \(m \).

For \(j = 1, \ldots, m \) do

- Compute \(w := Av_j \)
- for \(i = 1, \ldots, j \), do
 \[h_{i,j} := (w, v_i) \]
 \[w := w - h_{i,j} v_i \]
- \(h_{j+1,j} = \|w\|_2 \) and \(v_{j+1} = w / h_{j+1,j} \)

Arnoldi’s Method (\(L_m = K_m \))

From Petrov-Galerkin condition when \(L_m = K_m \), we get
\[x_m = x_0 + V_m H_m^{-1} V_m^T r_0 \]

If, in addition we choose \(v_1 = r_0 / \|r_0\|_2 \equiv r_0 / \beta \) in Arnoldi’s algorithm, then
\[x_m = x_0 + \beta V_m H_m^{-1} e_1 \]

Several algorithms mathematically equivalent to this approach:

* FOM [Saad, 1981] (above formulation)
* Young and Jea’s ORTHORES [1982].
* Axelsson’s projection method [1981].

Result of orthogonalization process (Arnoldi’s algorithm):

1. \(V_m = [v_1, v_2, \ldots, v_m] \) orthonormal basis of \(K_m \).
2. \(AV_m = V_{m+1} H_m \)
3. \(V_m^T AV_m = H_m \equiv H_m^T \) — last row.
Minimal residual methods \((L_m = AK_m) \)

When \(L_m = AK_m \), we let \(W_m \equiv AV_m \) and obtain relation
\[
x_m = x_0 + V_m[W_m^TAV_m]^{-1}W_m^T r_0 = x_0 + V_m[(AV_m)^T AV_m]^{-1}(AV_m)^T r_0.
\]

Use again \(v_1 := r_0/(\beta := \| r_0 \|_2) \) and the relation \(AV_m = V_{m+1}H_m \),
\[
x_m = x_0 + V_m[^\top \! H_m]^{-1}[^\top \! H_m] \beta e_1 = x_0 + V_m y_m
\]
where \(y_m \) minimizes \(\| \beta e_1 - [^\top \! H_m] y \|_2 \) over \(y \in \mathbb{R}^m \). Therefore, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):
\[
x_m = x_0 + V_m y_m \quad \text{where} \quad y_m : \min_y \| \beta e_1 - [^\top \! H_m] y \|_2
\]
Equivalent methods:
- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR

Restarting and Truncating

Difficulty: As \(m \) increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension \(m \) of the subspace

ALGORITHM : 3. Restarted GMRES (resp. Arnoldi)
1. Start/Restart: Compute \(r_0 = b - Ax_0 \), and \(v_1 := r_0/(\beta := \| r_0 \|_2) \).
2. Arnoldi Process: generate \(H_m \) and \(V_m \).
3. Compute \(y_m = H_m^{-1} \beta e_1 \) (FOM), or \(y_m = \arg min y \| \beta e_1 - [^\top \! H_m] y \|_2 \) (GMRES)
4. \(x_m = x_0 + V_m y_m \)
5. If \(\| r_m \|_2 \leq \epsilon \| r_0 \|_2 \) stop else set \(x_0 := x_m \) and go to 1.

Second remedy: Truncate the orthogonalization

The formula for \(v_{j+1} \) is replaced by
\[
h_{j+1,j}v_{j+1} = Av_j - \sum_{i=j-k+1}^{j} h_{ij}v_i
\]
→ each \(v_j \) is made orthogonal to the previous \(k \) \(v_i \)'s.

→ \(x_m \) still computed as \(x_m = x_0 + V_m H_m^{-1} \beta e_1 \).

→ It can be shown that this is again an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

Writing the LU decomposition of \(H_m \) as \(H_m = L_m U_m \) we get
\[
x_m = x_0 + V_m U_m^{-1} L_m^{-1} \beta e_1 \equiv x_0 + P_m z_m
\]

Structure of \(L_m, U_m \) when \(k = 3 \)

\[
L_m = \begin{pmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{pmatrix}, \quad U_m = \begin{pmatrix} x & x & x \\ x & x & x \\ x & x & 1 \end{pmatrix}
\]
\[p_m = u_{m+1}[v_m - \zeta_{m+1} u_{m+1}] \]
\[z_m = \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix} \]

