A short course on:
Preconditioned Krylov subspace methods

Yousef Saad
University of Minnesota
Dept. of Computer Science and Engineering

Universite du Littoral, Jan 19-30, 2005
Outline

Part 1
- Introd., discretization of PDEs
- Sparse matrices and sparsity
- Basic iterative methods (Relaxation..)

Part 2
- Projection methods
- Krylov subspace methods

Part 3
- Preconditioned iterations
- Preconditioning techniques
- Parallel implementations

Part 4
- Eigenvalue problems
- Applications –
PROJECTION METHODS FOR LINEAR SYSTEMS
We consider the linear system

\[Ax = b \]

where \(A \) is \(N \times N \) and can be

- Real symmetric positive definite
- Real nonsymmetric
- Complex

Focus: \(A \) is large and sparse, possibly with an irregular structure
PROJECTION METHODS

Initial Problem: \[b - Ax = 0 \]

Given two subspaces \(K \) and \(L \) of \(\mathbb{R}^N \) define the approximate problem:

Find \(\tilde{x} \in K \) such that \(b - A\tilde{x} \perp L \)

- Leads to a small linear system (‘projected problems’) This is a basic projection step. Typically: sequence of such steps are applied

- With a nonzero initial guess \(x_0 \), the approximate problem is

Find \(\tilde{x} \in x_0 + K \) such that \(b - A\tilde{x} \perp L \)

Write \(\tilde{x} = x_0 + \delta \) and \(r_0 = b - Ax_0 \). Leads to a system for \(\delta \):

Find \(\delta \in K \) such that \(r_0 - A\delta \perp L \)
Matrix representation:

Let

- \(V = [v_1, \ldots, v_m] \) a basis of \(K \) &
- \(W = [w_1, \ldots, w_m] \) a basis of \(L \)

Then letting \(x \) be the approximate solution \(\tilde{x} = x_0 + \delta \equiv x_0 + V y \) where \(y \) is a vector of \(\mathbb{R}^m \), the Petrov-Galerkin condition yields,

\[
W^T(r_0 - AV y) = 0
\]

and therefore

\[
\tilde{x} = x_0 + V[W^T AV]^{-1}W^T r_0
\]

Remark: In practice \(W^T AV \) is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]
Until Convergence Do:

1. Select a pair of subspaces $K,$ and L;

2. Choose bases $V = [v_1, \ldots, v_m]$ for K and $W = [w_1, \ldots, w_m]$ for L.

3. Compute

\[
\begin{align*}
 r & \leftarrow b - Ax, \\
 y & \leftarrow (W^T AV)^{-1}W^T r, \\
 x & \leftarrow x + Vy.
\end{align*}
\]
Let \mathcal{P} be the orthogonal projector onto K and \mathcal{Q} the (oblique) projector onto K and orthogonally to L.

$\mathcal{P} x \in K$, $x - \mathcal{P} x \perp K$

$\mathcal{Q} x \in K$, $x - \mathcal{Q} x \perp L$

The \mathcal{P} and \mathcal{Q} projectors
Approximate problem amounts to solving

\[Q(b - Ax) = 0, \quad x \in K \]

or in operator form

\[Q(b - A\mathcal{P}x) = 0 \]

Question: what accuracy can one expect?

Let \(x^* \) be the exact solution. Then

1) we cannot get better accuracy than \(\| (I - \mathcal{P})x^* \|_2 \), i.e.,

\[\| \tilde{x} - x^* \|_2 \geq \| (I - \mathcal{P})x^* \|_2 \]

2) the residual of the exact solution for the approximate problem satisfies:

\[\| b - QA\mathcal{P}x^* \|_2 \leq \| QA(I - \mathcal{P}) \|_2 \| (I - \mathcal{P})x^* \|_2 \]
Two Important Particular Cases.

1. $L = AK$. Then $\| b - A\tilde{x} \|_2 = \min_{z \in K} \| b - Az \|_2$

 → Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

2. $L = K$ → Class of Galerkin or Orthogonal projection methods.

 When A is SPD then $\| x^* - \tilde{x} \|_A = \min_{z \in K} \| x^* - z \|_A$.

Calais February 7, 2005
One-dimensional projection processes

K = \text{span}\{d\} and
L = \text{span}\{e\}

Then \(\tilde{x} \leftarrow x + \alpha d \) and Petrov-Galerkin condition \(r - A\delta \perp e \) yields

\[
\alpha = \frac{(r,e)}{(Ad,e)}
\]

Three popular choices:

(I) **Steepest descent.** A is SPD. Take at each step \(d = r \) and \(e = r \).

Iteration:

\[
\begin{align*}
 r &\leftarrow b - Ax, \\
 \alpha &\leftarrow (r,r)/(Ar,r) \\
 x &\leftarrow x + \alpha r
\end{align*}
\]

▶ Each step minimizes \(f(x) = \|x - x^*\|^2_A = (A(x - x^*), (x - x^*)) \) in direction \(-\nabla f\). Convergence guaranteed if A is SPD.
(II) Residual norm steepest descent. A is arbitrary (nonsingular). Take at each step \(d = A^T r \) and \(e = Ad \).

\[
\begin{align*}
\text{Iteration:} \\
& r \leftarrow b - Ax, \ d = A^T r \\
& \alpha \leftarrow \|d\|_2^2 / \|Ad\|_2^2 \\
& x \leftarrow x + \alpha d
\end{align*}
\]

- Each step minimizes \(f(x) = \|b - Ax\|_2^2 \) in direction \(-\nabla f \).
- Important Note: equivalent to usual steepest descent applied to normal equations \(A^T Ax = A^T b \).
- Converges under the condition that \(A \) is nonsingular.
(III) Minimal residual iteration. A positive definite ($A + A^T$ is SPD).