Can update \(x_m \) at each step:
\[x_m = x_{m-1} + \zeta_m p_m \]

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the \(H_m \) matrix

- CG-like formulation of IOM called DIOM [Saad, 1982]
- ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, '77] uses LQ factorization of \(H_m \).
- Can incorporate partial pivoting in LU factorization of \(H_m \)

Some implementation details: GMRES

- **Issue 1:** how to solve least-squares problem?
- **Issue 2:** How to compute residual norm (without computing solution at each step)?
- Several solutions to both issues. Simplest: use Givens rotations.
- **Recall:** we want to solve least-squares problem
 \[\min_y \| \beta e_1 - \mathbf{H}_m y \|_2 \]
- Transform the problem into upper triangular one.

Rotation matrices of dimension \(m+1 \). Define (with \(s_i^2 + c_i^2 = 1 \)):
\[\Omega_i = \begin{bmatrix} 1 & \cdots & c_i & s_i & \cdots & 1 \\ \cdots & 1 & c_i & s_i & \cdots & \cdots \\ -s_i & c_i & \cdots & 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix} \]
\[\Omega_i \]

- **1-st Rotation**
 \[\Omega_1 = \begin{bmatrix} c_1 & s_1 & \cdots & 1 \\ -s_1 & c_1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \]

\[\bar{H}_m = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\ h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\ h_{32} & h_{33} & h_{34} & h_{35} & \vdots \\ h_{43} & h_{44} & h_{45} & \vdots & \vdots \\ h_{54} & h_{55} & h_{56} & \vdots & \vdots \end{bmatrix}, \quad \bar{g}_0 = \begin{bmatrix} \beta \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

- Multiply \(\bar{H}_m \) and right-hand side \(\bar{g}_0 \equiv \beta e_1 \) by a sequence of such matrices from the left. \(s_i, c_i \) selected to eliminate \(h_{i+1,i} \)
Define
\[Q_m = \Omega_m \Omega_{m-1} \ldots \Omega_1 \]
\[\bar{R}_m = \bar{H}_m = Q_m \bar{H}_m, \]
\[\bar{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T. \]

Since \(Q_m \) is unitary,
\[\min \| \beta e_1 - \bar{H}_m y \|_2 = \min \| \bar{g}_m - \bar{R}_m y \|_2. \]

Repeat with \(\Omega_2, \ldots, \Omega_i \). Result:
\[
\bar{H}^{(1)}_m = \begin{pmatrix}
 h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\
 h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\
 h_{32} & h_{33} & h_{34} & h_{35} \\
 h_{43} & h_{44} & h_{45} \\
 h_{54} & 0 & 0 & 0 & 0
\end{pmatrix}, \quad \bar{g}_1 = \begin{pmatrix} c_1 / \beta \\ -s_1 / \beta \\ 0 \\ 0 \\ 0 \end{pmatrix}.
\]

Delete last row and solve resulting triangular system.
\[R_m y_m = g_m \]

Proposition:
1. The rank of \(AV_m \) is equal to the rank of \(R_m \). In particular, if \(r_{mm} = 0 \) then \(A \) must be singular.
2. The vector \(y_m \) which minimizes \(\| \beta e_1 - \bar{H}_m y \|_2 \) is given by
\[
y_m = R_m^{-1} g_m.
\]
3. The residual vector at step \(m \) satisfies
\[
b - Ax_m = V_{m+1} (\beta e_1 - \bar{H}_m y_m) = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})
\]
and, as a result,
\[
\| b - Ax_m \|_2 = | \gamma_{m+1} |.
\]

The Symmetric Case: Observation

Observe: When \(A \) is real symmetric then in Arnoldi’s method:
\[H_m = V_m^T AV_m \]

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix \(H_m \) is symmetric tridiagonal:
\[h_{ij} = 0 \quad 1 \leq i < j - 1; \quad \text{and} \quad h_{ii}, h_{i+1,i} = h_{i,i+1}, \quad j = 1, \ldots, m \]
We can write

\[
H_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
& \beta_3 & \alpha_3 & \beta_4 \\
& & \ddots & \ddots \\
& & & \beta_m & \alpha_m
\end{pmatrix}
\]

(1)

The \(v_i\)'s satisfy a three-term recurrence [Lanczos Algorithm]:

\[
\beta_{j+1} v_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1}
\]

\(
\rightarrow\) simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi \(\rightarrow\) Symmetric Lanczos

Lanczos algorithm for linear systems

\(\rightarrow\) Usual orthogonal projection method setting:

- \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1} r_0\}\)
- Basis \(V_m = [v_1, \ldots, v_m]\) of \(K_m\) generated by the Lanczos algorithm

\(\rightarrow\) Three different possible implementations.

1. Arnoldi-like; 2. Exploit tridigonal nature of \(H_m\) (DIOM); 3. Conjugate gradient.

The Lanczos algorithm

ALGORITHM: 4. Lanczos

1. Choose an initial vector \(v_1\) of norm unity. Set \(\beta_1 \equiv 0, v_0 \equiv 0\)
2. For \(j = 1, 2, \ldots, m\) Do:
 3. \(w_j := Av_j - \beta_j v_{j-1}\)
 4. \(\alpha_j := (w_j, v_j)\)
 5. \(w_j := w_j - \alpha_j v_j\)
 6. \(\beta_{j+1} := ||w_j||_2. If \beta_{j+1} = 0 then Stop\)
 7. \(v_{j+1} := w_j/\beta_{j+1}\)
8. EndDo

ALGORITHM: 5. Lanczos Method for Linear Systems

1. Compute \(r_0 = b - Ax_0, \beta = ||r_0||_2, and v_1 := r_0/\beta\)
2. For \(j = 1, 2, \ldots, m\) Do:
 3. \(w_j = Av_j - \beta_j v_{j-1} (If j = 1 set \beta_1 v_0 \equiv 0)\)
 4. \(\alpha_j := (w_j, v_j)\)
 5. \(w_j := w_j - \alpha_j v_j\)
 6. \(\beta_{j+1} := ||w_j||_2. If \beta_{j+1} = 0 set m := j and go to 9\)
 7. \(v_{j+1} := w_j/\beta_{j+1}\)
8. EndDo
9. Set \(T_m = \text{tridiag}(\beta_i, \alpha_i, \beta_{i+1})\), and \(V_m = [v_1, \ldots, v_m]\).
10. Compute \(y_m = T_m^{-1}(\beta e_1)\) and \(x_m = x_0 + V_m y_m\)
ALGORITHM: 6. D-Lanczos

1. Compute \(r_0 = b - Ax_0, \zeta_1 := \beta := \|r_0\|_2, \) and \(v_1 := r_0/\beta \)

2. Set \(\lambda_1 = \beta_1 = 0, p_0 = 0 \)

3. For \(m = 1, 2, \ldots, \) until convergence Do:

4. Compute \(w := Av_m - \beta_m v_{m-1} \) and \(\alpha_m = (w, v_m) \)

5. If \(m > 1 \) then compute \(\lambda_m = \frac{\beta_m}{\eta_{m-1}} \) and \(\zeta_m = -\lambda_m \zeta_{m-1} \)

6. \(\eta_m = \alpha_m - \lambda_m \beta_m \)

7. \(p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1}) \)

8. \(x_m = x_{m-1} + \zeta_m p_m \)

9. If \(x_m \) has converged then Stop

10. \(w := w - \alpha_m v_m \)

11. \(\beta_{m+1} = \|w\|_2, \) \(v_{m+1} = w/\beta_{m+1} \)

12. EndDo

The Conjugate Gradient Algorithm (A S.P.D.)

- Note: the \(p_i \)'s are \(A \)-orthogonal
- The \(r_i \)'s are orthogonal.
- And we have \(x_m = x_{m-1} + \xi_m p_m \)

So there must be an update of the form:

1. \(p_m = r_{m-1} + \beta_m p_{m-1} \)
2. \(x_m = x_{m-1} + \xi_m p_m \)
3. \(r_m = r_{m-1} - \xi_m Ap_m \)

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: \(r_0 := b - Ax_0, p_0 := r_0 \)

2. Iterate: Until convergence do,

(a) \(\alpha_j := (r_j, r_j)/(Ap_j, p_j) \)

(b) \(x_{j+1} := x_j + \alpha_j p_j \)

(c) \(r_{j+1} := r_j - \alpha_j Ap_j \)

(d) \(\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j) \)

(e) \(p_{j+1} := r_{j+1} + \beta_j p_j \)