Take at each step $d = r$ and $e = Ar$.

Iteration:

\[
\begin{align*}
 r &\leftarrow b - Ax, \\
 \alpha &\leftarrow (Ar, r)/(Ar, Ar) \\
 x &\leftarrow x + \alpha r
\end{align*}
\]

- Each step minimizes $f(x) = \|b - Ax\|^2$ in direction r.

- Converges under the condition that $A + A^T$ is SPD.
KRYLOV SUBSPACE METHODS

Principle: Projection methods on Krylov subspaces, i.e., on

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- probably the most important class of iterative methods.
- many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \): Let \(\mu = \text{deg. of minimal polynomial of} \ v \)

- \(K_m = \{p(A)v | p = \text{polynomial of degree} \leq m - 1\} \)
- \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
- \(\dim(K_m) = m \) iff \(\mu \geq m \).
A little review: Gram-Schmidt process

Goal: given $X = [x_1, \ldots, x_m]$ compute an orthonormal set $Q = [q_1, \ldots, q_m]$ which spans the same subspace.

ALGORITHM: 1 Classical Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. Compute $r_{ij} = (x_j, q_i)$ for $i = 1, \ldots, j - 1$
3. Compute $\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij} q_i$
4. $r_{jj} = \| \hat{q}_j \|_2$ If $r_{jj} == 0$ exit
5. $q_j = \hat{q}_j / r_{jj}$
6. EndDo
ALGORITHM: 2. Modified Gram-Schmidt

1. For $j = 1, \ldots, m$ Do:
2. \(\hat{q}_j := x_j \)
3. For $i = 1, \ldots, j - 1$ Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij} q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2 \). If $r_{jj} == 0$ exit
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo
Let:

\[X = [x_1, \ldots, x_m] \text{ (n } \times \text{ m matrix)} \]

\[Q = [q_1, \ldots, q_m] \text{ (n } \times \text{ m matrix)} \]

\[R = \left\{ r_{ij} \right\} \text{ (m } \times \text{ m upper triangular matrix)} \]

At each step,

\[x_j = \sum_{i=1}^{j} r_{ij} q_i \]

Result:

\[X = QR \]
ARNOLDI’S ALGORITHM

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

For $j = 1, \ldots, m$ do

- Compute $w := Av_j$
- for $i = 1, \ldots, j$, do
 - $h_{i,j} := (w, v_i)$
 - $w := w - h_{i,j}v_i$
- $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w / h_{j+1,j}$
Result of orthogonalization process (Arnoldi’s algorithm:)

1. $V_m = [v_1, v_2, \ldots, v_m]$ orthonormal basis of K_m.

2. $AV_m = V_{m+1}H_m$

3. $V_m^TAV_m = H_m \equiv H_m$—last row.
Arnoldi’s Method \((L_m = K_m)\)

From Petrov-Galerkin condition when \(L_m = K_m\), we get

\[x_m = x_0 + V_m H_m^{-1} V_m^T r_0 \]

If, in addition we choose \(v_1 = r_0/\|r_0\|_2 \equiv r_0/\beta\) in Arnoldi’s algorithm, then

\[x_m = x_0 + \beta V_m H_m^{-1} e_1 \]

Several algorithms mathematically equivalent to this approach:

* FOM [Saad, 1981] (above formulation)

* Young and Jea’s ORTHORES [1982].

* Axelsson’s projection method [1981].
Minimal residual methods \((L_m = AK_m)\)

When \(L_m = AK_m\), we let \(W_m \equiv AV_m\) and obtain relation

\[
x_m = x_0 + V_m [W_m^T AV_m]^{-1} W_m^T r_0 = x_0 + V_m [(AV_m)^T AV_m]^{-1} (AV_m)^T r_0.
\]

Use again \(v_1 := r_0/\|r_0\|_2\) and the relation \(AV_m = V_{m+1} H_m\):

\[
x_m = x_0 + V_m [\tilde{H}_m^T \tilde{H}_m]^{-1} \tilde{H}_m^T \beta e_1 = x_0 + V_m y_m
\]

where \(y_m\) minimizes \(\|\beta e_1 - \tilde{H}_m y\|_2\) over \(y \in \mathbb{R}^m\). Therefore, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

\[
x_m = x_0 + V_m y_m \quad \text{where} \quad y_m : \min_y \|\beta e_1 - \tilde{H}_m y\|_2
\]

Equivalent methods:
- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR
Restarting and Truncating

Difficulty: As \(m \) increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension \(m \) of the subspace

ALGORITHM : 3. *Restarted GMRES (resp. Arnoldi)*

1. **Start/Restart:** Compute \(r_0 = b - Ax_0, \text{ and } v_1 = r_0 / (\beta := \|r_0\|_2) \).
2. **Arnoldi Process:** generate \(\bar{H}_m \) and \(V_m \).
3. **Compute** \(y_m = \bar{H}_m^{-1}\beta e_1 \) (FOM), or
 \[y_m = \arg\min \|\beta e_1 - \bar{H}_m y\|_2 \) (GMRES)
4. \(x_m = x_0 + V_m y_m \)
5. **If** \(\|r_m\|_2 \leq \epsilon \|r_0\|_2 \) **stop else set** \(x_0 := x_m \) and **go to 1.**
Second remedy: Truncate the orthogonalization

The formula for v_{j+1} is replaced by

$$h_{j+1,j}v_{j+1} = Av_j - \sum_{i=j-k+1}^{j} h_{ij}v_i$$

→ each v_j is made orthogonal to the previous k v_i's.