- \(r_j = scaling \times v_{j+1}. \) The \(r_j \)'s are orthogonal.
- The \(p_j \)'s are \(A \)-conjugate, i.e., \((Ap_i, p_j) = 0 \) for \(i \neq j \).
ALGORITHM 7: The Lanczos Bi-Orthogonalization Procedure

1. Choose two vectors \(v_1, w_1 \) such that \((v_1, w_1) = 1\).
2. Set \(\beta_1 = \delta_1 = 0 \), \(w_0 = v_0 = 0 \).
3. For \(j = 1, 2, \ldots, m \) Do:
 4. \(\alpha_j = (Av_j, w_j) \)
 5. \(\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1} \)
 6. \(\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1} \)
 7. \(\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2} \). If \(\delta_{j+1} = 0 \) Stop
 8. \(\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1}) / \delta_{j+1} \)
 9. \(w_{j+1} = \hat{w}_{j+1} / \beta_{j+1} \)
 10. \(v_{j+1} = \hat{v}_{j+1} / \delta_{j+1} \)
11. EndDo

If the algorithm does not break down before step \(m \), then the vectors \(v_i, i = 1, \ldots, m \), and \(w_j, j = 1, \ldots, m \), are biorthogonal, i.e.,
\[(v_j, w_i) = \delta_{ij} \quad 1 \leq i, j \leq m.\]
Moreover, \(\{v_i\}_{i=1,2,\ldots,m} \) is a basis of \(\mathcal{K}_m(A, v_1) \) and \(\{w_i\}_{i=1,2,\ldots,m} \) is a basis of \(\mathcal{K}_m(A^T, w_1) \) and
\[
AV_m = V_m T_m + \delta_{m+1} v_{m+1} e_m^T, \\
A^T W_m = W_m T_m + \beta_{m+1} w_{m+1} e_m^T, \\
W_m A V_m = T_m .
\]

ALGORITHM 8: Lanczos Algorithm for Linear Systems

1. Compute \(r_0 = b - Ax_0 \) and \(\beta := ||r_0||_2 \)
2. Run \(m \) steps of the nonsymmetric Lanczos Algorithm i.e.,
3. Start with \(v_1 := r_0 / \beta \), and any \(w_1 \) such that \((v_1, w_1) = 1\)
4. Generate the Lanczos vectors \(v_1, \ldots, v_m, w_1, \ldots, w_m \)
5. and the tridiagonal matrix \(T_m \) from Algorithm 7.
6. Compute \(y_m = T_m^{-1} (\beta e_1) \) and \(x_m := x_0 + V_m y_m \).

BCG can be derived from the Lanczos Algorithm similarly to CG in symmetric case.
The BCG and QMR Algorithms

- Let $T_m = L_m U_m$ (LU factorization of T_m). Define $P_m = V_m U_m^{-1}$

Then, solution is

$$x_m = x_0 + V_m T_m^{-1}(\beta e_1) = x_0 + V_m U_m^{-1} L_m^{-1}(\beta e_1) = x_0 + P_m L_m^{-1}(\beta e_1)$$

- x_m is updatable from x_{m-1} similar to the CG algorithm.

- r_j and r_j^* are in the same direction as v_{j+1} and w_{j+1} respectively.

- They form a biorthogonal sequence.

- The p_j^*'s p_i's are are A-conjugate.

- Utilizing this information, a CG-like algorithm can be easily derived from the Lanczos procedure.

Quasi-Minimal Residual Algorithm

- The Lanczos algorithm gives the relations $AV_m = V_{m+1} T_m$ with $T_m = (m + 1) \times m$ tridiagonal matrix $T_m = \begin{pmatrix} T_m \\ \delta_{m+1} e^T_m \end{pmatrix}$.

- Let $v_1 \equiv \beta r_0$ and $x = x_0 + V_m y$. Residual norm $\| b - A x \|_2$ is

$$\| r_0 - A v_m y \|_2 = \| \beta v_1 - V_{m+1} T_m y \|_2 = \| V_{m+1}(\beta e_1 - T_m y) \|_2$$

- Column-vectors of V_{m+1} are not orthonormal (≠ GMRES).

- But: reasonable idea to minimize the function $J(y) \equiv \| \beta e_1 - T_m y \|_2$

ALGORITHM: 9. BiConjugate Gradient (BCG)

1. Compute $r_0 : = b - A x_0$. Choose r_0^* such that $(r_0, r_0^*) \neq 0$.
2. Set, $p_0 : = r_0$, $p_0^* : = r_0^*$
3. For $j = 0, 1, \ldots$, until convergence Do:
 4. $\alpha_j : = (r_j, r_j^*)/(Ap_j, p_j^*)$
 5. $x_{j+1} : = x_j + \alpha_j p_j$
 6. $r_{j+1} : = r_j - \alpha_j Ap_j$
 7. $r_{j+1}^* : = r_j^* - \alpha_j A^T p_j$
 8. $\beta_j : = (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$
 9. $p_{j+1} : = r_{j+1} + \beta_j p_j$
10. $p_{j+1}^* : = r_{j+1}^* + \beta_j p_j^*$
11. EndDo

ALGORITHM: 10. QMR

1. Compute $r_0 : = b - A x_0$ and $\gamma_0 : = \| r_0 \|_2$, $w_1 : = v_1 : = r_0/\gamma_1$
2. For $m = 1, 2, \ldots$, until convergence Do:
 3. Compute α_m, δ_{m+1} and v_{m+1}, w_{m+1} as in Lanczos Algor. [alg. ??]
 4. Update the QR factorization of T_m, i.e.,
 5. Apply Ω_i, $i = m - 2, m - 1$ to the m-th column of T_m
 6. Compute the rotation coefficients c_m, s_m
 7. Apply rotation Ω_m to T_m and \tilde{g}_m, i.e., compute:
 8. $\gamma_{m+1} : = -s_m \gamma_m$; $\gamma_m : = c_m \gamma_m$; and $\alpha_m : = c_m \alpha_m + s_m \delta_{m+1}$
 9. $p_m : = (v_m - \sum_{i=m-2}^{m-1} t_{im} p_i) / t_{mm}$
 10. $x_m : = x_{m-1} + \gamma_m P_m$
 11. If $|\gamma_{m+1}|$ is small enough Stop
12. EndDo
Transpose-Free Variants

- BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m. — They allow to determine the scalars (α_j and β_j in BCG).
- QUESTION: is it possible to bypass the use of A^T?

- Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = \frac{F(u_k + \epsilon v) - F(u_k)}{\epsilon}.$$

Conjugate Gradient Squared

- Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i = \rho_i(A)r_0$$

where ρ_i = polynomial of degree i.

In CGS:

$$r_i = \rho_i^2(A)r_0$$

- Define $r_j = \phi_j(A)r_0$, $p_j = \pi_j(A)r_0$, $r_j^* = \phi_j(A^T)r_0^*$, $p_j^* = \pi_j(A^T)r_0^*$.

Scalar α_j in BCG is given by

$$\alpha_j = \frac{(\phi_j(A)r_0, \phi_j(A)r_0^*)}{(A\pi_j(A)r_0, \pi_j(A)r_0^*)} = \frac{(\phi_j^2(A)r_0, r_0^*)}{(A\pi_j^2(A)r_0, r_0^*)}$$

- Possible to get a recursion for the $\phi_j^2(A)r_0$ and $\pi_j^2(A)r_0$?

- Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence. For $\pi_j(t)\phi_j(t)$, note:

$$\phi_j(t)\pi_j(t) = \phi_j(t)(\phi_j(t) + \beta_{j-1}\pi_{j-1}(t)) = \phi_j^2(t) + \beta_{j-1}\phi_j(t)\pi_{j-1}(t).$$

- Result:

$$\phi_{j+1}^2 = \phi_j^2 - \alpha_j t (2\phi_j^2 + 2\beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2)$$

$$\phi_{j+1}\pi_j = \phi_j^2 + \beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2$$

$$\pi_{j+1}^2 = \phi_{j+1}^2 + 2\beta_j\phi_{j+1}\pi_j + \beta_j^2\pi_j^2.$$

- Define:

$$r_j = \phi_j^2(A)r_0, \quad p_j = \pi_j^2(A)r_0, \quad q_j = \phi_{j+1}(A)\pi_j(A)r_0$$