→ x_m still computed as $x_m = x_0 + V_mH_m^{-1}\beta e_1$.

→ It can be shown that this is again an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or ‘incomplete’) orthogonalization.
The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_m U_m$ we get

$$x_m = x_0 + \begin{bmatrix} V_m U_m^{-1} & L_m^{-1} \beta e_1 \end{bmatrix} \equiv x_0 + P_m z_m$$

Structure of L_m, U_m when $k = 3$

$$L_m = \begin{pmatrix} 1 & & & \\ x & 1 & & \\ x & & 1 \\ x & & & 1 \\ x & & & 1 \end{pmatrix} \quad \quad U_m = \begin{pmatrix} x & x & x \\ x & & x \end{pmatrix}$$
\[p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i] \]

\[z_m = \begin{bmatrix} z_{m-1} \\
\zeta_m \end{bmatrix} \]

Can update \(x_m \) at each step:

\[x_m = x_{m-1} + \zeta_m p_m \]

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the \(H_m \) matrix.

- CG-like formulation of IOM called DIOM [Saad, 1982]
- ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, ’77] uses LQ factorization of \(H_m \)
- Can incorporate partial pivoting in LU factorization of \(H_m \)
Some implementation details: GMRES

- Issue 1: how to solve least-squares problem?
- Issue 2: How to compute residual norm (without computing solution at each step)?
- Several solutions to both issues. Simplest: use Givens rotations.
- Recall: we want to solve least-squares problem

\[\min_y \| \beta e_1 - H_m y \|_2 \]

- Transform the problem into upper triangular one.
Rotation matrices of dimension $m + 1$. Define (with $s_i^2 + c_i^2 = 1$):

$$
\Omega_i = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & c_i & s_i \\
& & & -s_i & c_i \\
& & & & 1 \\
& & & & & \ddots \\
& & & & & & 1
\end{pmatrix}
$$

\[\leftarrow \text{row } i\]

\[\leftarrow \text{row } i + 1\]

Multiply \bar{H}_m and right-hand side $\bar{g}_0 \equiv \beta e_1$ by a sequence of such matrices from the left. s_i, c_i selected to eliminate $h_{i+1,i}$
\[\tilde{H}_5 = \begin{pmatrix} h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\ h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\ h_{32} & h_{33} & h_{34} & h_{35} \\ h_{43} & h_{44} & h_{45} \\ h_{54} & h_{55} \\ h_{65} \end{pmatrix}, \quad \tilde{g}_0 = \begin{pmatrix} \beta \\ 0 \\ 0 \\ 0 \end{pmatrix}. \]

1-st Rotation

\[\Omega_1 = \begin{pmatrix} c_1 & s_1 \\ -s_1 & c_1 \\ 1 & 1 \end{pmatrix} \]

with

\[s_1 = \frac{h_{21}}{\sqrt{h_{11}^2 + h_{21}^2}}, \quad c_1 = \frac{h_{11}}{\sqrt{h_{11}^2 + h_{21}^2}} \]
\[
\begin{align*}
\bar{H}_m^{(1)} &= \begin{pmatrix}
 h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\
 h_{21}^{(1)} & h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\
 h_{31} & h_{32} & h_{33} & h_{34} & h_{35} \\
 h_{41} & h_{42} & h_{43} & h_{44} & h_{45} \\
 h_{51} & h_{52} & h_{53} & h_{54} & h_{55} \\
 h_{61} & h_{62} & h_{63} & h_{64} & h_{65}
\end{pmatrix}, \quad \bar{g}_1 = \begin{pmatrix}
 c_1 \beta \\
 -s_1 \beta \\
 0 \\
 0 \\
 0 \\
\end{pmatrix}.
\end{align*}
\]

\[\text{Result:}\]

\[
\begin{align*}
\bar{H}_5^{(5)} &= \begin{pmatrix}
 h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\
 h_{21}^{(5)} & h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\
 h_{31}^{(5)} & h_{32}^{(5)} & h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} \\
 h_{41}^{(5)} & h_{42}^{(5)} & h_{43}^{(5)} & h_{44}^{(5)} & h_{45}^{(5)} \\
 h_{51}^{(5)} & h_{52}^{(5)} & h_{53}^{(5)} & h_{54}^{(5)} & h_{55}^{(5)} \\
 0
\end{pmatrix}, \quad \bar{g}_5 = \begin{pmatrix}
 \gamma_1 \\
 \gamma_2 \\
 \gamma_3 \\
 \gamma_4 \\
 \gamma_5 \\
\end{pmatrix}.
\end{align*}
\]

\[\text{repeat with } \Omega_2, \ldots, \Omega_i.\]
Define

\[Q_m = \Omega_m \Omega_{m-1} \cdots \Omega_1 \]
\[\bar{R}_m = \bar{H}_m^{(m)} = Q_m \bar{H}_m, \]
\[\bar{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T. \]

Since \(Q_m \) is unitary,

\[\min \| \beta e_1 - \bar{H}_m y \|_2 = \min \| \bar{g}_m - \bar{R}_m y \|_2. \]

Delete last row and solve resulting triangular system.

\[R_m y_m = g_m \]
PROPOSITION:

1. The rank of AV_m is equal to the rank of R_m. In particular, if $r_{mm} = 0$ then A must be singular.

2. The vector y_m which minimizes $\|\beta e_1 - \bar{H}_m y\|_2$ is given by

$$y_m = R_m^{-1} g_m.$$

3. The residual vector at step m satisfies

$$b - Ax_m = V_{m+1} (\beta e_1 - \bar{H}_m y_m) = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1})$$

and, as a result,

$$\|b - Ax_m\|_2 = |\gamma_{m+1}|.$$
THE SYMMETRIC CASE: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j - 1; \quad \text{and} \quad h_{j,j+1} = h_{j+1,j}, \quad j = 1, \ldots, m$$
We can write

\[
H_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
\beta_3 & \alpha_3 & \beta_4 \\
\vdots & \vdots & \vdots \\
\beta_m & \alpha_m \\
\end{pmatrix}
\]

(1)

The \(v_i \)'s satisfy a three-term recurrence [Lanczos Algorithm]:

\[
\beta_{j+1} v_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1}
\]

→ simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi → Symmetric Lanczos
The Lanczos algorithm

ALGORITHM : 4 .