- Problem: Cross terms
Recurrences become:
\[r_{j+1} = r_j - \alpha_j A (2r_j + 2\beta_{j-1} q_{j-1} - \alpha_j A p_j), \]
\[q_j = r_j + \beta_{j-1} q_{j-1} - \alpha_j A p_j, \]
\[p_{j+1} = r_{j+1} + 2\beta_j q_j + \beta_j^2 p_j. \]

Define auxiliary vector \(d_j = 2r_j + 2\beta_{j-1} q_{j-1} - \alpha_j A p_j \)

Sequence of operations to compute the approximate solution,
starting with \(r_0 := b - Ax_0, p_0 := r_0, q_0 := 0, \beta_0 := 0. \)

1. \(\alpha_j = (r_j, r_0^*) / (A p_j, r_0^*) \)
2. \(d_j = 2r_j + 2\beta_{j-1} q_{j-1} - \alpha_j A p_j \)
3. \(q_j = r_j + \beta_{j-1} q_{j-1} - \alpha_j A p_j \)
4. \(x_{j+1} = x_j + \alpha_j d_j \)
5. \(r_{j+1} = r_j - \alpha_j A d_j \)
6. \(\beta_j = (r_{j+1}, r_0^*) / (r_j, r_0^*) \)
7. \(p_{j+1} = r_{j+1} + \beta_j (2q_j + \beta_j p_j) \)

ALGORITHM: 11. **Conjugate Gradient Squared**

1. Compute \(r_0 := b - Ax_0; r_0^* \) arbitrary.
2. Set \(p_0 := u_0 := r_0. \)
3. For \(j = 0, 1, 2 \ldots \), until convergence Do:
4. \(\alpha_j = (r_j, r_0^*) / (A p_j, r_0^*) \)
5. \(q_j = u_j - \alpha_j A p_j \)
6. \(x_{j+1} = x_j + \alpha_j (u_j + q_j) \)
7. \(r_{j+1} = r_j - \alpha_j A (u_j + q_j) \)
8. \(\beta_j = (r_{j+1}, r_0^*) / (r_j, r_0^*) \)
9. \(u_{j+1} = r_{j+1} + \beta_j q_j \)
10. \(p_{j+1} = u_{j+1} + \beta_j (q_j + \beta_j p_j) \)
11. EndDo

Note: no matrix-by-vector products with \(A^T \) but two matrix-by-vector products with \(A \), at each step.

Vector: \(\longleftrightarrow \) Polynomial in BCG :

\[q_i \longleftrightarrow r_i(t) \bar{p}_{i-1}(t) \]
\[u_i \longleftrightarrow \bar{p}_i^2(t) \]
\[r_i \longleftrightarrow \bar{r}_i^2(t) \]

where \(r_i(t) = \) residual polynomial at step \(i \) for BCG, i.e., \(r_i = \bar{r}_i(A) r_0 \),
and \(\bar{p}_i(t) = \) conjugate direction polynomial at step \(i \), i.e., \(p_i = \bar{p}_i(A) r_0. \)
BCGSTAB (van der Vorst, 1992)

- In CGS: residual polynomial of BCG is squared. • bad behavior in case of irregular convergence.
- Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. • Derivation similar to CGS.
- Residuals in BCGSTAB are of the form, \(r_j' = \psi_j(A)\phi_j(A)r_0 \) in which, \(\phi_j(t) = \) BCG residual polynomial, and ..
- .. \(\psi_j(t) = \) a new polynomial defined recursively as
 \[\psi_{j+1}(t) = (1 - \omega_j t)\psi_j(t) \]
\(\omega_j \) chosen to ‘smooth’ convergence [steepest descent step]

ALGORITHM: 12. BCGSTAB
1. Compute \(r_0 := b - Ax_0; r_0' \) arbitrary;
2. \(p_0 := r_0 \).
3. For \(j = 0, 1, \ldots, \) until convergence Do:
4. \(\alpha_j := (r_j, r_0')/(Ap_j, r_0') \)
5. \(s_j := r_j - \alpha_j Ap_j \)
6. \(\omega_j := (As_j, s_j)/(As_j, As_j) \)
7. \(x_{j+1} := x_j + \alpha_j p_j + \omega_j s_j \)
8. \(r_{j+1} := s_j - \omega_j As_j \)
9. \(\beta_j := (r_{j+1}r_0')\times\frac{\alpha_j}{\omega_j} \)
10. \(p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j Ap_j) \)
11. EndDo