Lanczos

1. Choose an initial vector \(v_1 \) of norm unity. Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)
2. For \(j = 1, 2, \ldots, m \) Do:
 3. \(w_j := Av_j - \beta_j v_{j-1} \)
 4. \(\alpha_j := (w_j, v_j) \)
 5. \(w_j := w_j - \alpha_j v_j \)
 6. \(\beta_{j+1} := ||w_j||_2. \text{ If } \beta_{j+1} = 0 \text{ then Stop} \)
 7. \(v_{j+1} := w_j / \beta_{j+1} \)
 8. EndDo
Lanczos algorithm for linear systems

- **Usual orthogonal projection method setting:**

 - \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)

 - **Basis** \(V_m = [v_1, \ldots, v_m] \) of \(K_m \) generated by the Lanczos algorithm

- **Three different possible implementations.**

 (1) Arnoldi-like; (2) Exploit tridigonal nature of \(H_m \) (DIOM); (3) Conjugate gradient.
Algorithm 5: \textit{Lanczos Method for Linear Systems}

1. \textbf{Compute} \(r_0 = b - Ax_0, \beta := \|r_0\|_2, \text{and} \ v_1 := r_0/\beta \)

2. \textbf{For} \(j = 1, 2, \ldots, m \) \textbf{Do:}

3. \(w_j = Av_j - \beta_j v_{j-1} \) \textit{(If} \(j = 1 \) \textbf{set} \(\beta_1 v_0 \equiv 0 \))

4. \(\alpha_j = (w_j, v_j) \)

5. \(w_j := w_j - \alpha_j v_j \)

6. \(\beta_{j+1} = \|w_j\|_2. \text{If} \beta_{j+1} = 0 \textbf{set} \ m := j \text{ and go to 9} \)

7. \(v_{j+1} = w_j/\beta_{j+1} \)

8. \textbf{EndDo}

9. \textbf{Set} \(T_m = \text{tridiag}(\beta_i, \alpha_i, \beta_{i+1}), \text{and} \ V_m = [v_1, \ldots, v_m] \).

10. \textbf{Compute} \(y_m = T_m^{-1}(\beta e_1) \text{ and} \ x_m = x_0 + V_m y_m \)
ALGORITHM 6. D-Lanczos

1. **Compute** \(r_0 = b - Ax_0, \zeta_1 := \beta := \|r_0\|_2, \text{and } v_1 := r_0/\beta \)

2. **Set** \(\lambda_1 = \beta_1 = 0, p_0 = 0 \)

3. **For** \(m = 1, 2, \ldots, \text{until convergence Do:} \)

4. **Compute** \(w := Av_m - \beta_m v_{m-1} \) and \(\alpha_m = (w, v_m) \)

5. **If** \(m > 1 \) **then compute** \(\lambda_m = \frac{\beta_m}{\eta_{m-1}} \) and \(\zeta_m = -\lambda_m \zeta_{m-1} \)

6. \(\eta_m = \alpha_m - \lambda_m \beta_m \)

7. \(p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1}) \)

8. \(x_m = x_{m-1} + \zeta_m p_m \)

9. **If** \(x_m \) **has converged then Stop**

10. \(w := w - \alpha_m v_m \)

11. \(\beta_{m+1} = \|w\|_2, v_{m+1} = w/\beta_{m+1} \)

12. **EndDo**
The Conjugate Gradient Algorithm (A S.P.D.)

Note: the p_i's are A-orthogonal

The r_i's are orthogonal.

And we have $x_m = x_{m-1} + \xi_m p_m$

So there must be an update of the form:

1. $p_m = r_{m-1} + \beta_m p_{m-1}$
2. $x_m = x_{m-1} + \xi_m p_m$
3. $r_m = r_{m-1} - \xi_m A p_m$
The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: \(r_0 := b - Ax_0, p_0 := r_0. \)

2. Iterate: Until convergence do,

 (a) \(\alpha_j := (r_j, r_j)/(Ap_j, p_j) \)
 (b) \(x_{j+1} := x_j + \alpha_j p_j \)
 (c) \(r_{j+1} := r_j - \alpha_j Ap_j \)
 (d) \(\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j) \)
 (e) \(p_{j+1} := r_{j+1} + \beta_j p_j \)

\[r_j = scaling \times v_{j+1}. \text{ The } r_j \text{'s are orthogonal.} \]

\[\text{The } p_j \text{'s are } A \text{-conjugate, i.e., } (Ap_i, p_j) = 0 \text{ for } i \neq j. \]
METHODS BASED ON LANCZOS BIORTHOGONALIZATION
ALGORITHM: 7. The Lanczos Bi-Orthogonalization Procedure

1. Choose two vectors \(v_1, w_1 \) such that \((v_1, w_1) = 1\).

2. Set \(\beta_1 = \delta_1 = 0, w_0 = v_0 = 0 \)

3. For \(j = 1, 2, \ldots, m \) Do:
 4. \(\alpha_j = (Av_j, w_j) \)
 5. \(\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1} \)
 6. \(\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1} \)
 7. \(\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2} \). If \(\delta_{j+1} = 0 \) Stop
 8. \(\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1} \)
 9. \(w_{j+1} = \hat{w}_{j+1}/\beta_{j+1} \)
 10. \(v_{j+1} = \hat{v}_{j+1}/\delta_{j+1} \)
 11. EndDo
Extension of the symmetric Lanczos algorithm

Builds a pair of biorthogonal bases for the two subspaces

\[\mathcal{K}_m(A, v_1) \quad \text{and} \quad \mathcal{K}_m(A^T, w_1) \]

Different ways to choose \(\delta_{j+1}, \beta_{j+1} \) in lines 7 and 8.

Let

\[
T_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\delta_2 & \alpha_2 & \beta_3 \\
\delta_4 & \alpha_4 & \beta_4 \\
\delta_{m-1} & \alpha_{m-1} & \beta_m \\
\delta_m & \alpha_m
\end{pmatrix}.
\]

\(v_i \in \mathcal{K}_m(A, v_1) \) and \(w_j \in \mathcal{K}_m(A^T, w_1) \).
If the algorithm does not break down before step m, then the vectors $v_i, i = 1, \ldots, m$, and $w_j, j = 1, \ldots, m$, are biorthogonal, i.e.,

$$(v_j, w_i) = \delta_{ij} \quad 1 \leq i, j \leq m.$$

Moreover, $\{v_i\}_{i=1,2,\ldots,m}$ is a basis of $\mathcal{K}_m(A, v_1)$ and $\{w_i\}_{i=1,2,\ldots,m}$ is a basis of $\mathcal{K}_m(A^T, w_1)$ and

$$AV_m = V_mT_m + \delta_{m+1}v_{m+1}e_m^T,$$

$$A^TW_m = W_mT_m^T + \beta_{m+1}w_{m+1}e_m^T,$$

$$W_m^TAV_m = T_m.$$
The Lanczos Algorithm for Linear Systems

Algorithm 8: Lanczos Algorithm for Linear Systems

1. Compute $r_0 = b - Ax_0$ and $\beta := \|r_0\|_2$
2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
3. Start with $v_1 := r_0/\beta$, and any w_1 such that $(v_1, w_1) = 1$
4. Generate the Lanczos vectors $v_1, \ldots, v_m, w_1, \ldots, w_m$
5. and the tridiagonal matrix T_m from Algorithm ??.
6. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.

BCG can be derived from the Lanczos Algorithm similarly to CG in symmetric case.
The BCG and QMR Algorithms

- Let $T_m = L_m U_m$ (LU factorization of T_m). Define $P_m = V_m U_m^{-1}$.

Then, solution is

$$x_m = x_0 + V_m T_m^{-1}(\beta e_1) = x_0 + V_m U_m^{-1} L_m^{-1}(\beta e_1) = x_0 + P_m L_m^{-1}(\beta e_1)$$

- x_m is updatable from x_{m-1} similar to the CG algorithm.

- r_j and r_j^* are in the same direction as v_{j+1} and w_{j+1} respectively.

- They form a biorthogonal sequence.

- The p_i^*’s p_i’s are A-conjugate.

- Utilizing this information, a CG-like algorithm can be easily derived from the Lanczos procedure.
ALGORITHM 9: BiConjugate Gradient (BCG)

1. Compute \(r_0 := b - Ax_0 \). Choose \(r_0^* \) such that \((r_0, r_0^*) \neq 0 \).

2. Set, \(p_0 := r_0, p_0^* := r_0^* \)

3. For \(j = 0, 1, \ldots, \) until convergence Do:

4. \(\alpha_j := (r_j, r_j^*)/(Ap_j, p_j^*) \)

5. \(x_{j+1} := x_j + \alpha_j p_j \)

6. \(r_{j+1} := r_j - \alpha_j Ap_j \)

7. \(r_{j+1}^* := r_j^* - \alpha_j A^T p_j^* \)

8. \(\beta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*) \)

9. \(p_{j+1} := r_{j+1} + \beta_j p_j \)

10. \(p_{j+1}^* := r_{j+1}^* + \beta_j p_j^* \)

11. EndDo
The Lanczos algorithm gives the relations \(AV_m = V_{m+1} \bar{T}_m \) with
\[
\bar{T}_m = (m + 1) \times m \text{ tridiagonal matrix } \bar{T}_m = \begin{pmatrix} T_m \\ \delta_{m+1} e_m^T \end{pmatrix}.
\]

Let \(v_1 \equiv \beta r_0 \) and \(x = x_0 + V_m y \). Residual norm \(\| b - A x \|_2 \) is
\[
\| r_0 - AV_m y \|_2 = \| \beta v_1 - V_{m+1} \bar{T}_m y \|_2 = \| V_{m+1} (\beta e_1 - \bar{T}_m y) \|_2
\]

Column-vectors of \(V_{m+1} \) are not orthonormal (\(\neq \) GMRES).