Convergence Theory for CG

- Approximation of the form \(x = x_0 + p_{m-1}(A)r_0 \). with \(x_0 = \) initial guess, \(r_0 = b - Ax_0 \);
- Optimality property:
 \(x_m \) minimizes \(\| x - x^* \|_A \) over \(x_0 + K_m \)

- Consequence: Standard result
 Let \(x_m = \) \(m \)-th CG iterate, \(x^* = \) exact solution and
 \[\eta = \frac{\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \]
 Then:
 \[\| x^* - x_m \|_A \leq \frac{\| x^* - x_0 \|_A}{T_m(1 + 2\eta)} \]
 where \(T_m = \) Chebyshev polynomial of degree \(m \).
THEORY FOR NONHERMITIAN CASE

- Much more difficult!
- No convincing results on ‘global convergence’ for many algorithms (bi-CG, FOM, etc.)
- Can get a general a-priori – a-posteriori error bound

Convergence results for nonsymmetric case

- Methods based on minimum residual better understood.
- If \((A + A^T)\) is positive definite \((\langle Ax, x \rangle > 0 \forall x \neq 0)\), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.
- Convergence results based on comparison with steepest descent [Eisenstat, Elman, Schultz 1982] → not sharp.

Minimum residual methods: if \(A = X \Lambda X^{-1}\), \(\Lambda\) diagonal, then

\[
\|b - Ax_m\|_2 \leq \text{Cond}_2(X) \min_{p \in \mathcal{P}_{m-1} : p(0) = 1} \max_{\lambda \in \Lambda(A)} |p(\lambda)|
\]

\((\mathcal{P}_{m-1} \equiv \text{set of polynomials of degree } \leq m - 1, \Lambda(A) \equiv \text{spectrum of } A)\)

Two useful projectors

Let \(\mathcal{P}\) be the orthogonal projector onto \(K\) and \(Q\) be the (oblique) projector onto \(K\) and orthogonally to \(L\).

- \(\mathcal{P}x \in K, x - \mathcal{P}x \perp K\)
- \(Qx \in K, x - Qx \perp L\)

The approximate problem in terms of \(\mathcal{P}\) and \(Q\)

- Approximate problem amounts to solving
 \[Q(b - Ax) = 0, \ x \in K\]
 or in operator form
 \[Q(b - A\mathcal{P}x) = 0\]

Question: what accuracy can one expect?

- If \(x^*\) is the exact solution, then we cannot get better accuracy
 than \(\|(I - \mathcal{P})x^*\|_2\), i.e.,
 \[
 \|\bar{x} - x^*\|_2 \geq \|(I - \mathcal{P})x^*\|_2
 \]
THEOREM. Let $\gamma = \| Q (I - P) \|_2$ and assume that b belongs to K. Then the residual norm of the exact solution x^* for the (approximate) linear operator A_m satisfies the inequality,

$$\| b - A_m x^* \|_2 \leq \gamma \| (I - P) x^* \|_2$$

In other words “if approximate problem is not poorly conditioned and if $\| (I - P) x^* \|_2$ is small then we will obtain a good approximate solution”.

Methods based on the normal equations

It is possible to obtain the solution of $Ax = b$ from the equivalent system:

$$A^T Ax = A^T b$$

or

$$AA^T y = b, x = A^T y$$

Methods based on these approaches are usually slower than previous ones. (Condition number of system is squared)

Exception: when A is strongly indefinite (extreme case: A is orthogonal, $A^T A = I$ → convergence in 1 step).

CGNR and CGNE

Can use CG to solve normal equations. Two well-known options.

(1) CGNR: Conjugate Gradient method on

$$A^T Ax = A^T b$$

(2) CGNE: Let $x = A^T y$ and use conjugate gradient method on

$$AA^T y = b$$

Different optimality properties

Various ‘efficient’ formulations in both cases

ALGORITHM: 13. CGNR

1. Compute $r_0 = b - Ax_0, z_0 = A^T r_0, p_0 = z_0$.
2. For $i = 0, \ldots$, until convergence Do:
3. \hspace{1cm} $w_i = Ap_i$
4. \hspace{1cm} $\alpha_i = \| z_i \|^2 / \| w_i \|^2_2$
5. \hspace{1cm} $x_{i+1} = x_i + \alpha_i p_i$
6. \hspace{1cm} $r_{i+1} = r_i - \alpha_i w_i$
7. \hspace{1cm} $z_{i+1} = A^T r_{i+1}$
8. \hspace{1cm} $\beta_i = \| z_{i+1} \|^2 / \| z_i \|^2_2$
9. \hspace{1cm} $p_{i+1} = z_{i+1} + \beta_i p_i$
10. EndDo
The approximation x_m minimizes the residual norm $\|b - Ax\|_2$ over the affine Krylov subspace,