But: reasonable idea to minimize the function \(J(y) = \| \beta e_1 - \bar{T}_m y \|_2 \)

Quasi-Minimal Residual Algorithm (Freund, 1990).
ALGORITHM: 10. QMR

1. Compute $r_0 = b - Ax_0$ and $\gamma_0 := \|r_0\|_2$, $w_1 := v_1 := r_0/\gamma_1$

2. For $m = 1, 2, \ldots$, until convergence Do:

3. Compute α_m, δ_{m+1} and v_{m+1}, w_{m+1} as in Lanczos Algor. [alg. ??]

4. Update the QR factorization of \tilde{T}_m, i.e.,

5. Apply Ω_i, $i = m - 2, m - 1$ to the m-th column of \tilde{T}_m

6. Compute the rotation coefficients c_m, s_m

7. Apply rotation Ω_m, to \tilde{T}_m and \tilde{g}_m, i.e., compute:

8. $\gamma_{m+1} := -s_m \gamma_m$; $\gamma_m := c_m \gamma_m$; and $\alpha_m := c_m \alpha_m + s_m \delta_{m+1}$

9. $p_m = \left(v_m - \sum_{i=m-2}^{m-1} t_i m p_i\right) / t_{mm}$

10. $x_m = x_{m-1} + \gamma_m p_m$

11. If $|\gamma_{m+1}|$ is small enough Stop

12. EndDo
BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m. They allow to determine the scalars (α_j and β_j in BCG).

QUESTION: is it possible to bypass the use of A^T?

Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = \frac{F(u_k + \epsilon v) - F(u_k)}{\epsilon}.$$
Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i = \rho_i(A)r_0$$

where $\rho_i = \text{polynomial of degree } i$.

In CGS:

$$r_i = \rho_i^2(A)r_0$$
Define $r_j = \phi_j(A)r_0, \quad p_j = \pi_j(A)r_0, \quad r_j^* = \phi_j(A^T)r_0^*, \quad p_j^* = \pi_j(A^T)r_0^*$.

Scalar α_j in BCG is given by

$$\alpha_j = \frac{(\phi_j(A)r_0, \phi_j(A^T)r_0^*)}{(A\pi_j(A)r_0, \pi_j(A^T)r_0^*)} = \frac{(\phi_j^2(A)r_0, r_0^*)}{(A\pi_j^2(A)r_0, r_0^*)}$$

Possible to get a recursion for the $\phi_j^2(A)r_0$ and $\pi_j^2(A)r_0$?

$$\phi_{j+1}(t) = \phi_j(t) - \alpha_j t \pi_j(t),$$
$$\pi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \pi_j(t)$$

Square the equalities

$$\phi_{j+1}^2(t) = \phi_j^2(t) - 2\alpha_j t \pi_j(t) \phi_j(t) + \alpha_j^2 t^2 \pi_j^2(t),$$
$$\pi_{j+1}^2(t) = \phi_{j+1}^2(t) + 2\beta_j \phi_{j+1}(t) \pi_j(t) + \beta_j^2 \pi_j(t)^2.$$
Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence.
For $\pi_j(t)\phi_j(t)$, note:

$$\phi_j(t)\pi_j(t) = \phi_j(t) (\phi_j(t) + \beta_{j-1}\pi_{j-1}(t)) = \phi_j^2(t) + \beta_{j-1}\phi_j(t)\pi_{j-1}(t).$$

Result:

$$\phi_{j+1}^2 = \phi_j^2 - \alpha_j t \left(2\phi_j^2 + 2\beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2 \right)$$

$$\phi_{j+1}\pi_j = \phi_j^2 + \beta_{j-1}\phi_j\pi_{j-1} - \alpha_j t \pi_j^2$$

$$\pi_{j+1}^2 = \phi_{j+1}^2 + 2\beta_j\phi_{j+1}\pi_j + \beta_j^2\pi_j^2.$$

Define:

$$r_j = \phi_j^2(A)r_0, \quad p_j = \pi_j^2(A)r_0, \quad q_j = \phi_{j+1}(A)\pi_j(A)r_0$$
Recurrences become:

\[
 r_{j+1} = r_j - \alpha_j A \left(2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j \right), \\
 q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j A p_j, \\
 p_{j+1} = r_{j+1} + 2\beta_jq_j + \beta_j^2 p_j.
\]

Define auxiliary vector \(d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j \)

Sequence of operations to compute the approximate solution, starting with \(r_0 := b - Ax_0, p_0 := r_0, q_0 := 0, \beta_0 := 0. \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\alpha_j = (r_j, r^_0)/(Ap_j, r^_0))</td>
</tr>
<tr>
<td>2.</td>
<td>(d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j A p_j)</td>
</tr>
<tr>
<td>3.</td>
<td>(q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j A p_j)</td>
</tr>
<tr>
<td>4.</td>
<td>(x_{j+1} = x_j + \alpha_j d_j)</td>
</tr>
<tr>
<td>5.</td>
<td>(r_{j+1} = r_j - \alpha_j Ad_j)</td>
</tr>
<tr>
<td>6.</td>
<td>(\beta_j = (r_{j+1}, r^_0)/(r_j, r^_0))</td>
</tr>
<tr>
<td>7.</td>
<td>(p_{j+1} = r_{j+1} + \beta_j(2q_j + \beta_j p_j)).</td>
</tr>
</tbody>
</table>
one more auxiliary vector, $u_j = r_j + \beta_{j-1}q_{j-1}$. So

$$d_j = u_j + q_j,$$

$$q_j = u_j - \alpha_j Ap_j,$$

$$p_{j+1} = u_{j+1} + \beta_j(q_j + \beta_j p_j),$$

vector d_j is no longer needed.
ALGORITHM 11. Conjugate Gradient Squared

1. Compute \(r_0 := b - Ax_0; r_0^* \) arbitrary.
2. Set \(p_0 := u_0 := r_0 \).
3. For \(j = 0, 1, 2 \ldots \), until convergence Do:
 4. \(\alpha_j = (r_j, r_0^*)/(Ap_j, r_0^*) \)
 5. \(q_j = u_j - \alpha_j Ap_j \)
 6. \(x_{j+1} = x_j + \alpha_j(u_j + q_j) \)
 7. \(r_{j+1} = r_j - \alpha_j A(u_j + q_j) \)
 8. \(\beta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*) \)
 9. \(u_{j+1} = r_{j+1} + \beta_j q_j \)
 10. \(p_{j+1} = u_{j+1} + \beta_j(q_j + \beta_j p_j) \)
 11. EndDo
Note: no matrix-by-vector products with A^T but two matrix-by-vector products with A, at each step.

Vector: \[\longleftrightarrow \] Polynomial in BCG:

\[
\begin{align*}
q_i & \longleftrightarrow \bar{r}_i(t)\bar{p}_{i-1}(t) \\
u_i & \longleftrightarrow \bar{p}_i^2(t) \\
r_i & \longleftrightarrow \bar{r}_i^2(t)
\end{align*}
\]

where $\bar{r}_i(t) = \text{residual polynomial at step } i \text{ for BCG, i.e., } r_i = \bar{r}_i(A)r_0,$
and $\bar{p}_i(t) = \text{conjugate direction polynomial at step } i, \text{ i.e., } p_i = \bar{p}_i(A)r_0.$
BCGSTAB (van der Vorst, 1992)

- In CGS: residual polynomial of BCG is squared. ➤ bad behavior in case of irregular convergence.

- Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. ➤ Derivation similar to CGS.

- Residuals in BCGSTAB are of the form, \[r'_j = \psi_j(A)\phi_j(A)r_0 \] in which, \(\phi_j(t) = \) BCG residual polynomial, and ..

- .. \(\psi_j(t) = \) a new polynomial defined recursively as

 \[\psi_{j+1}(t) = (1 - \omega_j t)\psi_j(t) \]

\(\omega_i \) chosen to ‘smooth’ convergence [steepest descent step]
1. **Compute** \(r_0 := b - Ax_0; r_0^* \ \text{arbitrary}; \)

2. \(p_0 := r_0. \)

3. **For** \(j = 0, 1, \ldots, \) **until convergence** **Do:**

4. \(\alpha_j := (r_j, r_0^*)/(Ap_j, r_0^*) \)

5. \(s_j := r_j - \alpha_j Ap_j \)

6. \(\omega_j := (As_j, s_j)/(As_j, As_j) \)

7. \(x_{j+1} := x_j + \alpha_j p_j + \omega_j s_j \)

8. \(r_{j+1} := s_j - \omega_j As_j \)

9. \(\beta_j := \frac{(r_{j+1}, r_0^*)}{(r_j, r_0^*)} \times \frac{\alpha_j}{\omega_j} \)

10. \(p_{j+1} := r_{j+1} + \beta_j (p_j - \omega_j Ap_j) \)

11. **EndDo**
THEORY
Approximation of the form \(x = x_0 + p_{m-1}(A)r_0 \). with \(x_0 = \) initial guess, \(r_0 = b - Ax_0 \);

Optimality property:

\[x_m \text{ minimizes } \|x - x_\ast\|_A \text{ over } x_0 + K_m \]

Consequence: Standard result

Let \(x_m = m\text{-th CG iterate} \), \(x_\ast = \text{exact solution} \) and

\[\eta = \frac{\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \]

Then:

\[\|x_\ast - x_m\|_A \leq \frac{\|x_\ast - x_0\|_A}{T_m(1 + 2\eta)} \]

where \(T_m = \text{Chebyshev polynomial of degree } m \).
Much more difficult!

No convincing results on ‘global convergence’ for many algorithms (bi-CG, FOM, etc.)

Can get a general a-priori – a-posteriori error bound
Convergence results for nonsymmetric case

- Methods based on minimum residual better understood.

- If \((A + A^T)\) is positive definite \(((Ax, x) > 0 \forall x \neq 0)\), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.

- Convergence results based on comparison with steepest descent [Eisenstat, Elman, Schultz 1982] → not sharp.

Minimum residual methods: if \(A = XX^{-1}, \Lambda\) diagonal, then

\[\|b - Ax_m\|_2 \leq \text{Cond}_2(X) \min_{p \in \mathcal{P}_{m-1}, p(0)=1} \max_{\lambda \in \Lambda(A)} |p(\lambda)| \]

(\(\mathcal{P}_{m-1}\) ≡ set of polynomials of degree \(\leq m - 1\), \(\Lambda(A)\) ≡ spectrum of \(A\))
Two useful projectors

Let \mathcal{P} be the orthogonal projector onto K and \mathcal{Q} be the (oblique) projector onto K and orthogonally to L.

$\mathcal{P}x \in K$, $x - \mathcal{P}x \perp K$

$\mathcal{Q}x \in K$, $x - \mathcal{Q}x \perp L$
The approximate problem in terms of \mathcal{P} and \mathcal{Q}

- Approximate problem amounts to solving

$$\mathcal{Q}(b - Ax) = 0, \ x \in K$$

or in operator form

$$\mathcal{Q}(b - A\mathcal{P}x) = 0$$

Question: what accuracy can one expect?