$$x_0 + \text{span}\{A^Tr_0, (A^TA)A^Tr_0, \ldots, (A^TA)^{m-1}A^Tr_0\},$$

where $r_0 \equiv b - Ax_0$.

The difference with GMRES is the subspace in which the residual norm is minimized. For GMRES the subspace is $x_0 + K_m(A, r_0)$.

ALGORITHM: 14. CGNE (Craig’s Method)

1. **Compute** $r_0 = b - Ax_0$, $p_0 = A^Tr_0$.
2. **For** $i = 0, 1, \ldots$, **until convergence Do**:
3. $\alpha_i = (r_i, r_i)/(p_i, p_i)$
4. $x_{i+1} = x_i + \alpha_i p_i$
5. $r_{i+1} = r_i - \alpha_i A p_i$
6. $\beta_i = (r_{i+1}, r_{i+1})/(r_i, r_i)$
7. $p_{i+1} = A^Tr_{i+1} + \beta_i p_i$
8. **End Do**

CGNE produces the approximate solution x in the subspace $x_0 + A^T K_m(AA^T, r_0) = x_0 + K_m(A^TA, A^Tr_0)$ which minimizes $x_* - x$, where $x_* = A^{-1}b$, $r_0 = b - Ax_0$.

Note: Same subspace as CGNR!

Block GMRES and Block Krylov Methods

Main Motivation: To solve linear systems with several right-hand sides

$$Ax^{(i)} = b^{(i)}, \quad i = 1, \ldots, p$$

or, in matrix form,

$$AX = B$$

Sometimes Block methods are used as a strategy for enhancing convergence even for the case $p = 1$.

Let

$$R_0 \equiv [r_0^{(1)}, r_0^{(2)}, \ldots, r_0^{(p)}].$$

each column is $r_0^{(i)} = b^{(i)} - Ax_0^{(i)}$.

Krylov methods find an approximation to X from the subspace
\[K_m(A, R_0) = \text{span}\{R_0, AR_0, \ldots, A^{m-1}R_0\} \]

For example Block-GMRES (BGMRES) finds \(X \) to minimize \(\|B - AX\|_F \) for \(X \in X_0 + K_m(A, R_0) \).

Various implementations of BGMRES exist.

Simplest one is based on Ruhe’s variant of the Block Arnoldi procedure.

\[p = 1 \text{ coincides with standard Arnoldi process.} \]

Interesting feature: dimension of the subspace need not be a multiple of the block-size \(p \).

At the end of the algorithm, we have the relation

\[AV_m = V_{m+p}H_m. \]

The matrix \(H_m \) is now of size \((m + p) \times m\).

Each approximate solution has the form

\[x^{(i)} = x_0^{(i)} + V_my^{(i)}, \]

where \(y^{(i)} \) must minimize the norm \(\|y^{(i)} - Ax^{(i)}\|_2 \).

Plane rotations can be used for this purpose as in the standard GMRES \([p \text{ rotations are needed for each step.}]\)

Algorithm 15. Block Arnoldi–Ruhe’s variant

1. Choose \(p \) initial orthonormal vectors \(\{v_i\}_{i=1}^{p} \).
2. For \(j = p, p+1, \ldots, m \) Do:
3. \hspace{1em} Set \(k := j - p + 1; \)
4. \hspace{1em} Compute \(w := Av_k; \)
5. \hspace{1em} For \(i = 1, 2, \ldots, j \) Do:
6. \hspace{2em} \(h_{i,k} := (w, v_i) \)
7. \hspace{2em} \(w := w - h_{i,k}v_i \)
8. \hspace{1em} EndDo
9. \hspace{1em} Compute \(h_{j+1,k} := \|w\|_2 \) and \(v_{j+1} := w/h_{j+1,k}. \)
10. EndDo

Calais February 7, 2005