- If x^* is the exact solution, then we cannot get better accuracy than $\| (I - \mathcal{P})x^* \|_2$, i.e.,

$$\| \tilde{x} - x^* \|_2 \geq \| (I - \mathcal{P})x^* \|_2$$
THEOREM. Let \(\gamma = \|QA(I - \mathcal{P})\|_2 \) and assume that \(b \) belongs to \(K \). Then the residual norm of the exact solution \(x^* \) for the (approximate) linear operator \(A_m \) satisfies the inequality,

\[
\|b - A_m x^*\|_2 \leq \gamma \| (I - \mathcal{P}) x^* \|_2
\]

In other words “if approximate problem is not poorly conditioned and if \(\| (I - \mathcal{P}) x^* \|_2 \) is small then we will obtain a good approximate solution”.
Methods based on the normal equations

It is possible to obtain the solution of \(Ax = b \) from the equivalent system:

\[A^T Ax = A^T b \]

or

\[AA^T y = b, \; x = A^T y \]

Methods based on these approaches are usually slower than previous ones. (Condition number of system is squared)

Exception: when \(A \) is strongly indefinite (extreme case: \(A \) is orthogonal, \(A^T A = I \) → convergence in 1 step).
Can use CG to solve normal equations. Two well-known options.

(1) **CGNR**: Conjugate Gradient method on

\[A^T A x = A^T b \]

(2) **CGNE**: Let \(x = A^T y \) and use conjugate gradient method on

\[A A^T y = b \]

- Different optimality properties

- Various ‘efficient’ formulations in both cases
Algorithm: 13

CGNR

1. **Compute** $r_0 = b - Ax_0$, $z_0 = A^T r_0$, $p_0 = z_0$.

2. **For** $i = 0, \ldots$, **until convergence** **Do:**

3. $w_i = Ap_i$

4. $\alpha_i = \|z_i\|^2 / \|w_i\|^2$

5. $x_{i+1} = x_i + \alpha_i p_i$

6. $r_{i+1} = r_i - \alpha_i w_i$

7. $z_{i+1} = A^T r_{i+1}$

8. $\beta_i = \|z_{i+1}\|^2 / \|z_i\|^2$

9. $p_{i+1} = z_{i+1} + \beta_i p_i$

10. **EndDo**
CGNR: The approximation x_m minimizes the residual norm $\|b - Ax\|_2$ over the affine Krylov subspace,

$$x_0 + \text{span}\{A^T r_0, (A^T A)A^T r_0, \ldots, (A^T A)^{m-1}A^T r_0\},$$

where $r_0 \equiv b - Ax_0$.

The difference with GMRES is the subspace in which the residual norm is minimized. For GMRES the subspace is $x_0 + \mathcal{K}_m(A, r_0)$.
ALGORITHM : 14 ■ CGNE (Craig’s Method)

1. **Compute** \(r_0 = b - Ax_0, \) \(p_0 = A^T r_0. \)

2. **For** \(i = 0, 1, \ldots, \) **until convergence** **Do:**

3. \(\alpha_i = (r_i, r_i) / (p_i, p_i) \)

4. \(x_{i+1} = x_i + \alpha_i p_i \)

5. \(r_{i+1} = r_i - \alpha_i Ap_i \)

6. \(\beta_i = (r_{i+1}, r_{i+1}) / (r_i, r_i) \)

7. \(p_{i+1} = A^T r_{i+1} + \beta_i p_i \)

8. **EndDo**
CGNE produces the approximate solution x in the subspace

$$x_0 + A^T K_m (AA^T, r_0) = x_0 + K_m (A^T A, A^T r_0)$$

which minimizes

$$x_\ast - x,$$

where $x_\ast = A^{-1} b$, $r_0 = b - A x_0$.

► **Note:** Same subspace as CGNR!
Main Motivation: To solve linear systems with several right-hand sides

\[Ax^{(i)} = b^{(i)}, \quad i = 1, \ldots, p \]

or, in matrix form,

\[AX = B \]

Sometimes Block methods are used as a strategy for enhancing convergence even for the case \(p = 1 \).

Let

\[R_0 \equiv [r_0^{(1)}, r_0^{(2)}, \ldots, r_0^{(p)}] . \]

each column is \(r_0^{(i)} = b^{(i)} - Ax_0^{(i)} \).

Krylov methods find an approximation to \(X \) from the subspace
\[K_m(A, R_0) = \text{span}\{R_0, AR_0, \ldots, A^{m-1}R_0\} \]

For example, Block-GMRES (BGMRES) finds \(X \) to minimize \(\|B - AX\|_F \) for \(X \in X_0 + K_m(A, R_0) \).

Various implementations of BGMRES exist.

Simplest one is based on Ruhe’s variant of the Block Arnoldi procedure.
ALGORITHM 15: Block Arnoldi–Ruhe’s variant

1. **Choose** \(p \) **initial orthonormal vectors** \(\{v_i\}_{i=1,...,p}. \)

2. **For** \(j = p, p + 1, \ldots, m \) **Do:**

3. **Set** \(k := j - p + 1; \)

4. **Compute** \(w := Av_k; \)

5. **For** \(i = 1, 2, \ldots, j \) **Do:**

6. \(h_{i,k} := (w, v_i) \)

7. \(w := w - h_{i,k}v_i \)

8. **EndDo**

9. **Compute** \(h_{j+1,k} := \|w\|_2 \) **and** \(v_{j+1} := w/h_{j+1,k}. \)

10. **EndDo**
$p = 1$ coincides with standard Arnoldi process.

Interesting feature: dimension of the subspace need not be a multiple of the block-size p.

At the end of the algorithm, we have the relation

$$AV_m = V_{m+p}\bar{H}_m.$$

The matrix \bar{H}_m is now of size $(m + p) \times m$.

Each approximate solution has the form

$$x^{(i)} = x_0^{(i)} + V_m y^{(i)},$$

where $y^{(i)}$ must minimize the norm $\| b^{(i)} - Ax^{(i)} \|_2$.

Plane rotations can be used for this purpose as in the standard GMRES [p rotations are needed for each step.]